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Abstract: We try to establish the commonalities and leadership in the cryptocurrency markets by
examining the mutual information and lead-lag relationships between Bitcoin and other cryptocur-
rencies from January 2019 to June 2021. We examine the transfer entropy between volatility and
liquidity of seven highly capitalized cryptocurrencies in order to determine the potential direction of
information flow. We find that cryptocurrencies are strongly interrelated in returns and volatility
but less in liquidity. We show that smaller and younger cryptocurrencies (such as Ripple’s XRP or
Litecoin) have started to affect the returns of Bitcoin since the beginning of the pandemic. Regard-
ing liquidity, the results of the dynamic time warping algorithm also suggest that the position of
Monero has increased. Those outcomes suggest the gradual increase in the role of privacy-oriented
cryptocurrencies.

Keywords: cryptocurrencies; mutual information; transfer entropy; dynamic time warping

1. Introduction

Bitcoin is the most noticeable cryptocurrency in the fast-growing market [1]. However,
because the number of currencies has been rapidly growing and investors face different
investment opportunities, its dominance is disputable. This paper aims to analyse the links
between leading cryptocurrencies. These links are measured by the amount of information
shared and transmitted before and during the pandemic. We also verify possible lead-lag
relationships within the sample. We study seven cryptocurrencies of the highest market
capitalization and a relatively long history of market quotations. The coronavirus pan-
demic and the resulting unprecedented crisis has affected the entire investment community,
and many assets and commodities significantly dropped in value. We focus on cryptocur-
rencies that—on the contrary—experienced an increase in their value (at the beginning of
2020, Bitcoin price oscillated around 7200 USD). Already in April 2021, it exceeded 61,500
USD (according to coinmarketcap.com, accessed: 21 October 2021). We observe a similar
enormous growth in the prices of other cryptocurrencies too. Although the prices had
fallen at the end of Spring 2021, at the moment of writing this article, they still surpassed
the beginning of the 2020 level).

We analysed the returns based on the closing prices, volatility approximated by
Garman–Klass estimator [2] and liquidity approximated by the closing quoted spread
of Chung and Zhang [3]. We calculated the amount of mutual information contained in
the returns of the cryptocurrencies, their volatility and liquidity. We also examined the
information transfer between them, both in the pre-COVID-19 and within the COVID-19
period. Our results are validated using the modified DTW algorithm.

Our contributions are threefold. First, we concentrate not only on the volatility but
also on the liquidity of the cryptos. The former is no less important from the investors’
perspective during the portfolio selection process. Secondly, we find that the amount of
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mutual information included in returns and volatility is much higher than the one in liquid-
ity. The latter seems to affect the lead-lag relationships—they are indistinguishable in daily
returns and volatility but relatively clear in liquidity. The amount of mutual information
contained in liquidity has increased beginning from the pandemic. Moreover, there is no
definite leader among cryptocurrencies when it comes to information transfer. We observe
the growing role of Ripple in this process, and we link it to the fast transaction processing
algorithm of this coin. According to the DTW results, Bitcoin leads all cryptocurrencies in
terms of liquidity, but we observe that Monero is its close follower (probably due to the
growing interest in more privacy-oriented cryptocurrencies).

Through the study, we enrich our understanding of the information transmission
mechanisms in the cryptocurrency market. We also provide some practical information for
market participants about the possible benefits of portfolio diversification. Thus, our results
are of special importance for the investors. Investment strategies (in any cryptocurrency
and not necessarily in Bitcoin) should depend on the observation of prices of a set of
cryptocurrencies and not only the most popular one.

2. Literature Review

When measuring the dominance of one financial instrument (or market) over another,
the most common approach is to investigate the contagion in returns or volatility. With re-
spect to cryptocurrencies, Yi et al. (2018) [1] analysed whether Bitcoin was a dominant
cryptocurrency over the period December 2016–April 2018. They found that cryptocurren-
cies with high market capitalization (namely Bitcoin, Litecoin and Dogecoin) propagate
large volatility shocks, while small-cap cryptocurrencies are more likely to receive volatil-
ity shocks from others. Although Bitcoin plays an important role and generates strong
volatility shocks to other cryptocurrencies, it does not play a role of the ‘clear’ leader on
the market in terms of volatility connectedness.

In a similar vein, Ji et al. (2019) [4] applied the measures developed by [5] and found
that the return shocks arising from Bitcoin and Litecoin had the most profound effect on
the returns of other four large cryptocurrencies between 2015 and 2018. XRM and Ether
mostly reacted to negative shocks, while Dash and Ether were weakly reacting to positive
returns. In terms of volatility spillovers, Bitcoin was the most powerful and was followed
by Litecoin. Ciaian et al. [6] reinforced the conclusion of the lack of the dominant position
of Bitcoin. They show that the changes of prices of alternative coins (so-called altcoins) are
driven by the development of Bitcoin in the short-run (for 15 out of 16 examined altcoins)
but not in the longer term (for only four altcoins).

More closely related work to ours is [7], as that study aimed to detect the informational
leadership among four cryptocurrencies, Bitcoin, Ether, Litecoin and XRM. The authors
showed that the relationships between cryptocurrencies are nonlinear. Therefore, one
should not apply the Granger causality or similar tools that assume linear dependencies
in investigating interrelationships among such assets. The scholars utilize a method quite
common in econophysics, that is, the group transfer entropy. Their findings indicate that
Bitcoin is not a dominating cryptocurrency—it does not lead the information process.

In a more recent paper, Aslanidis et al. [8] documented that the cryptocurrency market
experienced a strong overall increase in the connectedness both in terms of returns and
volatility. In most cases over the period 2015–2020, shocks were transmitted to the other
cryptocurrencies and had a short-term effect on the returns. The scholars also found
evidence that the volatility transmission in the high-frequency domain becomes more
important than in the low-frequency one. By analysing samples year by year, they found
that the variance explained by the first principal component increased over the period both
for returns and for volatility. Although over the year ending in August 2016, the percentage
of variance explained by the first PC amounted 76% for Bitcoin (the values for Litecoin
and Ether were 68% and 7%, respectively); in the year ending in July 2020, the first PC
represented 86% of the Bitcoin variance, and the latter was exceeded by Litecoin (91%) and
Ethereum (93%). Thus, Bitcoin seems to lose its superior position over time.
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The goal of our analysis is to verify whether we can distinguish a leading cryptocur-
rency. In other words, we are interested on whether cryptocurrencies followed Bitcoin (and
we observed causality) during the pandemic and before or the simultaneous increase in
the prices of cryptocurrencies reflected the phenomenon of co-occurrence.

3. Data

We analyse daily closing prices of the following cryptocurrencies: Bitcoin (BTC), Ether
(ETH), Ripple’s XRP, Dash (DSH), Litecoin (LTC), Monero (XMR) and Iota (IOT). These
cryptocurrencies vary in terms of the speed of transaction processing, privacy orientation
and usage. In the investigated set, Dash and Monero are the leading privacy-oriented
cryptos, while Ripple’s XRP processes transactions the fastest. As literature concerning
Bitcoin is already saturated [1,4,9], we focus here on the potential successors.

Ether is probably the biggest competitor of Bitcoin. At the moment of writing this
article, Ether was the second-largest virtual currency by market capitalization in the world.
The name Ether refers to the token (or ’coin’) used through the Ethereum network, launched
in 2015. Ether is a medium of exchange similarly to other cryptocurrencies. What sets them
apart is that Ether tokens can be used only for one specific purpose: to facilitate the compu-
tation of decentralized applications on the Ethereum network [10]. It is possible to exchange
different cryptocurrencies for Ether tokens. However, the latter cannot be substituted with
other cryptocurrencies to provide computing power for Ethereum transactions.

XRP launched in 2012, and it is a cryptocurrency for products developed by Ripple
Labs, and that is why these two names, XRP and Ripple, are often used interchangeably.
One can use XRP coins for payment settlements, asset exchange and remittance systems.
The network RippleNet is utilized by some major banks and financial institutions, e.g.,
Santander or American Express (see: https://www.ig.com/en/cryptocurrency-trading/
cryptocurrency-comparison for details; accessed: 21 October 2021). XRP itself is pre-mined.
It uses a less complicated mining method than Bitcoin, which makes the transactions much
faster and of a much lower cost [11]. In July 2021, XRP was ranked sixth in terms of total
market capitalization (according to coinmarketcap.com).

Dash was launched in 2014 and designed to ensure users’ privacy and anonymity.
Currently, Dash aims to become a medium for daily transactions, i.e., a digital currency that
can be used as cash, credit card or via PayPal [12]. The main difference between Dash and
Bitcoin lies in the algorithms applied to mining coins. They also have a different system
of validating transactions: In the case of Bitcoin, all the nodes within a network need to
validate the transaction, while Dash relies on a specific set of nodes called masternodes.
The latter feature enables it to speed up the transaction process [13].

Litecoin was founded in 2011 by Christopher Lee. It is called the silver to Bitcoin gold.
Its infrastructure is very similar to Bitcoin’s (although the transaction processing speed is
faster), so it was used as a test-net for improvements that later were applied to Bitcoin [14].
The limit of LTC coins is 84 Million (than compared to 21 Million of Bitcoin). According
to coinmarketcap.com, Litecoin ranked fourteenth in terms of market capitalization in
July 2021.

Monero is known as the most privacy-oriented cryptocurrency. It was launched in
2014, and its popularity stems from its anonymity orientation [15]. The capitalization of
Monero in July 2021 made it 27th among the cryptocurrencies—refer to coinmarkedcap.
com.

IOTA was launched in 2016. The acronym stands for Internet of Things Application.
IOTA is a distributed ledger that handles transactions between connected devices in the
IoT. Its cryptocurrency is known as mIOTA [16]. mIOTQ is pre-mined. The method of
confirming a transaction results is based on the Tangle infrastructure, with no fees and low
power consumption.

Figure 1 presents the volume of trade of the analysed cryptocurrencies, while Figure 2
shows their closing prices. Both prices and volumes are from the Bitfinex exchange. However,
as [17] demonstrated, all the crypto-exchanges are very closely linked one to another, and

https://www.ig.com/en/cryptocurrency-trading/cryptocurrency-comparison
https://www.ig.com/en/cryptocurrency-trading/cryptocurrency-comparison
coinmarketcap.com
coinmarketcap.com
coinmarkedcap.com
coinmarkedcap.com
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information spills over them almost immediately. Therefore, we can assume that Bitfinex,
which has the highest volume of USDBTC trade, can be representative of the market.

What we observe is the peak of volume in each cryptocurrency in March 2020. In the
case of BTC, ETH and XMR, that peak is also the maximum observed in the entire analysed
period. For the rest of the cryptocurrencies, the maximums of volume traded were present
in 2021 (see Figure 1). However, when we compare this picture with Figure 2, we notice
that this March 2020 peak was followed by a price drop. Nevertheless, the prices of all
cryptocurrencies started to grow steadily, reaching their maximums in 2021.

In Table 1, we provide descriptive statistics of the returns of the analysed cryptocurren-
cies: mean, standard deviation and kurtosis in two subperiods. The table is accompanied
by Figure 3. For mean and standard deviation, we also provide the results of the tests
for the equality of the two moments in the analysed subperiods. We conclude that the
means were equal in both periods, but standard deviations increased during the pandemic.
That is especially visible in Figure 3—we observe an erratic behaviour of returns following
the March 2020 price drop. Eventually, we note an interesting phenomenon considering
kurtosis. It grew for all the coins, except for Dash. Thus, almost all cryptocurrencies
experienced more cases of extreme returns during the pandemic than before it.

Figure 1. The volume of trade of the analysed cryptocurrencies. Note: The graphs are shown in the following order: (a) BTC,
(b) ETH, (c) XRP, (d) DSH, (e) LTC, (f) XMR and (g) IOT.
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Table 1. Descriptive statistics of cryptocurrencies’ return series.

Moment Period BTC ETH XRP DSH LTC XMR IOT

mean µ
pre-COVID 0.002 0.001 −0.001 0.000 0.001 0.001 −0.001
COVID 0.003 0.005 0.002 0.001 0.002 0.002 0.003

p-val for H0: µ1 = µ2 0.687 0.253 0.377 0.792 0.900 0.580 0.250

st.dev. σ
pre-COVID 0.033 0.043 0.040 0.050 0.051 0.041 0.045
COVID 0.042 0.056 0.075 0.068 0.059 0.057 0.064

p-val for H0: σ1 = σ2 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

kurtosis pre-COVID 3.428 3.910 5.633 14.300 4.313 1.505 4.185
COVID 8.989 8.281 11.127 8.669 7.598 12.223 6.337

Note: µ denotes mean, while σ standard deviation. The data are taken daily.

Figure 2. Closing prices (in USD) of the analysed cryptocurrencies. Note: The graphs are shown in the following order:
(a) BTC, (b) ETH, (c) XRP, (d) DSH, (e) LTC, (f) XMR and (g) IOT.



Entropy 2021, 23, 1386 6 of 17

Figure 3. Log-returns of the analysed cryptocurrencies. Note: The graphs are shown in the following order: (a) BTC,
(b) ETH, (c) XRP, (d) DSH, (e) LTC, (f) XMR and (g) IOT.

4. Methods
4.1. Volatility and Liquidity Measures

There are various methods to approximate liquidity and volatility. Based on the
results presented in [18], we decided to use a Garman–Klass estimator to approximate
volatility and the closing quoted spread of Chung and Zhang [3] to approximate liquidity
of each cryptocurrency. Both measures require only daily prices; for the Garman and Klass
estimator, high-low-open-close prices are employed, while in the case of the closing quoted
spread, bid and ask prices are utilized.

To obtain the measures, we used the following formulas:

• The Garman–Klass ([2]) volatility estimator:

GK =

√
0.5
[

log
(

Ht

Lt

)]2
− (2 log(2)− 1) ·

[
log
(

Ct

Ot

)]2
(1)

where Ht, Lt, Ot and Ct are the high, low, open and close prices in day t, respectively.
• The closing quoted spread of [3]:

CQSt =
At − Bt

0.5(At + Bt)
. (2)

where Bt and At are the bid and the ask prices, respectively, at the end of the given
day t.

We calculate both the Garman–Klass estimator and the closing quoted spread for each
day and each cryptocurrency.
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4.2. Mutual Information
4.2.1. The Entropy

Mutual information measures the information of a random variable contained in
another random variable [19]. It is based on the concept of entropy—i.e., the measure
of the uncertainty associated with a random variable (so called Shannon or information
entropy [20]).

Let us denote by X and Y two random variables and assume that each of them can be
described by their probability distributions (PX and PY, respectively). The self-information
of measuring X as outcome x is defined as follows [21]:

IX(x) = − log2(PX(X = x)) = log2
1

PX(X = x)
. (3)

According to [20], for a discrete random variable X with probability distribution
PX, the average number of bits required to optimally encode independent draws can be
calculated as follows:

HX(X) = −∑
x

PX(X = x) log2 PX(X = x) = E[IX(x)], (4)

where pX(x) denotes a probability density function. The choice of the logarithm’s base only
impacts the unit of measurement. Base logarithm indicates bits and base digits, and the
base of the natural logarithm yields nats [21]).

If we denote the joint distribution of X and Y by pXY, then we can define the joint
entropy by the following:

H(X, Y) = −∑
x

∑
y

PX,Y(X = x, Y = y) log2(PX,Y(X = x, Y = y)) (5)

Based on the two measures, one can define conditional entropy as follows:

H(Y|X) = H(X, Y)− H(X). (6)

and analogously H(X|Y).

4.2.2. Mutual Information and Global Correlation

Based on the concept of entropy and self-information, one can define mutual informa-
tion as the following:

I(X, Y) = H(X)− H(X|Y) = H(Y)− H(Y|X) = H(X) + H(Y)− H(X, Y). (7)

Mutual information measures the reduction in uncertainty about variable X from ob-
serving variable Y. We will denote it by I(X, Y). Mutual information is positive I(X; Y) ≥ 0.
It is equal to 0 if and only if X and Y are independent.

It is important that mutual information does not imply causality. To account for such
a feature, one would need to use transfer entropy (see Section 4.3).

In order to normalize mutual information to take values from 0 to 1 (and be an
alternative measure to linear correlation coefficient), Ref. [19] suggested to transform it to
the so called global correlation coefficient λ:

λ(X, Y) =
√

1− exp (−2I(X, Y)) (8)

The function λ(X, Y) captures the overall dependence: both linear and non-linear
between X and Y. It can be interpreted as predictability of Y by X, where the measure of
predictability is based on empirical probability distributions and is model-independent.
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4.3. Transfer Entropy

Let us assume X and Y are Markov processes of order k and l, respectively. Thus,
the probability to observe X at time t + 1 in state s conditional on the k previous observa-
tions is as follows:

PX(Xt+1 = s|xt, ..., xt−k+1) = PX(Xt+1 = s|xt, ..., xt−k). (9)

The average number of bits needed to encode the observation in the moment t + 1,
once the previous k values are known, is given by the following:

hX(k) = −∑
x

PX

(
Xt+1 = s, x(k)t

)
log2 PX

(
Xt+1 = s|x(k)t

)
, (10)

where x(k)t = xt, ..., xt−k+1.
The information flow from process Y to process X is measured by quantifying the

deviations from the generalized Markov property:

PX(Xt+1 = s|x(k)t ) = PX(Xt+1 = s|x(k)t , y(l)t ).

The Shannnon transfer entropy measures the information flow from Y to X and is
calculated as the following:

TY→X(k, l) = ∑ PX

(
Xt+1 = s, x(k)t , y(l)t

)
log2

PX

(
Xt+1 = s|x(k)t , y(l)t

)
PX

(
Xt+1 = s|x(k)t

) . (11)

To calculate the dominant direction of the information flow, one calculates the differ-
ence between TY→X and TX→Y.

Transfer entropy can also be based on Rényi entropy and is described as follows:

Hq
X(X) =

1
1− q

log2 ∑
x

Pq
X(X = x). (12)

It strongly depends on a weighting parameter q : q > 0. For q → 1, Rényi entropy
converges to Shannon entropy. If we take 0 < q < 1, then events of a low probability will
receive more weight. For q > 1, the weights favor outcomes with higher initial probabilities
(for further details see: [21]). In the case of financial time series, important information
comes in tails. Thus, the authors recommend using small values of q and to give more
weight to extreme events.

The transfer entropy estimators are biased in small samples. To overcome this problem,
one can use the effective entropy measure. It allows for correcting the bias [22]. The effective
transfer entropy is defined as follows:

ETY→X(k, l) = TY→X(k, l)− TYsh→X(k, l) (13)

where TYsh→X(k, l) indicates transfer entropy and is calculated using a shuffled version of
the time series Y. This means that the values from the observed time series Y are drawn
randomly, and they are realigned to generate a new time series.

Rényi transfer entropy is calculated as [21] the following:

RTY→X =
1

1− q
log2

∑x φq

(
x(k)t

)
PX

(
xt+1|x

(k)
t

)
∑x,y φq

(
x(k)t , y(l)t

)
PX

(
xt+1|x

(k)
t , y(l)t

) , (14)

where the following is called escort distribution [21,23]:



Entropy 2021, 23, 1386 9 of 17

φq(x) =
Pq

X(x)

∑x Pq
X(x)

(15)

If the values of Rényi transfer entropy are negative, then this means that the history of
Y results in even greater uncertainty than only knowing the history of X alone [21].

We calculated transfer entropy and effective transfer entropy by using R package
RTransferEntropy [21], and mutual information measure using Infotheo [24].

4.4. Dynamic Time Warping

Dynamic Time Warping (futher DTW) is an algorithm used for measuring similarity
between two temporal sequences. The goal of the algorithm is to find an optimal align-
ment between two time series. By optimal alignment, we understand that it achieves the
minimum global cost (distance) while ensuring time continuity. The global cost is the
summation of the cost between each pair of points in the alignment. The algorithm was
first used in speech recognition, where the same signals may differ in speed. It allows for a
non-linear mapping of one signal to another by minimizing the distance between the two.
The algorithm, unlike econometric methods, does not assume a single delay in the entire
period; time series may have different delays at different times. It tries to find the smallest
distance among different lags.

Let us assume that we want to compare two time series: a test/query X = (x1, x2, . . . , xN)
of the length N and a reference Y = (y1, y2, . . . , yM) of length M. We choose a non-negative,
local dissimilarity function f between any pair of elements xi and yj:

d(i, j) = f (xi, yj) ≥ 0. (16)

where d(i, j) is small (i.e., low cost) if xi and yj are similar to each other, otherwise d(i, j)
is large (i.e., high cost). When employing one of the distance measure (most common
Euclidean or Manhattan), the local cost measures for each pair of elements of the sequences
X and Y are evaluated and presented in a cost matrix C ∈ RN+M. A warping path φ is a
contiguous set of matrix elements that defines a mapping between the time indices of X
and Y that satisfies the boundary, monotonicy and continuity conditions. Given φ, the total
cost dφ and the average normalized accumulated cost d̄φ between the warped time series
X and Y is computed as follows:

dφ(X, Y) =
T

∑
k=1

d(φk), (17)

d̄φ(X, Y) =
T

∑
k=1

d(φk)mφ

Mφ
, (18)

where mφ is a per-step weighting coefficient and Mφ is the corresponding normalization
constant. The goal is to find an alignment between X and Y having a minimal average
accumulated cost:

DTW(X, Y) = minφ{dφ} (19)

The optimal path is computed in the reverse order of the indices, starting with (N, M).
In this study, we used extension for this algorithm that is proposed in [25] to check

if one time series is forward or backward against the other. We calculated separate DTW
distances with windows proposed in [25], finding an optimal path only in the upper
triangular cost matrix, within different but always forward shift (called further forward
distance d f ), and in the lower triangular cost matrix, within backward shift (db).

Let us denote two analysed time series by A and B, the distance measured between
each element of A and the lagged value of B by d f and the distance between the lagged
value of A and each element of B by db. If the distance d f < db, the alignment according to
the forward DTW is better, and we call A the ’lead’.
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5. Results
5.1. Amount of Information Shared by the Cryptocurrencies

In Table 2, we present bootstrapped values of the 95% confidence intervals of global
correlation coefficients calculated for each pair of the cryptocurrencies. The coefficient
measures the amount of the mutual information shared by the returns of each pair of
cryptocurrencies. In general, the correlations are high. We observe that in the pre-COVID
period, the highest amount of mutual information was shared between XRP and ETH (95%
confidence interval of (0.81, 0.86)), BTC and ETH (0.8, 0.86) and LTC and ETH (0.78, 0.85).
The pairs XMR and IOT (0.64, 0.76); BTC and IOT (0.66, 0.77); and DSH and IOT (0.66, 0.78)
held the lowest amounts of mutual information. The numbers in the lower panel of Table 2
refer to the COVID-19 period. We observe a decline in the value of mutual information
shared by the pairs BTC-XMR (0.65, 0.76), ETH-XRP (0.72, 0.8), EHT-XMR (0.66, 0.76)
and XRP-XMR (0.63, 0.72), while an increase was observed for DSH-LTC (0.79, 0.86) and
DSH-IOT (0.74, 0.82). During this period, the highest amount of information was shared by
ETH and LTC (0.8, 0.87), DSH and LTC (0.79, 0.86) and BTC and LTC (0.77, 0.84), whereas
the BTC-ETH pair took fourth place (0.77, 0.83).

Table 2. Global correlation coefficient for cryptocurrencies’ returns: before and during pandemic.

From 1 January 2019 to 1 March 2020

ETH XRP DSH LTC XMR IOT

BTC (0.8, 0.86) (0.71, 0.81) (0.73, 0.81) (0.72, 0.82) (0.76, 0.84) (0.66, 0.77)
ETH – (0.81, 0.86) (0.74, 0.82) (0.78, 0.85) (0.72, 0.81) (0.71, 0.81)
XRP – – (0.71, 0.79) (0.74, 0.83) (0.69, 0.78) (0.73, 0.82)
DSH – – – (0.68, 0.79) (0.7, 0.8) (0.66, 0.78)
LTC – – – – (0.68, 0.78) (0.69, 0.78)
XMR – – – – – (0.64, 0.76)

From 1 March 2020 to 30 June 2021

BTC (0.77, 0.83) (0.68, 0.77) (0.73, 0.82) (0.77, 0.84) (0.65, 0.76) (0.68, 0.76)
ETH – (0.72, 0.8) (0.75, 0.82) (0.8, 0.87) (0.66, 0.76) (0.72, 0.79)
XRP – – (0.73, 0.81) (0.74, 0.81) (0.63, 0.72) (0.72, 0.79)
DSH – – – (0.79, 0.86) (0.67, 0.75) (0.74, 0.82)
LTC – – – – (0.67, 0.77) (0.73, 0.8)
XMR – – – – – (0.65, 0.74)

Note: In the table, we present the bootstrapped 95% confidence intervals of the global correlation coefficient
(in nats) calculated according to Equation (8). Values closer to 1 denote a higher reduction in uncertainty when
observing the returns of the cryptocurrency from the row. The global correlation coefficient is a measure of
interdependence but not causality. The data have been discretized by using equal frequencies binning algorithm,
and the number of bins was set to 3√N, where N is the sample length.

In Table 3, we present 95% confidence intervals of the global correlation coefficient
calculated for volatility. In the pre-COVID-19 period, we observed the highest value of
λ for each pair where Ether was present: from (0.66, 0.75) for the pair ETH-XMR to (0.73,
0.81) for ETH-LTC. The values in the pandemics were slightly higher. The only decrease
was for the pair ETH-XRP and ETH-IOT. However, we observed the highest increase in
linkages for all pairs where LTC, DSH, XMR and IOT were included. This indicates the
increase in the importance of these altcoins.

Eventually, in Table 4, we present the analogous calculations for the liquidity of the
cryptocurrencies approximated by the CQS measure. In this case, we observe significant
growth of relationships. The values of mutual information shared by the liquidity of the
cryptocurrencies were rather low before the pandemic. The 95% confidence intervals
ranged from (0.24, 0.4) for XRP-BTC to (0.43, 0.57) for IOT-DSH. In the pandemic period,
the respective intervals were (0.44, 0.56) for BTC-IOT and (0.6, 0.71) for IOT-DSH. We
observed that the leading pair did not change between the periods, but the amount of
mutual information shared by it grew. The increase in mutual information shared by
liquidity may indicate the overall growth of interest in cryptocurrency trade.
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Table 3. Global correlation coefficients for cryptocurrencies volatility approximated by the Garman–
Klass [2] estimator.

From 1 January 2019 to 1 March 2020

ETH XRP DSH LTC XMR IOT

BTC (0.68, 0.78) (0.61, 0.73) (0.58, 0.7) (0.65, 0.75) (0.68, 0.78) (0.61, 0.71)
ETH – (0.71, 0.79) (0.67, 0.76) (0.73, 0.81) (0.66, 0.75) (0.7, 0.79)
XRP – – (0.6, 0.72) (0.65, 0.74) (0.65, 0.73) (0.69, 0.77)
DSH – – – (0.62, 0.73) (0.62, 0.73) (0.62, 0.72)
LTC – – – – (0.63, 0.73) (0.64, 0.74)
XMR – – – – – (0.6, 0.71)

From 1 March 2020 to 30 June 2021

BTC (0.74, 0.81) (0.67, 0.75) (0.71, 0.79) (0.74, 0.8) (0.72, 0.79) (0.67, 0.75)
ETH – (0.68, 0.75) (0.71, 0.8) (0.75, 0.82) (0.7, 0.78) (0.7, 0.77)
XRP – – (0.74, 0.81) (0.79, 0.84) (0.66, 0.75) (0.71, 0.79)
DSH – – – (0.79, 0.85) (0.74, 0.8) (0.74, 0.81)
LTC – – – – (0.71, 0.79) (0.73, 0.8)
XMR – – – – – (0.7, 0.79)

Note: In the table, we present bootstrapped 95% confidence intervals of the global correlation coefficient (in nats)
calculated according to Equation (8). Values closer to 1 denote a higher reduction in uncertainty when observing
the volatility—Equation (1)—of the cryptocurrency from the row. The global correlation coefficient is a measure of
interdependence but not causality. The data have been discretized by using equal frequencies binning algorithm,
and the number of bins was set to 3√N, where N is the sample length.

Table 4. Global correlation coefficient for cryptocurrencies liquidity approximated by the closing
quoted spread of [3] (CQS).

From 1 January 2019 to 1 March 2020

ETH XRP DSH LTC XMR IOT

BTC (0.31, 0.52) (0.24, 0.4) (0.29, 0.47) (0.3, 0.45) (0.33, 0.49) (0.29, 0.45)
ETH – (0.3, 0.46) (0.3, 0.49) (0.31, 0.5) (0.3, 0.49) (0.32, 0.5)
XRP – – (0.33, 0.48) (0.36, 0.51) (0.36, 0.51) (0.35, 0.5)
DSH – – – (0.38, 0.52) (0.37, 0.52) (0.43, 0.57)
LTC – – – – (0.32, 0.49) (0.37, 0.52)
XMR – – – – – (0.36, 0.5)

From 1 March 2020 to 30 June 2021

BTC (0.52, 0.64) (0.5, 0.61) (0.4, 0.54) (0.51, 0.63) (0.49, 0.62) (0.44, 0.56)
ETH – (0.58, 0.69) (0.53, 0.65) (0.57, 0.69) (0.59, 0.69) (0.54, 0.65)
XRP – – (0.55, 0.67) (0.59, 0.69) (0.56, 0.67) (0.53, 0.66)
DSH – – – (0.54, 0.66) (0.56, 0.67) (0.6, 0.71)
LTC – – – – (0.52, 0.63) (0.5, 0.62)
XMR – – – – – (0.59, 0.7)

Note: In the table, we present bootstrapped 95% confidence intervals of the global correlation coefficient (in nats)
calculated according to Equation (8). Values closer to 1 denote a higher reduction in uncertainty when observing
the liquidity—Equation (2)—of the cryptocurrency from the row. The global correlation coefficient is a measure
of interdependence but not causality.The data have been discretized using equal frequencies binning algorithm,
and the number of bins was set to 3√N, where N is the sample length.

5.2. Information Flow between Cryptocurrencies

The analysis of mutual information shared by the cryptocurrencies allows us to
conclude that they are strongly interrelated concerning prices and volatility and less interre-
lated when concerning liquidity. In this section, we verify whether the relationships result
in causality. We will concentrate on the causality to and from Bitcoin in the two periods.

In Figure 4, we present the point values of entropy transfer together with their 95%
confidence intervals. If the interval covers 0, we conclude that the amount of information
transferred is insignificantly different from 0. The calculated entropy was the Renyi one,
with q = 0.1, i.e., stressing the information in tails. The estimates are each time ordered by
the amount of the information flow from BTC.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Effective Renyi entropy transfer from Bitcoin (BTC) to other cryptocurrencies and from those to BTC. Note: In the
figure, we present the values of effective transfer entropy between the returns (a,b), volatilities (c,d) and liquidities (e,f) of
cryptocurrencies calculated according to Equation (14) for q = 0.1, and the Markov order is set to 1 for each coin. The point
values are accompanied by 95% confidence bands. Intervals covering positive values denote statistically significant causality.
The negative ones indicate the increase in uncertainty when accounting for the history of other cryptocurrencies. If the
intervals cover 0, we interpret it as a lack of a statistically significant relationship. The left column refers to the pre-COVID-19
period, while the right refers to the COVID-19 one. The currencies on the x-axis are ordered by the growing amount of the
transfer entropy. Therefore, the order of the cryptocurrencies differs between the periods. The data have been discretized
using quantiles methodology.
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We observe that the causality relationships between Bitcoin and the other cryptocurren-
cies are in most cases insignificant, regardless of the medium of interest (returns, volatilities
or liquidity). In the pre-COVID-19 period, the information from BTC flew through returns
to XMR only. That changed in the COVID-period when the amount of information trans-
mitted to XMR became insignificant. Moreover, the value of the transfer entropy became
negative when we analysed the direction from BTC to XRP.

When it comes to volatility and liquidity, we observed no significantly positive infor-
mation transfer from BTC in any period. On the contrary, in the pre-COVID one, the values
of the transfer entropy were negative for the information transfer from BTC to XMR through
volatility and liquidity and to IOT through liquidity. In the COVID period, all the values
became insignificantly different from 0.

When it comes to information transfer to BTC through returns, we noted positive
values in the pre-COVID-19 period for XMR and in the COVID-19 one for LTC only.
The transfer entropy from DSH was significantly negative. We also emphasize that some
negative values of transfer entropy observed in volatility (transfer from XMR and LTC)
became insignificant in the second period. The fact that some values of transfer entropy
were negative implies that any investment strategy based on inferring the returns or
volatility of Bitcoin based on the historical returns or volatility dynamics of any other from
our set may be ineffective.

Eventually, when we concentrate on liquidity, we observe that, during the pandemic,
the values of transfer entropy were the highest in the case of XRP (the 95% interval limit
still covers 0, but the part of the interval taking negative values is the shortest among all the
cryptocurrencies). We explain this result by the fact that XRP is characterized by the fastest
transaction processing algorithm and has the potential to lead the information process in
liquidity. Moreover, interest in this cryptocurrency is steadily growing.

By summarizing the results and comparing the values of the transfer entropy to and
from Bitcoin, we can say that in terms of returns, BTC is the information receiver and that
returns dynamic from smaller coins influence the dynamics of the big one more than the
other way round.

5.3. Lead-Lag Relationships

In order to extend the results obtained by analysing transfer entropy, we also calculated
the lead-lag relationships between the cryptocurrencies using the DTW algorithm. When
analysing the transfer entropy, we allowed for one lag only, while in the DTW algorithm,
we took into account the 7-day history.

In Tables 5–7, we present the differences between the forward and the backward
distances for returns, volatilities and liquidities, respectively. The negative values in
Tables 5–7 denote that we can treat the currency in the column as the leading one relative
to the one from the row. The table can be read in two directions so that the positive value
shows that the currency in the row can be read as a leader. The gray colour indicates that
the currency from the column switched its role from leader to follower compared to the
pre-pandemic period. The orange colour signifies the change in the opposite direction.

To render the information in the tables clearer, let us concentrate on the relationship
in volatility between BTC and ETH from 1 January 2019 to 1 March 2020. The forward
DTW distance of the BTC to ETH takes into account the alignment of the current volatility
of BTC with the future volatility of ETH, accounting for different shifts from 1 to 7 days.
It amounted to 0.0080 (not included in the table). The backward DTW (the current BTC
volatility match with past ETH volatility with different lags from 1 to 7 days) amounted
to 0.0071. In the Table 6, we display the difference (multiplied by 100) between the two
values, which are equal to 0.09. The positive sign means that BTC is the leading currency
in this pair. The absolute value of these differences is not high, but we can observe that
from 1 March 2020 to 30 June 2021 the value rose to 0.19. The difference has more than
doubled; thus, we can conclude that the position of BTC as a volatility-leader against ETH,
has strengthened.
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We note two facts. First of all, the numbers presented in the tables represent differences
between the distances and not the estimates of parameters. Therefore, we do not present
here the significance tests. Instead, we can comment on the magnitude of the numbers.
All the numbers in the tables are multiplied by 100. The differences between returns and
volatilities are very small. That can suggest that daily data were not enough to capture the
lead-lag relationships in returns and volatilities. It is likely that such relationships are more
pronounced in intra-daily data. On the contrary, the differences between liquidities are
relatively high.

The results corroborate with the one obtained by the analysis of mutual information.
The highest amount of mutual information is shared by returns and volatilities. This is
likely why we observed such small differences between forward and backward distances in
Tables 5 and 6. Since the amount of mutual information contained in liquidities is smaller
(see Table 4), clearer lead-lag relationships can be observed.

Let us concentrate on Table 5. In both periods, BTC slightly leads; however, the abso-
lute value of the difference between the forward and backward distances is higher during
the pandemic period for the relationship with ETH (0.04 versus 0), XRP(0.29 versus 0.05),
DSH (0.2 versus 0.08) and XMR(0.02 versus 0) but not for IOT (0.19 versus 0.22) and LTC
(0 versus 0.24). In the pandemic period, ETH is a little ‘lagged’ relative to XRP, BTC but
also XMR. The absolute value of differences between the forward and backward distances
between LTC and other cryptocurrencies decreased a little during the pandemic.

Table 5. Differences between forward and backward DTW measures of the returns.

ETH XRP DSH LTC XMR IOT

from 1 January 2019 to 1 March 2020

BTC 0.00 0.05 0.08 0.24 0.00 0.22
ETH −0.06 0.05 0.01 0.02 0.00
XRP 0.00 0.14 0.04 −0.01
DSH 0.04 0.00 0.05
LTC −0.10 −0.05

XMR 0.00

from 1 March 2020 to 30 June 2021
BTC 0.04 0.29 0.20 0.00 0.02 0.19
ETH −0.01 0.02 0.00 −0.03 0.03
XRP 0.05 0.02 −0.03 0.00
DSH 0.05 0.01 0.06
LTC 0.03 0.01

XMR −0.01
Note: In the table, we present the differences between forward and backward distances (multiplied by 100 for
clarity). The negative values denote that we can treat the currency in the column as the leading one relative to
the one from the row. Gray colour indicates the switch of the relationship from leaders to followers during the
pandemic compared to the pre-pandemic period, while orange means changes in the opposite direction.

The results for the volatility are presented in Table 6. In the pandemic period, ETH
became a slight leader relative to XRP (−0.34), DSH (−0.03), XMR (−0.01) and IOT (−0.14).
LTC volatility became forward relative to ETH (−0.03), XRP (−0.22), XMR (−0.02) and IOT
(−0.09), while XRP became a little backward compared to all others.

Eventually, in the case of liquidity analysis (cf. Table 7), we can draw much stronger
conclusions as the numbers are much higher. BTC is forward relative to all others cryp-
tocurrencies before as well as during the pandemic. XMR is a leader relative to all others,
despite BTC in the pandemic period.
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Table 6. Differences of forward and backward DTW distances of cryptocurrencies’ volatility.

ETH XRP DSH LTC XMR IOT

From 1 January 2019 to 1 March 2020

BTC 0.09 0.10 0.17 0.26 0.00 0.23
ETH −0.05 −0.03 0.14 −0.05 0.00
XRP 0.01 0.16 0.02 0.10
DSH 0.13 −0.05 0.04
LTC −0.18 −0.09

XMR 0.09

From 1 March 2020 to 30 June 2021

BTC 0.19 0.66 0.18 0.18 0.13 0.30
ETH 0.34 0.03 −0.03 0.01 0.14
XRP −0.18 −0.22 −0.34 −0.07
DSH 0.01 0.00 0.00
LTC 0.02 0.09

XMR 0.15
Note: In the table we present the differences between forward and backward distances (multiplied by 100 for
clarity). The negative values denote that we can treat the currency in the column as the leading one relative to
the one from the row. Gray colour indicates the switch of the relationship from leaders to followers during the
pandemic compared to the pre-pandemic period, while orange means changes in the opposite direction.

Table 7. Differences of forward and backward DTW distances of the cryptocurrencies’ liquidity.

ETH XRP DSH LTC XMR IOT

From 1 January 2019 to 1 March 2020

BTC 43.89 47.15 7.19 51.93 10.14 52.94
ETH 61.13 4.17 17.14 −0.17 66.92
XRP 69.65 36.22 117.58 −2.78
DSH 20.91 2.52 −64.31
LTC −19.74 −34.53

XMR −112.67

From 1 March 2020 to 30 June 2021

BTC 83.81 121.13 60.70 78.80 52.06 106.64
ETH 95.25 −10.60 6.26 −8.90 80.76
XRP 8.65 −39.52 −39.50 −6.00
DSH 13.30 −0.49 −23.75
LTC −15.17 20.61

XMR 24.05
Note: In the table we present the differences between forward and backward distances (multiplied by 100 for
clarity). The negative values denote that we can treat the currency in the column as the leading one relative to
the one from the row. Gray colour indicates the switch of the relationship from leaders to followers during the
pandemic compared to the pre-pandemic period, while orange means changes in the opposite direction.

6. Discussion and Conclusions

In the article, we present the results of the analysis of mutual information, information
transfer and lead-lag relationships between returns, volatility and liquidity of cryptocurren-
cies. We found that cryptocurrencies share a relatively high amount of mutual information
(especially in returns and volatility), while information transfer between them is limited.
Moreover, we observed that mutual information shared in liquidity has increased since the
beginning of the pandemic. The lead-lag relationships between Bitcoin and other cryptocur-
rencies in terms of returns and volatility are almost indistinguishable in daily data, which
is probably related to the high amount of mutual information shared by these measures.
Additionally, using dynamic time warping, we have found that changes in the liquidity
of Monero (XMR) started to precede the changes in liquidity of all other cryptocurrencies,
apart from Bitcoin.
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Our results partially corroborate with the ones presented in the previous studies and
obtained with different econometric methods. Similarly to [1,6,7], we show that the domi-
nance of Bitcoin is not definite, although it has been the most recognizable cryptocurrency.
Demonstrating the significant information transfer from Litecoin to Bitcoin through re-
turns, we also corroborate the results presented in [4]. We confirm that high-capitalization
cryptocurrencies (Bitcoin, Ether and Litecoin) share a large amount of mutual information
with others. However, over time, the relationships become weaker. Moreover, it is most
visible in returns.

We note that mutual information contained in volatility and returns is higher than
the one in liquidity, and the maximal numbers are reached for returns. The latter suggests
that although all cryptocurrencies may experience similar price dynamics, the market
values their risk differently. We can also infer that the cryptocurrency market is divided
into segments with different groups of investors. In general, the investment strategy in
alternative coins based on observing Bitcoin seems to be inadequate. Investors should take
into account the information flow from other currencies as well.

In future work, we plan to repeat the research for a longer time frame in order to verify
the stability of the results in time. Together with extending the period of the study, we aim
to include more altcoins in our research. We intend to verify the possibility of hedging the
investment in the dominating cryptocurrencies with altcoins in the long run.
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