
entropy

Article

Design and ARM-Based Implementation of Bitstream-Oriented
Chaotic Encryption Scheme for H.264/AVC Video

Zirui Zhang 1 , Ping Chen 1, Weijun Li 1,* , Xiaoming Xiong 1, Qianxue Wang 1, Heping Wen 2, Songbin Liu 1

and Shuting Cai 1,*

����������
�������

Citation: Zhang, Z.; Chen, P.; Li, W.;

Xiong, X.; Wang, Q.; Wen, H.; Liu, S.;

Cai S. Design and ARM-Based

Implementation of

Bitstream-Oriented Chaotic

Encryption Scheme for H.264/AVC

Video.. Entropy 2021, 23, 1431.

https://doi.org/10.3390/e23111431

Academic Editor: Boris Ryabko

Received: 27 September 2021

Accepted: 26 October 2021

Published: 29 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
2111904292@mail2.gdut.edu.cn (Z.Z.); chenping@gdut.edu.cn (P.C.); xmxiong@gdut.edu.cn (X.X.);
wangqianxue@gdut.edu.cn (Q.W.); 2112004118@mail2.gdut.edu.cn (S.L.)

2 Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, China;
wenheping@uestc.edu.cn

* Correspondence: weijunli@gdut.edu.cn (W.L.); shutingcai@gdut.edu.cn (S.C.)

Abstract: In actual application scenarios of the real-time video confidential communication, en-
crypted videos must meet three performance indicators: security, real-time, and format compatibility.
To satisfy these requirements, an improved bitstream-oriented encryption (BOE) method based
chaotic encryption for H.264/AVC video is proposed. Meanwhile, an ARM-embedded remote real-
time video confidential communication system is built for experimental verification in this paper.
Firstly, a 4-D self-synchronous chaotic stream cipher algorithm with cosine anti-controllers (4-D
SCSCA-CAC) is designed to enhance the security. The algorithm solves the security loopholes of
existing self-synchronous chaotic stream cipher algorithms applied to the actual video confidential
communication, which can effectively resist the combinational effect of the chosen-ciphertext attack
and the divide-and-conquer attack. Secondly, syntax elements of the H.264 bitstream are analyzed
in real-time. Motion vector difference (MVD) coefficients and direct-current (DC) components in
Residual syntax element are extracted through the Exponential-Golomb decoding operation and
entropy decoding operation based on the context-based adaptive variable length coding (CAVLC)
mode, respectively. Thirdly, the DC components and MVD coefficients are encrypted by the 4-D
SCSCA-CAC, and the encrypted syntax elements are re-encoded to replace the syntax elements of the
original H.264 bitstream, keeping the format compatibility. Besides, hardware codecs and multi-core
multi-threading technology are employed to improve the real-time performance of the hardware
system. Finally, experimental results show that the proposed scheme, with the advantage of high
efficiency and flexibility, can fulfill the requirement of security, real-time, and format compatibility
simultaneously.

Keywords: bitstream-oriented encryption; chaotic encryption; format compatibility; H.264/AVC

1. Introduction

Real-time video communication is widely used in military, business, entertainment, and
personal social activities, such as video conferencing, live video, and video surveillance [1–4].
However, the openness of the internet leads to many security risks in video communication.
Cybersecurity incidents such as malicious attacks, illegal access, information leakage, theft,
and evil tampering are frequently reported. Many studies have shown that end-to-end
encryption is an effective way to protect cyber information and personal privacy [5–9].
Only communicating parties with the right secret keys can easily decrypt ciphertexts, while
third parties without the matched secret keys cannot obtain plaintexts even if they obtain
the ciphertexts. Therefore, the end-to-end encryption is a necessary means for real-time
video confidential communication.

To realize the end-to-end encryption for the communication video, security, real-time,
and format compatibility are important technical indicators that must be met simulta-

Entropy 2021, 23, 1431. https://doi.org/10.3390/e23111431 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-0663-2098
https://orcid.org/0000-0002-1227-0791
https://orcid.org/0000-0002-2842-6439
https://doi.org/10.3390/e23111431
https://doi.org/10.3390/e23111431
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23111431
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23111431?type=check_update&version=2

Entropy 2021, 23, 1431 2 of 27

neously for the real-time video confidential communication system [1,10–15]. Security
includes two aspects: cryptographic security and perceptual security. The cryptographic
security depends on the ability of encryption algorithms to resist various types of cryptanal-
ysis methods, and the perceptual security relies on the recognizability of encrypted video
images from human eyes. Frame rate is considered as the reference index for the real-time
performance, and the basic frame rate for real-time video communication is 25 f/s or more.
The real-time performance is not only affected by video resolution, but also video compres-
sion ratio, calculation load, and computational efficiency [6,12,13]. Format compatibility is
another significant indicator of video confidential communication. For instance, the video
information of video surveillance, paid video, or live video always needs to be performed
adaptation or transcoding operations by third-party servers [5,6,16,17], including storage
recognition, watermark insertion, rate adaptation, and so on. Incompatible video format
will inevitably lead to the failure of adaptation operations. Although encrypted videos
without format compatibility can be decrypted as original videos on the servers before
adaptation [5,16], the plaintext information will be exposed on the third-party, which does
not meet the requirement of the end-to-end encryption. On the contrary, encrypted videos
with format compatibility can be directly adopted without decryption on the servers. There-
fore, the compatibility of video format is the primary condition to realize the end-to-end
encryption for the communication video [5,18].

To meet the above three indicators simultaneously, in recent years, people perform in-depth
studies in encryption algorithms [1,2,10,19–23] and video encryption methods [6,15,16,24–32]
suitable for real-time video secure communication for H.264/AVC. Using encryption algorithms
to encrypt video information in real time is an important means to protect the security of
communication videos. However, due to the large amount of data and high relevance of video
information in actual video communication applications, traditional text encryption algorithms
such as DES and AES, with a large time consumption, are difficult to meet the real-time transmis-
sion requirements of encrypted videos [18,33,34]. In the existing encryption algorithms, chaotic
encryption algorithm has been extensively explored. Because chaotic encryption algorithm has
good pseudo-randomness, initial value sensitivity, and high operation efficiency, it can not only
ensure the high security of encrypted video data, but also meet the real-time requirements of
video transmission. Therefore, chaotic encryption algorithm is more suitable for real-time video
confidential communication applications. In particular, among chaotic encryption algorithms,
n-D (n = 3, 7, 8) self-synchronous chaotic stream cipher algorithms (n-D SCSCA) [19–21] applied
to an actual video confidential communication system show superior characteristics. These
algorithms belong to closed-loop feedback chaotic encryption algorithms. The ciphertext is fed
back to the chaotic system to realize the self-synchronization of the encryption and decryption
ends. When these algorithms are applied to actual channels, even if the ciphertext information
suffers from channel interference during transmission, after the decryption end receives a
certain amount of correct ciphertext information, the state variables of the cipher algorithm
at both ends can asymptotically synchronize. Thus, these algorithms have a good ability to
resist channel interference and are more suitable for actual video confidential communication
applications. However, n-D SCSCA (n = 3, 7, 8) still have security loopholes. Lin et al. [22]
propose a cryptanalysis method that combines a chosen-ciphertext attack with a divide-and-
conquer attack by traversing single non-zero component initial conditions (DCA-TSNCIC). The
method is used to decipher 8-D SCSCA [19] that employ the lower eight-bits of a single chaotic
variable as the chaotic pseudo-random sequence, and most of the secret keys of 8-D SCSCA
are deciphered. To improve the security of SCSCA, refs [20,21] propose n-D SCSCA (n = 3, 7)
that employ the lower eight-bits of the multiplication result of multiple chaotic variables as the
chaotic pseudo-random sequence. n-D SCSCA (n = 3, 7) increase the computational complexity
of the chaotic pseudo-random sequence expression, so that cryptanalysts cannot obtain enough
nonlinear equations through DCA-TSNCIC to solve the original secret keys of the encryption
algorithm. However, they cannot further resist the divide-and-conquer attack traversing mul-
tiple non-zero component initial conditions (DCA-TMNCIC) that is more powerful than the
DCA-TSNCIC [35].

Entropy 2021, 23, 1431 3 of 27

In the existing video encryption scheme for H.264/AVC, they can be classified into
full encryption (FE) [32] and selective encryption (SE) [16,30–32]. The FE method is to
indiscriminately encrypt the entire encoded video information, which will cause the format
information of the encoded video to be destroyed [17]. The SE method is to selectively
encrypt part of the critical information in the encoded video, and the selected critical
information will not affect the encoded video format after being encrypted. Compared
with the FE method, the SE method has less encrypted data and can maintain the format
of encrypted video. Thus, the SE scheme is an effective method to realize the security,
real-time, and format compatibility of the video confidential communication system.

According to the different relationships between encryption algorithms and video
codecs, SE methods can be further subdivided into compression-integrated encryption
(CIE) and bitstream-oriented encryption (BOE). The feature of CIE is that it has a coupling
structure embedding the encryption algorithm into the video codec, where the video
information is encrypted during encoding. The feature of BOE is that it has an independent
architecture separating the encryption algorithm and the video codec, where the video
information is encrypted after being encoded. Chen et al. [32] and Zhang et al. [36]
designed a video confidential communication system based on the CIE scheme. The
encryption algorithm was embedded into software codecs, and the syntax elements in
the H.264 bitstream were encrypted during the encoding process. The experimental
results prove that the CIE scheme can realize that encrypted videos keep the H.264 format,
fulfilling the format compatibility. However, under the 640 × 480 video resolution, the
video transmission frame rate in [32,36] cannot meet the basic real-time requirement (25 f/s)
in the actual video communication. The main reason for this result is that software codecs
with low computational efficiency seriously damage real-time performance. Besides, the
CIE scheme lacks flexibility owing to the dependency between the encryption algorithm
and the software codecs. Any standard codecs, no matter the software or hardware, are
not applicable in the CIE scheme. Only the special software codecs customized with
the encryption algorithm are suitable for it. Compared with the CIE scheme, the BOE
scheme is more flexible than the CIE scheme because any standard codecs can be used
to perform the coding operation in the independent architecture. Arachchi et al. [5]
proposed a standalone encryption method to achieve end-to-end security adaptation
requirements. The standalone encryption method separated the video encoding and video
encryption process. Meanwhile, it performed a series operation of analysis, extraction,
encryption, and encoding on the H.264 bitstream, so it can be classified as the BOE method.
References [3,18,23] proposed a similar encryption method for H.264 bitstream, which
retained the ‘header’ information of the H.264 bitstream and encrypted the rest of the data.
When the type of ‘header’ is revised as unspecific, the encrypted bitstream will be bypassed
without decoding to maintain format compatibility. Although this method performed
encryption operation for the H.264 bitstream with an independent architecture of the
encryption algorithm and codec, it is still far from the BOE method. In fact, the method is
more like FE than SE due to the main information of the encoded videos being encrypted
indiscriminately. Its biggest flaw comes from the destruction on the syntactic structure of
macroblocks. Boyadjis et al. [37] and Cheng et al. [4] encrypted syntax elements extracted
from H.264 bitstream and generated encrypted video with format compatibility. They
all adopted the combination of BOE method and AES block cipher to design a video
encryption system. AES algorithm has to construct a fixed-length packet for encryption
and even fill up the package with padding data when the packet data is insufficient. The
data filling operation will increase computational load and the amount of encrypted data.
Moreover, the encryption test objects are static video files rather than real-time video
streaming media. The experiment is conducted by simulation on PC rather than by real test
on the embedded hardware platform under the actual network environment. Therefore,
they do not provide strong proof of feasibility, effectiveness, and superiority for the BOE
method. To summarize, the comparison of the features of BOE, CIE, and FE methods are
given in Table 1.

Entropy 2021, 23, 1431 4 of 27

Table 1. Comparisons of the features of BOE, CIE, and FE methods.

Encryption
Scheme

Encryption
Stage

Input
Data

Codec
Form

Hardware
Codec

Format
Compatibility

BOE After
encoding

H.264
bitstream Standardization Available Yes

CIE During
encoding

YUV
raw video Customization Unavailable Yes

FE After
encoding

H.264
bitstream Standardization Available No

To address the above issues, for H.264/AVC video, an improved BOE is proposed and
verified in an actual network environment upon the ARM-embedded hardware platform.
The main contributions and novelties of this work can be summarized as follows:

(1) A 4-D SCSCA-CAC is proposed, which can effectively resist the cryptanalysis
method combining a chosen-ciphertext attack with a divide-and-conquer attack. In ad-
dition, the chaotic bit sequences generated by 4-D SCSCA-CAC for encrypting video
information have passed the NIST and TESTU01 test.

(2) An improved BOE method based on chaotic stream ciphers is proposed, which
separates apart the hardware codec and 4-D SCSCA-CAC to form an independent architec-
ture. The proposed scheme can achieve the format compatibility of encrypted videos and
balance the technical contradiction between security and real-time performance.

(3) An ARM-based hardware system for real-time video confidential communication is
designed and implemented, whose experimental results give a practical and objective eval-
uation for the critical issues about security, real-time, and format compatibility, verifying
feasibility and effectiveness for the BOE method.

The rest of the paper is organized as follows: Section 2 introduces the design of the
improved chaotic stream cipher and its security analysis. Section 3 describes the design and
ARM-based implementation of the bitstream-oriented chaotic encryption scheme. Section 4
presents the experimental results and test analysis. Section 5 concludes the paper.

2. Design and Security Analysis of Chaotic Stream Cipher Algorithm
2.1. Security Loopholes Analysis of n-D SCSCA

In order to solve the above security problem of n-D SCSCA (n = 3, 7, 8) [19–21], one
first analyzes their security loopholes, and designs 4-D SCSCA-CAC with great security.

According to the structure characteristics of n-D SCSCA (n = 3, 7, 8), and combining
with the cryptanalysis process of chosen-ciphertext attack and divide-and-conquer attack,
the security loopholes of n-D SCSCA (n = 3, 7, 8) are analyzed in this subsection.

The algorithm structure of n-D SCSCA (n = 3, 7, 8) and corresponding cryptanalysis
methods are shown in Table 2.

Table 2. The algorithm structure of n-D SCSCA (n = 3, 7, 8) and corresponding cryptanalysis methods.

Encryption
Algorithm

Anti-Controller
Type

Decryption
Expression

Cryptanalysis
Method

Analysis
Results

8-D
SCSCA

[19]

mod(σi p(k), εi)

(i = 1, 2, 3)
m(k) = s(k)⊕ p(k)
= mod(bxi(k)c, 28)⊕ p(k) (i = 1, 2, 3)

Combination of chosen-
ciphertext attack

and DCA-TSNCIC [22] Except the secret keys multiplied
with the ciphertext and anti-

controller secret keys, the rest of
the secret keys in the encryption

algorithms are deciphered.

3-D
SCSCA

[20]
ε sin(σp(k))

m(k) = s(k)⊕ p(k)
= mod(

⌊
x1(k)x2(k)/227⌋, 28)⊕ p(k)

Combination of chosen-
ciphertext attack

and DCA-TSNCIC [22]

7-D
SCSCA

[21]

mod(σi p(k), εi)

(i = 1, 2, 3)

m(k) = s(k)⊕ p(k)
= mod(

⌊
xi(k)xj(k)xl(k)/224⌋, 28)⊕ p(k)

(i = 1, 2, 3; j = 3, 4, 5; l = 5, 6, 7)

Combination of chosen-
ciphertext attack

and DCA-TMNCIC [35]

Entropy 2021, 23, 1431 5 of 27

From Table 2, the general form of n-D SCSCA (n = 3,7,8) can be summarized as:

x(k + 1) = f (aij, x(k), p(k)) + g(σl p(k), ε l) , (1)

where k = 0, 1, 2, 3, · · · , p(k) represents the ciphertext, f (aij, x(k), p(k)) represents a nomi-
nal system adopting ciphertext feedback, g(σl p(k), ε l) represents the uniformly bounded
controller. aij, σl , ε l (i, j = 3, 7, 8; l = 1, 3) represents the secret keys, x(k + 1) = (x1(k +
1), x2(k + 1), · · · , xn(k +1))T and x(k) = (x1(k), x2(k), · · · , xn(k))T (n = 3, 7, 8) represents
chaotic variables.

The general form of decryption expression can be summarized as follows:

m(k) = s(k)⊕ p(k) = mod(
⌊

xi(k) · · · xi+j(k)/2w⌋, 28)⊕ p(k) , (2)

where k = 0, 1, 2, 3, · · · , 1 ≤ i ≤ 8, w ≤ 27, 1 ≤ j ≤ (8− i), b·c represents round-down
operation, ⊕ represents the bitwise XOR operation, m(k) represents the plaintext, s(k)
represents the chaotic pseudo-random sequence.

Note that in Table 2, to achieve self-synchronization, the ciphertext is used as a
feedback control variable of the anti-controller. Therefore, under the condition of the
chosen-ciphertext attack, the cryptanalyst can select the specific ciphertext and feed it back
into the anti-controllers, to affect the calculation result of the anti-controllers. Moreover,
the anti-controller types of n-D SCSCA (n = 3,7,8) are mod and sine function. When the
ciphertext is set as p(k) = 0, the calculation result of the anti-controllers will be zero. This
situation will cause the original nonlinear iterative equation to degenerate into a linear
iterative equation. According to Equation (1), setting the ciphertext as p(k) = 0, a linear
iterative equation is derived as:

x(k + 1) = f (aij, x(k)) . (3)

Compared Equation (3) with Equation (1), the calculation complexity of Equation (3)
is greatly reduced and the anti-controller secret keys σl , ε l (l = 1, 3) are eliminated, which
provides an important precondition for using the divide-and-conquer attack to decipher
the secret keys in n-D SCSCA (n = 3, 7, 8).

In SCSCA, initial conditions of arbitrary chaotic variables at the decryption end can
achieve asymptotic synchronization with the decryption end, hence the cryptanalyst can
arbitrarily select the initial conditions conducive to cryptanalysis. In the case of chosen-
ciphertext attack, Equation (2) can be simplified as:

m(k) = s(k)⊕ p(k) = s(k)⊕ 0 = s(k) = mod(
⌊

F(k)(aij, c)
⌋

, 28) , (4)

where k = 0, 1, 2, 3, · · · , c = (x1(0), x2(0), · · · , xn(0)), F(k)(aij, c) represents the relational
expression between aij and c.

Next, according to the different computational complexity of the chaotic pseudo-
random sequence s(k) in n-D SCSCA (n = 3,7,8), the secret keys can be cracked through
the divide-and-conquer attack methods with different strengths, respectively. When s(k) is
generated by intercepting the lower eight-bits of a single chaotic variable, the encryption
algorithm can be cracked by DCA-TSNCIC [22]. With DCA-TSNCIC, the set of n selection
methods of initial conditions is as follow:

{c} = {(x1(0), x2(0), · · · , xn(0))} = {(c1, 0, · · · , 0), (0, c2, 0, · · · , 0),
· · · , (0, · · · , 0, cn−1, 0), (0, 0, · · · , cn)},

(5)

where ci (i = 1, 2, · · · , n) represents non-zero constants.
When s(k) is generated by intercepting the lower eight-bits of the multiplication

result of multiple chaotic variables, the encryption algorithm can be deciphered by DCA-

Entropy 2021, 23, 1431 6 of 27

TMNCIC [35] which has a higher attack intensity than DCA-TSNCIC [22]. With DCA-
TMNCIC, the set of 2n − 1 selection methods of initial conditions is as follow:

{c} = {(x1(0), x2(0), · · · , xn(0))} = {(c1, 0, · · · , 0), (0, c2, 0, · · · , 0),
· · · (0, 0, · · · , cn), (c1, c2, 0, · · · , 0), · · · , (c1, c2, · · · , cn−1, cn)},

(6)

Remarkably, in n-D SCSCA (n = 3,7,8), due to s(k) is generated by intercepting the
lower eight-bits of a single chaotic variable or the multiplication result of multiple chaotic
variables, when values of initial conditions are set as a same non-zero constant ci =
c0 (i = 1, 2, · · · , n), a constant common factor cm

0 (m = 1, 2, · · ·) multiplied with secret key
expressions can be extracted from the decryption expression. Therefore, Equation (4) can
be further simplified as:

m(k) = mod(
⌊
cm

0 f (aij)
⌋
, 28) , (7)

where f (aij) represents the secret key expression.
The principle of the divide-and-conquer attack is to decipher the information of

secret key or secret key expression block by block. In Equation (7), f (aij) is represented
by the 64-bit binary numbers, which is denoted by (f (aij))2. The first bit in (f (aij))2
represents the sign bit, and the remaining 63-bits represents the data. According to the
divide-and-conquer attack, (f (aij))2 are divided into 8 sub-blocks, respectively. Each sub-
block is of 8-bits, denoted by (f (aij)

(k))2 (k = 1, 2, · · · , 8). Finally, the cryptanalyst can
sequentially set c0 as m√27+8i (i = 0, 1, 2, · · · 7) to obtain the information of each sub-block
(f (aij)

(1))2, (f (aij)
(2))2, · · · , (f (aij)

(8))2, a complete secret key expression information can
be derived as:

(f (aij)2) = (f (aij)
(1))2(f (aij)

(2))2(f (aij)
(3))2(f (aij)

(4))2

(f (aij)
(5))2(f (aij)

(6))2(f (aij)
(7))2(f (aij)

(8))2.
(8)

where f (aij) represents the secret key expression.
From the above method, a sufficient number of nonlinear equations about secret keys

can be obtained, the correct information of the original secret keys can be deciphered by
solving the nonlinear equations.

According to the above analysis, the main problems of n-D SCSCA (n = 3,7,8) can be
summarized as follows:

(1) To achieve self-synchronization, the ciphertext need to be fed back into the anti-
controllers of the chaotic system, and the anti-controller types of n-D SCSCA (n = 3,7,8)
are sine or mod function. In this case, when the cryptanalyst set ciphertext information
as p(k) = 0 by the chosen-ciphertext attack, the chaotic system will be degenerated into a
linear system, and the controller secret keys are eliminated.

(2) In actual channel communications, initial conditions of arbitrary chaotic variables at
the receiver can achieve asymptotic synchronization with the sender. Therefore, the initial
conditions of the chaotic variables belong to the weak secret keys, and the cryptanalyst
can arbitrarily select the initial conditions conducive to cryptanalysis. Besides, n-D SCSCA
(n = 3,7,8) all use the lower eight-bits of a single chaotic variable or the multiplication result
of multiple chaotic variables as the chaotic pseudo-random sequence. With the chosen-
ciphertext attack, when all initial conditions are set as a same non-zero constant, a constant
common factor can be extracted from the decryption expression. Consequently, by setting
the appropriate value of the constant, the cryptanalyst can use the divide-and-conquer
attack to obtain the complete information of the secret key expression. After acquiring a
sufficient number of nonlinear equations about secret keys, the original secret keys can be
successfully deciphered through solving the nonlinear equations.

Entropy 2021, 23, 1431 7 of 27

2.2. Design of 4-D Chaotic Cipher Algorithm

To deal with the loopholes of SCSCA analyzed in Section 2.1, in this paper, one
proposes an improved scheme named 4-D SCSCA-CAC, which can effectively against the
combination of the chosen-ciphertext attack and the divide-and-conquer attack.

A. Design An Asymptotically Stable Nominal System
An uncontrolled 4-D discrete-time linear nominal system is expressed as:

x(k + 1) = Ax(k), (9)

where

x(k + 1) =

x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)

, x(k) =

x1(k)
x2(k)
x3(k)
x4(k)

, A =

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

4×4

, (10)

According to the design principle of discrete-time chaotic system [38], all eigenvalues
of matrix A must be located inside the unit circle on the complex plane to make the nominal
system asymptotically stable.

First, the MATLAB rand() function is used to generate a 4-D full rank matrix with
uncorrelated random values in the range of (−1, 1). Next, a orthonormal matrix Q is
obtained by orthonormalizing the 4-D matrix using the orth() function. Finally, since all
eigenvalues of orthonormal matrix are located on the unit circle on the complex plane,
when matrix Q is multiplied by a coefficient less than 1, a matrix A with all eigenvalues
located inside the unit circle on the complex plane can be obtained, given by:

A =

−0.02403 −0.48546 −0.61686 −0.43956
−0.55197 −0.51480 −0.03528 −0.48897
0.77443 −0.32805 0.03681 −0.45252
−0.09216 −0.44901 −0.65340 −0.41586

4×4

. (11)

From Equation (11), one gets four characteristic roots of the matrix A in the nominal
system (9), that are λ1 = 0.9, λ2 = 0.0558 + j0.8983, λ3 = 0.0558− j0.8983, λ4 = −0.9.
Thus, the nominal system (9) is asymptotically stable.

B. The 4-D Controlled System Based Anti-control Principle
According to the principle of anti-control of dynamical systems [38], selecting x1(k) as

feedback control variable, three uniformly bounded feedback controllers are designed as:

εi cos(σjx1(k))(i, j = 1, 2, 3), (12)

where ε1 = 2.2× 1010, ε2 = 2.4× 1010, ε3 = 2.6× 1010, σ1 = σ2 = σ3 = 7× 108. Then, by
applying the three feedback controllers to the second and third equations of the nominal
system (9), the 4-D controlled system is obtained as:

x1(k + 1) = a11x1(k) + a12x2(k) + a13x3(k) + a14x4(k)
x2(k + 1) = a21ε1 cos(σ1x1(k)) + a22x2(k) + a23x3(k) + a24x4(k)
x3(k + 1) = a31ε2 cos(σ2x1(k)) + a32x2(k) + a33x3(k) + a34x4(k)
x4(k + 1) = a41ε3 cos(σ3x1(k)) + a42x2(k) + a43x3(k) + a44x4(k)

(13)

The corresponding Lyapunov exponents of the system (13) obtained by simula-
tion calculation are LE1 = 22.25, LE2 = 20.85, LE3 = 4.98, LE4 = 3.49. According to
Theorem 1 [38], the controlled system (13) is chaotic, and the corresponding chaos attractor
phase diagram is shown in Figure 1:

Entropy 2021, 23, 1431 8 of 27

(a) (b) (c)

Figure 1. Phase diagram of chaos attractor: (a)x1(k) - x2(k) plane, (b) x2(k) - x3(k) plane, (c) x3(k) -
x4(k) plane.

C. 4-D SCSCA-CAC
Note that, since application environment of the chaotic system is ARM-embedded plat-

form in this paper, the following calculation operations are based on binary representation.
The chaotic pseudo-random sequence s(k) used for encryption operation is expressed as:

s(k) = mod
(⌊

x1(k)× x2(k) + x3(k)
216

⌋
, 28
)

, (14)

where b·c represents round-down operation, mod(·, 28) is used for intercepting the lower
eight-bits on

⌊
(x1(k)× x2(k) + x3(k))/216⌋ to generate eight-bits chaotic pseudo-random

sequence s(k).
Then, the ciphertext p(k) can be expressed as:

p(k) = s(k)⊕m(k) mod
(⌊

x1(k)× x2(k) + x3(k)
216

⌋
, 28
)
⊕m(k), (15)

where m(k) represents the plaintext information, ⊕ represents the bitwise XOR operation.
To realize self-synchronization, the ciphertext p(k) needs to be fed back and substituted

for the chaotic system to participate in the iterative calculation [19–21] , then 4-D SCSCA-
CAC is designed as:

x1(k + 1) = a11x1(k) + a12x2(k) + a13x3(k) + a14x4(k)
x2(k + 1) = a21ε1 cos(σ1 p(k)) + a22x2(k) + a23x3(k) + a24x4(k)
x3(k + 1) = a31ε2 cos(σ2 p(k)) + a32x2(k) + a33x3(k) + a34x4(k)
x4(k + 1) = a41ε3 cos(σ3 p(k)) + a42x2(k) + a43x3(k) + a44x4(k)

(16)

The main features of 4-D SCSCA-CAC are summarized as follows:
(1) Unlike the anti-controllers shown in Table 2, a cosine function is used as the

anti-controller. With p(k) = 0, the controller parameters remain in the equation without
being eliminated, which can increase the difficulty of the key parameters deciphering,
especially increasing the ability to resist the divide-and-conquer attack. Note that σi, εi 6=
0 (i = 1, 2, 3) in Equation (16), consequently εi cos(σi p(k)) 6= 0 within the value range of
{p(k)|0 ≤ p(k) ≤ 255, p(k) ∈ N}. Although Equation (16) degrades into a linear iterative
equation with p(k) = 0, εi can still retain in the linear iterative equation and provide a
powerful condition to resist the divide-and-conquer attack.

(2) Note that an additive term is introduced in the modulo operation and the round-
down operation in Equation (14); resulting m(k) contains addition independent terms that
do not multiply by the initial conditions, under the divide-and-conquer attack.

2.3. Security Analysis

From the chosen-ciphertext attack method, it can be known that when the security
analysis of 4-D SCSCA-CAC is performed, the cryptanalyst can arbitrarily select the
ciphertext that is beneficial to the decryption algorithm and obtain the corresponding

Entropy 2021, 23, 1431 9 of 27

plaintext. When the ciphertext is set as p(k) = 0, the mathematical expression of the linear
iterative equation can be derived as:

x1(k + 1) = a11x1(k) + a12x2(k) + a13x3(k) + a14x4(k)
x2(k + 1) = a21ε1 + a22x2(k) + a23x3(k) + a24x4(k)
x3(k + 1) = a31ε2 + a32x2(k) + a33x3(k) + a34x4(k)
x4(k + 1) = a41ε3 + a42x2(k) + a43x3(k) + a44x4(k)

(17)

where k = 0, 1, 2, · · · . By substituting p(k) = 0 into Equation (15), which yields:

m(k) = mod
(⌊

x1(k)× x2(k) + x3(k)
216

⌋
, 28
)

(18)

From Equation (17), one can see that although the chaotic system is degenerated
into a linear iterative equation with p(k) = 0, anti-controller secret keys εi (i = 1, 2, 3)
still retain in the linear iterative equation and will provide a powerful condition to resist
divide-and-conquer attack.

In the decryption process, decryption end can achieve asymptotic synchronization
with the encryption end under any given initial conditions, so the cryptanalyst can choose
any initial conditions that are conducive to deciphering the encryption algorithm. In sum-
mary, when the ciphertext p(k) = 0 is set in the 4-D SCSCA-CAC, the initial condition
value xi(0) = ci(i = 1, 2, 3, 4) can be arbitrarily selected to try to obtain the secret keys
information by the divide-and-conquer attack. Next, DCA-TMNCIC with higher attack
strength than DCA-TSNCIC is used to analyze the security of 4-D SCSCA-CAC.

Firstly, by substituting k = 0 into Equation (17), the first iteration result is given by:
x1(1) = a11x1(0) + a12x2(0) + a13x3(0) + a14x4(0)
x2(1) = a21ε1 + a22x2(0) + a23x3(0) + a24x4(0)
x3(1) = a31ε2 + a32x2(0) + a33x3(0) + a34x4(0)
x4(1) = a41ε3 + a42x2(0) + a43x3(0) + a44x4(0)

(19)

Then, by substituting k = 1 into Equation (18), the second decryption operation result
is given by:

m(1) = mod
(⌊

x1(1)× x2(1) + x3(1)
216

⌋
, 28
)

(20)

With DCA-TMNCIC for 4-D SCSCA-CAC, the set of fifteen selection methods of initial
conditions is as follow:

(x1(0), x2(0), x3(0), x4(0)) ∈ {(c1, 0, 0, 0), (0, c2, 0, 0), (0, 0, c3, 0), (0, 0, 0, c4),
(c1, c2, 0, 0), (c1, 0, c3, 0), (c1, 0, 0, c4), (0, c2, c3, 0), (0, c2, 0, c4), (0, 0, c3, c4),
(c1, c2, c3, 0), (c1, c2, 0, c4), (c1, 0, c3, c4), (0, c2, c3, c4), (c1, c2, c3, c4)}

(21)

Note that, in the case of choosing the ciphertext, the ciphertexts and corresponding
plaintexts are both known. Therefore, by substituting the fifteen initial conditions in
Equation (21) into equation Equation (19), one can obtain mi(1)(i = 1, 2, · · · , 15) from
Equation (20) as follows:

Entropy 2021, 23, 1431 10 of 27

m1(1) = mod
(⌊

a11a21ε1c1+a31ε2
216

⌋
, 28
)

m2(1) = mod
(⌊

(a12a22c2+a12a21ε1+a32)c2+a31ε2
216

⌋
, 28
)

m3(1) = mod
(⌊

(a13a23c3+a13a21ε1+a33)c3+a31ε2
216

⌋
, 28
)

m4(1) = mod
(⌊

(a14a24c4+a14a21ε1+a34)c4+a31ε2
216

⌋
, 28
)

m5(1) = mod
(⌊

(a11c1+a12c2)(a22c2+a21ε1)+a32c2+a31ε2
216

⌋
, 28
)

m6(1) = mod
(⌊

(a11c1+a13c3)(a23c3+a21ε1)+a33c3+a31ε2
216

⌋
, 28
)

m7(1) = mod
(⌊

(a11c1+a14c4)(a24c4+a21ε1)+a34c3+a31ε2
216

⌋
, 28
)

m8(1) = mod
(⌊

(a12c2+a13c3)(a22c2+a23c3+a21ε1)+a32c2+a33c3+a31ε2
216

⌋
, 28
)

m9(1) = mod
(⌊

(a12c2+a14c4)(a22c2+a24c4+a21ε1)+a32c2+a34c4+a31ε2
216

⌋
, 28
)

m10(1) = mod
(⌊

(a13c3+a14c4)(a23c3+a24c4+a21ε1)+a33c3+a34c4+a31ε2
216

⌋
, 28
)

m11(1) = mod
(⌊

(a11c1+a12c2+a13c3)(a22c2+a23c3+a21ε1)+a32c2+a33c3+a31ε2
216

⌋
, 28
)

m12(1) = mod
(⌊

(a11c1+a12c2+a14c4)(a22c2+a24c4+a21ε1)+a32c2+a34c4+a31ε2
216

⌋
, 28
)

m13(1) = mod
(⌊

(a11c1+a13c3+a14c4)(a23c3+a24c4+a21ε1)+a33c3+a34c4+a31ε2
216

⌋
, 28
)

m14(1) = mod
(⌊

(a12c2+a13c3+a14c4)(a22c2+a23c3+a24c4+a21ε1)+a32c2+a33c3+a34c4+a31ε2
216

⌋
, 28
)

m15(1) = mod
(⌊

(a11c1+a12c2+a13c3+a14c4)(a22c2+a23c3+a24c4+a21ε1)+a32c2+a33c3+a34c4+a31ε2
216

⌋
, 28
)

(22)

Then, by setting the initial conditions as a same non-zero constant ci = c0 (i = 1, 2, 3, 4)
into Equation (22), one gets:

m1(1) = mod

a11a21ε1c0
+a31ε2

216

, 28

m2(1) = mod

a12a22c2
0+(a12a21ε1

+a32)c0 + a31ε2
216

, 28

m3(1) = mod

a13a23c2
0+(a13a21ε1

+a33)c0 + a31ε2
216

, 28

m4(1) = mod

a14a24c2
0+(a14a21ε1

+a34)c0 + a31ε2
216

, 28

m5(1) = mod

(a11a22 + a12a22)c2
0 + (a11a21ε1

+a12a21ε1 + a32)c0 + a31ε2
216

, 28

m6(1) = mod

(a11a23 + a13a22)c2
0 + (a11a21ε1

+a13a21ε1 + a33)c0 + a31ε2
216

, 28

m7(1) = mod

(a11a24 + a14a24)c2
0 + (a11a21ε1

+a14a21ε1 + a34)c0 + a31ε2
216

, 28

m8(1) = mod

(a12a22 + a12a23 + a13a22 + a13a23)c2
0+

(a12a21ε1 + a13a21ε1 + a32 + a33)c0 + a31ε2
216

, 28

m9(1) = mod

(a12a22 + a12a24 + a14a22 + a14a24)c2
0+

(a12a21ε1 + a14a21ε1 + a32 + a34)c0 + a31ε2
216

, 28

Entropy 2021, 23, 1431 11 of 27

m10(1) = mod

(a13a23 + a13a24 + a14a23 + a14a24)c2
0+

(a13a21ε1 + a14a21ε1 + a33 + a34)c0 + a31ε2
216

, 28

m11(1) = mod

(a11a22 + a11a23 + a12a22 + a12a23 + a13a22 + a13a23)c2
0+

(a11a21ε1 + a12a21ε1 + a13a21ε1 + a32 + a33)c0 + a31ε2
216

, 28

m12(1) = mod

(a11a22 + a11a24 + a12a22 + a12a24 + a14a22 + a14a24)c2
0+

(a11a21ε1 + a12a21ε1 + a14a21ε1 + a32 + a34)c0 + a31ε2
216

, 28

m13(1) = mod

(a11a23 + a11a24 + a13a23 + a13a24 + a14a23 + a14a24)c2
0+

(a11a21ε1 + a13a21ε1 + a14a21ε1 + a33 + a34)c0 + a31ε2
216

, 28

m14(1) = mod

(a12a22 + a12a23 + a12a24 + a13a22 + a13a23 + a13a24 + a14a22 + a14a23
+a14a24)c2

0 + (a12a21ε1 + a13a21ε1 + a14a21ε1 + a32 + a33 + a34)c0 + a31ε2
216

, 28

m15(1) = mod

(a11a22 + a11a23 + a11a24 + a12a22 + a12a23 + a12a24 + a13a22 + a13a23 + a13a24 + a14a22
+a14a23 + a14a24)c2

0 + (a11a21ε1 + a12a21ε1 + a13a21ε1 + a14a21ε1 + a32 + a33 + a34)c0 + a31ε2
216

, 28

(23)

From Equation (23), the second decryption results mi(1) (i = 1, 2, · · · , 15) both contain
an independent additive term (a31ε2/216) that does not multiply with the initial condition
under fifteen different initial conditions. When the initial conditions are set as a same
non-zero constant c0, the constant common factor multiplied by the secret key expression
cannot be extracted from the decryption expression. Therefore, it is impossible to obtain
the correct sub-block information of the secret key expression by selecting suitable values
of initial conditions ci(i = 1, 2, 3, 4). Similarly, as the number of iterations k increases,
mi(k) (k = 2, 3, · · ·) also contain the above independent addition term. Therefore, the
method that combines the chosen-ciphertext attack and the divide-and-conquer attack
proposed in [22,35] fails in this case.

In summary, the improved 4-D SCSCA-CAC proposed in this paper is safe against the
combinational effect of the chosen-ciphertext attack and the divide-and-conquer attack .

3. Implementation of a Bitstream-Oriented Encrypted Video Communication System

Transmission frame rate is an important indicator to represent the real-time per-
formance of video communication systems, and 25 f/s is a basic requirement in actual
application scenarios. Thus, promoting real-time performance is a primary goal in system
design. In this paper, an optimized design is proposed that can be conducted from three
aspects: (1) improve the BOE method for further reducing the computational load; (2)
utilize the hardware codec accelerator on the chip to speed the system; and (3) adopt the
multi-core and multi-threading technology to improve system efficiency in parallel work.

3.1. Overall Design Scheme

The overall design scheme of the real-time video communication system based on the
ARM platform and the BOE method is shown in Figure 2. On the sender, firstly, YUV raw
videos are captured from the camera continuously and then encoded as the H.264 bitstream
by hardware codec. Secondly, the H.264 bitstream is encrypted through the BOE method.
Thirdly, the encrypted bitstream is sent to the receiver through Ethernet. On the receiver,
the encrypted bitstream is received from the sender through Ethernet and then decrypted
into the original H.264 bitstream through the bitstream-oriented decryption (BOD) method.
Fourthly, the original bitstream is decoded into the original YUV videos by hardware codec.
Finally, the original videos are displayed on the screen. When K is switched to channel
1, the encrypted bitstream can be decrypted correctly. When K is switched to channel 2,
the encrypted bitstream is bypassed without decryption. Most significantly, the encrypted
bitstream can be successfully decoded and displayed, which suggests that the encrypted
bitstream keeps the H.264 format compatibility and can be transcoded by servers when it
is transmitted through the Internet.

Entropy 2021, 23, 1431 12 of 27

syntax

elements

Video

Capture
Camera

Hardware

Encode

Entropy

Decode

H.264

Chaos

Encrypt

Entropy

Encode

encrypted

syntax

elements

Network

Send

encrypted

H.264

Network

Receive

TCP/IP

Remote Transmission

Entropy

Encode

Chaos

Decrypt

Entropy

Decode

1 2

K

Hardware

Decode

original

 H.264

encrypted

H.264

Video

Display

RGB

BOE

Bypss

Video

Display

Format

Converse

YUV

YUV

Format

Converse

Sender Receiver

RGB

YUV

BOD

NALU bitstream

GOP Sequence

encrypted

syntax

elements

original

syntax

elements

Macroblock

I P PI P P P

Slice header

 payloadheader

1

2

n

i

 MT SMT MVD Residual

 MB1 MBi MBi+1 MBN

I P PI P P P

Slice header

 payloadheader

1

2

n

i

 MT SMT MVD Residual

 MB1 MBi MBi+1 MBN

Macroblock

I P PI P P P

Slice header

 payloadheader

1

2

n

i

 MT SMT MVD Residual

 MB1 MBi MBi+1 MBN

Video

Capture

Hardware

Encode

Buffer_1

Buffer_3

Buffer_4

Thread 1
 CPU 1

Thread 2
CPU 2

Converse

①
Memory

Map
Buffer_2

Video

Display

Converse

②

Thread 3
CPU 3

Thread 4
CPU 1

BOE

Network

Send

Thread 5
CPU 4

Thread 6
CPU 1

YUV

YUV

K1 K2

K3 RGBK5

K6

K7
Original H.264

K8

K9

Encrypted

H.264
K10RGB

K4

RGB

Video

Capture

Hardware

Encode

Buffer_1

Buffer_3

Buffer_4

Thread 1
 CPU 1

Thread 2
CPU 2

Converse

①
Memory

Map
Buffer_2

Video

Display

Converse

②

Thread 3
CPU 3

Thread 4
CPU 1

BOE

Network

Send

Thread 5
CPU 4

Thread 6
CPU 1

YUV

YUV

K1 K2

K3 RGBK5

K6

K7
Original H.264

K8

K9

Encrypted

H.264
K10RGB

K4

RGB

Network

Receive

Buffer_1 BOD

Buffer_2
Hardware

Decode

Buffer_3
Converse

①

Buffer_4

Converse

①
Video

Display

Memory

Map

K1

K2

K3

K4

K5

K6 K7

K9

K8

K10

K11
Encrypted

H.264
Original

H.264
YUV

RGB RGB RGB

Thread 1
CPU 1

Thread 2
CPU 4

Thread 3
CPU 1

Thread 4
CPU 3

Thread 5
CPU 2

Thread 6
CPU 1

Network

Receive

Buffer_1 BOD

Buffer_2
Hardware

Decode

Buffer_3
Converse

①

Buffer_4

Converse

①
Video

Display

Memory

Map

K1

K2

K3

K4

K5

K6 K7

K9

K8

K10

K11
Encrypted

H.264
Original

H.264
YUV

RGB RGB RGB

Thread 1
CPU 1

Thread 2
CPU 4

Thread 3
CPU 1

Thread 4
CPU 3

Thread 5
CPU 2

Thread 6
CPU 1

Figure 2. Block diagram of the hardware system design principle.

The BOE and BOD are specific implementations for selective encryption and decryp-
tion, respectively. There are three main parts in the BOE and BOD modules in this paper,
including H.264 entropy decoding, chaos encryption-decryption, and H.264 entropy en-
coding. In the chaos encryption-decryption part, the proposed 4-D SCSCA-CAC is used to
encrypt and decrypt the H.264 bitstream. According to Equation (16), the 4-D SCSCA-CAC
expression for the BOE and BOD module are obtained as Equations (24) and (25), respec-
tively, and a block diagram of 4-D SCSCA-CAC encryption-decryption in BOE and BOD
modules is shown in Figure 2.

xe
1(k + 1) = ae

11xe
1(k) + ae

12xe
2
(k) + ae

13xe
3(k) + ae

14xe
4(k)

xe
2(k + 1) = ae

21εe
1 cos(σe

1 p(k)) + ae
22xe

2(k) + ae
23xe

3(k) + ae
24xe

4(k)
xe

3(k + 1) = ae
31εe

2 cos(σe
2 p(k)) + ae

32xe
2(k) + ae

33xe
3(k) + ae

34xe
4(k)

xe
4(k + 1) = ae

41εe
3 cos(σe

3 p(k)) + ae
42xe

2(k) + ae
43xe

3(k) + ae
44xe

4(k)

(24)

xd

1(k + 1) = ad
11xd

1(k) + ad
12xd

2
(k) + ad

13xd
3(k) + ad

14xd
4(k)

xd
2(k + 1) = ad

21εd
1 cos(σd

1 p(k)) + ad
22xd

2(k) + ad
23xd

3(k) + ad
24xd

4(k)
xd

3(k + 1) = ad
31εd

2 cos(σd
2 p(k)) + ad

32xd
2(k) + ad

33xd
3(k) + ad

34xd
4(k)

xd
4(k + 1) = ad

41εd
3 cos(σd

3 p(k)) + ad
42xd

2(k) + ad
43xd

3(k) + ad
44xd

4(k)

(25)

where xe
i (k) (i = 1, 2, 3, 4) represents the encryption chaotic variables, and ae

ij (1 ≤ i ≤
4, 1 ≤ j ≤ 4), εe

i , σe
i (1 ≤ i ≤ 3) denote the secret keys at encryption end. xd

i (k) (i = 1, 2, 3, 4)
represents the decryption chaotic variables, and ad

ij (1 ≤ i ≤ 4, 1 ≤ j ≤ 4), εd
i , σd

i (1 ≤ i ≤ 3)
denote the secret keys at decryption end. Since 4-D SCSCA-CAC is a symmetric cipher,
the encryption and decryption end secret keys need to be matched as ae

ij=ad
ij=aij (1 ≤ i ≤

4, 1 ≤ j ≤ 4) and εe
i = εd

i = εi, σe
i = σd

i = σi (1 ≤ i ≤ 3) to decrypt correctly.
On the sender, as shown in Figure 3, b·c represents round-down operation, ⊕ repre-

sents the bitwise XOR operation, mod(·, 28) is used for intercepting the lower eight-bits
on
⌊
(x(e)1 (k)× x(e)2 (k) + x(e)3 (k))/216

⌋
to generate eight-bits encryption pseudo-random

Entropy 2021, 23, 1431 13 of 27

sequence se(k). Then, the binary information of the original syntax element is encrypted as
the encrypted H.264 syntax element p(k) by bitwise XOR with se(k), hence the encryption
operation is given by Equation (26). Finally, p(k) is fed back and substituted for xe

1(k) in
the second to third equations of the chaotic system.

p(k) = se(k)⊕m(k) = mod
(⌊

xe
1(k)× xe

2(k) + xe
3(k)

216

⌋
, 28
)
⊕m(k) (26)

Figure 3. Block diagram of 4-D SCSCA-CAC encryption-decryption in BOE and BOD modules.

On the receiver, the received p(k) is also substituted for xd
1(k) in the second to third

equations of the chaotic system, mod(·, 28) is used for intercepting the lower eight-bits
on
⌊
(x(d)1 (k)× x(d)2 (k) + x(d)3 (k))/216

⌋
to generate eight-bits decryption pseudo-random

sequence sd(k). Similarly, the encrypted H.264 syntax element p(k) is decrypted as the
original H.264 syntax element m(k) by bitwise XOR with sd(k). Therefore, the encryption
operation is given by:

m(k) = sd(k)⊕ p(k) = mod

(⌊
xd

1(k)× xd
2(k) + xd

3(k)
216

⌋
, 28

)
⊕ p(k) (27)

In Figure 2, the hardware codecs can be applied in the independent architecture
separating apart the encryption algorithm and the video codec. The acceleration function
of the hardware codec copes with the speed bottleneck caused by the software codec.

Multi-core multi-threading technology is another essential factor for improving real-
time performance. The whole system can be divided into multiple threads. Each thread is
executed by their according CPU in a parallel and pipeline manner. Better than the single
thread operation, multi-core multi-threading technology is capable of solving the blocking
and delay problems effectively and is beneficial to the execution efficiency.

3.2. Specific Design of Bitstream-Oriented Encryption Scheme for H.264/AVC
3.2.1. Presentation of H.264/AVC Standard

Established by the Moving Picture Experts Group (MPEG) consortium and the Video
Coding Expert Group (VCEG), H.264/AVC is one of the most popular standards for video
encoding. With the characteristics of low bit rate and high compression rate, H.264/AVC
is widely used in video applications. H.264/AVC-based standard specifies three profiles,
including baseline profile, main profile, and extended profile, in which each profile supports
a specific type of application. The baseline profile is mainly used for high real-time
video wireless communication application scenarios, while the main profile and extended
profile are used for applications with relatively low real-time requirements such as video
broadcasting or video storage. Therefore, to satisfy the real-time performance of the video
confidential communication system, one considers the baseline profile in this paper. In this
profile, only inter prediction and intra prediction are supported, and the H.264 bitstream is
encoded by the CALVC and Exponential-Golomb coding methods.

Entropy 2021, 23, 1431 14 of 27

3.2.2. Encryption Analysis of Syntax Elements in H.264 Bitstream

The H.264 bitstream is highly compressed bit sequences, and each bit data is closely
related to the video encoding and decoding process. If arbitrary bit data is encrypted,
the format compatibility of the encoded video may be destroyed. To achieve a format
compatible and secure encryption scheme, firstly, one needs to understand the hierarchical
structure of the H.264 bitstream and perform the encryption analysis for the syntax elements
in H.264 bitstream. Finally, the syntax elements that can keep the video format compatibility
after encryption will be selected as the encryption objects.

The hierarchical structure principle of the H.264 bitstream is shown in Figure 4. The
H.264 bitstream is composed of multiple groups of pictures (GOP), and each GOP is
composed of a series of frame pictures. In the baseline profile standard, the frame types in
GOP only contain the I-frame and P-frame. An I-frame and P-frame are composed of one
or more I-slices and P-slices, respectively. Each slice can be further divided into several
macroblocks and one macroblock is composed of 16 × 16 pixel matrixes. Among them,
an I-slice only contains I-macroblocks, while a P-slice contains both I-macroblocks and
P-macroblocks. The I-macroblocks, intra prediction macroblocks, are encoded according to
the decoded pixels in the current slice as the reference. The P-macroblocks, inter prediction
macroblocks, are encoded according to the previous encoded picture as the reference.

Figure 4. H.264 bitstream hierarchy principle.

In the H.264 bitstream, the syntax element is the basic unit of data, and each syntax
element consisting of several bits represents a specific physical meaning. Different syntax
elements are carried on the different types of the macroblock. For I-macroblock, there are
Macroblock Type (Mb_type), Macroblock Prediction mode (Mb_pred), Coded Block Pattern
(CBP), Quantization Parameter (QP), and Residual syntax elements. For P-macroblock,
there are Mb_type, MVD, CBP, QP, and Residual syntax elements. The syntax element
‘Residual’, and other syntax elements, can be extracted by CAVLC entropy decoding and
the Exponential-Golomb decoding method from the macroblock, respectively. Next, the
above syntax elements will be analyzed one by one to determine whether they can be used
for encryption.

•Mb_type specifies the type of the current macroblock. If the Mb_type is encrypted,
the encrypted macroblock cannot be recognized by the codec, so the Mb_type syntax
element cannot be encrypted.

Entropy 2021, 23, 1431 15 of 27

• Mb_pred represents the prediction mode used to reconstruct the current block.
Because the prediction modes applicable to macroblocks in different locations are different,
if the encrypted value of Mb_pred is not within the applicable prediction mode for the
current macroblock, it will also lead to decoding failure, so the Mb_pred syntax element
cannot be encrypted.

• CBP refers to the coding scheme of the residual data of the current macroblock, each
bit of which represents the number of the luma component or chroma component in the
current macroblock. It is related to whether there is luma or chroma component data in the
bitstream. Therefore, the CBP syntax element cannot be encrypted.

• QP is used to scale the prediction residual transform coefficients. Since the value of
QP is limited in size, encrypting QP will cause greater data expansion. Therefore, the QP
syntax element is not regarded as the encryption object in this paper.

• Residual carries the main data of the macroblock, which includes the DC component
and the Alternating Current (AC) component. Among them, the DC component has most
of the information of the video image. If the DC component is encrypted, the image
information can be encrypted to the maximum extent. Thus, DC component in Residual
syntax element is the main encryption object.

•MVD only exists in the P-macroblock, and it represents the motion direction of each
sub-block in the current macroblock. Encrypting MVD will affect the reconstruction effect
of the inter prediction image, so it can be encrypted.

3.2.3. Design of BOE Module

The BOE module is made up of entropy decoding, chaotic encryption, and entropy
encoding. The design flow of the module is as follows:

Step1: Parse the syntax elements from original H.264 bitstream
The macroblock MBi (1 ≤ i ≤ n) as a basic processing unit in a frame of the H.264

video is parsed into the syntax elements. For I-macroblock, the ‘Residual’ syntax element is
parsed through CAVLC entropy decoding for extracting the DC components DI

j (1 ≤ j ≤ q)
as the encryption objects, where DI

j represents the jth DC component in a I-macroblock.
The number of DC components q in a I-macroblock is determined by Coded Block Pattern
Chroma (CBPC) and Coded Block Pattern Luma (CBPL). The values of CBPC and CBPL
and the corresponding value of q have the following four situations: ¬ When CBPC = 0
and CBPL = 0, q = 0. When CBPC = 0 and CBPL = 15, q = 8. ® When CBPC = 1 or 2
and CBPL = 0, q = 16. ¯ When CBPC = 1 or 2 and CBPL = 15, q = 24.

For P-macroblock, DC components DP
j (1 ≤ j ≤ q) and MVD coefficients MVDj (1 ≤

j ≤ z) as the encryption objects are extracted via CALVC and Exponential-Golomb entropy
decoding operations, respectively. DP

j represents the jth DC component in a P-macroblock.
The same as the I-macroblock, the number of DC components in a P-macroblock is also de-
termined by CBPC and CBPL. MVDj represents the jth MVD coefficient in a P-macroblock,
which can be further divided into horizontal component Mxj and vertical component Myj.
The quantity of the MVD coefficients represented as z is determined by the division mode
of the P-macroblock. When the division mode is ¬ P_16× 16, z = 1. When P_16× 8
or P_8× 16, z = 2. ® When P_8× 8, z = 4. ® When P_4× 8 or P_8× 4, z = 8. ¯ When
P_4× 4, z = 16. Notably, the division mode is decided by the Mb_type syntax element.

Step2: Encrypt the syntax elements
The syntax elements are encrypted by 4-D SCSCA-CAC. When the current frame is an

I-frame, the DC component in the I-macroblock is the only encrypted object. According to
Equation (26), the encryption expression is as follows:

p(k) = se(k)⊕m(k) = se(k)⊕ DI
ij(k) = D̂I

ij(k) (28)

Where se(k) represents the encryption sequence which is expressed as se(k) = mod(⌊
(xe

1(k)× xe
2(k) + xe

3(k))/216⌋, 28), DI
ij (1 ≤ i ≤ n, 1 ≤ j ≤ q) represents the jth DC com-

ponent in the ith I-macroblock in a I-frame, and D̂I
ij represents the encrypted DC component

Entropy 2021, 23, 1431 16 of 27

corresponding to DI
ij. Equation (28) requires k =

n
∑

i=1
qi iterations to fulfill encryption opera-

tion for one I-frame, where qi represents the quantity of the DC components in the current
I-macroblock.

When the current frame is a P-frame, there are two types of macroblocks to be consid-
ered. In the I-macroblock, only the DC components are encrypted. In the P-macroblock,
both the DC components and MVD coefficients are encrypted. Assuming that the amount
of the macroblocks in a P-frame is n, and the quantity of the P-macroblocks is m (m ≤ n)
in the current frame, then the number of the I-macroblocks is n − m. The encryption
expression is as follows:

p(k) = se(k)⊕m(k) =

se(k)⊕ DI

pj(k) = D̂I
pj(k) when MB = I

se(k)⊕ DP
pj(k) = D̂P

pj(k) when MB = P
se(k)⊕Mxpj(k) = M̂xpj(k) when MB = P
se(k)⊕Mypj(k) = M̂ypj(k) when MB = P

(29)

where DI
pj (1 ≤ p ≤ n − m, 1 ≤ j ≤ q) represents the jth DC component in the pth I-

macroblock, and DP
pj (1 ≤ p ≤ n, 1 ≤ j ≤ q) represents the jth DC component in the

pth P-macroblock in a P-frame. Mxpj and Mypj denote the horizontal component and
vertical component of the jth MVD coefficient in the pth P-macroblock, and the correspond-
ing ciphertexts are represented as M̂xpj and M̂ypj, respectively. Equation (29) requires

k =
n
∑

i=1
qi +

m
∑

i=1
2zi iterations to complete encryption operation for one P-frame, where

zi represents the quantity of the MVD coefficients in the current P-macroblock, and qi
represents the quantity of the DC components in the current macroblock.

Step3: Re-encode the encrypted syntax elements as the encrypted H.264 bitstream
After encrypting, D̂I

ij, D̂I
pj, and D̂P

pj are re-encoded via CAVLC entropy encoding

operation. Meanwhile, M̂xpj and M̂ypj are re-encoded through the Exponential-Golomb
encoding operation. Finally, the encrypted bitstream is substituted for the original H.264
bitstream. Remarkably, excepting for the syntax elements of the DC components and
MVD coefficients, the remaining syntax elements remain unchanged during the above
encryption process.

From the above description, one knows that encryption iteration k in the BOE method
is much less than the FE method. Hence, the BOE method with advantages of lower
calculation load and higher processing speed obviously enhances the real-time performance
of the system. The execution flow of the BOE module is shown in Algorithm 1.

3.2.4. Design of BOD Module

The BOD module is made up of entropy decoding, chaotic decryption, and entropy
encoding. The design flow of the module is as follows:

Step1: Parse the syntax elements from encrypted H.264 bitstream
Parse the encrypted syntax elements from macroblock MBi (1 ≤ i ≤ n) in a frame

of the encrypted H.264 video. For I-macroblocks, D̂I
j (1 ≤ j ≤ q) are extracted from the

‘Residual’ syntax element. For P-microblock, in addition to obtaining D̂P
j (1 ≤ j ≤ q), it

still has to extract MVDj (1 ≤ j ≤ z).
Step2: Decrypt the encrypted syntax elements
The encrypted syntax elements are also decrypted by 4-D SCSCA-CAC. When the cur-

rent frame is an I-frame, the decryption expression according to Equation (27) is as follows:

DI
ij(k)=sd(k)⊕ p(k)=sd(k)⊕ D̂I

ij(k) (30)

Entropy 2021, 23, 1431 17 of 27

Algorithm 1: BOE operating procedures
input :Original H.264 bitstream
output :Encrypted H.264 bitstream

1 if Current frame = I-frame then
2 for t = 1 to n do
3 D̂I

ij(k)=se(k)⊕ DI
ij(k);

4 CAVLC entropy encoding (D̂I
ij(k)) to Residual;

5 end
6 else if Current frame = P-frame then
7 for t = 1 to n do
8 if MB = P then
9 D̂P

pj(k)=se(k)⊕ DP
pj(k);

10 M̂xpj(k) = se(k)⊕Mxpj(k), M̂ypj(k) = se(k)⊕Mypj(k);
11 CAVLC entropy encoding (D̂P

pj(k)) to Residual;;

12 Exponential-Golomb encoding (M̂xpj(k),M̂ypj(k)) to MVD;
13 end
14 if MB = I then
15 D̂I

pj(k)=se(k)⊕ DI
pj(k);

16 CAVLC entropy encoding (D̂I
pj(k)) to Residual;

17 end
18 end
19 end

where s(k) represents the decryption sequence which is expressed as

sd(k) = mod
(⌊

(xd
1(k)× xd

2(k) + xd
3(k))/216

⌋
, 28
)

. Equation (30) requires k =
n
∑

i=1
qi it-

erations to complete the decryption operation for one I-frame.
When the current frame is a P-frame, there are two types of macroblocks to be con-

sidered. In the I-macroblock, only the encrypted DC components need to be decrypted.
In the P-macroblock, both the encrypted DC components and MVD coefficients need to be
decrypted. The decryption expression is as follows:

m(k) =

sd(k)⊕ p(k) = sd(k)⊕ D̂I

pj(k) = DI
pj(k) when MB = I

sd(k)⊕ p(k) = sd(k)⊕ D̂P
pj(k) = DP

pj(k) when MB = P
sd(k)⊕ p(k) = sd(k)⊕ M̂xpj(k) = Mxpj(k) when MB = P
sd(k)⊕ p(k) = sd(k)⊕ M̂ypj(k) = Mypj(k) when MB = P

(31)

Step3: Re-encode the syntax elements as the original H.264 bitstream
After decryption, DI

ij, DI
pj, and DP

pj are re-encoded via CALVC entropy encoding
operation. Meanwhile, Mxpj and Mypj are re-encoded through the Exponential-Golomb
decoding operation. Last, the decrypted bitstream is substituted for the encrypted bit-
stream.

The execution flow of the BOD module is shown in Algorithm 2. Note that both
the CAVLC entropy and the Exponential-Golomb coding operation in Algorithm 1 and
Algorithm 2 are transplanted from JM86 and X264 software codec models.

Entropy 2021, 23, 1431 18 of 27

Algorithm 2: BOD operating procedures
input :Encrypted H.264 bitstream
output :Original H.264 bitstream

1 if Current frame = I-frame then
2 for t = 1 to n do
3 DI

ij(k)=sd(k)⊕ D̂I
ij(k);

4 CAVLC entropy encoding (DI
ij(k)) to Residual;

5 end
6 else if Current frame = P-frame then
7 for t = 1 to n do
8 if MB = P then
9 DP

pj(k)=sd(k)⊕ D̂P
pj(k);

10 Mxpj(k) = sd(k)⊕ M̂xpj(k), Mypj(k) = sd(k)⊕ M̂ypj(k);
11 CAVLC entropy encoding (DP

pj(k)) to Residual;;
12 Exponential-Golomb encoding (Mxpj(k), Mypj(k)) to MVD;
13 end
14 if MB = I then
15 DI

pj(k)=sd(k)⊕ D̂I
pj(k);

16 CAVLC entropy encoding (DI
pj(k)) to Residual;

17 end
18 end
19 end

3.3. Multi-Core Multi-Threading Process

Multi-core multi-threading technology is an effective way to optimize system architec-
ture and improve the efficiency of multitasking. The processing time for one frame on the
sender includes video capturing tcp, video encoding tenc, encryption tenp, video conversing
tcnv, and sending ts. The hardware platform that is used in our implementation has four
ARM Cortex A9 cores. In the case of single thread technology, the total operation time
T = tcp + tenc + tenp + tcnv + ts is much longer than 40 ms. Obviously, the system cannot
achieve the real-time metrics (25 f/s). In contrast, multi-core multi-threading technology
splits the operation tasks into six threads. Under the reasonable assignment of the tasks,
operation time for each thread ti (i = 2, 3 · · ·) can be less than 40 ms. Therefore, the
total operation time for one frame can fulfill T < 40 ms, reaching the basic frame rate
indicator. The multi-core multi-threading design principle is shown in Figure 5. Figure
5a,b represents the multi-core multi-threading design schemes for the sender and receiver
in Figure 2.

In Figure 5, different threads are assigned to the appropriate CPU for execution
according to the computational complexity of each thread. Taking the sender as an example,
Thread_i (i = 1,4,6) with low computational complexity are both performed by CPU1, while
Thread_i (i = 2,3,5) with high computational complexity are executed by CPU2, CPU3, and
CPU4, respectively. Moreover, threads exchange data through shared memories. Thread_i
(i = 1,2,3) share Buffer_1, Thread_i (i = 2,3,4) share Buffer_2, Thread_i (i = 1,5) share Buffer_3,
and Thread_i (i = 5,6) share Buffer_4. The buffer capacity is configured according to one
frame size in YUV, RGB, or H.264 format.

Read–write conflict prevention is the most crucial working mechanism for shared
buffers. It prohibits more than one thread to perform a reading or writing operation in
the same buffer simultaneously. Otherwise, unpredictable errors will happen. The mutex
lock mechanism can achieve the read–write conflict protection, whose working principle
is illustrated by switches Ki (i = 1, 2, · · · 11) in Figure 4. Taking Buffer_1 in Figure 4a as
an example, once K1 is closed, K2 and K3 are kept open. It means that when Thread_1

Entropy 2021, 23, 1431 19 of 27

is executing a data storage operation in Buffer_1, Thread_2 and Thread_3 are prohibited
to operate Buffer_1 and carry out data format conversion for the previous frame at the
same time.

In summary, the BOE and BOD modules have the advantages of high efficiency and
good real-time performance. Besides, the hardware codec solves the time-consuming
problem of encoding operation, and the multi-core multi-threading technology further
optimizes the system. As a result, the operation period of all threads are constrained to
less than 40 ms. Experiment results prove that the frame rate of the embedded hardware
system is more than 25 f/s.

semantic

elements

Video

Capture
Camera

Hardware

Encode

Entropy

Decode

H.264

Chaos

Encrypt

Entropy

Encode

encrypted

semantic

elements

Network

Send

encrypted

H.264

Network

Receive

TCP/IP

Remote Transmission

Entropy

Encode

Chaos

Decrypt

Entropy

Decode

1 2

K

Hardware

Decode

original

 H.264

encrypted

H.264

Video

Display

RGB

BOE

Bypss

Video

Display

Format

Converse

YUV

YUV

Format

Converse

Sender Receiver

RGB

YUV

BOD

NALU bitstream

GOP Sequence

encrypted

semantic

elements

original

semantic

elements

Macroblock

I P PI P P P

Slice header

 payloadheader

1

2

n

i

 MT SMT MVD Residual

 MB1 MBi MBi+1 MBN

I P PI P P P

Slice header

 payloadheader

1

2

n

i

 MT SMT MVD Residual

 MB1 MBi MBi+1 MBN

Macroblock

I P PI P P P

Slice header

 payloadheader

1

2

n

i

 MT SMT MVD Residual

 MB1 MBi MBi+1 MBN

Video

Capture

Hardware

Encode

Buffer_1

Buffer_3

Buffer_4

Thread 1
 CPU 1

Thread 2
CPU 2

Converse

①
Memory

Map
Buffer_2

Video

Display

Converse

②

Thread 3
CPU 3

Thread 4
CPU 1

BOE

Network

Send

Thread 5
CPU 4

Thread 6
CPU 1

YUV

YUV

K1 K2

K3 RGBK5

K6

K7
Original H.264

K8

K9

Encrypted

H.264
K10RGB

K4

RGB

Video

Capture

Hardware

Encode

Buffer_1

Buffer_3

Buffer_4

Thread 1
 CPU 1

Thread 2
CPU 2

Converse

①
Memory

Map
Buffer_2

Video

Display

Converse

②

Thread 3
CPU 3

Thread 4
CPU 1

BOE

Network

Send

Thread 5
CPU 4

Thread 6
CPU 1

YUV

YUV

K1 K2

K3 RGBK5

K6

K7
Original H.264

K8

K9

Encrypted

H.264
K10RGB

K4

RGB

Network

Receive

Buffer_1 BOD

Buffer_2
Hardware

Decode

Buffer_3
Converse

①

Buffer_4

Converse

①
Video

Display

Memory

Map

K1

K2

K3

K4

K5

K6 K7

K9

K8

K10

K11
Encrypted

H.264
Original

H.264
YUV

RGB RGB RGB

Thread 1
CPU 1

Thread 2
CPU 4

Thread 3
CPU 1

Thread 4
CPU 3

Thread 5
CPU 2

Thread 6
CPU 1

Network

Receive

Buffer_1 BOD

Buffer_2
Hardware

Decode

Buffer_3
Converse

①

Buffer_4

Converse

①
Video

Display

Memory

Map

K1

K2

K3

K4

K5

K6 K7

K9

K8

K10

K11
Encrypted

H.264
Original

H.264
YUV

RGB RGB RGB

Thread 1
CPU 1

Thread 2
CPU 4

Thread 3
CPU 1

Thread 4
CPU 3

Thread 5
CPU 2

Thread 6
CPU 1

(a)

semantic

elements

Video

Capture
Camera

Hardware

Encode

Entropy

Decode

H.264

Chaos

Encrypt

Entropy

Encode

encrypted

semantic

elements

Network

Send

encrypted

H.264

Network

Receive

TCP/IP

Remote Transmission

Entropy

Encode

Chaos

Decrypt

Entropy

Decode

1 2

K

Hardware

Decode

original

 H.264

encrypted

H.264

Video

Display

RGB

BOE

Bypss

Video

Display

Format

Converse

YUV

YUV

Format

Converse

Sender Receiver

RGB

YUV

BOD

NALU bitstream

GOP Sequence

encrypted

semantic

elements

original

semantic

elements

Macroblock

I P PI P P P

Slice header

 payloadheader

1

2

n

i

 MT SMT MVD Residual

 MB1 MBi MBi+1 MBN

I P PI P P P

Slice header

 payloadheader

1

2

n

i

 MT SMT MVD Residual

 MB1 MBi MBi+1 MBN

Macroblock

I P PI P P P

Slice header

 payloadheader

1

2

n

i

 MT SMT MVD Residual

 MB1 MBi MBi+1 MBN

Video

Capture

Hardware

Encode

Buffer_1

Buffer_3

Buffer_4

Thread 1
 CPU 1

Thread 2
CPU 2

Converse

①
Memory

Map
Buffer_2

Video

Display

Converse

②

Thread 3
CPU 3

Thread 4
CPU 1

BOE

Network

Send

Thread 5
CPU 4

Thread 6
CPU 1

YUV

YUV

K1 K2

K3 RGBK5

K6

K7
Original H.264

K8

K9

Encrypted

H.264
K10RGB

K4

RGB

Video

Capture

Hardware

Encode

Buffer_1

Buffer_3

Buffer_4

Thread 1
 CPU 1

Thread 2
CPU 2

Converse

①
Memory

Map
Buffer_2

Video

Display

Converse

②

Thread 3
CPU 3

Thread 4
CPU 1

BOE

Network

Send

Thread 5
CPU 4

Thread 6
CPU 1

YUV

YUV

K1 K2

K3 RGBK5

K6

K7
Original H.264

K8

K9

Encrypted

H.264
K10RGB

K4

RGB

Network

Receive

Buffer_1 BOD

Buffer_2
Hardware

Decode

Buffer_3
Converse

①

Buffer_4

Converse

①
Video

Display

Memory

Map

K1

K2

K3

K4

K5

K6 K7

K9

K8

K10

K11
Encrypted

H.264
Original

H.264
YUV

RGB RGB RGB

Thread 1
CPU 1

Thread 2
CPU 4

Thread 3
CPU 1

Thread 4
CPU 3

Thread 5
CPU 2

Thread 6
CPU 1

Network

Receive

Buffer_1 BOD

Buffer_2
Hardware

Decode

Buffer_3
Converse

①

Buffer_4

Converse

①
Video

Display

Memory

Map

K1

K2

K3

K4

K5

K6 K7

K9

K8

K10

K11
Encrypted

H.264
Original

H.264
YUV

RGB RGB RGB

Thread 1
CPU 1

Thread 2
CPU 4

Thread 3
CPU 1

Thread 4
CPU 3

Thread 5
CPU 2

Thread 6
CPU 1

(b)

Figure 5. Multi-core multi-threading design principle: (a) sender, (b) receiver.

4. Experimental Results and Analysis

According to the chaotic encryption and decryption algorithms given in Equations (24)
and (25), as well as the design principles of Figures 2–5, one has realized the remote real-
time video confidential communication system, as shown in Figure 6. First, choose two
demo boards with four ARM Cortex A9 cores as the sender and receiver. Second, attach
the camera and screens for video capturing and displaying. Third, connect two boards to
LAN and set the IP address in the range of 192.168.1.1 to 192.168.1.255.

4.1. Experiment Results

The real-time video confidential communication system is tested in the real network
environment under the 640× 480 video resolution.

The experimental result of the original videos displaying at the sender is shown in
Figure 7a. When keys are matched as ae

ij=ad
ij=aij (1 ≤ i ≤ 4, 1 ≤ j ≤ 4) and εe

i = εd
i =

εi, σe
i = σd

i = σi (1 ≤ i ≤ 3), the experimental result of successful decryption is shown
in Figure 7b. When keys are mismatched, the experimental result of decryption failure is
shown in Figure 7c. When encrypted videos are decoded and displayed without decryption,
the experimental result is shown in Figure 7d. The experimental results show that the BOE
method with the 4-D SCSCA-CAC can achieve effective perceptual encryption. Besides,
the encrypted bitstream is available to be decoded without decryption. According to the
test result, the average transmission frame rate of the system is up to 27 f/s.

Entropy 2021, 23, 1431 20 of 27

Figure 6. ARM-embedded system hardware platform.

(a) (b)

(c) (d)

Figure 7. Experimental results of ARM-based embedded remote video confidential communication
system: (a) original video image, (b) decrypted video when key matching, (c) decrypted video when
key mismatching, (d) decoded video without decryption.

The comparison of experiment results of the video confidential communication system
based on ARM-embedded platform is shown in Table 3. The hardware platform for
experiments in Table 3 is the ARM Cortex A9 core development board and the video
resolution is 640×480. From the experimental results of [32,36], it can be seen that using the
hardware codec and multi-core and multi-threaded technology can effectively improve the
video transmission frame rate of the system. With the same multi-core and multi-threaded
technology, although the FE scheme [32] can utilize the hardware codec to improve the
video transmission frame rate, it cannot meet the video format compatibility. On the
contrary, although the CIE scheme [36] can meet the video format compatibility, the
transmission frame rate of this scheme is lower than 17 f/s caused by the software codec
with a large computing load and time consumption. However, in the case of having two
more operations of entropy coding and entropy decoding than the above schemes, the
video transmission frame rate of the proposed BOE scheme not only reaches 27 f/s higher
than that of the full encryption scheme, but also meets the format compatibility of video
at the same time. Therefore, one can know that the proposed BOE scheme is superior in
terms of security, real-time performance, and format compatibility.

Entropy 2021, 23, 1431 21 of 27

Table 3. Comparison of experiment results of video confidential communication system based on ARM-embedded platform.

Literature Encryption
Method

Format
Compatibility

Video
Revolution

Multi-Thread
Operation

H.264
Codec

Frame
Rate

Ours Bitstream-
oriented encryption Yes 640× 480 Six-thread Hardware 27 f/s

[32] Compression-
integrated encryption Yes 640× 480 Four-thread Software 17 f/s

[36] One-thread Software 2.51 f/s

[32] Full
encryption No 640× 480

Four-thread Hardware 26.8 f/s
One-thread Hardware 14.68 f/s
One-thread Software 3.74 f/s

4.2. Security Performance Tests
4.2.1. NIST Test

NIST test is a strict and standardized test suite for testing the statistical characteristics
of pseudo-random sequences generated by chaotic systems, and the total length of tested
sequecnces are required to be at least 108 bits. The NIST test includes 15 different tests, and
the result of each test is represented by a P-value. Sequences are said to pass a test if the
calculated P-value > 0.01.

Table 4 shows the result of the passing ratio and means of P-value of each test for
4-D SCSCA-CAC. In this experiment, the 100 groups of bit sequence with length as 106

are generated from from intercepting the low 8-bit of the chaotic variable expressed as
s(k) = mod

(⌊
(x1(k)× x2(k) + x3(k))/216⌋, 28). From Table 4, one can have that the 4-D

SCSCA-CAC can pass all the tests, which implies that the sequences generated from 4-D
SCSCA-CAC are with good statistical performances and can be regarded as true random.

Table 4. NIST test results.

Test Index Passing Ratio Means of P-Value Test Results

Frequency 0.96 0.137282 X
Block frequency 1.00 0.678686 X
Cumulative sums 0.97 0.425306 X
Runs 1.00 0.236810 X
Longest runs of ones 0.99 0.181557 X
Rank 0.99 0.935716 X
FFT 1.00 0.759756 X
Non-overlapping templates 0.99 0.574903 X
Overlapping templates 0.99 0.042808 X
Universal 0.97 0.816537 X
Approximate entropy 0.99 0.955835 X
Random excursions 0.98 0.407091 X
Random excursions variant 0.99 0.253551 X
Serial 0.99 0.616264 X
Linear complexity 1.00 0.514124 X

4.2.2. TESTU01 Test

Compared with the NIST test, the TESTU01 test is a more rigorous statistical char-
acteristic test. TESTU01 has seven test suites, including SmallCrush, Crush, BigCrush,
Alphabit, Rabbit, PseudoDIEHARD, and FIPS-140-2 suite. Among them, the amount of
test sequences of BigCrush suite is as high as 10TB, which makes the dynamic behavior of
chaotic system easier to be exposed. Even though some chaotic systems can pass NIST test,
they cannot further pass the TESTU01 test. Therefore, if the chaotic sequences generated
by the chaotic system can successfully pass the TESTU01 test, it shows that the chaotic
sequence has better statistical performance and randomness.

Entropy 2021, 23, 1431 22 of 27

Table 5 shows the results of TESTU01 test for the 4-D SCSCA-CAC. The 10Tb test
sequences are generated by intercepting the low 8-bit of the chaotic variable expressed
as s(k) = mod

(⌊
(x1(k)× x2(k) + x3(k))/216⌋, 28). The results show that the 4-D SCSCA-

CAC can successfully pass all the tests in TESTU01.

Table 5. TESTU01 test results.

Test Suites Data Size Number of Tests Test Results

SmallCrush 6 GB 15 X
Crush 6 GB 144 X
BigCrush 10 TB 160 X
Alphabit 953 Mb 17 X
Rabbit 953 Mb 40 X
PseudoDIEHARD 6 GB 126 X
FIPS-140-2 19 KB 16 X

4.2.3. Phase Space Reconstruction Attacks

The phase space reconstruction attack is to analyze the time series of a state variable
at different times, continuously produced by the chaotic system. It reconstructs the time
series of the state variable by determining the appropriate delay time τ and embedding
dimension m, and then recovers the regular trajectories such as attractors in the embedded
dimension space. The structure of some chaotic maps with complicated trajectory will
become simple and evident in the reconstructed phase space. Therefore, the attacker
can easily predict the behavior of the chaotic variable according to the trajectory in the
reconstructed phase space. Next, the phase space reconstruction attack is used to test the
state variable {x1(k)} in 4-D SCSCA-CAC.

By using the auto-correlation method and False Nearest Neighbor (FNN) method,
the delay time τ is calculated as 1 and the embedding dimension m is calculated as 4, and
these two parameters are used to reconstruct the phase space. The estimating results of
the delay time τ and the embedding dimension m are shown in Figure 8a,b, respectively.
The reconstructed phase space is shown in Figure 9. It can be seen from Figure 9 that
the reconstructed phase space is disordered and has no obvious structure, so the attacker
cannot predict the behavior of the chaotic variable by reconstructing the phase space.
Therefore, 4-D SCSCA-CAC can effectively resist the phase space reconstruction attack.

(a) (b)

Figure 8. Estimating the delay time and the embedding dimension: (a) auto-correlation method for
estimating τ, (b) FNN method for estimating m.

Entropy 2021, 23, 1431 23 of 27

(a) (b)

(c) (d)

(e) (f)

Figure 9. Phase space reconstruction for 4-D SCSCA-CAC: (a) x1(k)− x1(k+ 1), (b) x1(k)− x1(k+ 2),
(c) x1(k)− x1(k + 3), (d) x1(k + 1)− x1(k + 2), (e) x1(k + 1)− x1(k + 3), (f) x1(k + 2)− x1(k + 3).

4.2.4. Sensitivity Test of Key Parameters Mismatch

When the chaotic system has a key parameter with a very small mismatch error, and
the original video signal is not able to decrypt, the key parameters are very sensitive to the
mismatch error. The smaller the number of the mismatch error, the better the security of
the system.

The sensitivity test results of key parameters mismatch for 4-D SCSCA-CAC is shown
in Table 6. The absolute value of the mismatch between the key parameters in encryption
system and decryption system is expressed as |∆aij|= |ae

ij − ad
ij| (1 ≤ i ≤ 4, 1 ≤ j ≤ 4).

From the test results, one knows that any key parameter in 4-D SCSCA-CAC has high
sensitivity to the tiny mismatch error. Therefore, 4-D SCSCA-CAC can effectively resist the
brute force attacks.

Table 6. The sensitivity of key parameters mismatch.

|∆a11| ∝ 10−13 |∆a12| ∝ 10−13 |∆a13| ∝ 10−13 |∆a14| ∝ 10−13

|∆a21| ∝ 10−13 |∆a22| ∝ 10−13 |∆a23| ∝ 10−13 |∆a24| ∝ 10−13

|∆a31| ∝ 10−13 |∆a32| ∝ 10−13 |∆a33| ∝ 10−13 |∆a34| ∝ 10−13

|∆a41| ∝ 10−13 |∆a42| ∝ 10−13 |∆a43| ∝ 10−13 |∆a44| ∝ 10−13

Entropy 2021, 23, 1431 24 of 27

4.2.5. PSNR and SSIM Index Tests

PSNR can be used as a performance index to evaluate the perceptual security of
encrypted video. When the PSNR value is lower than 20 dB, it means that original video
information cannot be discriminated from the encrypted video by human eyes. PSNR is
calculated based on the Mean Square Error (MSE) between the original image and the
encrypted image. The mathematical expression of MSE is as follows:

MSE =
1

H ×W

H−1

∑
x=0

W−1

∑
y=0

(Porg(x, y)− Penc(x, y))2 (32)

The mathematical expression of PSNR is obtained as:

PSNR = 10 lg

(
(2k − 1)

2

MSE

)
(33)

Among them, H and W denote the height and width of the video, respectively.
Porg(x, y) represents the pixel value of the original video image, Penc(x, y) represents the
pixel value of the encrypted video, and k represents the pixel depth.

Different from PSNR that measures image quality based on pixel error, SSIM measures
image similarity from three aspects: brightness, contrast, and structure. The SSIM value is
in the range of [0, 1]. The smaller the SSIM value is, the lower the structural similarity will
be, leading to higher perceptual security for the encrypted video.

In order to test the encryption effect of the video confidential communication system,
one intercepted three frames of original images and their corresponding encrypted images
in the actual video communication process, as shown in Figure 10. The PSNR and SSIM
indicators test results are shown in Table 7.

(a) (b)

(c) (d)

(e) (f)

Figure 10. The original image and its corresponding encrypted image: (a) P1, (b) E1, (c) P2, (d) E2,
(e) P3, (f) E3.

Entropy 2021, 23, 1431 25 of 27

According to Table 7, the PSNR values are much smaller than 20 dB, indicating that it
is difficult to obtain the original frames’ information from the encrypted frames. The SSIM
values are all less than 0.05, representing the low structural similarity between the original
and encrypted images. All the above statistical analysis results come to the conclusion that
the BOE scheme has good perceptual security performance.

Table 7. PSNR and SSIM test results.

Original and Encrypted Images PSNR SSIM

P1&E1 6.5326 dB 0.0411

P2&E2 6.2433 dB 0.0375

P3&E3 6.5768 dB 0.0314

5. Conclusions

For ensuring security, format compliance, and real-time transmission of encrypted
videos, the SE method has become a research hotspot in the field of video encryption. In SE
methods, with high computational efficiency, BOE is a more desirable encryption method
compared with the CIE scheme. Some reports have studied and improved the BOE scheme,
but these schemes lack the corresponding hardware implementation to prove the feasibility,
effectiveness, and superiority of the BOE method. Moreover, some studies adopted AES
block cipher as the encrypted algorithm in their BOE scheme with high computational
load, increasing the time consumption in encrypting. To deal with these problems, in this
paper, one proposed:

(1) An improved algorithm 4-D SCSCA-CAC.
(2) An improved BOE scheme utilizing the hardware codec to improve the real-time

performance of video transmission.
(3) An ARM-based hardware implementation of the BOE scheme.
4-D SCSCA-CAC can resist the cryptanalysis combining of the chosen-ciphertext

attack and the divide-and-conquer attack, and the chaotic bit sequences generated by 4-D
SCSCA-CAC for encrypting video information have passed the NIST and TESTU01 test,
ensuring the security of the video confidential communication system. In addition, due to
the chaotic stream cipher having less computational overhead, without the consuming time
for package construction to encrypt the fixed-length syntax elements, 4-D SCSCA-CAC
is more appropriate for application in actual video communication than AES algorithm.
Besides, one found that the hardware codec can be used for the BOE scheme in actual
applications. The proposed scheme utilizes the hardware acceleration to improve the video
transmission frame rate to 27 f/s. In contrast with hardware implementation based on the
CIE method, the experimental results have proved that the BOE scheme is more suitable for
real-time video secure communication application scenarios, and reflected the advantages
of high efficiency and flexibility in the BOE scheme.

Author Contributions: Conceptualization, Z.Z. and P.C.; methodology, Z.Z. and P.C.; software,
Z.Z. and S.L.; validation, Z.Z., P.C. and W.L.; investigation, Z.Z. and H.W.; writing—original draft
preparation, Z.Z. and P.C.; writing—review and editing, Z.Z.; funding acquisition, S.C., Q.W. and
X.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Science and Technology Planning Project of Guangdong
Province, China, grant number No.2019B010140002, and the National Natural Science Foundation of
China, grant number 61801127.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Entropy 2021, 23, 1431 26 of 27

Acknowledgments: The authors are thankful to the reviewers for their comments and suggestions
to improve the quality of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Altaf, M.; Ahmad, A.; Khan, F.A.; Uddin, Z.; Yang, X. Computationally efficient selective video encryption with chaos based

block cipher. Multimed. Tools Appl. 2018, 77, 27981–27995. http://doi.org/10.1007/s11042-018-6022-5. [CrossRef]
2. Tabash, F.K.; Izharuddin, M. Efficient encryption technique for h. 264/avc videos based on cabac and logistic map. Multimed.

Tools Appl. 2019, 78, 7365–7379. http://dx.doi.org/10.1007/s11042-018-6494-3. [CrossRef]
3. Stütz, T.T.; Uhl, A. Format-compliant encryption of h. 264/avc and svc. In Proceedings of the 2008 Tenth IEEE International

Symposium on Multimedia, Berkeley, CA, USA, 15–17 December 2008; pp. 446–451. http://dx.doi.org/10.1109/ISM.2008.52.
4. Cheng, S.; Wang, L.; Ao, N.; Han, Q. A selective video encryption scheme based on coding characteristics. Symmetry 2020, 12, 332.

http://dx.doi.org/10.3390/sym12030332. [CrossRef]
5. Arachchi, H.K.; Perramon, X.; Dogan, S.; Kondoz, A.M. Adaptation–aware encryption of scalable h. 264/avc video for content

security. Signal Process. Image Commun. 2009, 24, 468–483. http://dx.doi.org/10.1016/j.image.2009.02.004. [CrossRef]
6. Tabash, F.K.; Izharuddin, M.; Tabash, M.I. Encryption techniques for h. 264/avc videos: A literature review. J. Inf. Secur. Appl.

2019, 45, 20–34. http://dx.doi.org/10.1016/j.jisa.2019.01.001. [CrossRef]
7. Thomas, N.; Bull, D.; Redmill, D. A novel h. 264 svc encryption scheme for secure bit-rate transcoding. In Proceedings of the 2009

Picture Coding Symposium, Chicago, IL, USA, 6–8 May 2009; pp. 1–4. http://dx.doi.org/10.1109/PCS.2009.5167429.
8. Apostolopoulos, J.G. Secure media streaming & secure adaptation for non-scalable video. In Proceedings of the 2004 International

Conference on Image Processing, Singapore, 24–27 october 2004; Volume 3, pp. 1763–1766. http://dx.doi.org/10.1109/ICIP.2004.14
21415.

9. Boho, A.; Van Wallendael, G.; Dooms, A.; De Cock, J.; Braeckman, G.; Schelkens, P.; Preneel, B.; Van de Walle, R. End-to-end
security for video distribution: The combination of encryption, watermarking, and video adaptation. IEEE Signal Process. Mag.
2013, 30, 97–107. http://dx.doi.org/10.1109/MSP.2012.2230220. [CrossRef]

10. Sallam, A.I.; El-Rabaie, E.-S.M.; Faragallah, O.S. Cabac-based selective encryption for hevc using rc6 in different operation modes.
Multimed. Tools Appl. 2018, 77, 28395–28416. [CrossRef]

11. Chen, J.; Peng, F.; Long, M. A perceptual encryption scheme for hevc video with lossless compression. In International Journal of
Digital Crime And Forensics; .Springer: Cham, Switzerland, 2017; pp. 396–407.

12. Li, J.; Wang, C.; Chen, X.; Tang, Z.; Hui, G.; Chang, C.-C. A selective encryption scheme of cabac based on video context in high
efficiency video coding. Multimed. Tools Appl. 2018, 77, 12837–12851. [CrossRef]

13. Sallam, A.I.; El-Rabaie, E.-S.M.; Faragallah, O.S. Efficient hevc selective stream encryption using chaotic logistic map. Multimed.
Syst. 2018, 24, 419–437. [CrossRef]

14. Song, Y.; Zhu, Z.; Zhang, W.; Yu, H. Efficient protection using chaos for context-adaptive binary arithmetic coding in h. 264/ad-
vanced video coding, Multimed. Tools Appl. 2019, 78, 18967–18994. [CrossRef]

15. Stutz, T.; Uhl, A. A survey of h. 264 avc/svc encryption. IEEE Trans. Circuits Syst. Video Technol. 2011, 22, 325–339. [CrossRef]
16. Shah, R.A.; Asghar, M.N.; Abdullah, S.; Fleury, M.; Gohar, N. Effectiveness of crypto-transcoding for h. 264/avc and hevc video

bit-streams. Multimed. Tools Appl. 2019, 78, 21455–21484. [CrossRef]
17. Sallam, A.I.; Faragallah, O.S.; El-Rabaie, E.-S.M. Hevc selective encryption using rc6 block cipher technique. IEEE Trans. Multimed.

2017, 20, 1636–1644. [CrossRef]
18. Xu, H.; Tong, X.; Wang, Z.; Zhang, M.; Liu, Y.; Ma, J. Robust video encryption for h.264 compressed bitstream based on

cross-coupled chaotic cipher. Multimed. Syst. 2020, 26, 363–381. [CrossRef]
19. Lin, Z.; Yu, S.; Lü, J.; Cai, S.; Chen, G. Design and arm-embedded implementation of a chaotic map-based real-time secure video

communication system. IEEE Trans. Circuits Syst. Video Technol. 2014, 25, 1203–1216.
20. Chen, P.; Yu, S.; Chen, B.; Xiao, L.; Lü, J. Design and sopc-based realization of a video chaotic secure communication scheme. Int.

J. Bifurc. Chaos 2018, 28, 1850160. [CrossRef]
21. Chen, B.; Yu, S.; Chen, P.; Xiao, L.; Lü, J. Design and virtex-7-based implementation of video chaotic secure communications. Int.

J. Bifurc. Chaos 2020, 30, 2050075. [CrossRef]
22. Lin, Z.; Yu, S.; Feng, X.; Lü, J. Cryptanalysis of a chaotic stream cipher and its improved scheme. Int. J. Bifurc. Chaos 2018, 28,

1850086. [CrossRef]
23. Ma, T.; Ma, M.; Lee, Y.H.; Hu, F. Bitstream-oriented protection for the h. 264/scalable video coding (svc). Wirel. Pers. Commun.

2017, 97, 5115–5135. [CrossRef]
24. Khan, J.S.; Ahmad, J. Chaos based efficient selective image encryption. Multidimens. Syst. Signal Process. 2019, 30, 943–961.

[CrossRef]
25. Mian, C.; Jia, J.; Lei, Y. An h. 264 video encryption algorithm based on entropy coding. In Proceedings of the Third International

Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP 2007), Adelaide, Australia, 23–25
September 2007; Volume 2, pp. 41–44.

26. Bergeron, C.; Lamy-Bergot, C. Complaint selective encryption for h. 264/avc video streams. In Proceedings of the 2005 IEEE 7th
Workshop on Multimedia Signal Processing, Shanghai, China, 30 October– 2 November 2005; pp. 1–4.

http://dx.doi.org/10.1007/s11042-018-6022-5
http://dx.doi.org/10.1007/s11042-018-6494-3
http://dx.doi.org/10.3390/sym12030332
http://dx.doi.org/10.1016/j.image.2009.02.004
http://dx.doi.org/10.1016/j.jisa.2019.01.001
http://dx.doi.org/10.1109/MSP.2012.2230220
http://dx.doi.org/10.1007/s11042-018-5994-5
http://dx.doi.org/10.1007/s11042-017-4916-2
http://dx.doi.org/10.1007/s00530-017-0568-3
http://dx.doi.org/10.1007/s11042-019-7253-9
http://dx.doi.org/10.1109/TCSVT.2011.2162290
http://dx.doi.org/10.1007/s11042-019-7451-5
http://dx.doi.org/10.1109/TMM.2017.2777470
http://dx.doi.org/10.1007/s00530-020-00648-7
http://dx.doi.org/10.1142/S0218127418501602
http://dx.doi.org/10.1142/S0218127420500753
http://dx.doi.org/10.1142/S0218127418500864
http://dx.doi.org/10.1007/s11277-017-4771-5
http://dx.doi.org/10.1007/s11045-018-0589-x

Entropy 2021, 23, 1431 27 of 27

27. Huang, M.; Yang, C.; Zhang, Y. Selective encryption of h. 264/avc based on block weight model. In Proceedings of the 2018 IEEE
18th International Conference on Communication Technology (ICCT), Chongqing, China, 8–11 October 2018; pp. 1368–1373.

28. Hellwagner, H.; Kuschnig, R.; Stütz, T.; Uhl, A. Efficient in-network adaptation of encrypted h. 264/svc content. Signal Process.
Image Commun. 2009, 24, 740–758. [CrossRef]

29. Magli, E.; Grangetto, M.; Olmo, G. Transparent encryption techniques for h. 264/avc and h. 264/svc compressed video. Signal
Process. 2011, 91, 1103–1114. [CrossRef]

30. Lui, O.-Y.; Wong, K.-W. Chaos-based selective encryption for h. 264/avc. J. Syst. Softw. 2013, 86, 3183–3192. [CrossRef]
31. Li, C.; Zhou, X.; Zhong, Y. Nal level encryption for scalable video coding. In Pacific-Rim Conference on Multimedia; Springer:

Berlin/Heidelberg, Germany, 2008; pp. 496–505.
32. Chen, P.; Yu, S.; Zhang, X.; He, J.; Lin, Z.; Li, C.; Lü, J. Arm-embedded implementation of a video chaotic secure communication

via wan remote transmission with desirable security and frame rate. Nonlinear Dyn. 2016, 86, 725–740. [CrossRef]
33. Zhang, X.; Seo, S.-H.; Wang, C. A lightweight encryption method for privacy protection in surveillance videos. IEEE Access 2018,

6, 18074–18087. [CrossRef]
34. Shi, C.; Bhargava, B. An efficient mpeg video encryption algorithm. In Proceedings of the Seventeenth IEEE Symposium on

Reliable Distributed Systems (Cat. No. 98CB36281), West Lafayette, IN, USA, 20–23 October 1998; pp. 381–386.
35. Chen, B.; Yu, S.; Zhang, Z.; Li, D.D.-U.; Lü, J. Design and smartphone implementation of chaotic duplex h. 264-codec video

communications. Int. J. Bifurc. Chaos 2021, 31, 2150045. [CrossRef]
36. Zhang, X.; Yu, S.; Chen, P.; Lü, J.; He, J.; Lin, Z. Design and arm-embedded implementation of a chaotic secure communication

scheme based on h. 264 selective encryption. Nonlinear Dyn. 2017, 89, 1949–1965. [CrossRef]
37. Boyadjis, B.; Perrin, M.-E.; Bergeron, C.; Lecomte, S. A real-time ciphering transcoder for h. 264 and hevc streams. In Proceedings

of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 3432–3434.
38. Chen, S.; Yu, S.; Lu, J.; Chen, G.; He, J. Design and fpga-based realization of a chaotic secure video communication system. IEEE

Trans. Circuits Syst. Video Technol. 2017, 28, 2359–2371. [CrossRef]

http://dx.doi.org/10.1016/j.image.2009.07.002
http://dx.doi.org/10.1016/j.sigpro.2010.10.012
http://dx.doi.org/10.1016/j.jss.2013.07.054
http://dx.doi.org/10.1007/s11071-016-2933-8
http://dx.doi.org/10.1109/ACCESS.2018.2820724
http://dx.doi.org/10.1142/S0218127421500450
http://dx.doi.org/10.1007/s11071-017-3563-5
http://dx.doi.org/10.1109/TCSVT.2017.2703946

	Introduction
	Design and Security Analysis of Chaotic Stream Cipher Algorithm
	Security Loopholes Analysis of n-D SCSCA
	Design of 4-D Chaotic Cipher Algorithm
	Security Analysis

	Implementation of a Bitstream-Oriented Encrypted Video Communication System
	Overall Design Scheme
	Specific Design of Bitstream-Oriented Encryption Scheme for H.264/AVC
	Presentation of H.264/AVC Standard
	Encryption Analysis of Syntax Elements in H.264 Bitstream
	Design of BOE Module
	Design of BOD Module

	Multi-Core Multi-Threading Process

	Experimental Results and Analysis
	Experiment Results
	Security Performance Tests
	NIST Test
	TESTU01 Test
	Phase Space Reconstruction Attacks
	Sensitivity Test of Key Parameters Mismatch
	PSNR and SSIM Index Tests

	Conclusions
	References

