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Abstract: Image haze removal is essential in preprocessing for computer vision applications because
outdoor images taken in adverse weather conditions such as fog or snow have poor visibility. This
problem has been extensively studied in the literature, and the most popular technique is dark
channel prior (DCP). However, dark channel prior tends to underestimate transmissions of bright
areas or objects, which may cause color distortions during dehazing. This paper proposes a new
single-image dehazing method that combines dark channel prior with bright channel prior in order
to overcome the limitations of dark channel prior. A patch-based robust atmospheric light estimation
was introduced in order to divide image into regions to which the DCP assumption and the BCP
assumption are applied. Moreover, region adaptive haze control parameters are introduced in order
to suppress the distortions in a flat and bright region and to increase the visibilities in a texture
region. The flat and texture regions are expressed as probabilities by using local image entropy. The
performance of the proposed method is evaluated by using synthetic and real data sets. Experimental
results show that the proposed method outperforms the state-of-the-art image dehazing method both
visually and numerically.

Keywords: dehaze; dark channel prior; bright channel prior; Shannon’s entropy; texture probability

1. Introduction

Outdoor images and videos in hazy or cloudy weather conditions often suffer from
the loss of details, decrease in contrast, and shifted chromaticity due to light scattering by
atmospheric particles. This phenomenon affects the performance of subsequent high-level
computer vision tasks, such as object detection and recognition. Therefore, improving
image quality and enhancing system robustness in challenging weather conditions play a
crucial role as a pre-processing step for broad application values [1].

This problem has been studied extensively in the literature with two main approaches:
methods that use multiple images and methods that use only a single image.

Multi-image dehazing uses additional information about the scene, such as multiple
images taken under diverse conditions [2–4], two or more images taken with different
degrees of polarization [5,6], or geometric features of the scene [7], and infrared and visible
images [8] in order to determine transmission and obtain haze-free images.

Compared to multi-image dehazing, a single image can only provide intensities of
the three channels. Thus, additional priors or constraints are required for single image
dehazing. Solutions for single image dehazing methods based on additional priors or
constraints have been intensively developed in recent years.

Tan [9] proposed a dehazing method by maximizing local contrast based on the prior
such that the contrast in a fogless image is higher than that in a foggy image. Fattal [10]
estimated the medium of transmission by considering that there is no correlation between
object surface shading and the transmission map. Moreover, he introduced a color line prior
to the observation that pixels in small image patches typically exhibit a one-dimensional
distribution in the RGB color space in [11]. Nishino et al. [12] estimated the scene albedo
and depth by introducing a Bayesian probabilistic method. Tarel et al. [13] introduced a
contrast-based enhancing approach in order to remove haze effects based on the assumption
that the atmospheric veil function changed gently in the local region. Later, they introduced
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an additional constraint that much of the image could be assumed to be a flat road in order
to better process the road image in [14]. Meng et al. [15] added a boundary constraint on the
transmission function for single-image dehazing. In order to perform contrast enhancement,
Ancuti et al. [16] implemented image dehazing based on multi-scale fusion. In [17], images
with different exposure levels are extracted from a series of gamma corrections, and multi-
exposure image fusion (MEF)-based adaptive restructuring was applied to each image
patch in order to fuse into a haze-removed image. This study was further extended by
Zhu et al. [18]. In order to guide the fusion process, they analyzed both global and local
exposures to construct a per-pixel weight map. Zhu et al. [19] proposed a color attenuation
prior to create a linear model for estimating the scene depth. Negru et al. [20] calculated
atmospheric veils based on a mathematical model that accounted for changes in fog
density with distance. Wang et al. [21] improved the color attenuation prior by estimating
atmospheric light with a haze-line prior and replacing constant scattering coefficients with
dynamic scattering coefficients. Duminil et al. [22] proposed a new prior for removing
atmospheric veils based on a physical model considering that fog appears thicker near
the horizon rather than closer to the camera. The Naka–Rushton function was used to
modulate the atmospheric veil according to empirical observations on synthetic fog images.
Berman et al. [23] proposed a non-local approach based on the assumption that colors of a
haze-free image are well approximated by a few hundred distinct colors. Bui [24] proposed
a color ellipsoid prior for dehazing where the dark channel prior was a special prior vector.

The Retinex theory has been widely applied in the field of single image dehazing.
Xie et al. [25] used a multi-scale Retinex algorithm for the luminance component in order
to acquire a transmission map and combined the haze image model with a dark channel
prior to recover the haze-removed image. Gao et al. [26] proposed an enhancement MSRCR
algorithm for color fog images based on an adaptive scale. Multi-scale images were ob-
tained by weighting and performing local corrections for reflection component estimation.
To take advantage of Retinex’s enhancements and address the lack of information about
image scenarios, Wang et al. [27] proposed a single-image dehazing method based on
atmospheric light scattering physical models and image brightness components by using
multiscale Retinex with color restoration (MSRCR). Park et al. [28] estimated improved
illuminance and reflectance by using the bright channel, which is estimated to control the
amount of brightness enhancement by iteratively minimizing a varying Retinex-based
energy function. Tang et al. [29] proposed night image dehazing by decomposing the atmo-
spheric light image from the input image using Retinex theory and accurately estimating
the point-by-point transmission map by using a Taylor series expansion, according to an
approach based on dark channel prior.

With the availability of large-scale paired data and the success of the Convolutional
Neural Network (CNN) in various image processing and computer vision tasks, learning-
based dehazing methods have become popular in recent years. Tang et al. [30] used
random forests to learn a mapping function between haze-relevant features and their
true transmission in image patches. Ren et al. [31] proposed a multi-scale convolutional
neural network to learn a mapping function between hazy images and corresponding
transmission maps in a coarse-to-fine manner. Later on, they designed a network to
learn confidence maps and proposed a fusion-based approach for haze removal in [32].
Cai et al. [33] adopted a deep convolutional neural network structure (four-layer) model
that was specially designed to embody image dehazing. Li et al. [34] proposed an All-
in-One Dehazing Network (AOD-Net) by reformulating the physical scattering model.
Zhang and Patel [35] proposed a densely connected pyramid dehaze network that can
examine scene depth and atmospheric light simultaneously. A Grid dehazing Network
(GridNet) based on an attention mechanism for single image dehazing was proposed in [36].
Qu et al. [37] regarded the dehazing task as an image-to-image translation problem and
designed an enhanced pix2pix dehazing network (EPDN) in order to generate clear results.

Among the various single-image dehazing, the most popular is the dark channel
prior [38]. Their prior is based on the observation that the minimum color components of
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local patches in haze-free images are usually very close to zero. DCP is a simple but effective
approach in most cases, although it requires high computational complexity due to the soft
matting algorithm and produces artifacts in bright areas. In order to improve computational
efficiency, other approaches such as bilateral filtering [39], median filtering [40,41], edge-
preserving filtering [42], and guided filtering [43] are used to optimize the transmission
instead of soft matting. To reduce the distortions in a large area of the sky or a bright white
object where the dark channel prior is invalid, sky detection-based methods [44–49] and
white object detection-based method are proposed [50]. Jackson et al. [51] estimated the
initial transmission map by modeling the scattering coefficients using Rayleigh scattering
theory and dark channel prior. In addition, linear transformation, tolerance, and offset
are proposed in order to consider that DCP values are not zero in bright regions [52–55].
Inspired by DCP, the bright channel prior (BCP) was proposed in [56]. It was assumed
that most local patches which are not covered by dark objects in haze-free outdoor images
contain some pixels that have very high intensities close to the upper limit in at least one
color (RGB) channel. The dark channel prior and the bright channel prior are combined
to calculate a transmission map in [57,58]. Zhang et al. [57] separated the hazy image
into the two regions based on the BCP values and estimated a transmission map by
jointly considering both priors in each region. Yutong et al. [58] proposed an adaptive bi-
channel prior by combining the dark and bright channel priors and corrected the inaccurate
estimation of transmission map and atmospheric light values for both white and black
pixels that do not meet the assumptions of the bi-channel priors.

Several approaches have been proposed that consist of using superpixels for haze
removal [58–61]. In the superpixel domain, Tan and Wang [59] obtained a transmission map
and then improved the transmission map by using a Markov random field. Wang et al. [60]
used the superpixel to estimate the transmission of sky and non-sky area in order to
reduce halo artifacts around sharp edges and color distortion in sky area. In [58,61], the
superpixel method was adopted instead of rectangular local patches to calculate the initial
transmission map.

Image entropy was used for single-image dehazing either to compute transmission
maps or to evaluate the resulting images. Park et al. [62] estimated the transmission
map by an objective function, which comprises information fidelity and image entropy at
non-overlapped sub-block regions. Ngo et al. [63] determined that hazy density is highly
correlated with contrast energy, entropy, and sharpness and estimated the transmission
map by utilizing an optimization of the objective function considering contrast energy,
entropy, and sharpness. Salazar-Colores et al. [64] used local Shannon entropy to detect and
segment a sky region in order to reduce artifacts and improve image recovery of the sky
region. Image entropy was used as a qualitative metric to evaluate the quality of dehazed
images in [49,65].

In this article, a region adaptive single image dehazing method is proposed to over-
come the limitations of the DCP. The main contributions are as follows:

• Dark and bright channel priors are combined, and the combined priors are further
improved by accurate estimation of atmospheric light and by introducing region
adaptive control parameters.

• Patch-wise bright pixel selection and atmospheric light candidate scores calculated
from dark channel and saturation values are introduced for an accurate estimation of
atmospheric lights.

• A region adaptive control parameter for deciding whether to decrease or increase haze
removal rate is proposed based on flat and non-flat region segmentations using local
Shannon entropy.

As a result, the proposed method effectively restores haze-removed images while
reducing an undesirable artifact in a bright area.

The rest of the paper is organized as follows. In Section 2, related works are briefly
reviewed. In Section 3, the details of the proposed algorithm are described. In Section 4,
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the experimental results and analyses are presented. Finally, conclusions are provided in
Section 5.

2. Related Work

The atmospheric scattering model, which is shown in Figure 1, can be mathematically
modeled as follows [1]:

I(x) = t(x)J(x) + (1− t(x))A, (1)

where I(x) is the hazy image, x is the spatial image index, t(x) is the medium transmission
map, J(x) is the scene radiance, and A represents the global atmospheric light RGB vector.
t(x) is the transmission of scattered light in an homogeneous medium, which can be
described as follows:

t(x) = e−βd(x), (2)

where β is the scattering coefficient of the atmosphere, and d(x) is the scene depth between
the objects and the camera. Assuming β is constant, then t(x) ∼= 0 when d(x)→ ∞, and
t(x) = 1 when d(x) = 0.

Figure 1. Atmospheric scattering model.

Since the goal of image dehazing is to recover J(x) from I(x), J(x) can be obtained by
simply transforming Equation (1).

J(x) =
I(x)− A

t(x)
+ A (3)

However, Equation (3) is an ill-posed problem because there are unknown variables
t(x) and A. Therefore, the performance of algorithms based on atmospheric scattering
models depenSds on accurate calculations of t(x) and A.

2.1. Dark Channel Prior and Bright Channel Prior

Dark channel prior is based on the empirical investigation of the characteristics of
clean outdoor images. It is observed that dark pixels have intensity values that are very
close to zero for at least one-color channel within an image patch. The dark channel is
defined as follows [38]:

Jd(x) = min
y∈Ωx

(
min

c∈{R,G,B}
Jc(y)

)
→ 0, (4)

where Jc is a color channel of J, and Ωx is a local patch centered at x. From Equations (1)
and (4), the transmission can be obtained by the following.

tDCP(x) = 1− min
y∈Ωx

(
min

c∈{R,G,B}

Ic(y)
Ac

)
(5)
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In order to be consistent with reality, a constant coefficient ω (0 < ω < 1) can be
introduced into Equation (5) to keep some haze particles at a distance.

tωDCP(x) = 1−ω·min
y∈Ωx

(
min

c∈{R,G,B}

Ic(y)
Ac

)
(6)

In general,ω has a value of 0.9 to 0.95.
On the other hand, the bright channel prior assumes that most local patches and pixels

in natural haze-free images contain some pixels that have intensities that are very high in
at least one-color channel [56].

Jb(x) = max
y∈Ωx

(
max

c∈{R,G,B}
Jc(y)

)
→ 1. (7)

The transmission of bright channel prior is calculated by combining Equations (1)
and (7).

tBCP(x) =
max
y∈Ωx

(
max

c∈{R,G,B}
Ic(y)

Ac

)
− 1

max
c∈{R,G,B}

1
Ac − 1

. (8)

2.2. Air Light Estimation
2.2.1. Dark Channel Prior

The atmospheric light A is calculated by choosing the highest intensity pixels from
the top 0.1% brightest pixels in the dark channel in a haze image.

Ac
∞ = Ic(arg max

y∈P0.1%
Id(y)) (9)

In Equation (9), among the brightest pixels of 0.1%, the pixels corresponding to the
maximum intensity in the color-channel of hazy input I are selected as the atmospheric
light vector.

2.2.2. Coarse-to-Fine Search Strategy

Iwamoto et al. [55] proposed a coarse-to-fine search strategy where they initially step
down the resolution of the dark channel image and obtained the position of the brightest
dark channSel value at the lowest resolution. Then, they recalculated the position of the
largest dark channel value at the second lowest resolution and continued to recalculate the
position of the brightest dark channel value until the original image size is reached. The
schematic flow of the exploration strategy is shown in Figure 2a.

Figure 2. Atmospheric light estimation: (a) coarse-to-fine method and (b) quad decomposition method.
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2.2.3. Quad Decomposition Method

In the quad decomposition method proposed by Park et al. [62], the image is decom-
posed into quarters, and the quarter with the largest average luminance value is selected.
The decomposition process is repeated on the selected quarter until the its size becomes
smaller than a predetermined quarter size. The pixel with the smallest Euclidean norm
relative to the white point in the RGB color space within the selected quarter is chosen as
atmospheric light. The selected quarter is depicted in Figure 2b.

2.3. Shannon’s Entropy

Shannon entropy (Shannon, 1948) is originally proposed to quantify the information
content in strings of text. It provides a measure of the amount of information required to
describe a random variable. Similarly to the entropy concept widely used in information
theory, when entropy is applied to a hazy image, high image entropy means that the image
contains much detail, while low image entropy means that the image has less detail [63].
The local Shannon image entropy E(x) on a local patch Ωx is defined as follows:

E(x) = −∑L−1
y∈Ωx

p(y) log p(y), (10)

where L is the number of possible values for a pixel in Ωx (in a grey-scale image L equals
to 256), p(y) =

nj
N is the probability that the grey-scale value j appears in Ωx, and nj is

the number of pixels with the value j in Ωx. Figure 3 depicts the local image entropy of
detailed and less detailed images.

Figure 3. Examples of local image entropy: (a,c) input image, (b,d) local image entropy of (a,c).

3. Proposed Method

This section describes the proposed image dehazing method in detail. In the proposed
method, the superpixel method [66] is adopted instead of the rectangular local patch that
is used in the existing DCP, and depth information of the scene is accurately expressed as
an image patch. Firstly, a combined dark and bright channel prior is further improved by
analyzing DCP and BCP in Section 3.1, and atmospheric light is estimated from the selected
superpixels by using the newly proposed candidate scores in Section 3.2. In Section 3.3, a
region adaptive haze control parameter designed to prevent artifacts in the hazy and bright
regions with less detail and to improve the haze removal rate in the hazy region with a
lot of detail is introduced based on the flat map calculated from Shannon entropy. Finally,
transmission, t(x), is calculated by using the region adaptive haze control parameter and
refined in order to obtain a haze-free image.
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3.1. Modified Dark and Bright Channel Prior

One of the reasons of the side effects of conventional DCP and BCP is that the charac-
teristics of transmission function are overlooked. From Equation (3), transmission can be
directly calculated as follows.

t(x) =
I(x)− A
J(x)− A

(11)

Since 0 ≤ t(x) ≤ 1, given the global atmospheric light A, the hazy input image can be
separated into two parts.

I(x) > A
I(x) < A

�
J(x) > A→ J(x) > I(x)
J(x) < A→ J(x) < I(x)

(12)

From Equation (12), it can be clearly observed that assumptions on DCP are valid
only in the region where I(x) < A, and assumptions on BCP are valid in the region where
I(x) > A.

This is observed by Zhang et al. [44], and they separated the input image into the
two regions based on the BCP values. However, for Ib(x) > A and Id(x) < A, where

Ib(x) = max
y∈Ωx

(
max

c∈{R,G,B}
Ic(y)

)
and Id(x) = min

y∈Ωx

(
min

c∈{R,G,B}
Ic(y)

)
, both BCP and DCP

are valid. Thus, in order to consider the above case, the input hazy image should be
separated into three regions instead of two. Then, Equation (11) can be rewritten as follows:

t(x) =


tBCP(x) = AM

1−AM ·(Ib
A(x)− 1) Id

A(x) > 1

tDCP(x) = 1− Id
A(x) Ib

A(x) < 1
0.5×max(tBCP(x), t0) + 0.5×max(tDCP(x), t0) otherwise

, (13)

where Id
A(x) = min

y∈Ωx

(
min

c∈{R,G,B}
Ic(y)

Ac

)
, Ib

A(x) = max
y∈Ωx

(
max

c∈{R,G,B}
Ic(y)

Ac

)
, and AM = max

c∈{R,G,B}
Ac.

Figure 4 shows that many regions belonging to BCP (white region) in Equation (13)
satisfy both BCP and DCP (gray region). As observed from Equation (13), the estimation
of A becomes more important because it is necessary to divide the region based on A and
to apply an appropriate prior to each divided region. Therefore, in this paper, a novel
atmospheric light estimation method will be proposed in Section 3.2.

Figure 4. Region separation based on the atmospheric light A: (a) input image, (b) the result of Equation (11), and (c)
proposed method.

The oversimplified assumption explains another reason for the side effects of DCP
and BCP. The original transmission of DCP and BCP tactual(x) is expressed as follows:

tactual(x) =


1−Id

A(x)
1−Jd

A(x)
≥ 1− Id

A(x)
Ib
A(x)−1

Jb
A(x)−1

≥ A0·(Ib
A(x)− 1)

, (14)
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where A0 = AM

1−AM . For the areas that do not satisfy the dark channel prior, the value of the
dark channel cannot be approximated to 0; similarly, for the areas that do not satisfy the
bright channel prior, the value of the bright channel cannot be approximated to 1. Thus,
tactual(x) is always greater than transmission t(x), which is calculated based on the dark
channel and bright channel priors.

Inspired by the constant factor ω for controlling the haze removal rate in DCP, a
region adaptive haze control parameter is introduced in order to consider the oversimplified
assumption of DCP and BCP. Based on the Equation (14), modified transmission tmodi f ied(x)
can be simply expressed as follows:

tmodi f ied(x) =

{
tmodi f ied
DCP (x) = 1−ωp(x)·Id

A(x) ≥ tDCP(x)
tmodi f ied
BCP (x) = A0·ωp(x)·(Ib

A(x)− 1) +
(
1−ωp(x)

)
≥ tBCP(x)

0 ≤ ωp(x) ≤ 1, (15)

where ωp(x) is a proposed region adaptive haze control parameter. The equation
for BCP is simply derived based on the assumption that tmodi f ied(x) = 1−ωp(x) when
Id
A(x) = Ib

A(x) = 1. By combining Equations (13) and (15), the proposed transmission
tproposed(x) is expressed as follows.

tproposed(x) =


tmodi f ied
BCP (x)tmodi f ied

BCP (x) = A0·ωp(x)·(Ib
A(x)− 1) +

(
1−ωp(x)

)
Id
A(x) > 1

tmodi f ied
DCP (x) = 1−ωp(x)·Id

A(x) Ib
A(x) < 1

max
(

tmodi f ied
BCP (x),1−ωp(x)

)
2 +

max
(

tmodi f ied
DCP (x),1−ωp(x)

)
2 otherwise

(16)

The details of region adaptive haze control parameter will be explained in Section 3.3.

3.2. Atmospheric Light Estimation

Due to the fact that most existing methods estimate atmospheric light by consid-
ering only brightness, white or bright landscape objects are often incorrectly chosen as
atmospheric light. In the ideal case, if d(x) is large enough, t(x) tends to be very small
according to Equation (2), and I(x) will be approximately A. Therefore, atmospheric light A
can be estimated from deeper-depth regions. Since the depth of the scene is assumed to
be positively correlated with haze concentration, atmospheric light candidate areas can
be calculated by using the relationship between haze and contrast, saturation, and dark
channel values [67]. Using the above relationship, the atmospheric light area candidate
score is calculated as follows:

ScoreA(x) = (1− Ps(x))·C(x)·(1− S(x))·Id(x), (17)

where S(x) and Id(x) denote saturation and dark channel value in the superpixel. Moreover,
the portion of overexposed pixels in a superpixel Ps(x) is introduced in order to avoid
selecting overexposed pixels as candidates for ambient light. Candidate superpixels for
atmospheric light estimation will be selected based on the score. The contrast related value
C(x) is defined as follows:

C(x) =

{
1− σx

σ σx < σ

0 σx ≥ σ
, (18)

where σx and σ denote a standard deviation of local patch Ωx and entire image, respectively.
Inspired by the patch selection method for calculating color constancy [68], the hazy

image is evenly divided into multiple rectangular patches (e.g., a 2 × 3 patch is used, but it
is not limited). For each patch Fi,j, the mean of dark channel value is calculated as follows:

D
(

Fi,j
)
= ∑

x ∈Fi,j

Id(x)
Ni,j

, (19)

where Ni,j is number of superpixels in patch Fi,j.
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The number of superpixels selected form patch Fi,j is set to be proportional to the
mean of the dark channel value D

(
Fi,j
)
:

Ns
(

Fi,j
)
=


D(Fi,j)

µd
Nεs , D

(
Fi,j
)
≥ µd

0 , D
(

Fi,j
)
< µd

, (20)

where µd is mean of the dark channel value of image, N is the total number of superpixes
in the image, and εs is a constant that determines the selecting rate, which generally takes a
value of 0.001. An example of patch means of dark channel and candidate scores for each
superpixels can be seen in Figure 5. Finally, the highest score Ns

(
Fi,j
)

superpixels in patch
Fi,j are selected, and atmospheric light A is calculated by averaging the selected superpixels.
The selected superpixels for calculating atmospheric light are shown in Figure 6.

Figure 5. Atmospheric light estimation: (a) input image, (b) patch means of dark channel, and (c) candidate scores for
each superpixels.

Figure 6. Selected superpixels for estimating atmospheric light: (a,c) input image, (b,d) selected superpixels.

3.3. Region Adaptive Haze Control Parameter

The effects of haze control parameterω are shown in Figure 7. Asω increases, more
haze is removed, and the visibilities are improved, but unwanted artifacts are produced
in the sky area. As discussed in Section 3.1, the artifacts are caused by oversimplified
assumptions of DCP and BCP; thus, region adaptive haze control parameters are introduced
to address this problem. The region adaptive control parameter should improve visibility
in high detail hazy areas while avoiding artifacts in low detail bright and hazy region such
as sky areas. To this end, the region with and without detail should be determined first.
In this paper, the area with detail is regarded as texture, and the area without detail is
regarded as a flat.
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Figure 7. The effects of haze control parameterω: (a) input hazy image, (b) recovered image (ω = 0.25), (c) recovered image
(ω = 0.5), (d) recovered image (ω = 0.75), and (e) recovered image (ω = 1.0).

3.3.1. Texture and Flat Area Detection

As mentioned in Section 2.3, image entropy can be used to characterize the texture of
an image and to determine the amount of image information [69]. However, images affected
by haze tend to have low image entropy values due to the biased distribution of brightness.
This makes it difficult to distinguish between texture and flat areas. Therefore, instead
of using an image, the gradient of the image is used to calculate entropy. As observed in
Figure 8, entropy calculated from the gradient of the image has a larger difference in value
than the entropy calculated from the image in the flat region and the texture region.

Figure 8. Comparison of local image entropy: (a,d) input image, (b,e) entropy calculated from input image, and (c,f) entropy
calculated from gradient of image.

Local image entropy EG(x) is computed over the gradient image, and then the texture
probability PT(x) is calculated as follows:

PT(x) =


1 EG(x) > TT
EG(x)−TF

TT−TF
TF < EG(x) < TT

0 EG(x) < TF

(21)

where TF is the threshold obtained from OTSU threshold [52] of EG(x), and TT = TF + 64.
A high PT(x) value means a texture region, and a low PT(x) value means a flat region. An
example of texture probability PT(x) can be seen in Figure 9.

Figure 9. Examples of texture probability: (a,c) input image, (b,d) texture probability.
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3.3.2. Region Adaptive Haze Control Parameter Calculation

In order to avoid artifacts in low-detail bright and hazy region, a prevention weight
is introduced. The texture probability PT(x) has low values in the low detail region, and
hazy image has low saturation values due to scattering and diffusion of reflected light in
the atmosphere [67], and the dark channel value Id(x) has a high value at bright region.
Based on the above relationship, the prevention weight for avoiding artifacts in low-detail
bright and hazy region is defined as follows.

Wp(x) = (1− PT(x))·(1− S(x))·Id(x) (22)

The value of Wp(x) becomes higher in bright and hazy regions with low detail and
lower in regions where it is not. Figure 10 illustrates the prevention weight and shows the
artifact suppression performance in low-detail bright and hazy regions.

Figure 10. The effect of prevention weight: (a) input image, (b) prevention weight, (c) result without prevention weight,
and (d) result with prevention weight.

In order to improve visibilities in high-detail hazy areas, an enhancement weight is
introduced. Texture probability and local variance are high in regions with high detail,
low saturation values in regions of hazy and enhancement weight should be inversely
proportional to the prevention weight. By using the above relationship, the enhancement
weight for improving visibilities in high-detail hazy areas is defined as follows:

WE(x) =
(
1−Wp(x)

)
·PT(x)·D(x)·(1− S(x)), (23)

where D(x) = ‖I(x)−µx‖
Nx

is a variance of local patch Ωx. The value of WE(x) becomes
lower in areas with high prevention weight Wp(x) or low-detail and higher in high-detail
hazy region. Figure 11 depicts the enhancement weight and shows the haze removal
performance in high-detail hazy regions.

Figure 11. The effect of enhancement weight: (a) input image, (b) enhancement weight, (c) result without enhancement
weight, and (d) result with enhancement weight.

As inferred from Figure 7, a decrease in the value of ωp(x) leaves a haze, and an
increase in the value of ωp(x) removes the haze, but artifacts may occur. Thus, ωp(x)
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should be low when Wp(x) is high and should increase when WE(x) is high. By using the
above relation,ωp(x) can be expressed as follows:

ωp(x) = ω0
(
1−ωpWp(x) +ωEWE(x)

)
, (24)

whereω0 is a parameter for controlling the overall haze removal rate, andωp andωE are
parameters for controlling the amount of prevention and enhancement.

3.4. Haze-Free Image Recovery

The patch level transmission tproposed(x) should be refined to contain pixel level
transmission t(p, q) using a guided filter [43]. With atmospheric light A and the refined
transmission map t(p, q), the haze-free image J can be recovered as follows.

J(p, q) =
I(p, q)− A

max(t(p, q), 0.05)
+ A (25)

The transmission is limited by a lower bound (0.05), which is the same empirical value
in [38], in order to avoid excessive enhancement.

4. Experimental Results

In this section, the effectiveness of the proposed method is evaluated and verified
qualitatively and quantitatively with the conventional method. The hazy images used in
the experiment are divided into those with and without ground truth. The hazy images
that have ground truth are collected from I-HAZE database [70], O-HAZE database [71],
Synthetic Objective Testing Set (SOTS), and Hybrid Subjective Testing Set (HSTS) from
a Realistic Single Image Dehazing (RESIDE) dataset [72]. On the other hand, real-world
hazy images do not have ground truth images, but in order to check whether the proposed
method is applicable to real life, real-world hazy images should be considered. In order
to acquire a wide range of images for testing, 200 real-world hazy images were collected
from the Realistic Single Image Dehazing (RESIDE) dataset. The proposed method was
tested on hazy images with ground truth and real-world hazy images and compared with
the He et al. [38], Meng et al. [15], Berman et al. [23], Zhu et al. [19], Ren et al. [31], and Cai
et al. [33].

4.1. Quantitative Analysis
4.1.1. Quantitative Comparison of Hazy Image with Ground Truth

In this subsection, the performance of dehazing algorithms was compared by using
various hazy image sets containing ground-truth (haze-free) images. The performance of
the algorithms can be evaluated by analyzing the similarity between the dehazing results
and the ground-truth images by using the full reference metrics PSNR and SSIM.

In Table 1, PSNR and SSIM values are calculated for images restored from I-HAZE,
O-HAZE, SOTS indoor and outdoor, and HSTS datasets. In general, deep learning-based
methods (i.e., Ren et al. and Cai et al.) show good numerical results for hazy images with
ground truth. The proposed method showed the best or second highest performance in
SSIM and PSNR, respectively. The quantitative metrics show that the proposed method
effectively removes haze.

4.1.2. Quantitative Comparison of Hazy Image without Ground Truth

Since there is no reference image in the natural images experiment, the IQA eval-
uation index and image entropy (IE) were used to evaluate the quality of the dehazing
results. As an IQA evaluation index, the natural image quality evaluator (NIQE) [73], the
blind/referenceless image spatial quality evaluator (BRISQUE) which outputs the value
range [0, 100] [74], and the perception-based image quality evaluation (PIQE) [75] are used
in this paper. Moreover, image entropy (IE) describes the randomness distribution of the
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image, and its value denotes the amount of image information [62]. The better the picture
quality, the smaller the NIQE, BRISQUE, and PIQE values and the higher the IE.

Table 1. Quantitative comparison of different methods with ground truth.

Dataset Metric He et al. Meng et al. Berman et al. Zhu et al. Ren et al. Cai et al. Proposed

I-Haze
(35 samples)

PSNR 11.56 13.11 13.87 14 16.47 14.55 16.26

SSIM 0.42 0.51 0.51 0.5 0.59 0.53 0.61

O-Haze
(45 samples)

PSNR 14.72 15.49 15.15 15.49 16.76 15.21 15.78

SSIM 0.38 0.42 0.46 0.37 0.4 0.42 0.49

SOTS-Indoor
(500 samples)

PSNR 16.81 17.05 17.29 18.98 17.13 11.97 19.42

SSIM 0.82 0.79 0.75 0.85 0.81 0.68 0.86

SOTS-Outdoor
(500 samples)

PSNR 14.81 15.57 18.08 18.25 19.61 22.92 20.96

SSIM 0.7549 0.783 0.8026 0.7867 0.8633 0.8886 0.8966

HSTS
(10 samples)

PSNR 15.09 15.16 17.63 19.84 18.67 24.48 22.36

SSIM 0.7656 0.7414 0.7933 0.8157 0.8174 0.9216 0.9

Table 2 shows the haze removal performance of natural images in NIQE, BRISQUE,
PIQE, and IE. It can be observed that the proposed method outperforms other conventional
methods except NIQE. This shows the effectiveness of the proposed method in a real case.

Table 2. Quantitative comparison of different methods with real-world images.

Metric Input He et al. Meng et al. Berman et al. Zhu et al. Ren et al. Cai et al. Proposed

NIQE 3.19 3.1 3.22 3.49 3.11 3.15 3.1 2.95

BRISQUE 32.24 28.67 25.91 29.72 30.65 30.11 30.52 24.53

PIQE 41.15 40.74 40.35 44.75 41.16 41.2 41.3 36.02

IE 6.97 6.98 7.03 7.35 7.11 7.24 7.14 7.4

4.2. Qualitative Comparison
4.2.1. Qualitative Comparison of Hazy Image with Ground Truth

Figures 12–16 show detailed comparisons of different methods using the I-HAZE,
O-HAZE, SOTS indoor, SOTS outdoor, and HSTS datasets, respectively. He et al. and
Meng et al. darkened the image and caused distortions in bright areas such as the sky.
Berman et al. removed too much haze, causing color distortion and saturation. Zhu et al.
is unstable in terms performance and sometimes result in more or less hazy residues and
in some cases dimmed images. Ren et al. and Cai et al. do not completely eliminate the
haze. Ren et al. causes color distortions in several images. On the other hand, the proposed
method recovers the closest image to the ground truth image, and the visual performance
was much better.
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Figure 12. Comparison of dehazing results from I-HAZE dataset: (a) hazy image, (b) ground truth, (c) He et al., (d) Meng
et al., (e) Berman et al., (f) Zhu et al., (g) Ren et al., (h) Cai et al., and (i) proposed.
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Figure 14. Comparison of dehazing results from SOTS indoor dataset: (a) hazy image, (b) ground truth, (c) He et al.,
(d) Meng et al., (e) Berman et al., (f) Zhu et al., (g) Ren et al., (h) Cai et al., and (i) proposed.
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Figure 15. Comparison of dehazing results from SOTS outdoor dataset: (a) hazy image, (b) ground truth, (c) He et al.,
(d) Meng et al., (e) Berman et al., (f) Zhu et al., (g) Ren et al., (h) Cai et al., and (i) proposed.
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Figure 16. Comparison of dehazing results from HSTS dataset: (a) hazy image, (b) ground truth, (c) He et al., (d) Meng
et al., (e) Berman et al., (f) Zhu et al., (g) Ren et al., (h) Cai et al., and (i) proposed.

4.2.2. Qualitative Comparison of Hazy Image without Ground Truth

Figure 17 compares dehazing results of real images. Figures 18–21 show parts of each
of Figure 17 in order to show the differences more clearly. As observed in Figures 18–21,
the proposed method outperforms the state of-the art haze removal methods in terms of
the amount of haze removal and also without producing undesirable artifacts in flat, bright,
and hazy regions. He et al., Meng et al., and Berman et al. produced artifacts in the sky
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area, and haze partially remained. Compared to the above methods, Ren et al. and Cai
et al. showed stable results, but haze still remained in the far area, and there is some color
distortion in the sky area. Zhu et al. dimmed the image and left haze in the results. These
results prove the effectiveness of the proposed method in real cases.
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Figure 18. Comparison of dehazing results from real world image: (a) hazy image, (b) He et al., (c) Meng et al., (d) Berman
et al., (e) Zhu et al., (f) Ren et al., (g) Cai et al., and (h) proposed.

4.3. Limitations of Proposed Method

The effectiveness of the proposed method for haze removal is shown in Sections 4.1 and 4.2.
In this section, the limitations of the proposed method are presented. Figure 22 shows the
case where noise exists in the texture areas. In this case, the texture region is considered as
a visibility enhancement region; thus, a largeωp(x) value is applied to remove haze while
amplifying noise. Figure 23 shows the case of misclassifying the texture as a flat area. Due
to dense haze and weak textures, the entropy of distant mountains is relatively low, which
causes this region to be misclassified as a flat region. As a result, a small ωp(x) value is
applied, resulting in relatively little haze removal.



Entropy 2021, 23, 1438 17 of 21

Entropy 2021, 23, 1438 16 of 21 
 

 

        

        

        

        
(a) (b) (c) (d) (e) (f) (g) (h) 

Figure 17. Comparison of dehazing results from real world image: (a) hazy image, (b) He et al., (c) Meng et al., (d) Berman 
et al., (e) Zhu et al., (f) Ren et al., (g) Cai et al., and (h) proposed. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 18. Comparison of dehazing results from real world image: (a) hazy image, (b) He et al., (c) Meng et al., (d) Berman 
et al., (e) Zhu et al., (f) Ren et al., (g) Cai et al., and (h) proposed. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 19. Comparison of dehazing results from real world image: (a) hazy image, (b) He et al., (c) Meng et al., (d) Berman
et al., (e) Zhu et al., (f) Ren et al., (g) Cai et al., and (h) proposed.
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Figure 20. Comparison of dehazing results from real world image: (a) hazy image, (b) He et al., (c) Meng et al., (d) Berman
et al., (e) Zhu et al., (f) Ren et al., (g) Cai et al., and (h) proposed.

4.4. Computational Complexity

Table 3 shows the average running time in order to show the computational efficiency
of the proposed method. Experiments were performed by considering all methods at differ-
ent resolutions (640× 480, 1024× 768, 1280× 720, and 1920× 1080) on a PC equipped with
2.8 Ghz Intel Core i7 and 16 GB RAM. The proposed method is implemented in C++, and
the other methods are implemented in Matlab. The differences in implementation cannot
result in a fair comparison, but the effectiveness of the proposed method is clearly visible.
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Figure 22. Example of noise boosting problem: (a) input image, (b) entropy of input image, (c) enhancement map, and
(d) result image.

Figure 23. Example of haze remaining problem: (a) input image, (b) entropy of input image, (c) prevention map, and
(d) result image.

Table 3. Computational complexity comparisons.

Image Size He et al. Meng et al. Berman et al. Zhu et al. Ren et al. Cai et al. Proposed

640 × 480 1.359776 2.986463 2.637870 0.690927 1.854696 1.619289 0.344

1024 × 768 3.535564 4.032741 4.140068 1.358614 2.587211 3.576306 0.535

1280 × 720 4.097585 3.678053 4.488762 1.749579 2.906746 4.373431 0.547

1920 × 1080 9.534287 6.824747 8.149385 3.182058 6.432193 9.872256 0.636
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5. Conclusions

In this paper, a method to recover images from single hazy image was presented. To
this end, dehazing was performed by combining complementary DCP and BCP. A patch-
based robust atmospheric light estimation has been proposed for dividing the image into
regions to which the DCP assumption and the BCP assumption are applied. In addition to
brightness, saturation and contrast were taken into account when estimating atmospheric
light in order to avoid erroneous selection of white or bright landscape objects such as
the atmosphere. A region adaptive haze control parameter was introduced to prevent
artifacts in bright and hazy areas of low detail and to improve haze removal in high detail
hazy areas. Shannon’s entropy was used to compute texture/flat probabilities, then the
prevention and enhancement weights for each superpixel were calculated. The performance
of the proposed method was evaluated by using qualitative and quantitative analysis of
synthetic images and real-world images. Experiments confirmed that the proposed method
effectively prevent the artifacts of the flat and bright area while effectively removing haze.
The results of the proposed algorithm showed better performance than the conventional
methods in both quantitative and qualitative criteria.
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