
entropy

Article

Multi-Hop Question Generation Using Hierarchical
Encoding-Decoding and Context Switch Mechanism

Tianbo Ji 1, Chenyang Lyu 2,*, Zhichao Cao 1 and Peng Cheng 3

����������
�������

Citation: Ji, T.; Lyu, C.; Cao, Z.;

Cheng, P. Multi-Hop Question

Generation Using Hierarchical

Encoding-Decoding and Context

Switch Mechanism. Entropy 2021, 23,

1449. https://doi.org/10.3390/

e23111449

Academic Editor: Adam Lipowski

Received: 11 October 2021

Accepted: 29 October 2021

Published: 31 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China;
jitianbo@ntu.edu.cn (T.J.); caozhichao@bjtu.edu.cn (Z.C.)

2 Science Foundation Ireland Centre for Research Training in Machine Learning, School of Computing,
Dublin City University, Dublin 9, Ireland

3 Alibaba Group, Hangzhou 311121, China; chris.cp@alibaba-inc.com
* Correspondence: chenyang.lyu2@mail.dcu.ie

Abstract: Neural auto-regressive sequence-to-sequence models have been dominant in text gen-
eration tasks, especially the question generation task. However, neural generation models suffer
from the global and local semantic semantic drift problems. Hence, we propose the hierarchical
encoding–decoding mechanism that aims at encoding rich structure information of the input passages
and reducing the variance in the decoding phase. In the encoder, we hierarchically encode the input
passages according to its structure at four granularity-levels: [word, chunk, sentence, document]-
level. Second, we progressively select the context vector from the document-level representations to
the word-level representations at each decoding time step. At each time-step in the decoding phase,
we progressively select the context vector from the document-level representations to word-level. We
also propose the context switch mechanism that enables the decoder to use the context vector from
the last step when generating the current word at each time-step.It provides a means of improving
the stability of the text generation process during the decoding phase when generating a set of consec-
utive words. Additionally, we inject syntactic parsing knowledge to enrich the word representations.
Experimental results show that our proposed model substantially improves the performance and
outperforms previous baselines according to both automatic and human evaluation. Besides, we
implement a deep and comprehensive analysis of generated questions based on their types.

Keywords: multi-hop question generation; hierarchical encoding-decoding; syntactic knowledge

1. Introduction

Question generation (QG) aims to generate appropriate questions for the given pas-
sages, it is an important task in natural language processing (NLP) research, QG has
many applications for various NLP tasks. For example, QG can be used to augment a
question answering (QA) dataset that is expensive to obtain, construct a synthetic QA
dataset and facilitate a dialogue system by controlling conversation flow through gener-
ating questions. Besides, QG can be used for an educational purpose as it can improve
and enhance children’s comprehension and retention by proposing questions based on
textbook passages [1–4]. Especially, in the QG research community, multi-hop QG has
recently been the focus of its potential applications in understanding complex human
questions generated through the compositionality of questions, and the goal of multi-hop
QG is to generate complex questions that require evidence across multiple passages to be
answered [5].

QG has attracted researchers’ interests for many years. In the early years, rule/template-
based methods were the mainstream models for the QG task. For example, a rule-based
approach was proposed to transform a declarative sentence into its interrogative counterparts,
and a statistical ranker was then invoked to select the most appropriate questions and discard
those of low quality [6]. However, rule/template-based methods can only generate trivia

Entropy 2021, 23, 1449. https://doi.org/10.3390/e23111449 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-7815-3889
https://doi.org/10.3390/e23111449
https://doi.org/10.3390/e23111449
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23111449
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23111449?type=check_update&version=2

Entropy 2021, 23, 1449 2 of 14

questions by simply reordering clauses and manipulating words in the sentence, while it
cannot handle complicated sentences. Since natural language is highly flexible, there are
scenarios that rule/template-based approaches fail to process. Meanwhile, it is also difficult
to accurately parse a sentence and obtain its constituents. To overcome such shortcomings,
vector-based machine learning models have been introduced into QG tasks with the advent of
the neural sequence-to-sequence (seq2seq) framework. This adds the advantages of modeling
semantics of natural language in vector space and producing more fluent and human-like
text [7]. After the deployment of neural networks in the QG tasks, various models were
proposed and the quality of generated questions has been significantly improved, especially
in terms of readability [8].

Despite the successful application in QG tasks, neural models still bear limitations
and remain prone to generating irrelevant questions, particularly when producing complex
questions according to multiple relevant passages. Usually denoted as semantic drift [9],
such problems in QG can be categorized in two classes: global or local. In regard to the
global semantic drift problem, a generated question might be grammatically correct, but
its overall semantic meaning is irrelevant to the input passages and/or the answer. For
example, given a set of passages about Isaac Newton together with the answer about the
date when he was born, a neural QG may generate “When did Isaac Newton write the book
Philosophiæ Naturalis Principia Mathematica?”, or even “Who wrote the book Philosophiæ
Naturalis Principia Mathematica?”. Such generated questions are fluent and meaningful,
but mismatch the answer and passages. Meanwhile, local semantic drift indicates that
the semantic units (i.e., phrases or words) in the generated question are inconsistent with
each other, resulting in the failure of forming a meaningful sentence. In this case, with the
previous passages and the answer, the model-generated question might be “In the time of
Dark Ages, who helped Isaac Newton invent the first electronic computer?”, where “Dark
Ages”, “Isaac Newton” and “electronic computer” are neither compatible nor consistent.

To address the two aforementioned semantic drift problems, we propose two separate
mechanisms: a hierarchical encoding–decoding mechanism and a context switch mecha-
nism, which, respectively, seek to alleviate the global and local semantic drift problems.
Inspired by the fact that the structural information on different granularity-levels has been
proved to be helpful for encoding rich semantic information [10–12], we think a hierarchical
structure is suitable for taking the advantage of the structural information. Following the
typical seq2Seq framework, the hierarchical encoding–decoding mechanism also consist
of an encoder and a decoder, where the former receives the input textual passages and
encodes their structural information, and the latter receives the encoded information from
the encoder and decodes the question in a coarse-to-fine fashion through the computation
of attention weights. In detail, four various levels of granularity are involved during the
encoding phase, including word-level, chunk-level, sentence-level and document-level,
and the encoder will encode the textual passages based on their structure with these
granularity-levels. Subsequently, the decoder will select the context vector in a coarse-
to-fine fashion during the decoding phase: first selecting it on the document-level, then
at the sentence-level and chunk-level, and finally on the word-level. Additionally, since
the decoder generates words one by one in the decoding phase, we think the generated
words in the same semantic unit (e.g., a phrase or an entity) should be more consistent and
semantically related if they have similar context vectors. Thereby, we propose the context
switch mechanism to provide similar context vectors when the QG model is expected to
produce words in the same semantic unit. In the implementation of the context switch
mechanism, an extra layer is included to output the probability at each decoding time-step,
for the purpose of effectively using the context vector from the last step.

We then assess the performances of the proposed model and other baseline QG models
by evaluating the results on the benchmark dataset HotpotQA [5]. Prevailing automatic
evaluation metrics like such as BLEU [13], ROUGE [14] and METEOR [15] are employed,
and we further conduct a human evaluation experiment since these automatic evaluation
methods have been proven to have poor correlation with human [16]. The experimental

Entropy 2021, 23, 1449 3 of 14

results show the proposed model can improve the quality of generated questions according
to both automatic and human evaluation.

2. Related Work and Background
2.1. Question Generation

The question generation task has been explored broadly in the early natural language
processing work where it mainly focused on rule-based approaches using heuristics in-
duced from linguistic knowledge (such as dependency parsing and constituency parsing) to
manipulate constituents in the sentence to produce an interrogative sentence. For example,
a rule-based framework that utilizes heuristics from syntactic knowledge is proposed to
transform declarative sentences to corresponding questions as candidates [6]. A statistical
ranking model is then employed to score the candidates, and those of low-quality will
be discarded.

Thereafter, the neural seq2seq model becomes dominant in the QG task and has
achieved high performances [17], because of the successful application of neural models
in other text generation tasks (e.g., machine translation and question answering). An
attention-based bidirectional long short-term memory (LSTM) model is employed to
generate questions given a pair of passage and answer [8]. In order to produce questions
that are relevant to the corresponding answers, Sun et al. [18] propose to incorporate the
point-generator network [19] and the word embedding of an textual answer. Likewise,
Ma et al. [20] propose a QG model that can strength the connections of passages, answers,
and questions by matching the sentence-level semantics and predicting the answer position
in the passage. Chen et al. [21] adopt a reinforcement learning approach to directly optimize
the QG model according to discrete evaluation metrics for the purpose of bridging the
gap among the training objective, the word-level optimization, the inference aim, and
the generation of a sentence-level output. With the help of advanced linguistic parsers
such as dependency parsing, semantic role labeling (SRL) and named entity recognition,
Dhole and Manning [22] leverage templates to generate questions based on the parsing
results, including a dependency tree and SRL frames. The proposed approach achieves
state-of-the-art results on the SQuAD dataset [23], outperforming the previously proposed
neural QG model, showing that QG can benefit from the incorporation of linguistic and
syntactic knowledge.

There are some other works exploring different aspects of the QG task, such as
incorporating question types [24], encoding wider context information [25] as well as the
combination of QA and QG [26].

2.2. Multi-Hop Question Generation

The Multi-hop QG task has its own complexity since complex questions are generated
from multiple interconnected input passages [5]. Gupta et al. [27] introduces reinforce-
ment learning and multitask learning into multi-hop QG, which specifically treats answer
position prediction and supporting facts prediction as two extra tasks in the seq2seq train-
ing process. Their experimental results show that the proposed approach achieves high
performance compared to baseline models.

Pan et al. [28] use the semantic units parsed from semantic role labeling and de-
pendency parsing to construct a semantic graph for documents in order to model the
connections among the semantic units as well as the documents usually neglected in prior
arts. Then, a recurrent neural network (RNN) encoder and a graph neural network (GNN)
encoder are invoked to encode the documents. The representations generated by the RNN
encoder show a document’s basic textual information while the representations from the
GNN encoder are expected to contain semantic information enhanced by the graph struc-
ture induced by semantic role labeling and dependency parsing. Next, an attention-based
decoder is used to generate the question word by word. The proposed semantic graph
model outperforms previous work by a large margin.

Entropy 2021, 23, 1449 4 of 14

Furthermore, Xie et al. [29] explore how question-specific rewards used in reinforce-
ment learning relate to the quality of questions for multi-hop QG, three question-specific
rewards—fluency, relevancy, and answerability—are proposed. From the perspective of
human evaluation, the findings from the experimental results suggest that directly opti-
mizing relevancy yields improvements on the question quality; however, optimizing the
other two rewards—fluency and answerability—results in quality degradation of questions,
especially for answerability.

2.3. Evaluation of Question Generation

Previous work on question generation mostly uses discrete metrics (BLEU, ROUGE,
and METEOR) from general text generation tasks (such as machine translation and text
summarization). Nevertheless, those metrics have been shown to have flaws in evaluating
text generation tasks. The findings from Reiter [16] support the usage of BLEU in machine
translation, but BLEU is not suitable for other text generation tasks especially when eval-
uating individual texts. Accordingly, evaluating question generation with such discrete
metrics is inappropriate since there is only one reference question for each generated ques-
tion resulting from the common practice of using a QA dataset for the QG task. Moreover,
there may be multiple appropriate questions for the input passages and answer. Thus,
metrics such as BLEU and ROUGE evaluating lexical similarity are not suitable for the
question generation task.

Human evaluation is also widely applied in the assessment of QG models. A common
practice is to randomly sample a few hundred generated questions and to ask human
raters to evaluate them by different dimensions (i.e., adequacy and fluency) on a five-point
scale [17]. The final result of human evaluation is reported as the ranking of models by
their average rating scores.

2.4. Seq2seq Generation Model and Attention-Based Decoder

In this section, we introduce the basic structure of the seq2seq text generation model [7]
and the attention-based decoder [30].

RNN-Based Seq2Seq Model

Given a source sequence X = {x1, x2, . . . , xn}, a seq2seq text generation model is
expected to generate a target sequence Y = {y1, y2, . . . , ym} where x and y are the tokens
in sequences X and Y, respectively. A seq2seq model usually coheres with the encoder-
decoder structure, where the encoder firstly receives the source sequence X as the input
and produces representations of X, and the decoder can then generate the target sequence
Y token by token using the previously produced representations of X.

A typical implementation of a RNN-based seq2seq model uses a RNN encoder and a
RNN decoder to constitute its encoder–decoder structure. With the source sequence X that
has n tokens, we feed its tokens one by one into the RNN encoder:

ht = g(ht−1, xt) (1)

where ht is the encoded representation for the hidden state at a time-step t and xt is the t-th
token in the sequence X. Following the encoding phase, the decoder takes the last result
provided by the encoder for the hidden state hn as the first decoder result for hidden states
and generates each decoded hidden state one-by-one:

st = f (st−1, yt−1) (2)

where st is the decoder result for hidden states at a time-step t, specifically s0 = hn, yt−1 is
the t− 1-th target token. To generate the target token at the t time-step, we use the decoder

Entropy 2021, 23, 1449 5 of 14

result for hidden state st to obtain a probability distribution over the vocabulary. Thereafter,
we select the one with the highest probability:

y‘
t = so f tmax(st, yt−1) (3)

It is noteworthy that in the training process, it is common to adopt the teacher-forcing
mechanism [31] in which we directly input the ground-truth target token yt−1 at the time-
step t during the decoding phase instead of the last predicted token in order to stabilize
the training process. In the inference process, we always input the predicted target token
y‘

t−1 since the ground-truth target token yt−1 is not available.

2.5. Attention-Based Decoder

In the vanilla RNN encoder–decoder structure, the encoder and decoder are inde-
pendent as the only connection between them is that the latter uses the last hidden states
from the former to initialize its own hidden states. The information of the source sequence
unfortunately lack full utilization. Hence, Bahdanau et al. [30] propose an attention mech-
anism to enable the decoder to select the part of the source sequence on which to focus
when generating target token. Concretely, an extra term c called context vector is added
into Equation (2):

st = f (st−1, yt−1, ct) (4)

where ct is the context vector at the time-step t, which is computed using the combination
of all encoder resulting hidden states:

ct =
n

∑
i=1

ei,thi (5)

where ei,t is the normalized coefficient for decoder resulting hidden state st and encoder
resulting hidden states hi. The equation for computing ei,t is:

ei,t =
φ(st, hi)

n

∑
j=1

φ(st, hj)

(6)

where φ is the scoring function measuring the connection between st and hi.

3. Model Architecture

Our model is a bidirectional gated recurrent unit (GRU) [32,33] based RNN consisting
of an encoder and a decoder. Given a set of documents D = {w1, w2, . . . , wv} and the
answer Ans = {a1, a2, . . . , au}, our model receives the concatenation of D and Ans as the in-
put, where w is a word in D, a is a word in Ans, and the input contains n words (n = v + u).
Besides, we record the hierarchical information of the input using a document-sentence-
chunk-word structure. In detail, D can be described as a combination of documents
D = {doc1, doc2, . . . }, where each document doc is doc = {sent1, sent2, . . . }, each sentence
sent is sent = {chunk1, chunk2, . . . } and each chunk chunk is chunk = {word1, word2, . . . }.

Figure 1 provides the overall architecture our proposed model and describes the
generation process at the time-step t = 1. The encoder firstly encodes the input documents
to obtain its sequential representation Hseq and injects dependency parsing into Hseq to
get the dependency representation Hdep, we therewith fuse Hseq and Hdep to form the
word-level representation Hword. Afterwards, we can successively get the chunk-level,
sentence-level and document-level representation (Hchunk, Hsent and Hdoc) according to the
word-level representation Hword, and the details will be introduced in Section 3.1. Hence,
we have representations of documents on four granularity-levels: Hword ∈ Rn×h, Hchunk ∈
Rnum_c×h, Hsent ∈ Rnum_s×h, Hdoc ∈ Rnum_d×h, where h means the length of each word

Entropy 2021, 23, 1449 6 of 14

representation, n, num_c, num_s and num_d represent the number of words, chunks,
sentences and documents, respectively.

0h

1w 2w3w 4w 5w nw

wordH

chunkH

sentH

docH

nh

1y 2y3y 4y 5y my

0s

1
docc

1
sentc

1
chunkc

1
wordc

1c

hierarchical attention

Encoder Decoder

Figure 1. The structure of the proposed seq2seq model, including the encoder (left) and the de-
coder (right).

In the attention mechanism of decoding phase, we select the context vector in a coarse-
to-fine way at each time-step. Specifically, we select the document-level context cdoc

t at first,
and it can be used to guide the selection of sentence-level context csent

t . Then, both cdoc
t and

csent
t can help to select the chunk-level context cchunk

t . At the end, we incorporate these three
context vectors to select the word-level context cword

t . Finally, we fuse these four context
vectors to obtain a context vector ct at the time-step t, and it will be used to generate a
word yt belonging to the vocabulary.

3.1. Encoder

The encoder first uses a bidirectional GRU network to encode the concatenated input
texts [D, Ans] to obtain its sequential representation which is denoted as Hseq ∈ Rn×h, and
we use the last hidden states of answer tokens as its representation. Next, we will inject
the dependency parsing information into Hseq to obtain the dependency representation
Hdep. Each word in a parsing tree has an ancestor node, and some words may have a child
node, which means each word in a parsing tree has at least one edge connecting to another
word, and such edge information can be used to incorporate with the dependency parsing
information. Similar to a graph neural network (GNN), we encode such information
as follows:

w
′
i =

k

∑
i=1

Mkwk
i (7)

wi = g(wi, w
′
i) (8)

where wk
i is the word representation of the k-th word in wi’s neighborhood words, Mk is

the transformation matrix of corresponding edge type connecting wi and wk. Then, the
function g updates the current word representation of wi using w

′
i . We repeat Equations (7)

and (8) for T turns to enable better message passing through word representations, where
T is a hyper-parameter.

After the injection, we can generate a set of new word representations called the
dependency representation Hdep ∈ Rn×h. We then fuse Hseq and Hdep together to form a

Entropy 2021, 23, 1449 7 of 14

new sequential representation Hword by concatenation. Using the word-level representation
Hword, we can obtain other structural representations of the input [D, Ans] according to its
alignment matrices:

Hchunk = σ(AT
chunk Hword) (9)

Hsent = σ(AT
sent Hchunk) (10)

Hdoc = σ(AT
doc Hsent) (11)

where Achunk ∈ Rn×h, Asent ∈ Rnum_c×h, Adoc ∈ Rnum_s×h are the chunk-level, sentence-
level and document-level alignment matrices, respectively. Each entry in an alignment
matrix A is either 1 or 0, which represents whether a column in the representation H
should be included in the current chunk/sentence/document or not. For example, an entry
Aij

chunk ∈ Achunk can indicate whether the j-th word in Hword should be included in the i-th

chunk (Aij
chunk = 1) or not (Aij

chunk = 0), where i and j are the row and the column the entry
located in.

3.2. Decoder

Following a typical auto-regressive setup, our model can compute the context vector
ct through an attention function with the current hidden states ht to generate a word at a
time. Specifically, we combine the last hidden states resulting from the encoder to form the
initial hidden states s0. Different from a vanilla attention-based auto-regressive decoder
described in Section 2.5, our decoder is equipped with a hierarchical attention function in
which the context vectors are generated in accordance with the coarse-to-fine fashion (from
document-level to word-level). Concretely, at a time-step t during the decoding phase, the
context vectors in various levels of granularity are generated as follows:

cdoc
t = attention(st−1, Hdoc) (12)

csent
t = attention([st−1, cdoc], Hsent) (13)

cchunk
t = attention([st−1, cdoc, csent], Hchunk) (14)

cword
t = attention([st−1, cdoc, csent, cword], Hword) (15)

where the st−1 is the hidden states resulting from the decoder at the time-step t − 1,
[st−1, cdoc] is the concatenation operation to combine st−1 and cdoc together, and the attention
function follows Equations (4)–(6). Then, we use the f use function to obtain the final con-
text vector ct at the time-step t using these four computed context vectors cdoc

t , csent
t , cchunk

t
and cword

t :
ct = f use(cdoc

t , csent
t , cchunk

t , cword
t) (16)

Finally, we generate the decoder hidden states st based on the embedding of the last
word yt−1, the context vector ct and the previous hidden states st−1, then the word yt at
the time-step t is generated based on st and the previous word yt−1:

st = f (yt−1, ct, st−1) (17)

yt = so f tmax(yt−1, st) (18)

3.3. The Context Switch Mechanism

Moreover, in order to increase the stability of the decoding process, we add the context
switch mechanism that enables sharing similar contexts through a set of words when
they are generated consecutively. Figure 2 represents the structure of the context switch
mechanism as well as the working process at the time-step t.

Entropy 2021, 23, 1449 8 of 14

1ts

1ty ty1ty 2ty 3ty my

1-ts

tc

context switch

Decoder

hierarchical
attention

1tc

switchp

tc

1tc

> threshold

< threshold

Figure 2. The structure of the context switch mechanism employed in our model.

For the implementation of this mechanism, an extra linear layer is included to produce
a probability pswitch as the indication of the selection between using the previous context
vector ct−1 and keeping the current one ct. The probability pswitch is computed by the
following equation:

pswitch = ψ(st, ct, ct−1) (19)

where the function ψ uses ct−1, ct and the current hidden states st from the decoder to
produce the probability. For pswitch ≥ α, the ct will be replaced by ct−1 in Equation (17);
otherwise, ct remains, where α is the value of threshold we predefined. In practice, α is set
to 0.5, as we think activating pswitch or not should be equiprobable.

3.4. Training Objective

Generally speaking, the training objective of a seq2seq model is to maximize the
probability of the target sequence Y = {y1, y2, . . . , ym} when given the source sequence
X = {w1, w2, . . . , wn}, as described in Equation (20):

P(Y|X) = P(y1, y2, . . . , ym|w1, w2, . . . , wn)

=
m

∏
t=1

P(yt|H, y1, y2, . . . , yt−1)
(20)

where H is the representation of the source sequence X and yt is conditioned on the
generated tokens before time-step t. To maximize the probability P(Y|X), we train our
model using negative log likelihood loss (NLLLoss) for the generation objective:

L(θ) = − 1
m

m−1

∑
t=0

logp(yt|H, y<t; θ) (21)

where θ represents the parameters of our model. We employ Adam [34] optimizer to
optimize the parameters with c.

Entropy 2021, 23, 1449 9 of 14

4. Experiments
4.1. Data Reparation

In this paper, we conduct experiments on HotpotQA [5], which is a multi-hop question
and answering dataset (https://hotpotqa.github.io (accessed on 15 August 2021)). The
terminology multi-hop means it requires a QA model to reason over multiple passages and
grab corresponding information to answer the questions in the HotpotQA dataset. For the
usage of the HotpotQA dataset in the QG task, the QG model will take an answer as well
as its related passages to generate a question. The original HotpotQA dataset consists of
〈passage, answer, question〉 tuples, and is split into two sets for training (90564 samples) and
testing (7405 samples), respectively. We extract the annotated supporting facts sentences
in passages rather than the whole passages as the input to our model. To obtain the
dependency trees and constituency trees (chunk-level information) of the documents
in train and test set, we employ the AllenNLP [35] dependency parser (https://demo.
allennlp.org/dependency-parsing (accessed on 10 September 2021)) and constituency
parser (https://demo.allennlp.org/constituency-parsing) (accessed on 10 September 2021).

4.2. Training and Inference Setup

The detailed hyper-parameters for training our model are selected as follows: (1) the
learning rate is 7.5× 10−4; (2) the weight decay rate is 0; (3) the batch size is 32; (4) the
dropout rate is 0.4; and (5) the maximum gradient norm is 5. We employ the global vectors
for word representation (GloVe) [36], where the dimension of word embedding is 300, both
the encoder hidden size and decoder hidden size are set to 768. Furthermore, the number
of turns T for injecting the dependency information are set to 3. During the inference phase,
we input the test set into the trained hierarchical encoding–decoding model while the size
of beam search is set to 5.

4.3. Evaluation
4.3.1. Evaluated Models

To analyze the performance of our proposed model and the quality of the generated
questions, we will compare the performance with baseline models. Six models are involved
for the comparisons, as described as follows:

• Our model-1: Our proposed hierarchical encoding-decoding QG model;
• Our model-2: The proposed QG model integrated with a larger dictionary that miti-

gates all unknown tokens;
• Semantic-Graph: A framework that contains semantic graphs and an encoder using

an attention-based gated graph neural network [28];
• Semantic-Graph∗: Semantic-Graph with the context switch mechanism;
• RNN: A vanilla RNN-based seq2seq model;
• GPT-2: A large transformer-based language model [37].

4.3.2. Automatic Evaluation

We use the following prevalent evaluation metrics to automatically assess the perfor-
mances of question generation models:

• BLEU-N: A method that measures the precision based on the n-gram overlap between
generated questions and references [13]. We compute BLEU-[1,2,3,4] in this experiment.

• ROUGE-L: ROUGE-L is a method that measures precision and recall on the longest
common subsequence (LCS) overlap between system outputs and references [38].

• METEOR: METEOR uses a set of stages (e.g., word stemming, synonyms, etc.) to
generate the mappings of unigrams between system outputs and references, and com-
pute the weighted harmonic mean of precision and recall based on the mappings [15].
Recall has a higher weight than precision.

Table 1 represents the metric scores of these QG models. Compared to the baselines, we
find that our proposed QG model with a larger dictionary (Our model-2) outperforms other

https://hotpotqa.github.io
https://demo.allennlp.org/dependency-parsing
https://demo.allennlp.org/dependency-parsing
https://demo.allennlp.org/constituency-parsing

Entropy 2021, 23, 1449 10 of 14

models according to ROUGE-L, the proposed model with or without the dictionary can
outperform the current state-of-the-art model Semantic-graph on ROUGE-L. In particular,
our model outperforms the large pre-trained language model GPT-2 on both ROUGE-L
and METEOR. We also find Semantic-Graph∗ has the highest METEOR and BLEU-1 score,
which clearly proves the effectiveness of our proposed context switch mechanism that
has been applied in the Semantic Graph model. However, the GPT-2 models have the best
performance on BLEU-[2,3,4].

Table 1. Results of different QG models on the HotpotQA testset, the evaluation metrics are ROUGE-
L, METEOR and BLEU-[1,2,3,4]. A score in bold indicates the model performs best according to
that metric.

Model ROUGE-L METEOR BLEU-1 BLEU-2 BLEU-3 BLEU-4

Our model-2 27.34 18.25 26.48 13.87 8.46 5.54
Our model-1 26.92 17.66 26.60 13.69 8.34 5.47
RNN 26.43 16.56 25.21 13.06 8.03 5.37
Semantic-Graph* 26.06 20.71 27.20 14.41 9.02 6.05
GPT-2 26.82 16.62 27.01 17.72 12.49 9.14
Semantic-Graph 25.74 20.32 26.55 13.94 8.57 5.56

4.3.3. Human Evaluation

Since the popular automatic metrics appear to not agree with each other, we addition-
ally examine the human evaluation as a means of further investigating the performances
of these QG models. We conduct the crowd-sourcing experiment on Amazon Mechanical
Turk (https://www.mturk.com/ accessed on 11 October 2021), and we ask human workers
to evaluate the performances of seven models, including the previous six QG models and
an extra model, Gold, for which the outputs consist of the reference questions.

For the judgment of a single generated question, a PAQ tuple 〈p, a, q〉 (p = paragraph,
a = answer, q = question) will be shown to a human rater, and the rater is asked to judge
the quality of the question according to four aspects: fluency, relevance, answerability,
and complexity. In our experiment, each human rater is assigned with 15 PAQ tuples,
and these questions are randomly selected from the outputs of the seven systems. We
employ a 7-point rating scale (0–6) for every aspect that can be construed as: very bad, bad,
fairly bad, indifferent, fairly good, good, and very good. We have involved 188 human
raters comprising a total of 2820 evaluated outputs, and on average, a model is expected to
have about 400 evaluated questions, which we believe is an appropriate sample size for
human evaluation.

The result of human evaluation is reported in Table 2, where N is the number of
rated system-generated questions, the overall score is computed by the arithmetic mean of
fluency, relevance, answerability, and complexity scores. Systems are ranked by the overall
score. We can observe that the model Gold has the best overall performance as expected,
while our model-2 can outperform all other models. Furthermore, the performances of our
model 2 with respect to the four separate aspects—of which fluency can even reach the
level of very good (5–6)—are better than the other five QG models, when other models are
only deemed to be good (4–5).

https://www.mturk.com/

Entropy 2021, 23, 1449 11 of 14

Table 2. Results of the human evaluation experiment, where the overall score is the mean of fluency,
relevance, answerability, and complexity, and N is the number of collected ratings. A score in bold
means a model besides Gold performs best according to that evaluation aspect.

Model N Overall Fluency Relevance Answerability Complexity

Gold 408 5.05 5.16 5.00 5.09 4.97

Our model-2 395 4.96 5.01 4.94 4.93 4.94
Our model-1 417 4.86 4.91 4.87 4.80 4.87
RNN 382 4.83 4.79 4.89 4.80 4.85
Semantic-Graph* 394 4.74 4.63 4.80 4.79 4.76
GPT-2 418 4.69 4.77 4.72 4.52 4.77
Semantic-Graph 406 4.62 4.64 4.68 4.57 4.58

4.3.4. Questions of Different Types

We split the questions into seven types: What, Which, Who, How, Where, When and
Other (questions without specific interrogative words), and analyze how the QG models prefer
to to generate questions of a certain type from these types. Table 3 shows the percentage of
question types in system-generated outputs, where reference represents the original data
set. We find that the types of questions generated by these QG models is mostly similar
to the reference questions. Furthermore, our models and the RNN model are prone to
generating What questions, while GPT-2 generates 10% less What questions than the dataset.
Among these models, RNN is the only model that generates no Where question.

Table 3. The proportion (%) of question types in the outputs from different models. Question types
are ordered by the results of reference.

Model What Which Who Other How Where When

Reference 40.8 23.0 15.9 10.1 4.1 4.0 2.2

Our model-2 55.2 16.6 16.1 8.4 0.6 0.3 3.0
Our model-1 49.6 23.5 13.8 9.4 1.0 0.9 2.1
RNN 49.7 29.7 11.1 7.8 0.4 0.0 1.5
Semantic-Graph* 37.7 21.3 17.0 14.7 4.1 4.0 1.4
GPT-2 30.2 26.1 11.1 26.4 2.2 2.4 1.8
Semantic-Graph 36.2 20.2 15.4 18.7 3.2 2.9 3.4

To take a closer look at the quality of question types, we investigate the overall scores
of human evaluation on different types of generated questions. According to the results of
Tables 1 and 2, ROUGE-L is the metric that correlates best with human scores. Thus, the
ROUGE-L scores of different question types are also computed. Tables 4 and 5 show the
ROUGE-L and human evaluation scores of systems on our test data divided by different
question types.

Table 4. ROUGE-L scores on question of different types. A score in bold means a model has the
highest ROUGE-L score on that question type.

Model What Which Who Other How Where When

Our model-2 26.57 29.86 26.73 28.32 30.23 25.49 27.76
Our model-1 26.50 27.15 25.96 29.29 29.16 25.86 29.38
RNN 25.92 26.98 24.90 30.06 20.19 - 26.34
Semantic-Graph* 26.05 25.80 25.40 25.67 29.93 26.25 31.16
GPT-2 24.15 27.03 23.50 30.60 27.26 23.92 29.16
Semantic-Graph 26.11 26.24 24.74 24.76 28.79 27.96 24.07

Entropy 2021, 23, 1449 12 of 14

Table 5. The overall human score on questions of different types. A score in bold means a model has
the highest human evaluation score on that question type.

Model What Which Who Other How Where When

Our model-2 4.97 4.80 4.94 5.27 5.63 - 4.82
Our model-1 4.92 4.76 4.85 4.60 5.67 5.00 5.15
RNN 4.81 4.95 4.68 4.67 6.00 - 5.50
Semantic-Graph* 4.76 4.62 4.86 4.88 4.47 4.84 3.94
GPT-2 4.95 4.61 4.36 4.59 5.61 5.28 4.04
Semantic-Graph 4.63 4.79 4.59 4.50 4.42 4.72 4.17

With respect to ROUGE-L scores shown in Table 4, although GPT-2 has the best quality
on Other, Semantic-Graph and Semantic-Graph* achieve the best quality on Where and
When. However, our proposed model with the dictionary (model-2) is able to generate
What, Which, Who, and How questions with the best quality among all models. According
to human evaluation, our model-2 outperforms the other question generation models on
What, Who and Other questions, especially on Other questions. It warrants noting that the
vanilla RNN model achieves the highest performance on Which, How and When questions.
For Where questions, our model-2 and RNN get no human score because no question of
this type is evaluated.

5. Discussion and Future Work

Although our model achieves a superior performance over other baseline models,
there is still room for improvement, as Table 5 indicates that our model unfortunately
performs worse than some other models on Which, How and When questions. Hence, how
to incorporate more information in contextual encoding and decoding will be the future
direction to be explored.

Besides, current QG models mainly focus on generating questions based on textual
input, but the usage of input in other formats (e.g., images, audios and videos) receives
less attention. For example, visual QG is a QG problem that takes images as the input,
and its applications are also useful for the educational purpose, including child education
and interactive lectures [39]. Our further attempt will involve combining our proposed
QG model with image understanding approaches [40], and we believe it can be used to
generate questions on visual arts for the purpose of helping children with their ability to
appreciate art.

6. Conclusions

In this paper, we propose a novel question generation model incorporating the hierar-
chical encoding–decoding structure in order to inject the structural information of input
documents, and a context switch mechanism for the purpose of stabilizing the decoding
and making the generation process more consistent. The automatic metric results in Table 1
show our model achieves the best performance against baseline models on ROUGE-L in
automatic metrics evaluation, although our model does not outperform baseline models
on the other baseline models. Nonetheless, the results in Table 1 prove that our proposed
context switch mechanism improves the model’s performance on automatic metrics. Fur-
thermore, the human evaluation results also show our model outperforms all baseline
models on four criteria we used. The experimental results of both automatic evaluation and
human evaluation support the effectiveness of our proposed approach on the multi-hop
QG task. In addition, we also conduct extensive studies analyzing the model’s performance
on different question types according to both automatic evaluation metrics and human
evaluation scores. Future work will include incorporating our method into pre-trained
language models.

The data presented in this study are available in the Supplementary Materials.

Entropy 2021, 23, 1449 13 of 14

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
e23111449/s1.

Author Contributions: Formal analysis, T.J.; methodology, C.L.; resources, T.J.; software, C.L.;
supervision, Z.C.; writing—original draft, T.J. and C.L.; writing—review and editing, Z.C.; data
curation, P.C. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the Science and Technology Project of Jiangsu Province, China
(BK20200978), by the Humanity and Social Science Youth Foundation of the Ministry of Education of
China (19YJCZH002), by the Natural University General Project of Jiangsu Province (20KJB580014),
by the Nantong Basic Science Research Program (JC2020171), and by Science Foundation Ireland
through the SFI Centre for Research Training in Machine Learning (18/CRT/6183).

Acknowledgments: We would like to thank the anonymous crowd-sourcing raters for their work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Das, B.; Majumder, M.; Phadikar, S.; Sekh, A.A. Automatic question generation and answer assessment: A survey. Res. Pract.

Technol. Enhanc. Learn. 2021, 16, 1–15. [CrossRef]
2. Graesser, A.C.; Chipman, P.; Haynes, B.C.; Olney, A. AutoTutor: An intelligent tutoring system with mixed-initiative dialogue.

IEEE Trans. Educ. 2005, 48, 612–618. [CrossRef]
3. Kurdi, G.; Leo, J.; Parsia, B.; Sattler, U.; Al-Emari, S. A systematic review of automatic question generation for educational

purposes. Int. J. Artif. Intell. Educ. 2020, 30, 121–204. [CrossRef]
4. Room, C. Question generation. Algorithms 2020, 12, 43.
5. Yang, Z.; Qi, P.; Zhang, S.; Bengio, Y.; Cohen, W.; Salakhutdinov, R.; Manning, C.D. HotpotQA: A Dataset for Diverse,

Explainable Multi-hop Question Answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, Brussels, Belgium, 31 October–4 November 2018; pp. 2369–2380. [CrossRef]

6. Heilman, M.; Smith, N.A. Question Generation via Overgenerating Transformations and Ranking. Available online: https:
//apps.dtic.mil/sti/citations/ADA531042 (accessed on 1 January 2009).

7. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to Sequence Learning with Neural Networks. In Advances in Neural Information
Processing Systems; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K.Q., Eds.; Curran Associates, Inc.:
Red Hook, NY, USA, 2014.

8. Du, X.; Shao, J.; Cardie, C. Learning to Ask: Neural Question Generation for Reading Comprehension. In Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics, Vancouver, BC, Canada, 30 July–4 August 2017.

9. Zhang, S.; Bansal, M. Addressing Semantic Drift in Question Generation for Semi-Supervised Question Answering. In Proceed-
ings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019.

10. Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Manning, C.D.; Ng, A.; Potts, C. Recursive Deep Models for Semantic Composition-
ality Over a Sentiment Treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,
Seattle, WA, USA, 18–21 October 2013

11. Tai, K.S.; Socher, R.; Manning, C.D. Improved Semantic Representations From Tree-Structured Long Short-Term Memory
Networks. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing, Beijing, China, 26–31 July 2015.

12. Yang, Z.; Yang, D.; Dyer, C.; He, X.; Smola, A.; Hovy, E. Hierarchical Attention Networks for Document Classification.
In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, San Diego, CA, USA, 12–17 June 2016.

13. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.J. Bleu: A Method for Automatic Evaluation of Machine Translation. In Proceedings
of the 40th Annual Meeting of the Association for Computational Linguistics, Philadelphia, PA, USA, 7–12 July 2002.

14. Lin, C.Y.; Hovy, E. Automatic evaluation of summaries using n-gram co-occurrence statistics. In Proceedings of the 2003
Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology,
Edmonton, AB, Canada, 27 May–1 June 2003.

15. Banerjee, S.; Lavie, A. METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judg-
ments. In Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or
Summarization, Ann Arbor, MI, USA, 9–10 April 2005.

16. Reiter, E. A Structured Review of the Validity of BLEU. Comput. Linguist. 2018, 44, 393–401. [CrossRef]
17. Pan, L.; Lei, W.; Chua, T.; Kan, M. Recent Advances in Neural Question Generation. arXiv 2019, arXiv:1905.08949.
18. Sun, X.; Liu, J.; Lyu, Y.; He, W.; Ma, Y.; Wang, S. Answer-focused and Position-aware Neural Question Generation. In Proceedings

of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 Ocotber–4 November 2018.
19. See, A.; Liu, P.J.; Manning, C.D. Get To The Point: Summarization with Pointer-Generator Networks. In Proceedings of the 55th

Annual Meeting of the Association for Computational Linguistics, Vancouver, BC, Canada, 30 July–4 August 2017.

https://www.mdpi.com/article/10.3390/e23111449/s1
https://www.mdpi.com/article/10.3390/e23111449/s1
http://doi.org/10.1186/s41039-021-00151-1
http://dx.doi.org/10.1109/TE.2005.856149
http://dx.doi.org/10.1007/s40593-019-00186-y
http://dx.doi.org/10.18653/v1/D18-1259
https://apps.dtic.mil/sti/citations/ADA531042
https://apps.dtic.mil/sti/citations/ADA531042
http://dx.doi.org/10.1162/coli_a_00322

Entropy 2021, 23, 1449 14 of 14

20. Ma, X.; Zhu, Q.; Zhou, Y.; Li, X.; Wu, D. Improving Question Generation with Sentence-level Semantic Matching and Answer
Position Inferring. arXiv 2020, arXiv:1912.00879.

21. Chen, Y.; Wu, L.; Zaki, M.J. Reinforcement Learning Based Graph-to-Sequence Model for Natural Question Generation. In
Proceedings of the 2019 International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

22. Dhole, K.; Manning, C.D. Syn-QG: Syntactic and Shallow Semantic Rules for Question Generation. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, Online Conference, 5–10 July 2020.

23. Rajpurkar, P.; Zhang, J.; Lopyrev, K.; Liang, P. SQuAD: 100,000+ Questions for Machine Comprehension of Text. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–5 November 2016,

24. Zhou, W.; Zhang, M.; Wu, Y. Question-type Driven Question Generation. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), Hong Kong, China, 3–7 November 2019.

25. Tuan, L.A.; Shah, D.; Barzilay, R. Capturing greater context for question generation. In Proceedings of the AAAI Conference on
Artificial Intelligence, New York, NY, USA, 7–12 February 2020.

26. Duan, N.; Tang, D.; Chen, P.; Zhou, M. Question Generation for Question Answering. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 7–11 September 2017.

27. Gupta, D.; Chauhan, H.; Akella, R.T.; Ekbal, A.; Bhattacharyya, P. Reinforced Multi-task Approach for Multi-hop Ques-
tion Generation. In Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Spain,
13–18 September 2020.

28. Pan, L.; Xie, Y.; Feng, Y.; Chua, T.S.; Kan, M.Y. Semantic Graphs for Generating Deep Questions. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020.

29. Xie, Y.; Pan, L.; Wang, D.; Kan, M.Y.; Feng, Y. Exploring Question-Specific Rewards for Generating Deep Questions. In Proceed-
ings of the 28th International Conference on Computational Linguistics, Barcelona, Spain, 13–18 September 2020.

30. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. In Proceedings of the
3rd International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

31. Williams, R.J.; Zipser, D. A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1989,
1, 270–280. [CrossRef]

32. Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations
using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014.

33. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. In
Proceedings of the NIPS 2014 Workshop on Deep Learning, Montreal, QC, Canada, 12 December 2014.

34. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on
Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

35. Gardner, M.; Grus, J.; Neumann, M.; Tafjord, O.; Dasigi, P.; Liu, N.F.; Peters, M.; Schmitz, M.; Zettlemoyer, L. AllenNLP: A Deep
Semantic Natural Language Processing Platform. In Proceedings of the Workshop for NLP Open Source Software (NLP-OSS),
Melbourne, Australia, 15–20 July 2018.

36. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014.

37. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language Models Are Unsupervised Multitask Learn-
ers. Available online: https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_
multitask_learners.pdf (accessed on 11 October 2021).

38. Lin, C.Y. ROUGE: A Package for Automatic Evaluation of Summaries. In Text Summarization Branches Out; Association for
Computational Linguistics: Barcelona, Spain, 2004; pp. 74–81.

39. Patil, C.; Patwardhan, M. Visual Question Generation: The State of the Art. ACM Comput. Surv. 2020, 53, 1–22. [CrossRef]
40. Castellano, G.; Vessio, G. Deep learning approaches to pattern extraction and recognition in paintings and drawings: An

overview. Neural Comput. Appl. 2021, 33, 12263–12282. [CrossRef]

http://dx.doi.org/10.1162/neco.1989.1.2.270
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://dx.doi.org/10.1145/3383465
http://dx.doi.org/10.1007/s00521-021-05893-z

	Introduction
	Related Work and Background
	Question Generation
	Multi-Hop Question Generation
	Evaluation of Question Generation
	Seq2seq Generation Model and Attention-Based Decoder
	Attention-Based Decoder

	Model Architecture
	Encoder
	Decoder
	The Context Switch Mechanism
	Training Objective

	Experiments
	Data Reparation
	Training and Inference Setup
	Evaluation
	Evaluated Models
	Automatic Evaluation
	Human Evaluation
	Questions of Different Types

	Discussion and Future Work
	Conclusions
	References

