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Abstract: This paper investigates resource optimization schemes in a marine communication sce-
nario based on non-orthogonal multiple access (NOMA). According to the offshore environment
of the South China Sea, we first establish a Longley–Rice-based channel model. Then, the weighted
achievable rate (WAR) is considered as the optimization objective to weigh the information rate and
user fairness effectively. Our work introduces an improved joint power and user allocation scheme
(RBPUA) based on a single resource block. Taking RBPUA as a basic module, we propose three joint
multi-subchannel power and marine user allocation algorithms. The gradient descent algorithm
(GRAD) is used as the reference standard for WAR optimization. The multi-choice knapsack algo-
rithm combined with dynamic programming (MCKP-DP) obtains a WAR optimization result almost
equal to that of GRAD. These two NOMA-based solutions are able to improve WAR performance by
7.47% compared with OMA. Due to the high computational complexity of the MCKP-DP, we further
propose a DP-based fully polynomial-time approximation algorithm (DP-FPTA). The simulation
results show that DP-FPTA can reduce the complexity by 84.3% while achieving an approximate
optimized performance of 99.55%. This advantage of realizing the trade-off between performance
optimization and complexity meets the requirements of practical low-latency systems.

Keywords: offshore communications; non-orthogonal multiple access; power allocation; maritime
user allocation; joint resource optimization

1. Introduction

The rapid development of the blue economy has created the challenge of constructing
intelligent ports and terminals. At the same time, this has led to a significant increase
in demand for maritime digital services from offshore users. Compared with traditional
satellite communications, shore-based base stations (BS) can provide low-cost, high-speed
mobile communications services. Recently, several references have applied fifth-generation
(5G) and even sixth-generation (6G) emerging technologies, such as massive multiple-input
multiple-output (MIMO) [1], internet of vehicles [2], and mobile edge computing [3] to
maritime communications. Considering the limited geographic availability of coastal BS,
this paper investigates resource allocation schemes based on non-orthogonal multiple
access (NOMA) in 5G. Our contribution is to provide high data rate services for more
maritime users (ships and islands) in offshore areas with limited-spectrum resources.

According to previous research, the maritime communication environment is char-
acterized by instability, sparseness, and the evaporation ducting effect [1]. These features
make the marine channel model different from the terrestrial channel model. In particular,
due to the scarcity of obstructions at sea, the shadow effect hardly affects signal trans-
mission loss. Furthermore, we can neglect the evaporation ducting phenomenon, since
offshore communication takes place within the line of sight (LoS) [4]. The fading of the
offshore channel can be divided into large-scale fading and small-scale fading [5]. First, it is
essential to establish an appropriate large-scale fading model. The radio communications
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sector of the international telecommunication union (ITU-R) model fails to consider sea
surface reflection and other complex marine environmental factors [6]. Previous studies [7]
have modified the classic Okumura–Hata model by considering the sparse distribution of
scattering in the context of vast ocean areas. The Longley–Rice model (also known as ITM)
includes marine environment and climate factors and the deployment of antennas [8,9].
Hence, ITM is able to achieve a more accurate simulation conclusion than the Okumura–
Hata model [8]. In addition, it is also necessary for the maritime channel model to consider
small-scale fading caused by sea surface fluctuations and atmospheric scattering [10,11].
The research of [12] shows that the probability distribution function of small-scale fading
is closer to a Rice distribution than a Nakagami distribution or Rayleigh distribution. In
this paper, we establish a Longley–Rice-based offshore channel model that includes Rice
small-scale fading.

Joint power and subchannel allocation have always been the focus of resource op-
timization in NOMA. Some works also refer to subchannel allocation as the allocation
scheme for multiplexed users on each resource block (RB). Motivated by recent research,
our work takes the weighted achievable rate (WAR) as an objective function to weigh the
WAR performance and user fairness [13]. We summarize NOMA-based resource optimiza-
tion schemes into the following two cases according to the power constraints (user power
constraint and system power constraint).

Case 1: User power constraint is generally applied to the power control for each user
in uplink communications [14,15]. However, some papers still set user power constraints
for downlink communication scenarios [16,17]. The results of [17] prove that the WAR
optimization problem with user constraints is strongly non-deterministic polynomial hard
(NP-hard). Therefore, researchers developed a Lagrangian dual algorithm to achieve an
approximate optimal result. However, the computational difficulty cannot be ignored in a
low-latency actual system.

Case 2: The total system power constraint represents the power budget provided by
the base station to the communication system. The authors of [18] prove that the equal-
weighted achievable rate optimization is solvable by polynomial time. Nevertheless, this
does not mean that the WAR optimization problem is also solvable. Several papers have
addressed this complex WAR maximization problem. The authors of [17] propose a two-
stage dynamic programming scheme that can achieve an optimal WAR at the cost of higher
computational complexity. Aiming at a series of non-convex combination optimization
problems, the authors of [19] develop a joint user and power allocation scheme based
on convex programming differences. Moreover, the authors of [20] propose a bilateral
matching scheme derived from game theory to solve the problem of joint subchannel and
power allocation. This method is extended to optimize the user and sub-channel pairing
problems occurring in [21,22]. The work of [23] exploits dual theory and the sub-gradient
method to maximize the data rate under the NOMA-D2D background. In NOMA-based
cognitive radio (CR) networks [24,25], researchers have put forward some effective resource
optimization plans to maximize the achievable throughput in the network. The authors
of [26] developed a monotonic optimization scheme to maximize the weighted system
throughput. Due to the high complexity of this program, it can only be regarded as an opti-
mization reference index. However, the solutions provided in [27] reduce the complexity
by discretizing the power value to achieve the approximate optimal performance.

According to the summarization of our reference survey, the research reviewed barely
considers the polynomial-time approximation (PTA) algorithm. Nevertheless, this kind
of approximate optimization scheme can adjust the calculative complexity according to
the optimization requirements. Inspired by the above observations, we propose the use
of a fully polynomial-time approximation (FPTA) algorithm for WAR optimization in the
downlink scenario of a NOMA-based offshore communication system. The contributions
of this work are as follows:

1. This work applies the NOMA-based resource optimization schemes to offshore com-
munication in the South China Sea, improving the spectrum efficiency and data rate of
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the system. We propose an appropriate channel model based on the Longley–Rice model,
including environmental factors and antenna deployment. Our offshore channel can be
widely used in various regions of the world just by modifying its parameters.

2. We first analyze the resource optimization strategy using a single resource block.
Aiming at the problem of single-resource-block joint power and user allocation, we
implement an improved scheme (RBPUA) with higher computational efficiency.

3. Taking the single-resource-block optimization as the basic module, we propose an
efficient joint multi-resource-block optimization scheme. This scheme combines low-
complexity RBPUA with the gradient descent algorithm (GRAD). The simulation
results show that GRAD with an accuracy of 0.0001 can achieve an optimal WAR
performance. Moreover, the WAR of the NOMA maritime system is significantly
improved compared with orthogonal multiple access (OMA).

4. An innovative solution is introduced for multi-resource-block NOMA maritime com-
munication, which is derived from the multiple-choice knapsack algorithm and
dynamic programming (MCKP-DP) [28]. The simulation consequence proves that
the MCKP-DP scheme is able to obtain an optimal WAR nearly equal to that of the
GRAD algorithm.

5. Inspired by the MCKP, we further develop an FPTA optimization algorithm based on
dynamic programming (DP-FPTA). The scheme can perfectly balance the WAR perfor-
mance optimization and computational complexity by adjusting the error parameter ε.
Therefore, DP-FPTA is more suitable for practical NOMA maritime communications
with strict latency requirements.

The rest of this paper is organized as follows. In Section 2, we first introduce the
improved maritime channel model and system parameters, followed by the construction
of a NOMA-based downlink offshore communication system. Section 3 formulates the
resource optimization problem with WAR as the objective function. In Section 4, we
propose an improved joint optimization scheme on a resource block RBPUA with high
computational efficiency. Taking RBPUA as the basic module, Section 6 develops three
joint multi-subchannel power and marine user allocation algorithms. Section 7 presents
the simulation results. The WAR optimization performance and the calculating complexity
of our proposed schemes are highlighted for comparison. Lastly, we discuss and conclude
our work in Section 8.

2. System Model and Parameters Analysis

This section discusses the maritime channel model and network setting for the down-
link NOMA offshore communication system. At the end of this chapter, we consider the
objective function of the resource optimization problem.

With reference to the offshore communication environment of the South China Sea,
this paper constructs a Longley–Rice-based channel model that obeys a Rice distribution.
The reference value for the Longley–Rice transmission loss is expressed as follows:

Lcr(dB) = Lb f + Acr dB, (1)

where the formula for fundamental transmission loss Lbf in free space is:

Lb f (dB)= 32.45 + 20 log10 f + 20 log10 d dB, (2)

where the distance d is in km and the radio frequency f is in MHz. It is worth noting that
the Longley–Rice model is suitable for signal propagation with carrier frequencies between
20 MHz and 20 GHz.

The reference attenuation Acr relative to free space depends on the communication distance:

Acr =


max(0, Ae + k1d + k2 log10 d), (dLoSmin)

Ad + mdd, (dLoS ≤ d ≤ dx)
As + msd, (dx ≤ d)

dB. (3)
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We conclude from Equation (3) that the Longley–Rice transmission loss model is
divided into three cases according to the size of the communication range: the LoS model
(dLoSmin), the diffraction model (dLoS ≤ d ≤ dx), and the scattering model (dx ≤ d) [8].
In Equation (3), dx indicates the boundary point where the diffraction loss and the scattering
loss are equal. Ae, Ad, and As (unit: dB) represent the propagation loss of LoS, diffraction,
and scattering in free space, respectively. Moreover, k1 and k2 represent the propagation
loss coefficients. md and ms are the diffraction and scattering loss coefficients, respectively.
Due to the limited coverage of a 5G BS, our communication range between coastal BS and
ships is within the horizon. Therefore, our offshore channel needs to only consider the LoS
model. It is worth noting that the applicable transmission range of the Longley–Rice model
specifies a lower bound dmin (generally set to 1 km). Enlightened by the guidebook [29],
our channel model can be regarded as the fundamental transmission loss in free space
(Equation (2)) within 1 km.

The calculative process of the reference attenuation Acr is very complicated. In that
case, we have to consider the following essential parameters: climate factor (1–7), terrain
irregularity parameter ∆h (Table 1), the effective height of the transmitter/receiver antennas
HT/HR, the system deployment parameters (very careful, careful, random), the conductivity
and permittivity of the seawater (Table 2), and the surface refractivity (Table 3). The mature
Longley–Rice model provides seven climate backgrounds: (1) equatorial; (2) continental
subtropical; (3) maritime tropical; (4) desert; (5) continental temperate; (6) maritime temperate
(over land); and (7) maritime temperate (over sea). These seven kinds of climates cover the
communication background of the global offshore ports, meaning that our model is the
most widely used. The irregular terrain parameter ∆h indicates the degree of sea wave
undulation. Table 1 presents the parameter values given by the Longley–Rice model for
different types of irregular terrain. In addition, the system deployment parameter reflects
the qualitative description of the site selection scenario for each terminal, which will impact
the signal strength around the terminal and the effective height of the antenna. According
to the simulated geographic environment of the South China Sea, we will specifically discuss
the assignment of the above parameters in Section 7. For the detailed calculation process of
their participation in Acr, please refer to [8] and [29].

Table 1. Reference value for the terrain irregularity parameter.

Irregular Terrain ∆h (m)

Flat (or smooth water) 0
Plains 30
Hills 90

Mountains 200
Rugged mountains 500

Table 2. Suggested values for the electrical ground constants.

Medium Relative Permittivity (F/m) Conductivity (S/m)

Average ground 15 0.005
Poor ground 4 0.001
Good ground 25 0.020
Fresh water 81 0.010
Sea water 81 5.0

For most purposes, use the constants for an average ground.

As shown in Figure 1, a downlink NOMA marine system is composed of a shore-based
base station in the offshore area of the South China Sea. We use T , {1, 2, . . . , T} to describe
the index set of maritime users. This maritime system divides the entire bandwidth B into
S subchannels, where each bandwidth is BS. This paper refers to a subchannel as a resource
block. We adopt S , {1, 2, . . . , S} to represent the set of these resource blocks; for each
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resource block, s ∈ S satisfies ∑
s∈S

BS = B. In our maritime system, the resource blocks are

of the orthogonal frequency division to ensure that they will not interfere with each other.

Table 3. Suggested values of surface refractivity for different climates.

Climate Surface Refractivity (N-Units)

Equatorial 360
Continental subtropical 320

Maritime subtropical 370
Desert 280

Continental temperate 301
Maritime temperate (over land) 320
Maritime temperate (over sea) 350
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Suppose that Ps
t represents the transmitting power from the coastal BS to a maritime

user t ∈ T on resource block s. If Ps
t > 0, this means that the maritime user t obtains power

from resource block s. Therefore, we determine that user t is valid on this resource block.
In contrast, Ps

t = 0 indicates an offshore user that does not occupy resource block s; we
define this as an invalid user. On resource block s, let Gs

t denote the channel gain from BS
to maritime user t and σs

t represent the noise power. To facilitate subsequent simplification,
we define a normalized channel noise parameter: σ̃s

t , σs
t

Gs
t
. In this manner, we reduce

the number of variables affecting the optimization objective function. Let P , (Ps
t )s∈S,t∈T

indicate the matrix of the transmitting powers provided by BS for each maritime user.
Moreover, Ps , (Ps

t )t∈T denotes the vector of powers allocated to each maritime user on
resource block s.

Successive interference cancellation (SIC) technology is applied in NOMA systems
to effectively eliminate signal interference among users. With the increase in the number
of multiplexed users, the SIC decoding process becomes very complicated [7]. Therefore,
the upper limit of users carried on each resource block is defined as A. We use As ,
{t ∈ T, Ps

t > 0} to denote the set of valid users on resource block s. Then, the above
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restraint condition can be summarized as |As| ≤ A, where |·| represents the cardinality
of a limited set.

Referring to the SIC decoding principle described in [30,31], we denote the SIC decod-
ing order of T maritime users as βs: {1, 2,..., T}. The index of the mth decoded maritime
user is βs(m) on resource block s, and the inverse function βs

−1(t) indicates the decoding
sequence of user t. The optimal decoding sequence is determined as Equation (4) according
to σ̃s

t from highest to lowest:

σ̃s
βs(1) ≥ σ̃s

βs(2) ≥ · · · ≥ σ̃s
βs(T−1) ≥ σ̃s

βs(T). (4)

The Shannon Equation (5) enables us to solve the achievable rate of maritime user t
on resource block s:

Cs
t (Ps) = BS log2(1 + γ) bit/s, (5)

γ =
Gs

t Ps
t

∑T
m=βs−1(t)+1

Gs
t Ps

βs(m)
+σs

t
=

Ps
t

∑T
m=βs−1(t)+1

Ps
βs(m)

+
σs

t
Gs

t

=
Ps

t
∑T

m=βs−1(t)+1
Ps

βs(m)
+σ̃s

t
. (6)

3. Problem Formulation

We use α = {α1, α2,..., αt} to represent the sequence set of T positive weights. Further-
more, we introduce a weighting factor for each maritime user t. Then, we analyze the
property of the objective function according to the weight value. By introducing the weight
value, we can solve the performance optimization and user fairness based on multiple resource
blocks [13]. The issue W aims at maximizing the WAR of the NOMA maritime system:

W = max ∑
t∈T

αt ∑
s∈S

Cs
t (Ps). (7)

w1 : ∑
t∈T

Ps
t ≤ Ps

max; (8)

w2 : ∑
t∈T

∑
s∈S

Ps
t ≤ Pmax; (9)

w3 : |As| ≤ A; (10)

w4 : Ps
t ≥ 0. (11)

It is noteworthy that Condition w1 restricts the upper power limit of each resource
block. In Condition w2, Pmax represents the upper bound of the total power provided by
coastal BS. Condition w3 reflects the finite multiplexed maritime users carried by each
resource block: |As| ≤ A. Additionally, Constraint w4 ensures that the offshore user
obtains a non-negative allocated power.

Problem W can be solved by polynomial decomposition to be equivalent to W*:

W∗ = max ∑
s∈S

T

∑
n=1

ϕs
n( p̃s

n) + C. (12)

w1∗ : p̃s
1 ≤ Ps

max; (13)

w2∗ : ∑
s∈S

p̃s
1 ≤ Pmax; (14)

w3∗ : |As∗| ≤ A; (15)

w4∗ : p̃s
n ≥ p̃s

n+1, n ∈ {1, . . . , T}; (16)

w5∗ : p̃s
T+1 = 0. (17)

where C refers to a constant term formula separated from W:C = ∑
s∈S

αβs(T)log2(
1

σ̃s
βs(T)

).

In the following discussion, we leave the constant C aside and investigate the influence
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of function ϕs
n on the optimization results. The modification problem W* displays a de-

tachable target function in dimensions n ∈ {1, 2, . . . , T} and s ∈ {1, 2, . . . , S}, respectively.
In addition, function ϕs

n( p̃s
n) depends on the variable of p̃s

n only to simplify the optimiza-
tion workload.

p̃s
n =


T
∑

m=n
Ps

βs(m)
, n ∈ {1, . . . , T}

0, n ≥ T + 1
, (18)

ϕs
n( p̃s

n) =


log2(( p̃s

1 + σ̃s
βs(1)

)αβs(1))
BS , n = 1

log2(

(
( p̃s

n+σ̃s
βs(n)

)
αβs(n)

( p̃s
n+σ̃s

βs(n−1))
αβs(n−1)

)
)

BS

, n > 1
. (19)

A detailed description of the equivalent transformation process from Equation (7) to
Equation (12) is presented in Appendix A.

4. Single-Subchannel Resource Optimization

This section investigates the resource allocation problem on resource block s ∈ S with
the upper limit of power budget ps. As a fundamental module for multi-resource-block joint
resource allocation solutions, our improved method contributes to designing more efficient
optimization algorithms. The following equation can describe the single-resource-block
optimization issue:

Ws
RB : Ws(ps) = max

T

∑
n=1

ϕs
n( p̃s

n) + Cs. (20)

w1∗, w4∗, w5∗ : 0 ≤ p̃s
T ≤ p̃s

T−1 ≤ . . . ≤ p̃s
1 ≤ Ps

max; (21)

w3∗ : |As∗| ≤ A. (22)

On a single resource block, the constant term of the objective function is

Cs = log2(
1

σ̃s
βs(T)

)
αβs(T)

. (23)

5. Properties Analysis of the Functions ϕs
m

For m > n, we define a set of continuous variables p̃s
n = p̃s

n+1 = · · · = p̃s
m as p̃ ∈ [0, ps].

An auxiliary function is proposed to assist us in analyzing ϕs
m:

ϕs
n( p̃) ,

m

∑
l=n

ϕs
l p̃ =


log2(( p̃s

1 + σ̃s
βs(1)

)αβs(1))
BS , n = 1

log2((
( p̃s

n+σ̃s
βs(n)

)
αβs(n)

( p̃s
n+σ̃s

βs(n−1))
αβs(n−1) ))

BS

, n > 1
. (24)

Assuming that neither user n nor user (m − 1) occupies resource block s, these invalid
users cannot allocate power from resource block s: p̃s

n = p̃s
n+1 = · · · = p̃s

m. Therefore,
function ϕs

n,m can supersede the value of ∑m
l=n ϕs

l . Suppose that the upper limit for the
number of valid users satisfies Condition w3*. In that case, each resource block can be
allocated to at most A maritime users for multiplexing. Therefore, evaluating the calculative
complexity of the target function in Ws

RB requires the execution of O(A) operations.
Through the above simplification, the original optimization objective is transferred to

the maximization of function ϕs
n,m with constraint conditions. We solve the extreme points

and inflection points of the function by analyzing the first and second derivatives of ϕs
n,m.

Suppose that s ∈ S, m ∈ {1, 2, . . . , T}, and m > n:

• If n = 1 or the weight value satisfies αβs(m) ≥ αβs(n−1), ϕs
n,m is monotonically increasing

with convex in the interval [0, ∞);
• If both the inequation of αβs(m) < αβs(n−1) and n > 1 are satisfied, ϕs

n,m shows a single
peak. In this case, C1 refers to the extreme point. Function ϕs

n,m increases in interval
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(
−σ̃βs(n−1), C1

]
but decreases in interval [C1,+∞). Let C2 denote the inflection point.

ϕs
n,m is convex on

(
−σ̃βs(n−1), C2

]
and concave on [C2,+∞), where C1 ≤ C2:

C1 =
αβs(n−1)σ̃βs(m) − αβs(m)σ̃βs(n−1)

αβs(m) − αβs(n−1)
, (25)

C2 =

√
αβs(n−1)σ̃βs(m) −

√
αβs(m)σ̃βs(n−1)

√
αβs(m) −

√
αβs(n−1)

. (26)

The pseudo-code provided in Algorithm 1 expresses the process of calculating argmaxϕs
n,m( p̃),

aiming to find the corresponding solution p̃ ∈ [0, ps] when function ϕs
n,m obtains the op-

timal value. The complexity of Algorithm 1 is O(1), since the calculation involves only a
simple fixed number of fundamental operations. The works in this subsection facilitate the
subsequent optimization for power and user allocation.

Algorithm 1. Compute argmaxϕs
n,m( p̃), p̃ ∈ [0, ps]

1: Input: n, m, α, T, BS, Gs
t (t ∈ T), σs

t (t ∈ T), ps

2: Function argmaxϕ

3: x ← βs(m)
4: y← βs(n− 1)
5: If n = 1 or αβs(m) ≥ αβs(n−1) then
6: Return ps

7: Else
8: Return max

{
0, min

{
αy σ̃x−αx σ̃y

αx−αy
, ps
}}

9: End if
10: End Function

5.1. Single-Resource-Block Power Allocation

First, we optimize the power allocation on a single resource block. When the maritime
user allocation As∗ on the resource block s is fixed, the optimizing problem is organized
as follows:

Ws
RBPA(As∗, ps) = max

T

∑
m=1

ϕs
m( p̃s

m) + Cs. (27)

w1∗, w4∗ : 0 ≤ p̃s
T ≤ p̃s

T−1 ≤ . . . ≤ p̃s
1 ≤ Ps. (28)

The maritime user t /∈ As∗ cannot obtain the allocated power without reusing the
resource block s. Therefore, we exclude these invalid offshore users while calculating
problem Ws

RBPA. The valid offshore users can be expressed as ms ∈ {1s, 2s, · · · |As∗|s},
where m represents the SIC decoding order. For example, As∗ = {2, 5, 7, 9} indicates that
there are four valid offshore users occupying resource block s: 1s = 2, 2s = 5, 3s = 7, and
4s = 9. To facilitate the statistical analysis, we add an index 0s = 0. According to the
definition, for m ≥ 1, we can conclude that p̃1 = p̃2 > p̃3 = p̃4 = p̃5 > p̃6 = p̃7 = p̃8 = p̃9.
This equation also explains p̃(m−1)s+1 = · · · = p̃ms . Therefore, we only need to consider
effective users when calculating Ws

RBPA. We can further simplify the optimization objective
to Ws

RBPA∗:

Ws
RBPA∗ = max

|As∗|

∑
m=1

ϕs
(m−1)s+1,ms

(
p̃s

ms

)
+ Ds, Ds = ϕs

|As∗|s+1,T(0) + Cs. (29)

For 1 ≤ n ≤ m ≤ T, we can obtain ϕs
n,m , ϕs

(n−1)s+1,ms
(As∗). Then, we derive

argmaxϕs
n,m , argmaxϕs

(n−1)s+1,ms
(As∗). Equation (29) can be transformed into the follow-

ing formula:
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Ws
RBPA∗ = max

|As∗|

∑
m=1

ϕs
m,m
(

As∗, p̃s
ms

)
+ Ds. (30)

w1∗, w4∗, w5∗ : 0 ≤ p̃s
T ≤ p̃s

T−1 ≤ . . . ≤ p̃s
1 ≤ Ps. (31)

Algorithm 2 describes the power allocation algorithm on a single resource block
(RBPA). In the subsequent multi-resource-block resource optimization, it is necessary to
calculate the optimal power allocation on each resource block with various power budget
values Ps. As the RBPA program is repeatedly executed, the computational complexity
will gradually increase. In lines 3–16 of Algorithm 2, we introduce Function 1 to calculate
Ws

RBPA ∗ (As∗, ps). The results p̃s
1s

, p̃s
2s

, . . . , p̃s
|As∗|s are stored in a lookup table. As shown in

line 19, the final return values are limited by the power budget, since the optimized results
have to meet the requirements of the constraint Ps ≤ Pmax.

Algorithm 2. Single-resource-block power allocation scheme (RBPA)

1: Input : α, T, BS, Gs
t (t ∈ T), σs

t (t ∈ T), As∗, Psmax
2: Global variable : p̃s

1s
, p̃s

2s
. . . , p̃s

|As∗|s
3: Function 1 α, T, BS, Gs

t (t ∈ T), σs
t (t ∈ T), As∗, Ps

4: For n = 1 to |As∗| do
5: #Calculate the optimum value of ϕs

m,m in (30)
6: p̃∗ ← argmaxϕ(n, n, α, T, BS, Gs

t (t ∈ T), σs
t (t ∈ T), As∗, ps)

7: #Modify p̃∗ if this allocation dissatisfies condition w4∗
8: n← m− 1
9: While p̃s

ns
< p̃∗ and n ≥ 1 do

10: p̃∗ ← argmaxϕ(n, m, α, T, BS, Gs
t (t ∈ T), σs

t (t ∈ T), As∗, ps)
11: n← n− 1
12: End while
13: p̃s

(n+)s
= · · · = p̃s

ms
← p̃∗

14: End for
15: Return p̃s

1s
, p̃s

2s
. . . , p̃s

|As∗|s
16: End Function 1
17: p̃s

1s
, p̃s

2s
. . . , p̃s

|As∗|s ← f unction1(α, T, BS, Gs
t (t ∈ T), σs

t (t ∈ T), As∗, Pmax

18: Function 2 (ps)

19: Return min
{

p̃s
1s

, ps
}

, . . . , min
{

p̃s
|As∗|s , ps

}
20: End Function 2

The maximum calculative complexity for power allocation is O(A2), and the subsequent
evaluation work costs O(A). Suppose that there are Q different power budgets given in
the multi-resource-block optimization. In that case, RBPA is used as the basic module for
calculating the corresponding optimal power allocation with the complexity of O(A2 + QA).

5.2. Single-Resource-Block Maritime User Allocation

Based on the previous subsection, we further optimize the maritime user allocation
on a single resource block (RBUA) with the DP algorithm. Therefore, the effective user set
As∗ is a variable satisfying the upper limit in condition w3∗ : |As∗| ≤ a, a ∈ {0, 1, . . . , A}.
The main idea of the RBUA scheme is to recursively calculate the elements of three arrays:
ψ, X, and Y. Let a ∈ {0, 1, . . . , A}, n ∈ {1, 2, . . . , T}, and m ∈ {n, n + 1, . . . , T}. ψ[a, n, m] is
defined as the optimal value for the following formula: WRB[a, n, m].

WRB[a, n, m] : ψ[a, n, m] = max
T

∑
l=n

ϕs
l ( p̃s

l ). (32)

w1∗ : p̃s
1 ≤ Ps

max; (33)

w3∗ : |As∗| ≤ a; (34)
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w4∗ : p̃s
m ≥ p̃s

m+1; (35)

w5∗ : p̃s
T+1 = 0; (36)

w6∗ : p̃s
n = p̃s

n+1 = · · · = p̃s
m. (37)

The array Y is responsible for recording the previous elements contributing to the
current optimal value ψ[a, n, m]. In Equation (32), it is observed that the target function
depends only on p̃s

n, p̃s
n+1, . . . , p̃s

T . If a = A, n = m = 1 is true, array ψ[A, 1, 1] is the best
value for the problem Ws

RB. When WRB[a, n, m] achieves the maximum value, we define
p̃s

n∗, p̃s
n+1∗, . . . , p̃s

T∗ as the optimal solution corresponding to ψ[a, n, m]. Let array X[a, n, m]
record the corresponding solution of the optimal objective function. Then, we combine
Condition w6* to derive X[a, n, m] = p̃s

n∗ = p̃s
n+1∗ = · · · = p̃s

m−1∗ = p̃s
m∗. Based on the

relation in Equation (38), the implementation of the marine user allocation is a recursive
process used to calculate the elements of ψ.

ψ[a, v, m] =

{
ϕ1, ϕ1 > ϕ2, p̃∗ > X[a− 1, m + 1, m + 1]

ϕ2, Otherwise
, (38)

ϕ1 = ϕs
n,m( p̃) + ψ[a− 1, m + 1, m + 1], (39)

ϕ2 = ψ[a, n, m + 1]. (40)

In Equation (38), p̃∗ = argmaxϕ(n, m, Ps) and ϕ1 records the corresponding optimal
value ψ[a, n, m] for a valid user m. On the contrary, ϕ2 represents the optimum value for
an invalid user on resource block s.

During the iterative procedure shown in Algorithm 3, the array Y tracks and records
the previous elements contributing to the current function ψ[a, n, m]. This can be traced
back from index (A, 1, 1) to an empty set. This method assists us in retrieving the optimal
solution for the entire program process more conveniently in lines 29–36. From lines 6–12,
we initialize the index as ∅ to represent the end of recursion. In summary, the recursive
relationship among these three arrays (ψ, X, Y) is divided into four cases:

Case 1 (line 4–6): If ψ[a, n, m] = ϕ1,

X[a, n, m] = p̃∗, (41)

Y[a, n, m] = (a− 1, m + 1, m + 1). (42)

Case 2 (line 10–12): If ψ[a, n, m] = ϕ2,

X[a, n, m] = X[a, n, m + 1], (43)

Y[a, n, m] = (a, n, m + 1). (44)

Case 3 (line 20–22): If a = 0, no valid user is reusing the resource block and

ψ[0, n, m] = ϕs
n,T(0), (45)

X[0, n, m] = 0, (46)

Y[0, n, m] = ∅. (47)

Case 4 (line 24–26): If m = T, n ≤ T,

ψ[a, n, m] = ϕs
n,T( p̃∗), (48)

X[a, n, m] = p̃∗, (49)

Y[a, n, m] = ∅. (50)
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Algorithm 3. Single-resource-block maritime user allocation scheme (RBUA)

1: Function RBUA (α, T, BS, Gs
t (t ∈ T), σs

t (t ∈ T), A, ps)
2: #Initialize arrays ψ, X, Y for a = 0, m = T
3: For m = T to 1 and n = m to 1 do
4: ψ[0, n, m]← ϕs

n,T(0)
5: X[0, n, m]← 0
6: Y[0, n, m]← ∅
7: End for
8: For a = 1 to A and n = T to 1 do
9: p̃∗ ← argmaxϕ(n, T, α, T, BS, Gs

t (t ∈ T), σs
t (t ∈ T), As∗, ps)

10: ψ[0, n, m] = ϕs
n,T(p̃∗)

11: X[0, n, m] = p̃∗

12: Y[0, n, m] = ∅
13: End for
14: #Calculate ψ, X, Y for a ∈ [1, A] and n ≤ m ≤ T − 1
15: For m = T − 1 to 1 and a = 1 to A and n = m to 1 do
16: p̃∗ ← argmaxϕ(n, m, α, T, BS, Gs

t (t ∈ T), σs
t (t ∈ T), ps)

17: ϕ1 ← ϕs
n,m( p̃∗) + ψ[a− 1, m + 1, m + 1]

18: ϕ2 ← ψ[a, n, m + 1]
19: If ϕ1 > ϕ2 and p̃∗ > X[a− 1, m + 1, m + 1] then
20: ψ[a, n, m]← ϕ1
21: X[a, n, m]← p̃∗

22: Y[a, n, m]← (a− 1, m + 1, m + 1)
23: Else
24: ψ[a, n, m]← ϕ2
25: X[a, n, m]← X[a, n, m + 1]
26: Y[a, n, m]← (a, n, m + 1)
27: End if
28: End for
29: #Retrieve the optimum solution p̃S

30: p̃s
1, . . . , p̃s

T ← 0
31: (a, n, m)← (A, 1, 1)
32: While (a, m, m) 6= ∅ do
33: p̃s

n, . . . , p̃s
m ← X[a, n, m]

34: (a, n.m)← Y[a, n, m]
35: End while
36: Return P̃S

37: End Function RBUA

To avoid the repeated execution of the DP procedure in the multi-resource-blocks
system, Algorithm 4 implements a pre-calculated improvement strategy. This subsection
essentially optimizes user allocation based on power allocation in the previous subsection.
Hence, we define the improved algorithm as a joint power and user allocation scheme on a
resource block (RBPUA) to distinguish it from RBUA. In lines 1–4, the algorithm executes
RBPA to obtain three arrays (ψ, X, Y). From lines 5–8, we solve the valid user set As∗ in
ψ[A, 1, m] and the corresponding optimal solution p̃1, p̃2, . . . ., p̃T , then store these values in
the global variable set. In line 10, the objective function Ws

RBPA(As∗, ps) is maximized by
searching for the best maritime user selection among T possibilities in the set. At the end of
the algorithm, the returned result is restricted by the power budget ps(Ps ≤ Pmax) in RBPA.

The improved RBPUA scheme is prepared for the efficient calculation of the multi-
resource-block optimization problem. Consequently, on a single resource block with a
power budget, the calculative complexity achieved by both RBPUA and RBUA is equal to
O(AT2). When calculating the optimal Ws

RB corresponding to Q different power budgets in
a multi-resource-block problem, the RBPUA with a computational complexity of O(AT2 +
QAT) is more efficient than RBUA with O(QAT2). We can make an intuitive comparison
from the numerical simulation given in Section 7.
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Algorithm 4. Improved scheme for single-resource-block power and user allocation (RBPUA)

1: Input: α, T, BS, Gs
t (t ∈ T), σs

t (t ∈ T), As∗, Pmax
2: Global variable: G
3: Initialization:
4: From RBUA(α, T, BS, Gs

t (t ∈ T), σs
t (t ∈ T), As∗, Pmax to obtain ψ, X, Y

5: For m = 1 to T do
6: Retrieve the effective users set As∗ of ψ[A, 1, m] and the corresponding optimum
solution p̃s

1, p̃s
2, . . . , p̃s

T
7: Add

(
As∗, p̃s

1, p̃s
2, . . . , p̃s

T
)

to G
8: End for
9: Function RBPUA(ps)
10: Get

(
As∗, p̃s

1, . . . , p̃s
T
)

which maximizing

Ws
RBPA(As∗, ps) = ∑

|As∗|
l=1 ϕs

l,l(As∗, min
{

p̃s
ls

, ps
}
) + Ds from G

11: Return min
{

p̃s
1s

, ps
}

, . . . , min
{

p̃s
T , ps}

12: End Function RBPUA

6. Multi-Subchannel Resource Optimization

Based on the single-resource-block optimization, the multi-resource-block joint mar-
itime user and power allocation problem can be defined by the following formula:

WMRB = max(∑
s∈S

Ws(ps)). (51)

C1 : Ws(ps) = max
T

∑
n=1

ϕs
n( p̃s

n) + Cs; (52)

C2 :
∑

∑
s∈S

Ps ≤ Pmax; (53)

C3 : 0 ≤ Ps ≤ Ps
max. (54)

For power budget Ps, the best resource allocation result can be obtained quickly for
each resource by invoking the RBPUA scheme. Therefore, the power budget directly
impacts the optimization solution of power and marine user allocation. WMRB is ultimately
the process of optimizing these two variables (p̃s and As∗) with Ps together. Suppose
we can replace several definitions in WMRB with Ws(ps) and conditions in problem Ws

RB.
In that case, WMRB will be transformed into the equivalent problem W* put forward at the
beginning of this paper.

6.1. Heuristic Optimization Algorithm Based on Gradient Descent (GRAD)

The improved gradient descent algorithm combined with the RBPUA can effectively
solve the joint power and sea user allocation problems. Hence, this paper regards the
heuristic algorithm as the performance standard of the multi-resource-block joint optimiza-
tion scheme. Compared with the traditional optimization algorithm, this scheme offers the
advantage of reducing the complexity and achieving the optimal WAR. Its principle lies in
the optimization of two stages. Specifically, the first stage follows the projected gradient
descent of the power vector Ps =

(
P1, P2, . . . , PS) in the search space formed by constraints

(problem WMRB: C2 and C3).
The second stage calculates Ws(ps) as well as its first derivative value Ws

′(ps). Then,
these two values return to the first stage and participate in the judgment of the iteration
conditions. After this, we select an appropriate step size to decide which point to start the
next iteration. The step length λ is determined by the optimization of Ws along the ray
{Ps + λ4|λ ≥ 0}. We adopt the precise straight-line search method in this paper.

λ = argmin
x≥0

Ws((Ps + x4). (55)
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Let PS
1 , PS

2 , . . . , PS
T represent the output power allocation value of the RBPUA algorithm.

The left derivative of Ws
′(ps) concerning ps can be described as follows [32]:

Ws
′(ps) =

Bsαβs(l)(
p̃s

l + σ̃s
βs(l)

)
ln2

=
Bsαβs(l)(

Ps + σ̃s
βs(l)

)
ln2

, (56)

where l represents the index value when p̃s
l reaches the upper limit of the power budget on

this resource block s.
Algorithm 5 describes the pseudo-code of the GRAD algorithm. In the third line,

we initialize the fault tolerance ξ to represent the iteration termination condition. From
lines 5 to 6, the gradient of ∑s∈S Ws evaluated at the power budget vector Ps denotes the
search direction. At line 7, we can adjust the λ by means of a precise straight-line search
simulation. Finally, the projection of Ps + λ4 in the search constraint space is calculated
effectively at line 8.

Algorithm 5. Heuristic algorithm based on gradient descent (GRAD)

1: Function GRAD
(
Input : α, T, BS, Gs

t (t ∈ T), σs
t (t ∈ T), A, Ps

maxmax
)

2: Let Ps ← 0 be the starting point
3: While ‖Ps ∗−Ps‖ > ξ do
4: Conserve the preceding vector Ps∗ ← Ps

5: Determine a search direction4
6: 4 ←

(
W1
′(p1), W2

′(p2), . . . ., WS
′(pS))

7: Select a step length λ

8: Update Ps ← projection of Ps + λ4 in search space: feasible set{
Ps : C2 : ∑∑ s s

max
s∈S Ps ≤ Pmax

9: End while
10: Return Ps

11: End Function GRAD

When we adopt RBUA as the basic module in the multi-resource-block joint optimiza-
tion, the GRAD algorithm achieves the complexity of O(log(1/ξ)SAT2). However, the
application of our improved method RBPUA to the GRAD scheme reduces the complexity
to O

(
SAT2 + log(1/ξ

)
SAT).

6.2. Multiple-Choice Knapsack Algorithm Based on Dynamic Programming (MCKP-DP)

We have simplified and transformed the objective function before to deal with the
problems of joint marine users and power allocation more simply. This process depends
on the change in variable ps with a continuous search space. However, the research on
NP-hard optimization and the relevant approximate algorithm requires that the accuracy of
the parameters and variables be bounded. In that case, the discretization of variables can be
adopted to simplify the complexity [33]. This method of discrete simplification is suitable
for practical systems limited by a minimum transmit power at the coastal BS. In conclusion,
we can discretize the seek constraint space similarly to the method in reference [9]. We set
the minimum discrete transmit power value as p. The power budget ps on each resource
block is a multiple of the minimum power p: Ps = j× p, j ∈

{
0, 1, 2, ..,

⌊
Ps

p

⌋}
. Let J =

⌊
Ps

p

⌋
represent the total number of items with an allocated power. Then, we discretize the
constraint conditions of the optimization function into a feasible set F, which is expressed
as follows:

F =

{
Ps : ∑

s∈S
Ps ≤ Pmax, 0 ≤ Ps ≤ Ps

max, s ∈ S, Ps = j · p, j ∈ {0, 1, 2, .., J}
}

(57)

Through the discretization of the power budget on each resource block, problem
WMRB can be transformed into the classic multiple-choice knapsack problem WMCKP [28]:
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WMCKP = max ∑
s∈S

J

∑
j=1

pros
j z

s
j . (58)

F1 : ∑
s∈S

J

∑
j=1

weis
j z

s
j ≤ Pmax; (59)

F2 :
J

∑
j=1

weis
j z

s
j ≤ Ps

max; (60)

F3 :
J

∑
j=1

zs
j ≤ 1; (61)

F4 : zs
j ∈ {0, 1}, j ∈ [1, J], s ∈ S. (62)

In the WMCKP problem, we define S non-intersecting classes to represent S non-
interfering resource blocks. Each class includes J items packed into a backpack with
a capacity of Pmax. The profit of each project pros

l refers to the WAR value of item l on
resource block s. Moreover, the weight weis

l represents the power allocated to item l. The
knapsack problem stipulates that only one item from each category is selected into the
backpack to maximize the total profits. At the same time, the weights are constrained by
the Ps

max of each category and the maximum capacity Pmax of the backpack. Therefore,
when the item j on resource block s is allocated to the knapsack, binary variable zs

l = 1.
Finally, WMCKP is able to approach the continuous solution of GRAD with an arbitrary
accuracy by adjusting p.

The error between the optimal result WMCKP∗ of the discrete scheme and the optimal
result WMRB∗ of the continuous algorithm is as follows:

WMRB ∗ −WMCKP∗ ≤ δ ∑
s∈S

max
t∈T

 Bsαβs(t)(
P∗s + σ̃s

βs(t)

)
ln2

, (63)

where P∗s refers to the optimal power budget on resource block s in problem WMRB. The
discretization error depends on the upper limit of a linear function in δ with the coefficient
decided by the system parameters. Appendix B gives the detailed derivation process of
Equation (63).

WMCKP in polynomial time can be dealt with by DP, which is summarized as weighted
DP and profit DP [28]. Since the MCKP is able to dynamically solve the maximum profit
by discretizing weights, we adopt the principle of weight-based DP. Let Z be a two-
dimensional array. Z[s, j] is defined as the optimal value of WMCKP limited to the first s
categories with a capacity of j × p. The recursive relationship for Z on resource block s is
as follows:

Z[s, j] = max
l≤j
{Z[s− 1, j− l] + pros

l }. (64)

As shown in Algorithm 6, through the application of the weight-based DP idea to
the multiple-choice knapsack algorithm, we propose the use of the MCKP-DP scheme to
handle WMCKP. First of all, we convert the continuous joint optimization problem WRB to
the discrete search space problem WMCKP. Locating lines 6 and 7, the RBPUA algorithm
calculates the profit pros

i for each project. In line 8, we perform weight-based DP.
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Algorithm 6. Multiple-choice knapsack algorithm based on dynamic programming (MCKP-DP)

1: Function MCKP-DP (α, T, BS, Gs
t (t ∈ T), σs

t (t ∈ T), A, Ps
maxmax

2: #Calculate the parameters of MCKP
3: For s ∈ S do
4: For j ∈ [0, J] do
5: Forl ∈ [0, j] do
6: pros

l ← l · p
7: weis

l ←Ws
RBPUA(l · p)

8: Zs[s, j]← max
{

Z[s− 1, j− l] + pros
l
}

9: End for
10: End for
11: End for
12: Backtracking to obtain the power vector corresponding to Zs[s, j]
13: Return the optimal allocation by means of weights-based dynamic programming [28]
14: End Function MCKP-DP

6.3. Fully Polynomial Time Approximation Program Based on Dynamic Programming (DP-FPTA)

Aiming at an NP-hard optimization conundrum, the knapsack algorithm and related
approximation schemes can effectively ensure that the approximation precision reaches
any degree required. Let Π be an NP-hard optimization problem with objective function
f Π; we propose an approximation scheme for the optimization problem on the input (I, ε),
where I represents the instance of Π and ε > 0 is taken as the error parameter. The optimal
result of function f Π(I, ε) satisfies the requirements of Equation (65):{

f∏ (I, ε) ≤ (1 + ε) ·Optimal, (∏ is a minimization problem)
f∏ (I, ε) ≥ (1− ε) ·Optimal, (∏ is a maximization problem)

. (65)

This scheme is called the polynomial-time approximation (PTA) algorithm. For each
fixed ε > 0, its running time is limited by a polynomial with the size of instance I. In the
subsequent more rigorous approximation concept, FPTA limits the running time required
by the polynomial with both instance size and 1/ε. From the technical perspective, FPTA is
the most providential strategy to solve the NP-hard optimization problem.

To deal with the pseudo-polynomial complexity of J, we will formalize this concept and
develop a complete polynomial approximation algorithm by combining it with dynamic
programming. The core of the DP-FPTA algorithm is that for any ε > 0, the final optimiza-
tion result is higher than the lower bound of performance guarantee: (1− ε) ·WMCKP∗.
In addition, the execution time is limited by both the size of the polynomial input and 1/ε.
Supposing that P 6= NP, the DP-FPTA algorithm is the best compromise solution to the
NP-hard optimization problem. The algorithm ensures the performance of WAR while
reducing the computational difficulty [34].

As shown in Algorithm 7, the DP-FPTA algorithm is based on a combination of
profit-based dynamic programming and an approximate optimal scheme. Scaling profit
generally contributes to the simplification of the items calculated in the knapsack problem.
We first give an estimate F* of the optimal value of the WMCKP problem; the estimated value
satisfies the requirements of the condition F∗ ≥WMCKP∗ ≥ F∗

4 [34]. To further simplify the
workload, we focus only on subset Js of the items for each category rather than calculating
the profit value pros

j of the total items for S categories.

Js =

{
l ≤ J, j ≤ 4S

ε
− 1, pros

l−1 < j
εF∗
4S
≤ pros

l

}
. (66)

The discrete terms of the DP-FPTA scheme can be expressed as j ∈
{

1, 2, . . . , 4S
ε

}
to trans-

form the continuous profit space into discrete values for every interval
[
(j− 1) · εF∗

4S , j · εF∗
4S

]
.

Subsequently, we introduce a multi-key binary search to obtain subset Js on each resource
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block [35]. Finally, as shown in lines 11–14 of Algorithm 7, we adopt profit-based DP
to obtain the optimal solution for resource allocation. Let Q denote a DP array for the
smallest weight of the subproblem composed of S categories (resource blocks), the problem
of MCKP be limited to the first s categories, and Q(s,q) denote the minimum power budget
required to achieve a WAR of q·εF*/4S. After initializing Q[0,0] = 0, Q[0,q] = +∞ and letting
q = 0, 1, . . . ,

⌊
4S
ε

⌋
, the recursive relationship can be expressed as

[s, q] = min
j∈Js

 Q
[

s− 1, q−
⌊

4pros
j S

εF∗

⌋]
+ weis

j ,
q·εF∗

4S ≥ pros
j

+∞, Otherwise
, (67)

where |Js| = min
{

4S
ε , J
}

. Furthermore, the gap between the DP-FPTA optimal solution
and the MCKP-DP optimum WMCKP∗ is, at most, ε ·WMCKP∗. The calculative complexity
of DP-FTPA is O(SAT2 + min{(log2 J) S2 AT

ε+ S3
ε2

, JSAT + J2S}.

Algorithm 7. Fully polynomial time approximation program based on dynamic programming
(DP-FPTA)

1: Function DP-FPTA (α, T, BS, Gs
t (t ∈ T), σs

t (t ∈ T), A, Ps
maxmax

2: Calculate an estimated value F∗ of WMCKP∗, F∗ ≥WMCKP∗ ≥ F∗
4

3: For s ∈ S do
4: K=εF ∗ /S
5: For j ∈ Js do
6: While pros

j+1− pros
j > K do

7: Obtain pros
j , weis

j through multi-key binary search method
8: End while
9: End for
10: End for
11: For s ∈ S do
12: For q ∈

[
0, 1, . . . ,

⌊
4S
ε

⌋]
do

13: Q[s, q] = min
{

Q
[

s− 1, q−
⌊

4pros
j S

εF∗

⌋]
+ weis

j

}
14: End for
15: End for
16: Return DP-FPTA allocation by means of the profits-based dynamic programming [28]
17: End Function DP-FPTA

Remark: In [34], it is pointed out that in a very technical sense, the FPTA scheme is
the best one can expect for an NP-hard optimization problem, assuming that P 6= NP. The
design of almost all the FPTA and PTA schemes is based on the idea of trading accuracy
for running time. Inspired by the idea of an approximate algorithm, we can deal with
the NP-hard problem in the following three ways. (1) If the input scale of the problem
is small, the search strategy can be used to solve the problem in exponential time. If the
input scale is large, (2) a random algorithm can accurately solve the problem with a high
probability in polynomial time or (3) an approximate solution for the problem can be
obtained in polynomial time. In [27], other approximate schemes are also mentioned. The
central concept is to adopt the random sampling of sub-channels with probability ρ to
avoid the traversal search. The simulation results show that, compared with the traditional
optimization algorithm, the greedy-based approximate scheme saves 66% of the running
time while maintaining the approximate optimal data rate. The question of whether the
FPTA is the most desirable approximation algorithm will be explored in our future work.

7. Numerical Results and Discussion

In this paper, the model scenario simulated is located within the region of the South
China Sea. Therefore, the tropical ocean climate is taken for the setting of the climate parameter.
The coastal 5G BS serves an offshore area with a radius of 5 km, and there are T maritime
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users (ships or offshore reef islands) randomly distributed across the sea. The total channel
bandwidth B of the offshore communication system is 5 MHz. Moreover, the system
channel is allocated to 10 resource blocks with a bandwidth of Bs = B/S = 0.5 MHz. When
there is no typhoon, the sea surface is relatively calm, with the irregular terrain parameter
taken as 0 [29]. Table 1 shows the reference values of the terrain irregularity parameter ∆h.
The coastal BS is located in a high-lying area with a broad view. Therefore, its deployment
parameter is very careful. In contrast, the deployment parameters of maritime users are
relatively random. The effective heights of the BS transmitting antenna and the maritime
user receiving antenna are 15 m and 5 m, respectively. In the multiple-choice knapsack
program, we set the minimum discrete power to 0.01 W. Table 4 shows more detailed
simulation parameters.

Table 4. Simulation parameters.

Symbol Quantity Value (Unit)

d Radius of offshore area 5000 (m)
f Carrier frequency 2.6 (GHz)
σ Noise power spectral density −174 (dB/Hz)
B System channel bandwidth 5 (MHz)

HT Height of BS transmitting antenna 15 (m)
HR Height of maritime receiving antenna 5 (m)
∆h Terrain irregularity parameter 0 (smooth water)

TSite Criteria BS deployment parameter 2 (very careful)
RSite Criteria Receiver deployment parameter 0 (random)
radio_climate Climate parameter 3 (tropical ocean climate)

pol Antenna polarization method 1 (vertical polarization)
eps_permittivity Relative permittivity of sea water 81 (F/m)

sgm_conductivity Sea water conductivity 5 (S/m)
eno_refractivity Surface refractivity 370 (N-units)3

S Number of resource blocks 10
T Number of maritime users [10, 80]
ξ Error tolerance (Grad) 10−4

Pmax Total power budget [5, 50] (W)
J Number of power values (MCKP-DP) 103

p Minimum transmit power
(MCKP-DP) 0.01 (W)

ε Approximate error value (DP-FPTA) 0.1, 0.01

A Maximum number of users
multiplexed on a resource block 1 (OMA), 10 (NOMA)

First, we test the path loss of the Longley–Rice model with the increase in communica-
tion distance under an offshore background. Our objective is to investigate the influence of
these two parameters on the maritime channel model, including BS transmitting antennas
with different heights HT and different degrees of irregularity ∆h. After that, we test the
performance optimization and complexity of the proposed algorithm RBPUA based on
NOMA and traditional OMA, respectively. Furthermore, we evaluate the three multi-
resource-block joint optimization schemes not only in terms of the WAR performance
optimization results but also in terms of the calculative complexity.

When the height of the BS antenna varies from 5 to 25 m, Figure 2 shows that the
Longley–Rice transmission loss results in the increase in the transmission distance. Specifi-
cally, within 5 km, the transmission loss of the 5 m transmitting antenna is significantly
greater than that of the antenna transmitting over 10 m. At a distance of 5 km, the loss
values of the 10 m to 25 m antennas are almost equal to 114.7 dB. With the expansion of the
communication range, the transmission loss corresponding to the 10 m BS antenna will
increase instantaneously. When the distance reaches 8 km, the 15 m antenna will expose the
defect of limited coverage compared with the antenna above 20 m. Considering the limited
coverage of the shore-based 5G BS, the communication range in this paper is within a radius
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of 5 km over the sea. Therefore, if the height of the 5G BS transmitting antenna is more than
10 m, a good transmission loss result can be maintained in our subsequent work.
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Figure 2. Longley–Rice transmission loss of different BS antenna heights vs. communication distances.

Figure 3 shows the path loss value achieved with the increase in distance based
on different terrain irregular parameters. We set the effective height of the coastal BS
transmitting antenna as 15 m. Within the communication distance of 5 km specified in
this paper, the propagation loss values corresponding to irregular parameters ∆h = 0 and
∆h = 5 are almost equal. Referring to previous test results, we can regard the sea surface as
calm and smooth under an offshore background without typhoon invasion. Therefore, in
the subsequent simulation process, we suppose that the terrain irregularity parameter is
zero. This value is still applicable even if there are slight waves on the sea surface.
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The transmission loss reflected by the experimental results (Figures 2 and 3) is the
absolute value. In the subsequent simulation, those propagation loss values are negative in
the maritime communication system.

Figure 4 compares the WAR performance optimization between RBUA and the im-
proved scheme RBPUA based on NOMA and OMA, respectively. The NOMA system
supports an upper limit of 10 marine users multiplexed on a resource block. At the same
time, the power budget provided by the coastal BS increases from 5 W to 50 W. When the
power budget reaches 10 W, the WAR performance of the NOMA system with a single
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resource block is increased by 4.08% compared with OMA. As the power budget increases
to 50 W, the WAR of NOMA becomes better than that of OMA by 4.59%. In addition,
we prove that the low-complexity RBPUA scheme is the same in terms of performance
optimization as the RBUA scheme.
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MCKP-DP scheme, and DP-FPTA approximation problem). The offshore communication 
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OMA communications.

For the NOMA or OMA system with 10 power budgets, Figure 5 compares the computa-
tional complexity for the RBUA algorithm and the improved optimization algorithm RBPUA.
According to the numerical result, for 10 maritime users, the NOMA-based RBPUA scheme is
less complex than the NOMA-based RBUA algorithm by 80%. Consequently, applying our
improved algorithm RBPUA in the multi-resource-block schemes can effectively reduce the
computational difficulty while maintaining the performance optimization results.
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OMA communications.

In Figure 6, we compare the WAR optimization performance of three multi-resource-
block joint power and maritime user allocation schemes (GRAD heuristic algorithm, MCKP-
DP scheme, and DP-FPTA approximation problem). The offshore communication system
serves 80 offshore users, including 10 resource blocks. Furthermore, the total power budget
provided by BS increases from 5 W to 50 W. It can be seen from the simulation result
that the GRAD with an accuracy of 0.0001 can be defined as the reference standard for
optimal WAR. At the same time, the MCKP-DP scheme (the number of discrete items
J = 1000) is comparable to the optimization performance of the GRAD program. When
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the coastal BS provides a power budget of 50 W, the WAR of the above two schemes in
the NOMA system is increased by 4.53% compared with the OMA performance. For a
NOMA maritime system with a 50 W power budget, the performance of our proposed
DP-FPTA with a 0.01 approximate accuracy is 1.11% higher than that of the DP-FPTA with
a 0.1 accuracy. In particular, the DP-FPTA scheme with an error of 0.01 almost achieves the
optimized performance of GRAD and MCKP-DP.
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Furthermore, Figure 7 exhibits the corresponding histogram for convenience; therefore,
we can clearly distinguish the WAR simulation results for each optimization scheme.
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Figure 8 provides the histograms for the numerical changes of WAR as the number of
maritime users increases from 10 to 80. The simulation result shows that our communi-
cation system obtains the maximum WAR with 50 users. When maritime users continue
to increase beyond this saturation state, the heavy load of channel reuse worsens user
interference, resulting in a decline in system data rates. Moreover, in the saturation state,
both GRAD and MCKP-DP solutions (number of discrete items: J = 1000) achieve an almost
equivalent optimization performance of 9.421 × 107 bit/s. Their WAR optimization results
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are higher than those of OMA by 7.47%. In this saturated NOMA system, the DP-FPTA
with an 0.01 approximate accuracy achieves a WAR performance of 9.420 × 107 bit/s
comparable to that of GRAD and MCKP-DP. Meanwhile, it promotes the WAR by 1% over
the approximate scheme with an accuracy of 0.1.
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Figure 9 displays the optimization result of WAR for the DP-FPTA algorithm versus
the increase of 4S/ε. Taking the optimization performance of the MCKP-DP scheme as
a reference and J = 1000 as the total number of discrete items on each resource block,
we normalize the x-axis by |Js| = 4S/ε. Evaluating the subset Js of projects on each
resource block makes it more convenient to simulate the relationship between WAR and
approximation accuracy ε. Our system, equipped with 10 resource blocks and a power
budget of 10 W, serves 80 maritime users. In Figure 9, we also propose that the minimum
performance index of the DP-FPTA is at least (1− ε) ·WMCKP∗. The result indicates
that the WAR is higher than the performance index in both OMA and NOMA marine
systems. As the number of items increases, the DP-FPTA-optimized performance gradually
approaches the MCKP-DP performance curve. Moreover, when 4S/ε = 500 (ε = 0.08),
the WAR of our approximate scheme will reach 99.55% of the MCKP-DP scheme.
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Figure 10 further compares the calculative complexity of DP-FPTA and MCKP-DP. The
complexity of the DP-FPTA scheme increases with the increase in 4S/ε. When the number
of normalized items reaches 2900 (ε ≤ 0.01), its complexity is equivalent to that of the
MCKP-DP scheme (J = 1000), and MCKP-DP achieves the optimal WAR. In this case, we do
not recommend our proposed DP-FPTA scheme. Combined with the simulation results
shown in Figure 9, within the approximate error interval of 0.01 ≤ ε ≤ 0.08, NOMA-based
DP-FPTA achieves an approximately optimal WAR performance with far less calculative
complexity than MCKP-DP. When the error parameter satisfies ε = 0.08, the WAR of the
approximate scheme achieves 99.55% of MCKP-DP, but the complexity is 84.3% lower
than the MCKP-DP scheme. Furthermore, the performance of the NOMA-based DP-FPTA
is better than that of OMA by 4.48%. Results have shown that while controlling the
computational complexity, DP-FPTA can ensure the optimization of WAR by adjusting the
approximate error function ε. Therefore, our proposed scheme successfully achieves the
trade-off between optimization performance and calculative delay.
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8. Conclusions

This paper investigates the WAR optimization problem in the NOMA-based offshore
downlink communication scenario of the South China Sea. We established a Longley–Rice-
based maritime channel model, including various environmental factors and antenna de-
ployment parameters. This model, which has adjustable environmental parameters, can be
widely applied to various offshore communication applications around the world. Aiming
at the single-resource-block resource allocation problem, we performed pre-computation
to simplify the power and marine user allocation. Taking the improvement scheme RBPUA
as the basic module, we developed three optimization solutions for multi-resource-block
joint power and maritime user allocation. The simulation results indicate that we can
regard the GRAD as a performance optimization index. MCKP-DP provides a new idea
based on the knapsack problem for resource allocation. Its optimization performance
achieved the best value, while the complexity had to be reduced. We proposed the use
of the DP-FPTA to effectively weigh the relationship between computation complexity
and performance optimization. This algorithm is suitable for a practical NOMA-based
maritime communication system with a low time delay.

In subsequent work, the NOMA-based relay technology should be introduced into
marine communications to expand the network coverage [36]. In addition, we will further
expand the single-BS NOMA system to the maritime communication network jointly de-



Entropy 2021, 23, 1454 23 of 25

ployed by multiple offshore BSs. Moreover, motivated by the optimization schemes in this
paper, we will delve into the problem of resource allocation in the MIMO-NOMA maritime
system. The joint optimization project with beamforming and user clustering represents a
significant challenge for our future work [37]. We aim to achieve improved signal strength
and regional coverage while reducing signal interference in the next generation of this
maritime communication system.
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Appendix A

The derivation process from Equation (7) to Equation (12) is as follows:
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∑T

m=n+1 p̃s
βs(m)

+ σ̃s
βs(n)

 (A2)

= ∑
s∈S

BS

T

∑
n=1

log2

 (∑T
m=n p̃s

βs(m)
+ σ̃s

βs(n)
)

αβs(n)

(∑T
m=n+1 p̃s

βs(m)
+ σ̃s

βs(n)
)

αβs(n)

 (A3)

= ∑
s∈S

BS

[
αβs(1)log2

(
T

∑
m=1

p̃s
βs(m) + σ̃s

βs(1)

)
+

T

∑
n=2

log2

 (∑T
m=n p̃s

βs(m)
+ σ̃s

βs(n)
)

αβs(n)

(∑T
m=n p̃s

βs(m)
+ σ̃s

βs(n−1))
αβs(n−1)

+ αβs(T)log2

(
1

σ̃s
βs(T)

)]
. (A4)

Equation (A2) is derived from the definition of Shannon formula in Equation (5).
Then, we move βs(n) into the logarithm in Equation (A3). Equation (A4) combines the
denominator of the (n − 1)th term with the numerator of the nth term to complete the
derivation. Finally, we obtain the equivalent optimization objective W* by redefining
the variables. In Equation (12), the constant term is C = ∑

s∈S
αβs(T)log2(

1
σ̃s

βs(T)
). Because

p̃s
1 =

T
∑

m=1
Ps

βs(m)
= ∑

t∈T
Ps

t , Conditions w1* and w2* are derived from w1 and w2, respectively.

In the same manner, we can get Conditions w4* and w5* according to w4 and p̃s
n − p̃s

n+1 =
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Ps
βs(n)

, (n ∈ {1, . . . , T}, s ∈ S). The set of valid maritime users in w3* is redefined as As∗ ,{
p̃s

n ≥ p̃s
n+1, n ∈ {1, . . . , T}

}
.

Appendix B

We define P∗s as the optimal power budget on resource block s in problem WMRB.
Let as∗ ,

⌊
ps∗
p

⌋
δ denote the discrete power budget. We give the following derivation:

WMRB
∗ −WMCKP

∗ ≤ ∑
s∈S

(Ws(ps∗)−Ws(as∗)) (A5)

≤ ∑
s∈S

max
As∗

{
Ws
′(As∗, ps∗)

}
× (ps ∗ −as∗) (A6)

≤ δ ∑
s∈S

max
t∈T
{

Bsαβs(t)(
P∗s + σ̃s

βs(t)

)
ln2
}. (A7)

Considering that WMCKP* is the optimal solution of the problem WMCKP with discrete step
size δ, we can get WMCKP∗ ≥ ∑s∈S Ws(as∗) in Equation (A5). In [32], it was proved that
Ws(ps) = maxAs∗{Ws(As∗, ps)},Ws(As∗, ps) is concave and twice differentiable. There-
fore, we can further deduce that Ws is below the maximum slope tangent of Ws(As∗, ps).
According to Equation (56) and the fact that ps ∗−as∗ ≤ δ from the definition of δ, we derive
the Equation (A7).
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