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Abstract: Multivariate time series anomaly detection is a widespread problem in the field of failure
prevention. Fast prevention means lower repair costs and losses. The amount of sensors in novel
industry systems makes the anomaly detection process quite difficult for humans. Algorithms
that automate the process of detecting anomalies are crucial in modern failure prevention systems.
Therefore, many machine learning models have been designed to address this problem. Mostly, they
are autoencoder-based architectures with some generative adversarial elements. This work shows a
framework that incorporates neuroevolution methods to boost the anomaly detection scores of new
and already known models. The presented approach adapts evolution strategies for evolving an
ensemble model, in which every single model works on a subgroup of data sensors. The next goal of
neuroevolution is to optimize the architecture and hyperparameters such as the window size, the
number of layers, and the layer depths. The proposed framework shows that it is possible to boost
most anomaly detection deep learning models in a reasonable time and a fully automated mode. We
ran tests on the SWAT and WADI datasets. To the best of our knowledge, this is the first approach in
which an ensemble deep learning anomaly detection model is built in a fully automatic way using a
neuroevolution strategy.

Keywords: neuroevolution; anomaly detection; ensemble model; CNN; time series; deep learning

1. Introduction

In the anomaly detection field, deep learning models achieve the best results on
well-known benchmarks. These are mainly deep autoencoders based on Long-Short Term
Memory (LSTM) layers, convolutional layers, and a fully connected sequence of layers.
A wide variety of autoencoders are used, such as variational, denoising, and adversarial
autoencoders. Research shows that further improvements, such as adding a discriminator
as an additional verification module or other Generative Adversarial Network (GAN)
based autoencoder modifications, can boost the detection results. Recently, promising
results using deep graph neural networks in anomaly detection have also been shown [1].

Neuroevolution is a form of artificial intelligence that uses evolutionary algorithms to
generate artificial neural networks (ANNs), parameters, topologies, and rules. The most
popular algorithms are NEAT, HyperNEAT, and coDeepNEAT [2]. In the presented ap-
proach, neuroevolution is used to generate an optimal ensemble anomaly detection model.

In this paper, we propose a high-level ensemble approach fine tuned by a neuroevo-
lution algorithm. The presented method is model independent and can be adapted to
any deep learning anomaly detection model. The main advantage of the algorithm is
its fully automated mode. The novelty of the proposed algorithm is that we added new
search dimensions, including the training data distribution, dividing data into subgroups,
and searching for the optimal composition of the ensemble model.

The proposed neuroevolution search space is based on creating encoders and decoders
from single neural layers, such as fully connected, convolutional, recurrent, and attention
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layers. There are two main dimensions of optimization. Therefore, two populations are
inside the algorithm. The first is the population of the models from which genetic operators
evolve new generations of models. The second is the subgroup population, which is needed
to form the ensemble model from the models’ population. This work concentrates on the
data optimization stage and the setting up of the ensemble model. It shows how this aspect
can improve nonensemble models. The last step in the neural architecture search (NAS) is
fitness definition. Fitness is the sum of losses from the training dataset and the random
reduced validation dataset in the presented approach.

The main advantages of the presented algorithm are that it enables building the
ensemble model in automatic mode and creates a vast search space between various deep
learning autoencoders, GAN architectures, and optimal training data subgroups.

2. Related Works

Anomaly detection is a popular research subject. The basic unsupervised methods
include linear-model-based methods [3], distance-based methods [4,5], density-based
methods [6], isolation-based methods [7], and many others. The best f1-score for these
methods is 23% on the SWAT and 9% on the WADI datasets. However, deep learning
methods have recently gained significant improvements in anomaly detection over the
aforementioned approaches. The most popular deep learning models for multivariate
anomaly detection are autoencoder (AE) models, which use the reconstruction error for the
anomaly inspection. Zong et al. proposed a deep autoencoding Gaussian mixture model
(DAGMM) [8] that jointly optimizes the deep autoencoder parameters and the mixture
model simultaneously. This solution yields an f1-score of 55% for the SWAT and 20%
for the WADI datasets. Park et al. introduced the LSTM-VAE model [9], replacing the
feedforward network in the variational autoencoder (VAE) with LSTM. As a result of this
approach, it was possible to gain an f1-score of 75% for the SWAT and 25% for WADI the
datasets. Russo et al. used an autoencoder that consists of 1D convolution layers [10].
This model was tested with the Urban Water Observatory Initiative (www.eawag.ch/uwo,
accessed on 1 November 2021) datasets and has an anomaly detection accuracy of 35%.
Audibert et al. proposed a fast and stable method called USAD [11], which is based on
adversely trained autoencoders. This model contains only fully connected layers and
achieves a 79% detection anomaly for the SWAT and 23% for the WADI dataset. Generative
adversarial networks (GANs) as anomaly detectors were proposed in [12]. The authors
applied LSTM as the generator and discriminator models in the GAN framework and used
a combination of both model errors (DR-score) to detect anomalies. The anomaly accuracy
for this model is 77% for the SWAT and 37% for the WADI datasets. Deng et al. [1] achieved
an f1-score of 81% for the SWAT and 57% for the WADI datasets through the use of a graph
neural network (GNN). The mentioned deep learning models, LSTM, USAD, and CNN
1D, are the baseline for the solutions proposed in this paper. Our preliminary observations
showed that a single model (autoencoder) very often cannot handle many input signals
efficiently. The hypothesis is that the ensemble model (especially that based on bagging)
can improve anomaly detection in such cases. The next aspect is that the architectures
of the models presented in the mentioned papers have not been sufficiently explored.
The search for optimal architectures in other fields such as image classification showed
that this approach could explore more possibilities and outperform models designed by
humans. Among the search criteria was speed. Therefore, the neuroevolution technique
was chosen to perform a search in addition to the reinforcement learning approach.

Recently, neuroevolution algorithms have been used in many machine learning tasks
to improve the accuracy of deep learning models [13]. In [14], neuroevolution search
was used to evolve neural networks for object classification in high-resolution remote
sensing images. In [15], the authors presented a neuroevolution algorithm for standard
image classification. The authors in [2] showed the neuroevolution strategy scheme for
language modeling, image classification, and object detection tasks. This was based on the
co-evolutionary NEAT algorithm, which has the two following levels of optimization: the
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first one is single deep learning subblock optimization; the second one is a composition of
subblocks to form a whole network. The presented results showed that optimized models
achieved better results than those of models designed by humans in most cases.

3. Autoencoder Architecture

Autoencoders are unsupervised learning models in which the neural network is
trained to learn the compressed representation of raw data. These models consist of two
parts: an encoder E and a decoder D. The encoder learns how to efficiently compress and
encode the input data X to represent them in reduced dimensionality—latent variables Z.
The decoder is taught how to reconstruct the latent variables Z back to their original shape.
The model is trained to minimize reconstruction loss, which means reducing the difference
between the output of the decoder and the original input data; this can be expressed as:

L(X, X̂) = ||X− AE(X)||2 (1)

where:
AE(X) = D(Z), Z = E(X) (2)

The most straightforward kind of autoencoder is an undercomplete autoencoder (UAE). These
models learn the most essential and relevant attributes of the input data by using a bottle-
neck with a smaller dimension than the input data. Another type of autoencoder, called
the denoising autoencoder (DAE), extracts essential features from the data by reconstructing
the original input after it has been contaminated by noise. In unsupervised tasks, the most
popular type of autoencoder is the variational autoencoder (VAE). This type of autoencoder
replaces the bottleneck vector with two vectors: one representing the mean of the distri-
bution and the second representing the standard deviation of the distribution. The VAE
for a given input in the encoding phase determines the distribution of the latent variables.
By contrast, the decoder determines the distribution of the inputs corresponding to the
given latent variables. Autoencoders are widely used in many fields, such as online intru-
sion detection [16], malware detection [17], and anomaly detection in streaming data [18].
This model can consist of various layers, e.g., fully connected layers, CNN, and LSTM.

4. Neuroevolution Ensemble Approach

The prototype of our framework presented in Figure 1 consists of two separate popu-
lations. The first is the models’ population, and the second is the data subgroup population.
Equation (3) describes the definition of the model population where θ is a weight tensor.
Each model is a sequence of layers of encoders and decoders (Equations (4) and (5)) that
describes the input multivariate signal. The framework enables the formation of the ensem-
ble model using an approach similar to the bagging-based technique. The whole ensemble
model is a set of submodels working on subgroups of the input signals (Equations (6) and (7)).
The ensemble models form a population set (Equation (9)).

PM = {Fi
Θ, Θ = {θ0, θ1, ..., θN} ∧ i ∈ {1, 2, ..., population_size}} (3)

Fi
Θ(X) = f i

θN
( f i

θN−1
...( f i

θ0
(X))) (4)

X = {xi, i ∈ {1, 2, ..., nr_o f _sensors}} (5)

The framework starts with generating initial groups of input signals using correlation
(this is explained in detail in the subsections below); then, it mutates models and groups
via the genetic algorithm. In parallel, the genetic operators optimize the single models in
each subgroup by making changes in the topology of the neural models (e.g., the length
of the model and layer parameters). The final effect of these actions is an ensemble
model optimized to detect anomalies. The ensemble model is defined as follows (where
M = ensemble_size):

Fi
ensemble(X) ⇐⇒ (Fi0

Θ (xi0), Fi1
Θ (xi1), ..., FiM

Θ (xiM)) (6)
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xi0 ∧ xi1...∧ xiM ⊂ X (7)

|xij| ≤ nr_o f _sensors, ∀j ∈ {1, 2, ..., M} (8)

PE = {Fi
ensemble, i ∈ {1, 2, ..., ensemble_population_size}} (9)

Figure 1. The architecture of the framework.

4.1. General Schema of the Proposed Solution

During our experiments with various models, we noticed that almost all models detect
a similar set of anomalies despite changes in their hyperparameters. Of course, the re-
sults differed depending on the hyperparameters, but none of the changes significantly
impacted the detection. Therefore, we decided to apply an ensemble model based on
dividing available input signals into smaller groups and training each model on a separate
subset of signals. As a result of this, the models could discover more specific dependen-
cies and relations between signals. We present a simplified schema of our approach in
Algorithm 1. Additionally, models inside each subgroup are optimized by changing their
internal architectures (Algorithms 2–4). The evolution of the single model is conducted in
four main steps in a loop (Algorithm 2): clustering by model length, crossover, mutation,
and choosing the best models in clusters. Algorithms 3 and 4 contain detailed descriptions
of the crossover and mutation. We define the crossover as a function that has two parent
models and an id of the layer as input parameters (Equation (10)). It generates two new
children models (Equation (11)).

c : Parents× layer_id→ Children (10)

c(Fi
Θ, Fj

Θ, l_id)→ (Fi′
Θ, Fj′

Θ) (11)

f i′
Θl = f j

Θl (12)

f j′

Θl = f i
Θl (13)

The crossover can exchange between parents’ activation functions, convolutional,
LSTM, or fully connected layers (Equations (12) and (13)). The last option is to exchange
the hyperparameters between parents, such as the learning rate and weight decay. We
define mutation as a function with a model, layer id, and layer features to be mutated as
input parameters (Equation (14)).
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m : Parent× layer_id× layer_ f eature→ Child (14)

m(Fi
Θ, l_id, l_ f eature)→ Fi′

Θ (15)

In this case, the feature and layer_id determine what the mutation operator will do.
They can change the activation function or parameters of the convolutional, LSTM, or fully
connected layers (e.g., depth and kernel_size). The other option is to change the length of
the model (adding or removing a layer) or update the hyperparameters. The result is a
new modified model (Equation (15)).

Then, the neuroevolution approach is applied to search for an optimal partition into
groups (Line 1, Algorithm 1). After classifying data points using every model (Line 2,
Algorithm 1), we used a voting mechanism to determine whether a data point should be
considered as an anomaly by the whole ensemble model (Line 3, Algorithm 1).

Algorithm 1: Simplified general schema of our approach.
Result: Classification of the anomalies

1 Find the best partition of signals into groups using a genetic algorithm
(Algorithm 5);

2 Find the best model for a group (Algorithm 2);
3 Train and evaluate a separate model for every group (Algorithm 6);
4 Evaluate an ensemble model using a threshold voting algorithm in which every

group of signals has the same voting power

Algorithm 2: Model evolution.
Input: population_size, generations

1 for generation < Ng do
2 Cluster models in the population;
3 Run crossover;
4 Run mutation;
5 Choose the best models in each cluster;
6 generation = generation + 1

Algorithm 3: Single model crossover.
Input: parent_1, parent_2

1 Choose the feature that will be exchanged between parents;
2 If the feature is activation_ function, then exchange_activation;
3 If the feature is layer, then exchange_layer;
4 If the feature is change_length, then remove_or_add_layer;
5 If the feature is hyperparameter, then exchange_opt;

To find an optimal partition of input signals into groups, we applied a genetic algo-
rithm. Algorithm 5 presents a simplified schema of the genetic algorithms.

The single gene provides information showing that a feature f is present in a group
t. The single solution represents k groups, each containing zero or more input signals.
A sample solution for k = 3 could be: [[0, 1, 5, 12], [2, 3, 4, 9], [6, 7, 9]], where numbers in
groups indicate which input signals are present. Population P contains NP solutions.

The parameters for the neuroevolution approach in this work are as follows:

• k—maximal number of submodels in an ensemble model;
• pm—probability of the mutation in a single group of input signals;
• Ng—number of generations in a genetic algorithm;
• NP—size of the population in a genetic algorithm;
• Npar—number of parents mating;
• Nep—number of epochs to train while calculating fitness.
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Algorithm 4: Single model mutation
Input: solution

1 Choose a feature;
2 If the feature is activation_function, then change_activation;
3 If the feature is layer, then change_layer_parameters;
4 If the feature is hyperparameter, then change_opt;

Algorithm 5: Genetic algorithm.
Result: Final population after Ng generations
Input: NP—size of population
Input: Ng—number of generations in the genetic algorithm
Input: k—max number of groups in a single solution

1 Generate initial population;
2 generation = 0;
3 while generation < Ng do
4 For every solution in a subgroup and model population, calculate a fitness;
5 Choose the best solutions as the parents;
6 Create offspring in the model and subgroup population using crossover;
7 Mutate the model and subgroup offspring;
8 Form the ensemble model from subgroups and models

generation← generation + 1
9 Return the final population

4.2. Genetic Algorithm for Building the Ensemble Model

To improve the convergence of the genetic algorithm, we created it based on the correla-
tion between input signals instead of using a random initial population. We used hierarchical
clustering with the addition of some randomness to achieve a diverse population.

Algorithm 6 presents a method for calculating the fitness for a single solution. For each
dataset used (SWAT and WADI), we split a normal part of the data into training and
validation datasets. We calculated the fitness for every feature group in the solution. As the
first step, we trained a chosen model on selected input signals from the training data for
a given number of epochs (Line 3, Algorithm 6). After that, we evaluated the trained
model on training and validation data (Lines 4 and 5, Algorithm 6), calculating the losses.
To normalize the loss, we calculated the weighted loss from the training and validation
datasets (Lines 6 and 7), and we also divided the weighted loss by the number of input
signals in the group (Line 8, Algorithm 6). The final fitness for every solution is a negated
sum of losses for groups in the solution (Lines 9 and 10, Algorithm 6). The value is negated
because we wanted to minimize the total loss of an ensemble model, while in the genetic
algorithm, the goal is to maximize the fitness.

During the crossover part (Line 6, Algorithm 5), we created a new solution based on
two selected parents (Equation (16). Algorithm 7 presents the detailed steps of the crossover.
For every pair of groups of parents, we determined which range of input signals is present
in the groups and chose the random split point (Lines 3–5, Algorithm 7). The new group of
offspring then contains parts of the groups from both parents (Lines 6–13, Algorithm 7 and
Equations (17) and (18)).
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Algorithm 6: Fitness calculation.
Result: Fitness value for solution S
Input: S—solution
Input: Xt—training dataset
Input: Xv—validation dataset
Input: Nep—number of epochs to train while calculating fitness

1 losssum = [];
2 for g ∈ S do
3 model = train_model (Xt, g, Nep);
4 losst = evaluate (model, Xt, g);
5 lossv = evaluate (model, Xv, g);
6 NX = len (Xt) + len (Xv);

7 lossw = len (Xt)
NX

∗ losst +
len (Xv)

NX
∗ lossv;

8 lossg = lossw
len (g) ;

9 losssum = losssum + lossg
10 return− losssum

Algorithm 7: Crossover algorithm.
Result: Snew—new solution after crossover
Input: S1—parent solution
Input: S2—parent solution

1 Snew = [];
2 for g1, g2 ∈ zip(S1, S2) do
3 ming1g2 = min (min (g1), min (g2));
4 maxg1g2 = max (max (g1), max (g2));
5 split_point = randint (ming1g2, maxg1g2);
6 gnew = [];
7 for f ∈ g1 do
8 if f < split_point then
9 gnew.add( f );

10 for f ∈ g2 do
11 if f > split_point then
12 gnew.add( f );
13 Snew.add(gnew)
14 return Snew

Offspring created via a crossover algorithm can also be affected by mutations (Line 7,
Algorithm 5).

ce : Parents× probability→ Children (16)

ce 7→ (cg(i0, j0, split0), cg(i1, j1, split1), ..., cg(iM, jM, splitM)) (17)

cg : xiN × xjN × split_point→ [xiN [0], ..., xiN [split_point], ..., xjN [−1]] (18)

In our work, we used three types of mutation for ensemble models (Equations (19) and (20)):

1. Duplicating a selected feature in another group (presented in Algorithm 8), Equation (21);
2. Vanishing input signals that exist in more than one group in a single solution (pre-

sented in Algorithm 9), Equation (22);
3. Adding input signals that do not exist in any group in a single solution (presented in

Algorithm 10), Equation (23).

The goal of mutations is to help maintain diversity in the population. Mutation 1 allows
for the same features to be available in a few groups. Mutation 2 protects solutions from
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having a few groups with the same input signals and from overusing any feature. Mutation
3 makes it possible to restore input signals lost in other genetic operations.

me : Parent× probability× type→ Child (19)

me(i, prob) 7→ (me(i0, prob), me(i1, prob), ..., me(iM, prob)) (20)

mem : xik × xim × f → (xik − f , xim ∪ f ) (21)

mev : xik × f → xik − f (22)

men : xik × f → xik ∪ f (23)

Algorithm 8: Moving mutation.
Result: Mutated solution
Input: S—solution
Input: Pm—probability of a mutation

1 for i = 0; i < k; i = i + 1 do
2 if random. random () < Pm then
3 f eature_to_move = random. choice (S[i]);
4 nnext_group = (j + 1) mod k S[nnext_group].add( f eature_to_move);
5 return S

Algorithm 9: Vanishing mutation.
Result: Mutated solution
Input: S—solution
Input: Pm—probability of a mutation

1 count f = defaultdict (0);
2 for group ∈ S do
3 for f eature ∈ group do
4 count f [ f eature]+ = 1;
5 for group ∈ S do
6 for f eature ∈ group do
7 if random. random () > 1

count f [i]
then

8 group.remove( f eature);
9 return S

Algorithm 10: New input signals mutation.
Result: Mutated solution
Input: S—solution
Input: FS—input signals space

1 for f eature ∈ FS do
2 if f eature /∈ S then
3 for group ∈ S do
4 if random. random () > 1

k then
5 group.add( f eature);
6 return S
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5. Results

In this section, we describe the used datasets and models. We also demonstrate
the improvements that were possible to achieve by the usage of the proposed solutions.
We provide a comparison with methods from the state-of-the-art articles. We ran all the
presented calculations on an Nvidia Tesla V100-SXM2-32GB (https://www.nvidia.com/
en-us/data-center/v100/, accessed on 1 November 2021). In order to reduce both training
times, i.e., during the evolution algorithm and the final training, each subgroup was
calculated on a separate GPGPU. The genetic algorithm parameters were the same for all
experiments and are presented in Table 1 (the column basic value). Moreover, the model
that gained the best results (CNN 1D) was also run once again with a higher value of
the parameters population size and parents mating (the column Rerun value in Table 1) to
determine how this affects the efficiency of the algorithms.

Table 1. Parameters of the genetic algorithm.

Parameter Basic Value Rerun Value

Population size 8 16
Number of parents mating 4 8
Mutation probability 0.1 0.1
Number of generations 10 10

5.1. Datasets

We used the following as the training and testing data:

• The Secure Water Treatment (SWaT) Dataset [19], which contains data gathered from a
scaled-down version of a real water treatment plant. The data were collected for 11 d
in two modes—7 d of normal operation of the plant and 4 d during which there were
cyber and physical attacks executed;

• The Water Distribution (WADI) Dataset [20], which contains data from a scaled-down
version of a water distribution network in a city. The collected data contain 14 d of
normal operation and 2 d during which there were 15 attacks executed. As presented
in Table 2, there are two WADI collections from 2017 and 2019 available. In our
experiments, we used the newest version as per the recommendation of the authors
of the dataset.

Table 2. Statistics of the used datasets.

Datasets # of Input
Signals # of Trainings # of Tests # of Anomalies

SWAT 51 49,668 44,981 11.97%
WADI-2017 123 1,048,571 172,801 5.99%
WADI-2019 123 784,571 172,801 5.77%

5.2. Models

In this paper, in order to detect anomalies, we used three models of the autoencoder.
The first of these was proposed in [10], where the encoder contained three 1D CNN layers
with kernel sizes k1 = 8, k2 = 6, and k3 = 4 and filter maps f1 = 64, f2 = 128, and f3 = 256.
Each CNN layer is followed by the LReLU [21] activation function and batch normalization
calculation. The decoder is a mirror reflection of the encoder where transposed CNN
layers replace CNN layers. The second model is a variational autoencoder [9] where both
the encoder and the decoder contain two LSTM layers with hidden sizes equaling 16,
followed by the LReLU activation function. The batch size is thirty-two for the training
phase and one for the test phase. The third model is the USAD model proposed in the
literature [11]. It utilizes the idea of GANs and the architecture of autoencoders. The USAD
model consists of two autoencoders built from one shared encoder and two decoders.

https://www.nvidia.com/en-us/data-center/v100/
https://www.nvidia.com/en-us/data-center/v100/
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They are trained using the proposed two-phase training, including standard autoencoder
training and adversarial training specific to GANs.

In the evolution algorithm (see Section 4), each model was trained over 15 epochs,
and during the final training, each model was trained over 70 epochs. We divided the
multivariate time series into subsequences with a sliding window parameter as an addi-
tional parameter for optimization. To speed up the training, we used downsampling with
a ratio of five, which reduces the size of the data. As indicated in the literature [11], this
operation did not cause a significant drop in accuracy. Table 3 contains the number of
trainable parameters for each model used, the optimal values for some of them, and the
time that was necessary to perform the whole process. As can be observed, the USAD
model contains the highest number of parameters and took the longest time to train.

Table 3. Parameters of the models.

Method Neuroevolution
Time on 8 GPGPUs

# of Trainable
Parameters Type of Parameters

LSTM-VAE 24 h 2,378,496
sliding windows = 4

#final training epochs = 70
# of epochs during fitness = 15

USAD 32 h 3,937,360
sliding windows = 12

#final training epochs = 70
# of epochs during fitness = 15

CNN 1D 16 h 366,476

sliding windows = 2,
#final training epochs = 70,

# of epochs during fitness = 15,
learning rate = 0.01

5.3. Experiments

Table 4 contains the collected results from [1,3,4,8,9,11,12]. Additionally, the table
contains results produced for this paper. In the case of the WADI dataset, we used the
WADI 2019 version (marked as *). Moreover, for our baseline models (USAD, LSTM-VAE,
and CNN 1D), we present the outcomes from our experiments for the SWAT dataset.
The results were slightly different from the original result, as required to prepare the
implementation on our own (marked as **).

Table 5 contains the gained results after splitting the groups through the use of genetic
algorithms. Each experiment was run ten times, and the presented result is the best
one observed. We can observe a significant improvement on the WADI dataset in the
case of the USAD model and CNN-based autoencoder. It had a minor impact on the
LSTM-VAE model.

We gained the best results for the CNN 1D autoencoder, and as such, we reran the
experiment for this model with a higher value of the following parameters of the genetic
algorithm: population size and parents mating. As a result, it was possible to improve the
f1-score by about 2% in the case of the SWAT and WADI datasets. These results are marked
as (***) in Table 5. The optimal number of generated subgroups for CNN LSTM-VAE and
USAD equals five. For each model, most anomalies were located in two subgroups. We can
observe that each proposed autoencoder working on smaller groups of sensors was more
sensitive in anomaly detection (a couple of percentage points in the SWAT dataset and over
a dozen percentage points in the WADI dataset). Optimal sliding windows already found
had sizes of 2 for autoencoders with CNN layers, 4 in the case of LSTM-VAE, and 12 in the
case of USAD.

Additionally, by using a single model of neuroevolution, some single base models
were improved. The best single model achieved by using the presented algorithm was
the CNN 1D-based autoencoder, which had the following parameters: k1 = 4, k2 = 2,
k3 = 5, filter maps f1 = 50, f2 = 131, and f3 = 197, as well as sliding windows equaling
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two (in the base models, the optimal sliding windows is four). The remaining layers were
analogous to the basic model. The single model evolution was run in a population with a
size equal to 24. After crossover and the mutation operation, the distance function (mainly
based on the length of the model) was computed to diversify the offspring population (in
addition to the best models, those that were different from each other were also chosen for
the next iteration).

Table 6 presents the hyperparameters of the most effective generated CNN 1D model,
which on all input sensors (one group) improved the f1-score by about 15% (44% on the
WADI dataset, which was the best result gained by a single model). The depth was the
same as in the base model, but the hyperparameters changed in the neuroevolution process
and, therefore, were better adjusted to the given task. The presented experiments proved
that evolution works in two dimensions. It can improve single base models and further
improve detection results by generating an ensemble model.

Table 4. Anomaly detection accuracy (precision (%), recall (%), f1-score (%)) on two datasets without
splitting into groups. Results marked as * were generated by the usage of the WADI-2019 dataset.
** means that we had to reimplement a model on our own.

Method
SWAT WADI

Prec Rec f1 Prec Rec f1

PCA 24.92 21.63 0.23 39.53 5.63 0.10
KNN 7.83 7.83 0.08 7.76 7.75 0.08
DAGMAM 27.46 69.52 0.39 54.44 26.99 0.36
LSTM-VAE 96.24 59.91 0.74 87.79 14.45 0.25
MAD-GAN 98.97 63.74 0.77 41.44 33.92 0.37
USAD 98.51 66.18 0.79 99.47 13.18 0.23
USAD ** 88.21 65.29 0.75 26.28 * 35.31 * 0.30 *
CNN 1D 94.25 67.92 0.78 39.30 * 20.28 * 0.27 *
GDN 99.35 68.12 0.81 97.50 40.19 0.57

Table 5. Anomaly detection accuracy (precision (%), recall (%), f1-score (%)) on two datasets after
splitting into groups.

Method
SWAT WADI *

Prec Rec f1 Prec Rec f1

LSTM-VAE 95.69 55.18 0.72 21.22 29.12 0.28
USAD 98.10 66.01 0.79 71.24 31.41 0.43
CNN 1D 95.24 63.73 0.78 63.76 43.54 0.52
CNN 1D *** 93.61 69.40 0.80 79.35 41.23 0.54
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Table 6. CNN 1D model hyperparameters.

Layer Parameters Layer Parameters

1 Conv1D

in channels = 2
out channels = 50
kernel size = 4
padding = 1

7 Conv1D

in channels = 197
out channels = 131
kernel size = 5
padding = 1

2 Batch
Norm1D num features = 50 8 Batch

Norm1D num features = 131

3 Conv1D

in channels = 50
out channels = 131
kernel size = 2
padding = 1

9 Conv1D

in channels = 131
out channels = 50
kernel size = 2
padding = 1

4 Batch
Norm1D num features = 131 10 Batch

Norm1D num features = 50

5 Conv1D

in channels = 131
out channels = 197
kernel size = 5
padding = 1

11 Conv1D

in channels = 50
out channels = 2
kernel size = 4
padding = 1

6 Batch
Norm1D num features = 197 12 Batch

Norm1D num features = 2

6. Conclusions and Future Work

The results showed that the data distribution, dividing the input signals into sub-
groups, and using an ensemble model can significantly improve the efficiency of the
anomaly detection process. The neuroevolution process helps to find near-optimal sub-
groups. The tests were run on the WADI and SWAT benchmarks. In both cases, the best
results were achieved among models other than graph neural network models. The im-
provements in the WADI dataset were more significant than those in the SWAT dataset,
because there are more sensors and samples in the WADI dataset than in the SWAT dataset.

Our paper proved that the neuroevolution approach might have a positive impact
on results. Our future work will concentrate on further enhancements of the algorithm.
We consider the following the most critical enhancements: an ensemble model based
on graph networks; a new crossover to mix different architectures, e.g., attention with a
discriminator; graph networks with USAD. We will also run more extended simulations
(with more significant populations and more iterations), which can determine the f1-score.
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