
entropy

Article

On Architecture Selection for Linear Inverse Problems with
Untrained Neural Networks

Yang Sun 1,*, Hangdong Zhao 1 and Jonathan Scarlett 1,2,3

����������
�������

Citation: Sun, Y.; Zhao, H.; Scarlett, J.

On Architecture Selection for Linear

Inverse Problems with Untrained

Neural Networks. Entropy 2021, 23,

1481. https://doi.org/10.3390/e

23111481

Academic Editor: Gwanggil Jeon

Received: 1 September 2021

Accepted: 6 November 2021

Published: 9 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, National University of Singapore, 15 Computing Dr.,
Singapore 117418, Singapore; dcszhdg@nus.edu.sg (H.Z.); scarlett@comp.nus.edu.sg (J.S.)

2 Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Rd.,
Singapore 119076, Singapore

3 Institute for Data Science, National University of Singapore, 3 Research Link, Singapore 117602, Singapore
* Correspondence: yang.sun@comp.nus.edu.sg

Abstract: In recent years, neural network based image priors have been shown to be highly effective
for linear inverse problems, often significantly outperforming conventional methods that are based
on sparsity and related notions. While pre-trained generative models are perhaps the most common,
it has additionally been shown that even untrained neural networks can serve as excellent priors in
various imaging applications. In this paper, we seek to broaden the applicability and understanding
of untrained neural network priors by investigating the interaction between architecture selection,
measurement models (e.g., inpainting vs. denoising vs. compressive sensing), and signal types
(e.g., smooth vs. erratic). We motivate the problem via statistical learning theory, and provide two
practical algorithms for tuning architectural hyperparameters. Using experimental evaluations,
we demonstrate that the optimal hyperparameters may vary significantly between tasks and can
exhibit large performance gaps when tuned for the wrong task. In addition, we investigate which
hyperparameters tend to be more important, and which are robust to deviations from the optimum.

Keywords: linear inverse problems; untrained neural networks; compressive sensing; deep decoder;
architecture design; hyperparameters

1. Introduction

Linear inverse problems arise in a wide range of application domains, such as compu-
tational imaging, optics, and remote sensing. Broadly, the problem consists of measuring a
target signal x∗ ∈ Rn via linear measurements of the form

y = Ax∗ + w, (1)

where y ∈ R` is the dimensionality-reduced observation vector, A ∈ R`×n is a linear
operator that captures the forward process, and w ∈ R` represents additive noise. The
aim is to recover (an estimate of) the unknown signal x∗ given y and A. This setup
captures a variety of problems including inpainting, denoising, super-resolution, and
compressive sensing.

To permit the accurate recovery of x∗ with limited measurements (possibly `� n), a
common approach in recent years has been to adopt explicit mathematical assumptions of
low-dimensional structure, such as sparsity in a suitably-defined basis [1]. More recently,
it has been observed that data driven generative priors can lead to considerable savings
in the number of measurements [2], with a typical assumption being that x∗ can be well-
approximated via a pre-trained generative neural network. Such pre-trained models tend to
require large amounts of training data, which may be prohibitive in practical applications.
In addition, even given large amounts of data, such solutions can suffer from distribution
shift, since the training signals may not be fully representative of the test signals.

Entropy 2021, 23, 1481. https://doi.org/10.3390/e23111481 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-1403-9160
https://doi.org/10.3390/e23111481
https://doi.org/10.3390/e23111481
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23111481
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23111481?type=check_update&version=2

Entropy 2021, 23, 1481 2 of 21

As an alternative method that can help overcome the above limitations, it has been
observed that even untrained neural networks can serve as excellent priors for image re-
covery in linear inverse problems [3,4], where the input to the network is random and
the weights are tuned to produce just a single image. In some cases, these techniques
are combined with various forms of implicit or explicit regularization, such as early stop-
ping [3], under-parametrized models [4], dropout methods [5], and total variation regular-
ization [6]. Successful applications of the untrained approach have included recovery of
natural images [3,4], magnetic resonance imaging [7], X-ray imaging [6], and computed
tomography [8].

Broadly speaking, our work is motivated by the following gaps in the literature on
inverse problems with untrained neural networks:

• Untrained neural networks invariably come with architectural hyperparameters (e.g.,
input size, number of layers, convolutional filters used, etc.), and while impressive
results have been observed under various architectures, relatively little attention has
been paid to how best to select these parameters.

• Untrained neural networks have primarily been applied in the context of recovering
images (e.g., natural images, medical images, etc.), but to our knowledge, no detailed
study has been given on how the architectural hyperparameters may vary across
different signal types (e.g., rough vs. smooth), and different measurement types (e.g.,
inpainting vs. denoising vs. compressive sensing), nor on the robustness to changing
from one setting to another.

• Regarding the signal type, while one-dimensional time-series data has been considered
in numerous works on sparsity-based compressive sensing (e.g., neuro-electrical
signals [9] and sensor network data [10]), to our knowledge, such signals have received
significantly less attention in the context of neural network based priors, with one
exception being a one-dimensional Deep Image Prior in [11].

Accordingly, in this paper, focusing on the Deep Decoder approach [4,12], we seek
to further explore the utility of untrained neural networks beyond image recovery (in
particular, to time-series signals), and more importantly, to better understand the role of
architecture selection when recovering signals from different measurement models and
signal types. We present algorithms for automatically tuning the architectural hyperparam-
eters, and experimentally observe their behavior in diverse settings of interest. We focus in
particular on addressing the following questions:

(i) To what extent do the optimal hyperparameters vary for different measurement
models and signal types?

(ii) To what extent does the performance degrade when the hyperparameters are tuned
for one setting but applied to another?

(iii) To what extent are the various hyperparameters robust to deviations from their
optimal value?

Regarding question (i), we find that the optimal configurations can depend heavily on
both the measurement models and the signal types. Accordingly, it is natural in question (ii)
that transferring settings can degrade the performance significantly, and we find that this
is indeed commonly observed (though not always the case). Finally, regarding question
(iii), we identify both examples of robust and non-robust behavior under deviations from
the optimal value. These findings are based on experimentation on a diverse range of
synthetic and real-world data types, with a particular emphasis on one-dimensional time-
series signals.

1.1. Related Work

The literature on neural network techniques in inverse problems is rapidly
growing [2–4,13–16]. We refer the reader to [17] for a recent survey, and focus here on the
most closely-related works.

Entropy 2021, 23, 1481 3 of 21

Two prevailing approaches in the literature are Deep Image Prior [3] and Deep De-
coder [4], which adopt a similar high-level approach of tuning network weights to produce
a single image. As outlined above, in contrast with approaches based on pre-trained
models learned from data [2], Deep Image Prior and Deep Decoder are untrained, and
consist of fitting neural network weights to a single image. Follow-up works have also
studied different interpretations of Deep Image Prior from the perspective of architecture
regularization [18] and Maximum a Posteriori Probability (MAP) estimation [19]. Although
concerns have been raised that these approaches may lose information during their inter-
mediate layers [20]; both have shown excellent (and typically comparable) performance in
various inverse problems. In many cases, Deep Decoder enjoys the additional benefit of
not requiring early stopping due to its relatively simple structure. In this paper, we focus
our attention on Deep Decoder, but an analogous investigation of Deep Image Prior may
be of interest in future work.

After the introduction of the Deep Decoder model in [4], several follow-up works
explored variations and applications, which we outline as follows:

• In [12], several variants of Deep Decoder are introduced depending the presence/
absence of upsampling and certain convolution operations. The success of Deep De-
coder is primarily attributed to the presence of convolutions with fixed interpolating
filters in the neural network architecture. Further details are given in Section 1.2.

• Theoretical guarantees for compressive sensing were given in [14,21]. The former stud-
ies the convergence of a projected gradient descent algorithm in underparametrized
settings, whereas the latter shows that regular gradient descent is able to recover
sufficiently smooth signals even in overparametrized settings.

• Variations of Deep Decoder for medical imaging are given in [7,22], with an additional
challenge being combining measurements from multiple coils measuring the same
signal in parallel. Additional applications of deep decoder include quantitative phase
microscopy [23] and image fusion [20]. In addition, another variant of Deep Decoder
for graph signals is given in [24].

• In [25], a method is proposed for combining the benefits of trained and untrained
methods, by imposing priors that are a combination of the two.

• In [26], various robustness considerations for neural network based methods (both
trained and untrained) are investigated. In particular, (i) both are shown to be sensitive
to adversarial perturbations in the measurements; (ii) both may suffer from significant
performance degradation under distribution shifts; and (iii) evidence is provided
that the overall reconstruction performance is strongly correlated with the ability to
recover specific fine details.

The importance of hyperparmeter selection was highlighted in [7], but has remained
relatively unexplored. The above mentioned more recent work [26] developed indepen-
dently from ours, and at least one of their observations therein matches one of ours (namely,
performance degradation when the hyperparameters are tuned for the wrong data type),
but, overall, our work and [7,26] remain mostly separate. Regarding the signal type, in our
understanding, the recovery of one-dimensional signals has received much less attention
compared to two-dimensional images, with one exception being the application of Deep
Image Prior to time series signals in [11].

Architecture search is a popular topic in machine learning, particularly in the context
of classification problems. Proposed search methods include reinforcement learning [27],
parameter sharing [28], and differentiable search [29]; see [30] for a survey. However, to the
best of our knowledge, such techniques cannot easily be applied in the context of signal
recovery with untrained neural networks, which is notably distinct from the supervised
problem of classification. Instead, our approach will use the simpler idea of searching
over parametrized architectures, building on hyperparmeter optimization techniques [31,32].
Having said this, we believe that adapting non-parametrized architecture search methods
to our setting could be of significant interest in future work.

Entropy 2021, 23, 1481 4 of 21

1.2. Background: Deep Decoder

The Deep Decoder, denoted as G(C) and parameterized by model weights C, trans-
forms a randomly chosen and fixed input tensor B1 ∈ Rn1×k1 , which is the “latent” input
consisting of k1 many n1-dimensional channels, to an nd × kout dimensional image x. Here,
d is the depth (i.e., number of layers) of the network. The network transforms the tensor
B1 to an image using batch normalization [33] (which is equivalent to channel-wise nor-
malization here), upsampling operations, pixel-wise linearly combining of channels, and
rectified linear units (ReLUs). In the original version of the Deep Decoder [4], the tensors
in the (i + 1)-th and final layer are given by

Bi+1 = bn(relu(UiBiCi)), i = 1, . . . , d− 1,

x = sigmoid(BdCd),
(2)

where the coefficient matrices Ci ∈ Rki×ki+1 are the network weights of 1× 1 convolutions
kernels on layer i, bn() is batch-normalization, and Ui ∈ Rni+1×ni is an upsampling tensor.
The model architecture is depicted in Figure 1 in the context of producing 2D images; for
1D signals, the structure is similar with two dimensions “flattened” into one.

Figure 1. Illustration of Deep Decoder architecture for 2D signals. Each layer consists of channel-wise
batch normalization, pixel-wise linear combining of channels (1× 1 convolution), ReLU activation,
and upsampling.

Several variants of Deep Decoder were presented in [12], depending on the presence of
upsampling and fixed vs. trained convolutional kernels. These models are all closely related,
and we focus on a particular one (termed “model (i)” in [12]), which we found to consistently
perform best (or equal best) in terms of computation time and recovery performance.

In the model that we focus on, for each layer, an additional fixed-kernel convolution
operation is performed before the 1× 1 convolution described above. Specifically, we have
Ud = I, all other Ui still as upsampling operators, Ci ∈ Rki×ki+1 same as the above, but
plus an additional operator T(ci) performing a convolution with the fixed-kernel ci ∈ Rs

(where s is the size of kernel and is a hyperparameter which we will explore in this paper)
on layer i. For instance, in the 1D setting, the following filter of length s = 4 could be used:

ci =
1

16
[
3 9 9 3

]
. (3)

A filter size of 4 is indeed suggested in [12], but we also allow for other sizes. For a
general size s, we define the center to be s−1

2 , and let the i-th filter weight be proportional
to exp(−2 disti), where disti is the distance to the center. The filter weights are always
normalized to sum to one.

Given the Deep Decoder network G(C), the problem of estimating x∗ given (A, y) is
performed as follows:

Ĉ← minimize
C

‖AG(C)− y‖2, x̂ = G(Ĉ), (4)

Entropy 2021, 23, 1481 5 of 21

where the “minimize” operation may not necessarily correspond to finding a global mini-
mizer, but rather corresponds to running a variant of Gradient Descent for a certain number
of iterations.

Our general goal is for x̂ = G(Ĉ) to be a good approximation of x∗. In general, we may
measure the performance according to some generic loss function `(x, x̂). For concreteness,
we will focus primarily on the squared loss, `(x, x̂) = ‖x− x̂‖2, and, in our experiments,
we will reparametrize this according to the more widely-adopted Peak Signal-to-Noise
Ratio (PSNR):

PSNR = 20 log10

(MAXI√
1
n‖x− x̂‖2

)
, (5)

where MAXI is the maximum possible signal value. The PSNR serves as a natural measure
for reconstruction accuracy is ubiquitous in the signal processing literature, and has the
desirable feature of being invariant to rescaling (e.g., when converting from [0, 1]-valued
images to [0, 256]-valued images). On the other hand, our proposed techniques are general
and could be used alongside other measures such as the structural similarity index (SSIM).

1.3. Hyperparameters and Problem Variables

In view of the above description of Deep Decoder, we focus on optimizing the fol-
lowing important hyperparameters: (i) input tensor size, (ii) number of channels per
layer, (iii) number of layers, (iv) filter size for the fixed-kernel, and (v) step size in the
Adam optimizer. While further hyperparameters could also be considered (e.g., activation
function, other optimization parameters), we found these to consistently work well with
fixed choices.

We note that the preceding hyperparameters also implicitly determine the upsampling
factor. Specifically, with the output size being fixed according to the problem, further fixing
the input size and number of layers also fixes the upsampling factor (assumed to be the
same in each layer, up to rounding). In contrast, previous works focused on an upsampling
factor of two.

The problem variables that can potentially impact the choice of hyperparameters
include the signal type (e.g., slow vs. fast varying), signal length, measurement type (e.g.,
inpainting, compressive sensing, etc.), compression ratio `

n , noise level, and so on.

2. Hyperparameter Selection

In this section, we present two simple and general-purpose algorithms for optimizing
architectural parameters, as well as giving some theoretical insight based on statistical
learning theory.

We consider a setup in which, for a particular measurement matrix A, we have access
to a data set D = {(xj, yj)}m

j=1, (Our analysis and algorithms also equally apply when A is
random and the data set takes the form D = {(xj, Aj, yj)}m

j=1.) where each yj is produced
from the corresponding xj according to (1). We consider the case that the architecture is
parametrized by a list H of hyperparameters (e.g., input size, number of layers, etc.), and
we write G(C) = GH(C) to highlight this dependence. For any specific choice of H, we
can form x̂ according to (4), and measure the performance according to the loss function
`(x, x̂). Our goal is to use the training data D to find a good choice of H. To provide insight
on this task, we first consider a theoretical viewpoint.

2.1. Theoretical Viewpoint

Consider a statistical learning setup, in which the training examples in D are as-
sumed to be independently drawn from some unknown distribution PXY (where PY|X
follows (1) with a fixed measurement matrix A, but the noise distribution is unknown). For
convenience, we consider the loss as a function of (x, y):

γH(x, y) = `(x, x̂(H, y)), (6)

Entropy 2021, 23, 1481 6 of 21

where x̂(H, y) is the estimated obtained by running (4) with hyperparmeters H (and with
the known measurement matrix A). In this setting, there is a precise notion of the “best”
hyperparameter configuration:

H∗ = arg min
H∈H

E[γH(x, y)], (7)

where (x, y) is a fresh sample from PXY. While H∗ cannot be computed directly (due to
PXY being unknown), we can adopt the widespread idea from statistical learning theory of
minimizing the empirical loss:

Ĥ = Ĥ(D) = arg min
H∈H

1
m

m

∑
j=1

γH(xj, yj). (8)

As well as providing the starting point for practical techniques in subsequent subsec-
tions, this empirical loss minimization approach is theoretically principled, giving the
following theoretical guarantee analogous to standard PAC-learnability results (e.g., ([34]
Section 4.2)).

Theorem 1. If H takes values within a finite set H, and the losses are bounded by (This extends to
arbitrary bounds of the form γH(x, y) ∈ [a, b] by rescaling.) γH(x, y) ∈ [0, 1] for all (x, y), then
for a training set D of size m and any η > 0, we have with probability at least 1− η that

E[γĤ(x, y)] ≤ E[γH∗(x, y)] +

√
2
m

(
log |H|+ log

2
η

)
. (9)

The proof follows standard statistical learning theory arguments and can be found in
the Appendix A. This result indicates that, to approximate H∗, it suffices to have a number
of training signals growing as m = O(logH). In particular, if there are K hyperparameters
taking a bounded number of values each, this reduces to m = O(K), a linear dependence
on the number of hyperparameters. However, it is important to note that this is a worst-
case guarantee, and in Section 3 we will demonstrate the effectiveness of approximately
solving (8) even with a very small number of training signals.

In the remainder of the section, we explore practical algorithms for approximately
solving (8). We note that, even if each hyperparameter is restricted in advance to take
finitely many values, a brute-force evaluation of all configurations is typically prohibitive,
since even a single evaluation requires a separate optimization to solve (4). Hence, the goal
is to efficiently explore a subset of configurations to find an approximate solution to (8).

2.2. Successive Halving

To approximately solve (8), we first utilize the idea of Successive Halving [31]. The
details are given in Algorithm 1, in which the algorithm takes as input the number of
configurations n, a minimum resource level r and maximum resource level R (e.g., number
of optimization iterations; see below for details), and a reduction factor η ≥ 2. The
algorithm makes use of the following simple subroutines:

• The function random_configurations(n) generates a set of n random configurations,
i.e., for each such configuration, each hyperparameter value is chosen uniformly at
random from the pre-specified finite set of possible values.

• The function evaluate_psnr(H, ri) returns the PSNR after running the minimization (4)
with the hyperparameter configuration H and resource level ri.

• The function top_k(H,P , ni/η) finds the ni/η highest values of PSNR in the list P ,
and returns the corresponding ni/η configurations inH.

Successive Halving uniformly allocates a budget to a set of hyperparameter configura-
tions, evaluates the PSNRs of all configurations, keeps the top 1/η, and increases the budget
per configuration by a factor of η. This repeats until the maximum per-configuration budget

Entropy 2021, 23, 1481 7 of 21

of R is reached, and only one configuration remains. The algorithm allocates exponentially
more resources to more promising configurations. The resource under consideration could
be the number of iterations of stochastic gradient descent, the number of training examples,
and the number of random features, etc.; in this paper, we focus on the number of iterations
of gradient descent.

Algorithm 1: Successive Halving for Hyperparameter Optimization.
input number of configurations n, maximum iteration index smax maximum
resource R, reduction factor η
H = random_configurations(n)
for i ∈ {0, . . . , smax} do

ni = bnη−ic
ri = bRηi−smaxc % Amount of resource allocated
P = {evaluate_psnr(H, ri) : H ∈ H}
H = top_k(H,P , ni/η) % Select highest ni/η PSNR values

end
return the unique hyperparameter configuration H remaining in T

2.3. Greedy Fine-Tuning

Even after running Successive Halving, it may still be beneficial to perform some
fine-tuning operations to obtain a potentially improved hyperparameter configuration.
Here, we introduce another simple greedy algorithm to perform such fine-tuning, detailed
in Algorithm 2. The algorithm takes as input the baseline configuration H, and iteratively
updates one hyperparameter at a time by choosing whether to slightly increase, slightly
decrease, or remain the same. (We do not have any categorical variables in our experiments,
but if any were present, they could be handled similarly, e.g., by trying every category or a
random subset.) This is continued until a stopping criteria is met (e.g., maximum number
of iterations, or every parameter stayed the same).

Let the number of hyperparameters be denoted by K. The fine-tune levels P1, . . . , PK
are user-specified, and may be iteration-dependent; the approach we use will be de-
scribed in Section 3.2, along with our stopping condition. Once these are selected, the
procedure simply iterates through the K hyperparameters; for each one, we evaluate the
PSNR of the two new candidate values (with all other hyperparameters held fixed) in the
finetune_single(H, Pi) subroutine and identify the highest PSNR among the three options
(the third option being to remain the same), and update accordingly.

Algorithm 2: Greedy Fine-Tuning for Hyperparameter Optimization.

input the baseline hyperparameter configuration H = {h1, . . . , hK}, where hi is
the configuration of the i-th hyperparameter

while stopping condition not yet met do
Select potential values P1 = {habove

1 , hbelow
1 }, . . . , PK = {habove

K , hbelow
K }

for i ∈ {1, . . . , K} do
h∗i = finetune_single(H, Pi) % Evaluate PSNRs and choose best
H = update(H, h∗i)

end
end
return fine-tuned configuration H

3. Experiments

In this section, we present various experimental findings based on the algorithms
proposed on Section 2. We consider a variety of measurement models and signal types
described in Section 3.1, as well as further considering natural signals and images in
Section 3.6, where we compare with existing baselines. Overall, our experiments are
chosen to cover a diverse range of settings representative of those considered in previous

Entropy 2021, 23, 1481 8 of 21

works such as [2,4,11], but we emphasize that our focus is on general-purpose methods,
and accordingly, we do not seek to compete against highly specialized techniques on a case-
by-case basis. Our code is available at https://github.com/ethangela/compressd-sensing
(6 October 2021).

3.1. Measurement Models and Signals

We consider a variety of measurement models of the general form (1), focusing on the
noiseless scenario except where stated otherwise:

• For random inpainting, a given fraction of the signal values are masked (i.e., not
observed), and we consider the fractions 9/10, 3/4, 1/2, 1/4, and 1/8.

• For block inpainting, the signal is divided into blocks (taken to be of length 16 for all
1D signals and of block size 8 × 8 for all 2D signals), and a given fraction of the blocks
are masked (i.e., not observed).

• For compressive sensing, we consider A taking the form of randomly subsampled
Gaussian circulant measurements, e.g., see [35]. Such matrices can be viewed as
approximating the behavior of i.i.d. Gaussian matrices (e.g., as considered in [2]),
but with considerably faster matrix operations. We mostly use 100, 500, or 1024
measurements, but sometimes also consider other values.

• For denoising, A is the identity matrix (i.e., every entry is observed), but the noise term
in (1) corrupts the measurements. We consider i.i.d. Gaussian noise with standard
deviations 0.05 and 0.1.

To permit the consideration of distinct signals with a clear notion of lying in a given
“class”, we consider synthetic signals drawn from a Gaussian Process (GP) [36] of length
n = 4096. We consider a class of “rough” signals and a class of “smooth” signals on
the domain [0, 1], with the former being drawn from a GP with an exponential kernel of
lengthscale 1

80 , and the latter being drawn from a GP with radial basis function (RBF) kernel
of lengthscale 1

20 . Example signals are shown in Figure 2.

Figure 2. Example Gaussian Process (GP) signals corresponding to the exponential kernel (top) and
RBF kernel (bottom).

Whenever we report PSNR values, these are evaluated on test signals that are generated
separately from the training signals. Specifically, we average over five such test signals
to obtain the average PSNR. We also re-generate the random A for these test signals, to
ensure that we are measuring the generalization to different measurement matrices from
the same family.

https://github.com/ethangela/compressd-sensing

Entropy 2021, 23, 1481 9 of 21

3.2. Algorithmic Details

We apply Successive Halving (Algorithm 1) to optimize the following hyperparame-
ters, initially limiting to the following values:

• #layers ∈ [2, 4, 6, 8, 10, 14, 18, 22, 26, 30].
• #channels ∈ [16, 32, 64, 128, 192, 256, 320, 384, 448, 512].
• input_size ∈ [2, 4, 8, 16, 24, 32, 48, 128, 256, 512].
• filter_size ∈ [4, 8, 16, 32, 48, 64].
• step_size ∈ [0.0005, 0.001, 0.002, 0.003, 0.005, 0.007, 0.01, 0.025, 0.05].

We let the resource in Algorithm 1 be the number of optimization iterations with a
maximum value of R = 2048. The number of possible configurations produced from the
five hyperparameter sets above is the cardinality of their Cartesian product, 54,000, and we
reduce this to 5400 by taking a random 10% of them. We also set the reduction factor as
η = 3, and maximum iteration index as smax = 8. The Adam optimizer parameters other
than step_size are kept at their default values.

For greedy fine-tuning (Algorithm 2), we choose set pabove and pbelow to be of the
form pcurrent ± ∆, where ∆ is initially chosen to be half the distance to the nearest value
in the corresponding list above, and is subsequently halved on each iteration. We stop
updating when the distances fall down to 1, except for the non-integer parameter step_size,
for which we use a threshold of 0.0005.

3.3. Optimized Parameters for Varying Settings

In Tables 1 and 2, we list the resulting optimized hyperparameters for GPs drawn
from the exponential kernel and RBF kernel, respectively. These results provide evidence
that the optimal hyperparameters can indeed vary significantly across measurement types
and signal types. For instance, we see a pattern that more challenging tasks tend to favor
more layers, with the exponential kernel signals (less smooth) tending to choose many
more than the RBF kernel signals (more smooth), except random inpainting which is a
relatively easier task. On the other hand, the input size tends to be smaller for harder tasks
(e.g., block 9/10) and higher for easier tasks (e.g., random 1/8). Our results also suggest
that a moderate number of channels (e.g., 150 to 200) and a relatively small step size (e.g.,
0.003 to 0.005) tend to perform well across multiple tasks.

Naturally, it is important to not only consider the optimal values, but also the robust-
ness with respect to varying values; this will be done in Section 3.5.

Table 1. Optimized hyperparameter configurations (exponential signals).

Measurement #Channels #Layers Input_Size Filter_Size Step_Size

block 9/10 110 29 2 11 0.0030
block 3/4 158 25 5 12 0.0030
block 1/2 180 21 18 15 0.0030
block 1/4 180 15 40 30 0.0030
block 1/8 240 9 120 100 0.0070

random 9/10 196 11 45 73 0.0030
random 3/4 158 6 33 73 0.0030
random 1/2 200 4 512 73 0.0030
random 1/4 250 4 512 46 0.0030
random 1/8 250 8 512 2 0.0050

compress 100 83 24 21 11 0.0100
compress 500 146 20 22 9 0.0030

compress 1024 141 29 24 18 0.0030
denoise 0.1 128 10 63 29 0.0020
denoise 0.05 150 4 120 26 0.0070

Entropy 2021, 23, 1481 10 of 21

Table 2. Optimized hyperparameter configurations (RBF signals).

Measurement #Channels #Layers Input_Size Filter_Size Step_Size

block 9/10 301 3 9 27 0.0055
block 3/4 343 6 14 10 0.0025
block 1/2 227 6 12 37 0.0035
block 1/4 399 2 14 6 0.0100
block 1/8 244 2 38 20 0.0035

random 9/10 112 5 34 27 0.0040
random 3/4 147 7 34 16 0.0045
random 1/2 178 8 42 38 0.0030
random 1/4 166 8 108 26 0.0045
random 1/8 192 10 128 4 0.0025

compress 100 94 7 8 41 0.0080
compress 500 107 10 21 38 0.0050

compress 1024 128 12 19 16 0.0040
denoise 0.1 269 2 13 48 0.0095

denoise 0.05 173 3 15 4 0.0025

3.4. Cross-Performance and Transferability

To examine the importance of optimizing for the specific task at hand, we apply
the optimized hyperparameter configuration of one type of measurement on other types
of measurements, and compare the resulting PSNR values. The results are shown in
Tables 3 and 4 for the exponential and RBF signals, with columns indicating training mea-
surement models and rows indicating test measurement models. The diagonals (in which
the training and testing are matched to each other) are highlighted via shading.

Table 3. Cross-performance PSNR table (exponential signals).

Test
Train Block

1/2
Block

1/8
Random

1/2
Random

1/8
Compress

100
Compress

500
Noise

0.1
Noise
0.05

block 1/2 23.46 22.71 20.21 22.71 23.11 23.23 23.40 21.26
block 1/8 30.73 30.85 27.93 30.85 30.47 30.52 30.51 29.93

random 1/2 34.06 36.11 36.97 36.11 33.44 34.54 33.48 35.00
random 1/8 34.73 37.67 41.61 37.67 33.96 35.62 36.45 35.83

compress 100 17.13 8.56 8.51 8.56 18.98 17.84 15.08 12.78
compress 500 25.87 25.72 17.75 18.56 26.12 25.91 22.11 25.97

denoise 0.1 24.41 21.49 20.02 20.12 25.18 24.51 25.63 24.52
denoise 0.05 29.70 27.61 25.60 26.03 29.83 29.74 28.92 30.14

Table 4. Cross-performance PSNR table (RBF signals).

Test
Train Block

1/2
Block

1/8
Random

1/2
Random

1/8
Compress

100
Compress

500
Noise

0.1
Noise
0.05

block 1/2 46.07 43.70 35.94 25.19 39.72 39.17 28.11 45.03
block 1/8 61.33 62.82 62.41 47.80 60.66 59.69 35.28 56.72

random 1/2 67.34 52.59 69.46 65.50 63.34 67.55 29.69 59.88
random 1/8 67.53 53.69 72.25 75.86 63.17 70.12 32.39 58.87

compress 100 39.05 38.87 28.95 18.61 42.94 38.59 30.28 41.86
compress 500 60.52 50.28 54.44 44.42 58.96 61.28 34.94 55.04

denoise 0.1 28.89 34.77 25.73 21.74 32.57 28.31 32.22 34.45
denoise 0.05 36.64 40.26 33.08 29.09 39.26 35.04 27.36 41.23

The fact that the shaded (diagonal) entries have the highest (or very close to highest)
value in each row verifies the importance of optimizing for the specific task at hand. In
some cases, the gaps can be very significant, e.g., in the ‘compress 100’ row. While the
shaded value can sometimes narrowly fall short of being best (e.g., ‘compress 500’ row), the
gap is small, and is attributed to (i) the train and test signals still being different, despite

Entropy 2021, 23, 1481 11 of 21

being in the same class, and (ii) the possibility of two different tasks having similar optimal
hyperparameters.

3.5. Effects of Single Hyperparameters

Next, we seek to examine the importance of single hyperparameters by taking the
optimized configurations, and varying one hyperparameter at a time while keeping the
rest fixed. While there are too many combinations of measurement models and hyperpa-
rameters to show here, representative examples are shown in Figure 3.

We find that a common feature in these plots is an “arch” shape, where the peak indi-
cates the optimal value, though this is not always the case (e.g., for other signals/measurement
models, filter_size was significantly more flat). A flat PSNR curve indicates robustness
with respect to varying its value, whereas a highly varying PSNR curve indicates that the
hyperparmeter is particularly important to optimize. For instance, the former scenario is
observed in sub-figures (a,h).

We additionally comment that these curves can help identify the impact of over-
estimating vs. under-estimating the optimal parameter choices for certain parameters. For
example, sub-figures (d,g) indicate that decreasing the input size from its optimal value
can degrade the performance much more compared to when increasing the value. Hence,
if one were faced with uncertainty about exactly where the optimal value lies (e.g., due to
possible future changes in the signal distribution or measurement type), one may prefer to
favor a slightly higher input size in this example.

3.6. Real-World Data and Comparisons to Baselines

Here, we compare the optimized Deep Decoder to a variety of baselines, as well as
moving from synthetic signals to real-world data.

For 1D real time-series data, we use hourly recordings of NO2 and O3 levels in air
quality of an Italian town throughout 2004–2005 [37]. We split the recordings into signals
of length n = 1024 for O3 and n = 512 for NO2, and normalize the range to [0, 1]. As a
data-cleaning pre-processing step, we trim the original signal to remove missing values,
while “stitching together” the pieces in a manner that maintains continuity. Examples of
the signals are shown in Figure 4.

For 2D image signals, we use the CelebA dataset [38] cropped to size 128× 128× 3.
We note that, when considering CelebA data, the model structure is suitably adapted for
2D images. For example, the filter of fixed-kernel convolution introduced in Equation (3) is
expanded from a vector to a square matrix, and similarly for the upsampling operations.

Similar to our synthetic experiments, we maintain a train/test separation for our
real-world data experiments, optimizing the hyperparameters using the training signals
but evaluating the performance on a separate set of test signals. For the 1D air quality data,
the training size is 3 and the test size is 5, while for CelebA the training size is 5 and test
size is 8.

We select four baseline models to compare against: Original Deep Decoder (Org. DD),
original Deep Image Prior (Org. DIP), Lasso with the wavelet basis (LassoW), and Total
Variation regularization (TV Norm). The first two methods are the pioneering untrained
neural network priors discussed in Section 1 with fixed ‘default’ parameters, and the latter
two methods are widely-used conventional priors. The hyperparameter configuration of
Org. DD [12] is: #channels = 320 for inpainting and #channels = 128 for the other tasks,
#layers = 6, input_size = 128, step_size = 0.01, and filter_size = 4. The hyperparameters of
Org. DIP are sourced from the deep generative CNN architecture (U-Net) embedded in
Org. DIP. We follow [3] and set the number of up/down layers as 5, the number of input
channels as 32, and the number of channels for tensors in middle layers as 128. The number
of optimization iterations for both Org. DD and Org. DIP is fixed to 10,000.

Entropy 2021, 23, 1481 12 of 21

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 3. Example single-hyperparameter plots for various signals in the tasks of random inpainting
(random 1/8), block inpainting (block 1/4), denoising (denoise 0.05), and compressive sensing
(compress 500). (a) #channels, inpainting, exponential; (b) step_size, inpainting, exponential; (c) #lay-
ers, inpainting, RBF; (d) input_size, compressing, RBF; (e) #layers, compress, RBF; (f) #channels,
denoising, exponential; (g) input_size, denoising, exponential; (h) filter_size, denoising, exponential.

Entropy 2021, 23, 1481 13 of 21

Figure 4. Examples of air quality time series signals for NO2 (top) and O3 (bottom).

For LassoW and TV Norm, we optimize the hyperparameter for each type of signal
and measurement, respectively. This hyperparameter, typically denoted λ, controls the
weighting of the penalty to the loss function. The maximum number of optimization
iterations for both LassoW and TV Norm is set as 2000.

Tables 5 and 6 give the average PSNR for each estimator with selected measurements
for GP signals, and Tables 7–9 give the results for NO2 data, O3 data, and CelebA images,
respectively. We see that, throughout these experiments, Opt. DD is consistently either
the best performing or very close to being so. The gains can be particularly significant for
challenging tasks (e.g., compress 100 in Table 5 and compress 25 in Tables 7 and 8), and for
tasks with aspects most different from those that the existing methods were optimized for
(e.g., DIP is less suited to RBF signals in Table 6).

Table 5. PSNR comparisons among baseline models (exponential signals).

Mea.
Est. Opt. DD Org. DD Org. DIP TV Norm LassoW

block 1/2 22.94 20.99 21.45 22.67 17.72
random 3/4 28.07 27.74 25.85 26.67 17.49

compress 100 18.16 11.44 16.07 16.59 5.69
dno 0.05 29.72 26.81 28.32 29.44 26.86

Table 6. PSNR comparisons among baseline models on (RBF signals).

Mea.
Est. Opt. DD Org. DD Org. DIP TV Norm LassoW

block 1/2 49.06 43.39 29.36 32.58 18.25
random 3/4 65.03 64.69 50.04 42.78 19.47

compress 100 43.32 42.78 17.48 21.21 6.20
dno 0.05 40.77 36.76 29.03 40.95 27.36

Entropy 2021, 23, 1481 14 of 21

Table 7. PSNR comparisons among baseline models (NO2 signals).

Mea.
Est. Opt. DD Org. DD Org. DIP TV Norm LassoW

block 3/4 22.08 16.60 16.94 18.81 16.72
block 1/2 21.51 19.95 19.57 19.04 19.19
block 1/8 27.45 26.25 27.71 24.43 21.59

random 3/4 24.81 24.73 24.81 20.73 17.39
random 1/2 30.00 29.82 27.93 23.01 18.67
random 1/8 40.73 37.90 34.81 27.22 24.47
compress 25 22.61 13.36 10.92 11.99 5.42
compress 256 31.00 30.90 20.97 18.48 16.89

dno 0.1 24.66 20.53 22.64 25.71 21.41
dno 0.05 27.58 26.77 28.24 30.02 22.55

Table 8. PSNR comparisons among baseline models (O3 signals).

Mea.
Est. Opt. DD Org. DD Org. DIP TV Norm LassoW

block 3/4 16.00 15.22 15.95 17.58 15.71
block 1/2 18.76 16.92 18.13 18.64 17.65
block 1/8 25.27 24.91 24.23 21.79 21.53

random 3/4 21.71 21.45 21.10 20.95 16.33
random 1/2 27.66 27.23 24.49 25.19 18.73
random 1/8 38.05 34.43 31.73 33.71 23.65
compress 25 16.70 11.90 8.10 14.72 6.60
compress 256 22.88 22.42 21.80 20.34 15.21

dno 0.1 20.43 22.55 22.45 23.41 20.46
dno 0.05 27.11 28.05 27.63 27.04 20.88

Table 9. PSNR comparisons among baseline models (CelebA images).

Mea.
Est. Opt. DD Org. DD Org. DIP TV Norm LassoW

block 3/4 18.70 16.66 16.23 16.03 12.80
block 1/2 23.65 22.67 20.82 18.03 15.68
block 1/4 27.77 27.43 25.42 22.21 17.35

random 3/4 30.07 28.15 24.59 19.93 16.63
random 1/2 35.65 32.21 29.84 25.98 16.63
random 1/4 39.82 36.63 32.44 31.21 18.09

compress 400 20.11 17.59 18.27 9.35 6.48
compress 4096 27.87 26.06 23.77 14.89 12.57

dno 0.1 38.45 38.22 31.15 24.07 18.47
dno 0.05 49.12 38.01 31.15 28.27 19.77

The only case in which Opt. DD appears to underperform is denoising on 1D time-
series data, in which the TV norm approach works unusually well (in comparison to its
worse performance in many other cases). In one of these denoising entries, Opt. DD is in
fact slightly below Org. DD, and we believe that this is due to the fact that having a small
training set size can sometimes limit the generalization performance (e.g., if a test signal
has some distinct features). However, among our diverse set of experiments, we otherwise
found no such cases.

To complement the numerical values, we give some examples of reconstructed signal
segments in Figures 5–8. We observe that, at least in these examples, Opt. DD is able to
better match the true signal with fewer artifacts. We also visualize the comparisons of
reconstructed CelebA images among all baselines in Figures 9 and 10, and we believe
that they are consistently the most visually similar to the originals, thereby matching the
consistent PSNR improvements observed in Table 9.

Entropy 2021, 23, 1481 15 of 21

Figure 5. Exponential signal with denoising (0.05): PSNR(Opt. DD) = 29.79, PSNR(Org. DD) = 23.18.

Figure 6. Exponential signal with compressing (1024): PSNR(Opt. DD) = 27.91, PSNR(Org. DIP) = 27.01.

Figure 7. NO2 signal with inpainting (block 1/4): PSNR(Opt. DD) = 34.16, PSNR(Org. DIP) = 33.45. The large deviations of
the Org. DIP curve correspond to locations of missing blocks.

Figure 8. O3 signal with inpainting (random 1/8): PSNR(Opt. DD) = 37.26, PSNR(Org. DD) = 34.31.

Entropy 2021, 23, 1481 16 of 21

Original Measured Opt. DD Org. DD Org. DIP TV Norm Lasso
Figure 9. CelebA images with inpainting (block 1/4).

Original Measured Opt. DD Org. DD Org. DIP TV Norm Lasso

Figure 10. CelebA images with inpainting (random 3/4).

3.7. Accelerated Multi-Coil MRI Data

In this final experiment, we apply our proposed algorithms on data from Magnetic
Resonance Imaging (MRI). MRI is a widely-used medical imaging technique that promises
impressive accuracy, but is prone to requiring long scans that may cause discomfort.
Starting with the pioneering work of [39], various compressive sensing based approaches
have been proposed for taking fewer measurements and reducing the scan time.

In this experiment, we switch to a slightly more general observation model and
consider a variant of the Deep Decoder specifically targeted at this application; we proceed
by giving the relevant details. The main difference from the measurement model (1) is

Entropy 2021, 23, 1481 17 of 21

that measurements are taken from multiple sensors (coils). In addition, MRI machines are
invariably constrained to take measurements in the Fourier domain. Thus, the goal is to
recover an image x∗ ∈ Cn from a set of measurements of the form

yi = MFx∗ + w, i = 1, . . . , nc, (10)

where M ∈ R`×n is a mask that indicates which Fourier coefficients are observed, (Specifi-
cally, each row of M has a single 1 at the observed coefficient, and the remaining entries
are zero.) F ∈ Rn×n is the Fourier transform operation, nc is the number of magnetic coils,
and w ∈ R` still represents additive noise. Each yi ∈ R` represents the ` measurements
from a single coil, with the idea being that combining measurements from multiple coils
improves accuracy. In general, each coil’s measurements may further be weighted accord-
ing to a sensitivity map (i.e., some regions appear brighter than others), but this is omitted
in (10) since we only seek to follow an experimental setup from [7] that similarly omitted
sensitivity maps. The loss function in (4) is updated as follows:

Ĉ← minimize
C

1
2

nc

∑
i=1
‖MFG(C)− yi‖2. (11)

We work with the recently-released fastMRI dataset [40] which consists of train/
validation set of fully-sampled measurements of knees taken with nc = 15 coils. We
replicate an experiment from [7] to test the performance of three different generators, Deep
Image Prior, Deep Decoder, and Deep Decoder variant specifically called ConvDecoder
which is specifically targeted towards the MRI application. Specifically, the difference is that,
while Deep Decoder uses bi-linear upsampling and 1× 1 convolutions, the ConvDecoder
uses Nearest-Neighbor up-sampling and a 3 × 3 convolutional layer. We replace the
constant 3 here by a tunable parameter filter_size.

In [7], Deep Decoder and ConvDecoder are tuned through a basic grid search, and our
objective here is to tune these networks through our proposed algorithms and compare the
results. The relevant additional details of this experiment are as follows:

• The mask M is chosen to be a standard 1D variable-density mask (i.e., random or equi-
spaced vertical lines across the Fourier space), and is randomly chosen for each run.
We do not add w explicitly, as the ground truth images already contain some noise.

• Following [7], three additional image comparison metrics are considered along with
the PSNR, namely, the Visual Information Fidelity (VIF) [41], Structural Similarity
Index (SSIM) [42], and Multi-Scale SSIM (MS-SSIM) [43]. However, following our
previous sections, all hyperparameter tuning is done with respect to the PSNR.

• We optimize the same hyperparameters for ConvDecoder as our previous experiments,
but the possible settings of filter_size for ConvDecoder during Successive Halving are
adjusted as filter_size ∈ [2,3,4,5,6,7], in view of all considered filter sizes being small
in [7]. For consistency with [7], we also change the number of optimization iterations
to 20,000 for all methods.

• Following [7], we do not consider filter_size for Deep Decoder, and instead use the
original Deep Decoder as introduced in (2), rather than the variant with an additional
fixed-kernel convolution introduced just above (3).

• Each scan of a knee from fastMRI consists of a number of slices, each of which is a 2D
image, and together the images form a 3D volume. We choose the the middle slice of
the volume to obtain each image, and discard the other slices. The train and test sizes
are set as 4 and 16, respectively.

Table 10 presents the evaluation performance of the optimized DD and ConvDD
methods vs. the original variants and the original Deep Image Prior, where “original”
means making use of the grid search hyperparameters from [7]. We observe that both
Opt. ConvDD and Opt. DD are able to slightly improve on the original versions, again
indicating the utility and versatility of our tuning algorithms. A minor exception is the

Entropy 2021, 23, 1481 18 of 21

SSIM, but the difference is very marginal; perhaps most important is the PSNR, since this
is the metric that was optimized.

Table 10. Comparisons of various performance metrics and hyperparameter configurations (fastMRI images). The variant
of Deep Decoder used here does not have a filtering step, so filter_size is omitted.

Method VIF MS-SSIM SSIM PSNR #Channels #Layers Input_Size Filter_Size Step_Size

Opt. ConvDD 0.9674 0.9429 0.8212 31.8063 252 8 5 3 0.002
Org. ConvDD 0.9599 0.9422 0.8259 31.0642 256 8 4 3 0.008

Opt. DD 0.6021 0.8204 0.6515 28.2947 352 9 18 - 0.002
Org. DD 0.5725 0.8029 0.6529 28.2217 368 10 16 - 0.008
Org. DIP 0.5644 0.8644 0.5163 26.9310 256 16 (640,368) 3 0.008

Two sets of sample reconstructions are shown in Figure 11. These reconstructions
highlight that the visual quality can be improved in some cases (top row) but remains
relatively unchanged in other cases (bottom row). The details of the hyperparamter config-
urations are also shown in the right part of Table 10. The most notable hyperparameter
change from our tuning algorithm was the optimized step size, with a default value of
0.008 but our optimized value given by the smaller value of 0.002.

Ground Truth Opt. ConvDD Org. ConvDD Opt. DD Org. DD

Figure 11. Sample reconstructions of multi-coil knee measurements from fastMRI images.

4. Conclusions

We have studied the role of architecture selection in signal recovery via untrained
neural networks, with some of the main implications including (i) different measurement
models and signals may benefit from significantly different hyperparameters; (ii) the
performance may drop significantly when transferring configurations directly from one
setting to another, and (iii) certain hyperparameters tend to exhibit better robustness to
deviations from the optimum than others.

Possible directions for future work include performing a similar study of hyperparam-
eter selection for Deep Image Prior [3], and perhaps more ambitiously, exploring methods
that search directly over architectures rather than only hyperparameters of a pre-specified
class of architectures (e.g., see [29] and the references therein in the context of neural
networks for classification).

Author Contributions: Y.S. conceptualized the problem, performed and analyzed the experiments,
and led the writing. H.Z. assisted with coding and the generation of the experimental results.

Entropy 2021, 23, 1481 19 of 21

J.S. provided ongoing supervision and corrections, and assistance with the writing. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Singapore National Research Foundation (NRF) under
Grant No. R-252-000-A74-281.

Data Availability Statement: This research uses four data sets: (i) Synthetic generated data with
code available at https://github.com/ethangela/compressd-sensing (accessed 6 October 2021); (ii)
Air quality dataset from http://archive.ics.uci.edu/ml/datasets/Air+Quality (accessed 6 October
2021); (iii) CelebA dataset from https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html (accessed 6
October 2021); (iv) fastMRI dataset from https://fastmri.org/dataset/ (accessed 6 October 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Theorem 1

We first define the empirical average

Ê[γH(x, y)] :=
1
m

m

∑
j=1

γH(xj, yj), (A1)

which is a random variable depending on the training data (x1, y1), . . . , (xm, ym). In addi-
tion, to reduce notation, we define

∆m = E[γĤ(x, y)]− E[γH∗(x, y)]. (A2)

We expand this definition as

∆m = (E[γĤ(x, y)]− Ê[γĤ(x, y)]) + (Ê[γĤ(x, y)]− Ê[γH∗(x, y)])

+ (Ê[γH∗(x, y)]− E[γH∗(x, y)])

≤
∣∣∣Ê[γĤ(x, y)]− E[γĤ(x, y)]

∣∣∣+ ∣∣∣Ê[γH∗(x, y)]− E[γH∗(x, y)]
∣∣∣, (A3)

where the last line holds because Ê[γĤ(x, y)] ≤ Ê[γH∗(x, y)] by the definition of Ĥ in (8).
Since the loss function is assumed to be bounded within [0, 1], and both the (x, y) pairs

and training signals {xj, yj}m
j=1 are i.i.d. and sampled from the same distribution PXY, we

may apply Hoeffding’s inequality ([44] Section 2.6) to obtain

P
(∣∣∣Ê[γH(x, y)]− E[γH(x, y)]

∣∣∣ > ε0

)
≤ 2 exp(−2mε2

0) (A4)

for any fixed H and constant ε0 > 0. Furthermore, as we are considering finite H, we can
simply apply the union bound to (A4) to obtain

P
(⋃

H∈H

{∣∣∣Ê[γH(x, y)]− E[γH(x, y)]
∣∣∣ > ε0

})
≤ 2|H| exp(−2mε2

0). (A5)

By setting the right-hand side to a target value η and rearranging, we can find a sufficient
number of samples is

m =
1

2ε2
0

log
2|H|

η
. (A6)

In addition, solving m = 1
2ε2

0
log 2|H|

η for ε0 gives

ε0 =

√
1

2m
log

2|H|
η

. (A7)

We conclude that
∣∣Ê[γH(x, y)]− E[γH(x, y)]

∣∣ ≤ ε0, for all H ∈ H, with probability at least
1− η.

https://github.com/ethangela/compressd-sensing
http://archive.ics.uci.edu/ml/datasets/Air+Quality
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://fastmri.org/dataset/

Entropy 2021, 23, 1481 20 of 21

Now, assume that the preceding event occurs, and recall that H∗ is the hyperparameter
choice that minimizes E[γH(x, y)]. Then, we can further bound (A3) as follows:

∆m ≤
∣∣∣Ê[γH∗(x, y)]− E[γH∗(x, y)]

∣∣∣+ ∣∣∣Ê[γĤ(x, y)]− E[γĤ(x, y)]
∣∣∣

≤ ε0 + ε0

= 2ε0

=

√
2
m

log
2|H|

η
.

(A8)

This completes the proof of Theorem 1.

References
1. Candès, E.J. Compressive Sampling. In Proceedings of the International Congress of Mathematicians, Madrid, Spain, 22–30

August 2006; Volume 3, pp. 1433–1452.
2. Bora, A.; Jalal, A.; Price, E.; Dimakis, A.G. Compressed Sensing Using Generative Models. In Proceedings of the 34th International

Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 537–546.
3. Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Deep image prior. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9446–9454.
4. Heckel, R.; Hand, P. Deep Decoder: Concise Image Representations from Untrained Non-convolutional Networks. In Proceedings

of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
5. Quan, Y.; Ji, H.; Shen, Z. Data-driven multi-scale non-local wavelet frame construction and image recovery. J. Sci. Comput. 2015,

63, 307–329. [CrossRef]
6. Van Veen, D.; Jalal, A.; Soltanolkotabi, M.; Price, E.; Vishwanath, S.; Dimakis, A.G. Compressed sensing with deep image prior

and learned regularization. arXiv 2018, arXiv:1806.06438.
7. Darestani, M.Z.; Heckel, R. Accelerated MRI with un-trained neural networks. IEEE Trans. Comput. Imaging 2021, 7, 724–733.

[CrossRef]
8. Baguer, D.O.; Leuschner, J.; Schmidt, M. Computed tomography reconstruction using deep image prior and learned reconstruction

methods. Inverse Probl. 2020, 36, 094004. [CrossRef]
9. Baldassarre, L.; Li, Y.H.; Scarlett, J.; Gözcü, B.; Bogunovic, I.; Cevher, V. Learning-Based Compressive Subsampling. IEEE J. Sel.

Top. Signal Process. 2016, 10, 809–822. [CrossRef]
10. Budhaditya, S.; Pham, D.S.; Lazarescu, M.; Venkatesh, S. Effective anomaly detection in sensor networks data streams. In

Proceedings of the IEEE International Conference on Data Mining, Miami, FL, USA, 6–9 December 2009; pp. 722–727.
11. Ravula, S.; Dimakis, A.G. One-dimensional Deep Image Prior for Time Series Inverse Problems. arXiv 2019, arXiv:1904.08594.
12. Heckel, R. Regularizing Linear Inverse Problems with Convolutional Neural Networks. arXiv 2019, arXiv:1907.03100.
13. Dhar, M.; Grover, A.; Ermon, S. Modeling sparse deviations for compressed sensing using generative models. In Proceedings of

the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018.
14. Jagatap, G.; Hegde, C. Algorithmic guarantees for inverse imaging with untrained network priors. In Proceedings of the 33th

Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 14832–14842.
15. Asim, M.; Daniels, M.; Leong, O.; Ahmed, A.; Hand, P. Invertible generative models for inverse problems: mitigating representa-

tion error and dataset bias. In Proceedings of the 37th International Conference on Machine Learning, Virtual Conference, 12–18
July 2020.

16. Yin, W.; Yang, W.; Liu, H. A neural network scheme for recovering scattering obstacles with limited phaseless far-field data. J.
Comput. Phys. 2020, 417, 109594. [CrossRef]

17. Ongie, G.; Jalal, A.; Metzler, C.A.; Baraniuk, R.G.; Dimakis, A.G.; Willett, R. Deep learning techniques for inverse problems in
imaging. IEEE J. Sel. Areas Inf. Theory 2020, 1, 39–56. [CrossRef]

18. Kattamis, A.; Adel, T.; Weller, A. Exploring properties of the deep image prior. In Proceedings of the NeurIPS 2019 workshop
Deep Learning and Inverse Problems, Vancouver, QC, Canada, 13 December 2019.

19. Dittmer, S.; Kluth, T.; Maass, P.; Baguer, D.O. Regularization by architecture: A deep prior approach for inverse problems. J. Math.
Imaging Vis. 2020, 62, 456–470. [CrossRef]

20. Uezato, T.; Hong, D.; Yokoya, N.; He, W. Guided deep decoder: Unsupervised image pair fusion. In Proceedings of the European
Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 87–102.

21. Heckel, R.; Soltanolkotabi, M. Compressive sensing with un-trained neural networks: Gradient descent finds a smooth approxi-
mation. In Proceedings of the 37th International Conference on Machine Learning, Virtual Conference, 12–18 July 2020.

22. Arora, S.; Roeloffs, V.; Lustig, M. Untrained modified deep decoder for joint denoising parallel imaging reconstruction. In
Proceedings of the International Society for Magnetic Resonance in Medicine Annual Meeting, Virtual Conference, 8–14 August
2020.

http://doi.org/10.1007/s10915-014-9893-2
http://dx.doi.org/10.1109/TCI.2021.3097596
http://dx.doi.org/10.1088/1361-6420/aba415
http://dx.doi.org/10.1109/JSTSP.2016.2548442
http://dx.doi.org/10.1016/j.jcp.2020.109594
http://dx.doi.org/10.1109/JSAIT.2020.2991563
http://dx.doi.org/10.1007/s10851-019-00923-x

Entropy 2021, 23, 1481 21 of 21

23. Bostan, E.; Heckel, R.; Chen, M.; Kellman, M.; Waller, L. Deep phase decoder: Self-calibrating phase microscopy with an untrained
deep neural network. Optica 2020, 7, 559–562. [CrossRef]

24. Rey, S.; Marques, A.G.; Segarra, S. An underparametrized deep decoder architecture for graph signals. In Proceedings of the 8th
International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Le Gosier, Guadeloupe,
15–18 December 2019; pp. 231–235.

25. Daniels, M.; Hand, P.; Heckel, R. Reducing the Representation Error of GAN Image Priors Using the Deep Decoder. arXiv 2020,
arXiv:2001.08747.

26. Darestani, M.Z.; Chaudhari, A.S.; Heckel, R. Measuring Robustness in Deep Learning Based Compressive Sensing. In Proceedings
of the 38th International Conference on Machine Learning, Virtual Conference, 18–24 July 2021.

27. Zoph, B.; Le, Q.V. Neural architecture search with reinforcement learning. In Proceedings of the 5th International Conference on
Learning Representations, Toulon, France, 24–26 April 2017.

28. Pham, H.; Guan, M.; Zoph, B.; Le, Q.; Dean, J. Efficient neural architecture search via parameters sharing. In Proceedings of the
35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018.

29. Liu, H.; Simonyan, K.; Yang, Y. DARTS: Differentiable architecture search. In Proceedings of the 7th International Conference on
Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

30. Elsken, T.; Metzen, J.H.; Hutter, F. Neural architecture search: A survey. J. Mach. Learn. Res. 2019, 20, 1997–2017.
31. Jamieson, K.; Talwalkar, A. Non-stochastic best arm identification and hyperparameter optimization. In Proceedings of the 18th

Artificial Intelligence and Statistics, Cadiz, Spain, 9–11 May 2016; pp. 240–248.
32. Li, L.; Jamieson, K.; DeSalvo, G.; Rostamizadeh, A.; Talwalkar, A. Hyperband: A novel bandit-based approach to hyperparameter

optimization. J. Mach. Learn. Res. 2017, 18, 6765–6816.
33. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456.
34. Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press:

Cambridge, UK, 2014.
35. Dirksen, S.; Jung, H.C.; Rauhut, H. One-bit compressed sensing with partial Gaussian circulant matrices. Inf. Inference A J. IMA

2020, 9, 601–626. [CrossRef]
36. Rasmussen, C.E. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006.
37. De Vito, S.; Massera, E.; Piga, M.; Martinotto, L.; Di Francia, G. On field calibration of an electronic nose for benzene estimation in

an urban pollution monitoring scenario. Sens. Actuators B Chem. 2008, 129, 750–757. [CrossRef]
38. Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep Learning Face Attributes in the Wild. In Proceedings of the International Conference on

Computer Vision (ICCV 2015), Santiago, Chile, 11–18 December 2015.
39. Lustig, M.; Donoho, D.L.; Santos, J.M.; Pauly, J.M. Compressed sensing MRI. IEEE Signal Process. Mag. 2008, 25, 72–82. [CrossRef]
40. Zbontar, J.; Knoll, F.; Sriram, A.; Murrell, T.; Huang, Z.; Muckley, M.J.; Defazio, A.; Stern, R.; Johnson, P.; Bruno, M.; et al. fastMRI:

An open dataset and benchmarks for accelerated MRI. arXiv 2018, arXiv:1811.08839.
41. Sheikh, H.R.; Bovik, A.C. Image information and visual quality. IEEE Trans. Image Process. 2006, 15, 430–444. [CrossRef] [PubMed]
42. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE

Trans. Image Process. 2004, 13, 600–612. [CrossRef] [PubMed]
43. Wang, Z.; Simoncelli, E.P.; Bovik, A.C. Multiscale structural similarity for image quality assessment. In Proceedings of the 37th

Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003; Volume 2, pp. 1398–1402.
44. Boucheron, S.; Lugosi, G.; Massart, P. Concentration Inequalities: A Nonasymptotic Theory of Independence; Oxford University Press:

Oxford, UK, 2013.

http://dx.doi.org/10.1364/OPTICA.389314
http://dx.doi.org/10.1093/imaiai/iaz017
http://dx.doi.org/10.1016/j.snb.2007.09.060
http://dx.doi.org/10.1109/MSP.2007.914728
http://dx.doi.org/10.1109/TIP.2005.859378
http://www.ncbi.nlm.nih.gov/pubmed/16479813
http://dx.doi.org/10.1109/TIP.2003.819861
http://www.ncbi.nlm.nih.gov/pubmed/15376593

	Introduction
	Related Work
	Background: Deep Decoder
	Hyperparameters and Problem Variables

	Hyperparameter Selection
	Theoretical Viewpoint
	Successive Halving
	Greedy Fine-Tuning

	Experiments
	Measurement Models and Signals
	Algorithmic Details
	Optimized Parameters for Varying Settings
	Cross-Performance and Transferability
	Effects of Single Hyperparameters
	Real-World Data and Comparisons to Baselines
	Accelerated Multi-Coil MRI Data

	Conclusions
	Proof of Theorem 1
	References

