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Abstract: Session-based recommendations aim to predict a user’s next click based on the user’s
current and historical sessions, which can be applied to shopping websites and APPs. Existing session-
based recommendation methods cannot accurately capture the complex transitions between items. In
addition, some approaches compress sessions into a fixed representation vector without taking into
account the user’s interest preferences at the current moment, thus limiting the accuracy of recom-
mendations. Considering the diversity of items and users’ interests, a personalized interest attention
graph neural network (PIA-GNN) is proposed for session-based recommendation. This approach
utilizes personalized graph convolutional networks (PGNN) to capture complex transitions between
items, invoking an interest-aware mechanism to activate users’ interest in different items adaptively.
In addition, a self-attention layer is used to capture long-term dependencies between items when
capturing users’ long-term preferences. In this paper, the cross-entropy loss is used as the objective
function to train our model. We conduct rich experiments on two real datasets, and the results show
that PIA-GNN outperforms existing personalized session-aware recommendation methods.

Keywords: session-based recommendation; graph neural networks; attention; recommendation system

1. Introduction

In recent years, the rapid development of Internet technology in many applications
(such as e-commerce, social media, etc.) has caused information overload. Recommenda-
tion system play a crucial role in helping users alleviate information overload and select
interested information. Among them, content-based RS and CF-based RS are the two most
widely used methods which make simple and efficient recommendations by calculating
the similarity between items. These methods assume that all historical interactions of users
are equally important to their current preferences, but this is impossible in reality. The
user’s click depends not only on their long-term preference, but also on their short-term
preference and time-sensitive context. In many cases, the items currently interacting with
the user can better reflect their recent preferences. For example, in e-commerce, the user
is more likely to purchase recently viewed products because these products are more
representative of the user’s recent needs. In this case, content-based RS and collabora-
tive filtering-based RS fail to capture the change of user’s preferences and recommend
inaccurately. In addition, most existing recommendation systems use users’ information
and historical behavior records for personalized recommendation. However, in actual
applications, user information is unknown, and user history behaviors are not available
besides the current session, so it is difficult to produce accurate results. To solve these
problems, a session-based recommendation system extracts interactive information to
represent the user’s preference transfer and use the limited historical behavior to predict
the user’s next action (such as which item to click).

The internet contains a large amount of information, and users’ interests are constantly
changing. A session-based recommendation system can capture a user’s short-term prefer-
ences from a user’s recently generated session and get the changes of users’ preferences
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between different sessions. Based on the above two points, session-based recommendation
system is widely used in shopping and short video APPs.

Since the session sequence is divided by time, it can be represented as time series, so
Markov chains can be used. Markov assume that the user’s next action is only influenced by
the current action, regardless of other factors. This strong independence assumption is vul-
nerable to noisy data and may limit the accuracy of recommendations. The research of [1]
showed that user preferences are not entirely dependent on the time-order of sequences and
emphasized the importance of recurrent neural networks (RNNs) in a session-based recom-
mendation system. Recent methods divide user preferences into long-term preferences and
short-term preferences. Hidasi et al. proposed an RNN-based method GRU4Rec [2] which
models user short-term preferences by encoding items. NARM [3] uses two RNN-based
subsystems to capture the long-term and short-term preferences of users respectively. This
method selects the last item in the session to represent short-term preferences, and others
represent long-term preferences. Similar to NARM, STAMP [4] uses a simple MLP model
and an attentive net to extract users’ potential interests. Although these methods have
achieved good results, we believe that these methods are still in their infancy and have
certain limitations. Complex user behavior patterns are important for session-based recom-
mendation, yet the above sequence-based approach only modeled sequential transitions
between consecutive items, ignoring the relationship between other items. To overcome
this limitation, this paper models the items in a session as a session graph, captures the
transitions between items by GNN, and generates an embedding vector representation.

In addition, when making recommendations, the candidates are rich and the users’
interests are usually diverse. For example, as a boy, Alex is interested in computers,
sneakers, and game consoles at the same time. Therefore, over a period of time, he may
click on items from all three categories. Many recent models [3–5] represent user interests
as a fixed-size embedding vector, which cannot express multiple interests of users, and
limit the expressiveness of recommendation models. It is not necessary to embed all user
interests into a single vector when making predictions for a specific candidate. For example,
suppose Alex has a historical session (computer, sneakers, milk, game console). If we want
to recommend gamepads to him, we will focus on his interest in game consoles rather
than milk. In other words, we can recommend items based on user behavior for a user’s
specific interests.

Figure 1 illustrates the workflow of the proposed PIA-GNN method. In this paper, we
generate a representation for each item by modeling session sequences as graph structures
data that capture the complex transitions between items [6,7]. We use a personalized
graph neural network (PGNN) to further strengthen the association between each user and
its different sessions by adding users’ information when updating the node embedding
updates. In addition, in order to analyze the specific interests of the user, we add a new
interest attention module, which adaptively activates user interest by considering the
historical behavior correlation of a given target item. Then, we use the self-attention
network to obtain the global embedding. Finally, we use the user’s target, global and local
embedding in the session to construct the session embedding, and infer the user’s next
action based on the item embedding and session embedding.
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Figure 1. Workflow of the PIA-GNN method. We model all sessions as session graphs and process each session graph one
by one. Then a node vector representation is obtained using PGNN network. The global embedding sglobal is obtained using
the self-attention mechanism, the last item of the session is used as the local embedding slocal , and an interest embedding
sinterest is obtained by interest perception. In the prediction layer, we represent each session as a linear representation of the
interest embedding, local embedding and global embedding. Finally, we calculate the recommendation ranking score for
each candidate item.

Main contributions:

• For personalized recommendation scenarios, we use a new user-based personalized
graph neural network (PGNN), which can capture complex item transformations for
different user interests.

• For the different interests of users, we add the interest attention module, which
can activate different user interests adaptively for different targets and improve the
expressiveness of the model.

• We have studied the model on two real-world datasets. Experiments demonstrate the
effectiveness of the proposed model.

2. Relate Work

In this section, we review some related work on session-based recommender systems,
including traditional approaches, sequential approaches based on Markov chains, and
RNN-based approaches. Then, we introduce neural networks on graphs.

2.1. Traditional Recommendation Method

Matrix factorization [8–10] is a frequently method used in recommender systems.
MF factorize a user-item evaluation matrix into two low-rank matrices, each of which
represents the potential factors of a user or an item. In matrix factorization, user preferences
can only be provided by some positive click behaviors and are not applicable to session-
based recommendations. In item-based neighborhood methods [11], item similarity can be
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calculated by all items in a session. However, these methods have difficulty in considering
the order of items and generate predictions based on the last click only. To solve the above
problem, Markov chain-based sequential prediction methods are proposed, which predict
the user’s next behavior based on the last one. Zimdars et al. [12] used the probabilistic
decision tree model to encode the conversion mode of goods. Shani et al. [13] regard
recommendation generation as a sequential optimization problem, which is solved by
Markov decision processes (MDPs). FPMC [14] models the sequence behavior between
two clicks by decomposing the user’s personalized probability transfer matrix and provide
prediction for each sequence more accurately. The main drawback of Markov chain-
based models is that they independently combine past components. This independence
assumption is too strong and limits the accuracy of the predictions.

2.2. Deep-Learning-Based Methods

In recent years, deep neural networks have been successfully applied to machine
translation [13,15,16], conversational machines [17], and other sequential modeling fields
and achieved good results. For session-based sequential recommendation, a recurrent
neural network approach was proposed in [2]. On this basis, Hidasi et al. [18] proposed
a model, GRU4REC, that applies RNN networks to SBR, which uses multilayer gated
recurrent units (GRUs) to model item interaction sequences and can model conversations
based on the characteristics of clicked operations and clicked items. Tan et al. [9] improved
the performance of recurrent model by considering temporal changes in user behavior and
appropriate data augmentation techniques. The NARM model [3] integrates the attention
mechanism into the GRU encoder and designs a global and local RNN recommender to
capture users’ sequential behavior and primary purpose. The SHAN model [19] uses a
two-layer hierarchical attention network that considers both long-term and short-term pref-
erences. Liu et al. [4] proposed an attention-based short-term memory network (STAMP),
using a simple MLP network and an attention network to capture the general and current
interests of users. Both NARM and STAMP use an attention mechanism to emphasize the
importance of the last click. However, the above session or sequence-based models can
only make suggestions using current anonymous sessions or individual sequences.

2.3. Graph Neural Networks

Nowadays, neural networks have been used to generate representations of graph-
structured data, such as social networks and knowledge bases. On the one hand, the
unsupervised algorithm Deep Walk [20], extending word2vec [21], learns graph node
representations by random walk. Following Deep Walk, the unsupervised network embed-
ding algorithms LINE [22] and node2vec [23] are the most representative approaches. On
the other hand, the classical neural networks CNN and RNN are also applied on graph
structured data. Duvenaud et al. [24] introduced a convolutional neural network that can
directly operate on graphs of any sizes and shapes. Thomas N [25] selected the convo-
lution architecture by a localized approximation of spectral graph convolution, which is
an effective variant that can directly operate on the graph. However, these methods can
only be used for undirected graphs. Previously, graph neural networks (GNNs) [26,27]
were proposed in the form of recurrent neural networks to operate on directed graphs.
GNNs are good at processing graph-structured data and can capture richer information in
sequential data. Gated graph neural networks [28] use gated recurrent units and back prop-
agation in time (BPTT) to compute gradients based on GNNs. Graph attention networks
(GAT) [29] uses an attention mechanism to learn the weights of nodes and neighbor nodes.
Wu et al. [12] proposed a gated GNN model (called SR-GNN) to learn item embeddings on
the session graph, and then integrated each learned item embedding based on the attention
value to obtain a representative session embedding, and the attention value is calculated
based on the relevance of each item to the last item. SR-GNN [12] is the first model that
captures complex item transition relationships using gated graph neural networks in a
session-based recommendation scenario, but it ignores the user’s role in item transition
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relationships and does not exploit historical user session information to improve recom-
mendation performance. In this paper, we propose the PTA-GNN model that can make
personalized session recommendations for user-specific interests.

3. The Proposed Method

In this section, we introduce the proposed PTA-GNN model, that uses personalized
graph neural network, user interest perception embedding and attention mechanism to
achieve session-based recommendation. We describe the problem first. Then, the proposed
model is presented in this part.

3.1. Problem Statement

Session-based recommendation aims to predict which item the user wants to click next
based on anonymous sessions. Here, we give the formulation of the session-based problem
as follows. In session-based recommendation, let V =

{
v1, v2, · · · , v|V|

}
represent the set

of all unique items involved in all sessions. For each anonymous session s, the sequence
of actions clicked by the user is denoted as s = {vs,1, vs,2, · · · , vs,n}, where vs,i ∈ V is the
item clicked by the user within the session and n stands for the total number of sessions
for a user u. Given the user’s action sequence s = {vs,1, vs,2, · · · , vs,n}, our model aims to
predict the next click (vs,n+1). To be precise, our model generates a ranking list of all the

candidates that may appear in the session as ŷ =
{

ŷ1, ŷ2, · · · , ŷ|V|
}

represents the output
probability of all items, where ŷi represents the recommendation score of the item vi. Since
recommenders usually recommend users more than once, we select the Top− k items from
ŷ for recommendation.

3.2. Constructing Session Graphs

Each session sequence s can be modeled as a directed graph Gs = (Vs, Es), where Vs is
the set of nodes and Es is the set of edges, in this session graph Gs, each node represents
an item vs,i ∈ V . Edge (vs,i−1, vs,i) ∈ Es represents that the user successively clicks the
item vs,i−1 and the item vs,i. Therefore, each session sequence can be modeled as a directed
graph. Since the items in the sequence may be repeated, we assign a normalized weight to
each edge, which is the number of occurrences of the edge divided by the outgoing degree
of the node where the edge starts. In the session graph, the edge vi → vj represents that
the user first clicked on item vi and then clicked on item vj in a particular session. In this
case, we assume that on the edge vi → vj , the effect of vi on vj and the effect of vj on vi
are different, and it produces two types of edges to represent two different transformation
relationships. These two directed edges are called the incoming and outgoing edges, and
the weights are ωin

ij and ωout
ij , respectively. The weights can be calculated by Equations (1)

and (2) as follows:

ωin
ij =

Count
(
vj, vi

)
∑vk→vi

Count(vk, vi)
(1)

ωout
ij =

Count
(
vi, vj

)
∑vi→vk

Count(vi, vk)
(2)

Ain
s [i, j] = ωin

ij (3)

Aout
s [i, j] = ωout

ij (4)

where the function Count(x, y) is used to count the number of times the user interacts
with the item y after interacts with the item x. As is defined as the connection matrix
of two adjacency matrices Aout

s and Ain
s , where Aout

s and Ain
s denote the weighted con-

nections of outgoing and incoming edges in the session graph. As in Figure 2, for a
session s = {v1, v2, v3, v1, v3, v4, v2}, we can construct a session graph Gs and a matrix As.
Here, we use the same strategy for constructing session graphs as SR-GNN. Note that
for session graphs with different structures, PTA-GNN can support various strategies
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for constructing session graphs and generating the corresponding connection matrices to
update the graph structure by facilitating the information transfer between different nodes.
We embed each item v ∈ V into a uniform embedding space, and the node vector ν ∈ Rd

denotes the latent vector of item v learned through the graph neural network, where d is the
dimension. Based on the node vectors, each session s can be represented by an embedding
vector, which consists of all node vectors in the graph.

Figure 2. An example of a session graph and the connection matrix As.

3.3. Personalized Graph Neural Network

The application of GNN to session-based recommendation was first proposed in
the SR-GNN model, which provides a session graph containing rich node connections
to GGNN to automatically extract useful features of items. However, SR-GNN does
not inject user information into the graph model, so it is not suitable for personalized
recommendation to users. To solve this problem, we use the personalized graph neural
networks (PGNN) to learn complex transformational relationships between items that have
interacted with the user, and then obtain the representations of items and users.

Different users have different behavior patterns, which leads to different project
conversion relationships for each user. Therefore, we consider user factors when designing
the PGNN architecture. At each node update, we contact the user embedding eu and the
current representation of the node vt−1

i . At moment t, the aggregated information of input
and output of node i is represented as follows:

a(t)ins,i
= ∑

vj→vi

Ain
s [i, j][v(t−1)

j ‖ eu]Win (5)

a(t)outs,i
= ∑

vi→vj

Aout
s [i, j][v(t−1)

j ‖ eu]Wout (6)

a(t)s,i = a(t)outs,i
‖ a(t)ins,i

(7)

where ‖ is the connection operation, and since the session graph Gs is a directed graph,
we use two parameters Win and Wout ∈ R(d+d′)×d̂ to convert the user and item connection
vectors into two different d̂ dimensional vectors.
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Then, we use gated recurrent units (GRUs) to merge the hidden state information
from the previous time step of other nodes and update the hidden state of each node:

zt
s,i = σ

(
Wzat

s,i + Uzvt−1
i

)
(8)

rt
s,i = σ

(
Wrat

s,i + Urvt−1
i

)
(9)

ṽt
i = tanh

(
Woat

s,i + Uo

(
rt

s,i � vt−1
i

))
(10)

vt
i =

(
1− zt

s,i
)
� vt−1

i + zt
s,i � ṽt

i (11)

where σ(·) is the sigmoid function and � is the element multiplication operator,
Wz, Uz, Wr, Ur, Wo, Uo are the parameters of GRU, which are shared by all users. Parameter
rt

s,i is the forgetting gate, which controls the forgotten information, and zt
s,i is the updating

gate, which controls the newly generated information. The
(

1− zt
s,i

)
in Equation (11)

selects which past messages are forgotten and zt
s,i selects which newly generated messages

are remembered. The rt
s.i in Equation (9) determines from which past information new

information is generated. Parameter ṽt
i is the new information generated, and vt

i is the
final updated node state.

Similar to most graph-based models [5,30], PGNN is suitable for scenarios where users
repeatedly click on the same items within or across sessions. In this scenario, all sessions
of that user can be converted into a fully connected graph structure, and thus, PGNN
can capture item conversion patterns across sessions. When there are no duplicate items
in multiple sessions, the user’s behavior graph contains many disconnected subgraphs,
each of which corresponds to a single session. Since all sessions of each user share the
same user embedding, each subgraph in the user’s behavior graph can be associated by
user embedding when the node embedding is updated, and cross-session associations
can be captured.

3.4. Constructing Interest-Aware Embeddings

Previous work used in-session items to capture users’ interests. In this section, we
construct user interest embeddings to adaptively consider the relevance of the user’s items
of interest and the user’s historical behavior. We define interest items as all candidates
to be predicted. Normally, the user’s operation only matches a part of his interest, and
to simulate this process, we design a new interest-attention mechanism to compute the
so f tmax score for each target item in the session.

βi,t = so f tmax(ei,t) =
exp

(
vT

t Wvi
)

∑n
j=1 exp

(
vT

t Wvi
) (12)

Finally, for each session s, the user’s interest in the target item vt can be expressed as
st

interest ∈ Rd, computed as follows:

st
interest =

sn

∑
i=1

βi,tvi (13)

For different target projects, we can get different interest embedding from users.

3.5. Self-Attention Layers

Recently, a new sequential model, Transformer [31], has achieved state-of-the-art
performance and efficiency in various translation tasks. Transformer employs a multilayer
self-attentive network that fully considers all signals using a weighted average operation.
The self-attentive model, as a special attention mechanism, has been widely used to model
sequential data and has achieved significant results in machine translation [31], sentiment
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analysis [3], and sequential recommendation [32,33]. The self-attention mechanism can map
the global dependencies between inputs and outputs and capture the item-item transitions
across the input and output sequences without considering the distance between them.

The input of Transformer attention consists of queries and keys of dimension
√

dk and
values of dimension

√
dv. To stabilize the gradient, transformer uses score normalization,

which is divided by
√

dk , then use the so f tmax function to obtain the weight values. The
scaled dot-product attention is formally defined as:

E = so f tmax

((
VWQ)(VWK)T

√
d

)(
VWV

)
(14)

where the projection matrices WQ, WK, WV ∈ R2d×d, Q, K, V represent Query, Key, and
Value respectively.

3.5.1. Point-Wise Feed-Forward Network

We apply two linear transformations and a ReLU activation function to endow the
function with nonlinearity and consider the interactions between different dimensions.
Nevertheless, information transfer loss occurs during the self-attentive operation, so we
add residual connections after the feedforward network to make the model more easily
exploit the underlying information:

G = ReLU(EW1 + b1)W2 + b2 + E (15)

where W1, W2 are d× d-dimensional matrices and b1, b2 are d-dimensional bias vectors. To
alleviate the overfitting problem of deep neural networks, we use the “Dropout” regulariza-
tion technique to randomly discard data during training. We define the above self-attentive
mechanism as follows:

G = SAN(V) (16)

3.5.2. Multi-Layer Self-Attention

Recent studies have shown that different layers can capture different types of features.
In this work, we studied which layers that benefit most from feature modeling to learn
more complex project conversion. The first layer is defined as G(1) = G and the k (k > 1)
layer is defined as:

G(k) = SAN
(

G(k−1)
)

(17)

where Gk ∈ Rn×d is the final output of the multi-layer self-attention networks.

3.6. Generating Session Embeddings

To predict the user’s next click better, we plan to develop a strategy that combines
the long-term and short-term preferences of the session with the user’s interest-aware
embedding, and embed this combination as session embedding.

Local embedding: Since the user’s behavior in the next moment is usually determined
by the behavior in the current moment. For session s = [vs,1, vs,2, · · · , vs,n], we simply
define local embedding as the last-clicked item vs,sn accessed by the user in the current
session s, i.e., slocal = vs,n.

Global embedding: Then we represent the user’s long-term preferences as a global
embedding sglobal ∈ Rd, and we take the last dimension of Gk as the global embedding
vector, i.e., sglobal = Gk.

Session embedding: Finally, we generate session embeddings for session s by linearly
transforming the local and global embeddings as well as the tandem of interest embeddings.

sh = W3

[
st

interest ‖ slocal ‖ sglobal

]
(18)
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where matrix W3 ∈ Rd×3d compresses three combined embedding vectors into the latent
space Rd, and it is worth noting that we generate different session embeddings for different
items of interest.

3.7. Making Recommendation and Model Training

After obtaining the embedding of each session, we calculate the recommendation
score ẑi for each candidate item vi ∈ V by the inner product of each item embedding vi and
the session embedding sh. After that, we normalize the scores ẑi for all target items using
the so f tmax function and obtain the final output vector.

ẑi = sT
h vi (19)

ŷ = so f tmax(ẑ) (20)

where ẑ ∈ Rm represents the recommendation score for all candidates and ŷ ∈ Rm repre-
sents the probability of a node appearing in session s and being clicked on next time.

For each session graph, the loss function is defined as the cross-entropy of the pre-
dicted value and the ground truth. We train our model by minimizing the following
objective function:

L(ŷ) = −∑
i=i

yi log(ŷi) + (1− yi) log(1− ŷi) (21)

where y represents the one-hot encoding of the ground truth item.
Finally, we use the backpropagation through time (BPTT) algorithm to train our model.

Since in the session-based recommendation scenario the length of most sessions is short,
we try to choose as few training steps as possible to prevent overfitting.

4. Experiment and Analysis

In this section, we present the dataset, comparison methods, and evaluation met-
rics used in the experiments. Then, our proposed PIA-GNN model is compared with
other methods.

4.1. Datasets

We evaluate the proposed approach on two widely used real datasets, Yoochoose and
Diginetica. The Yoochoose dataset comes from the 2015 data mining conference RecSys
Challenge, which contains user click information from an e-commerce website over a
six-month period. The Diginetica data come from the 2016 CIKM Challenge Cup, which
uses only the user’s transaction information.

For a fair comparison, we use the data preprocessing scheme of Li et al. [3], Liu et al. [4],
and Wu et al. [5]. We discarded items with less than five occurrences in both datasets
and sessions with session lengths no greater than one. The remaining 7,981,580 sessions
and 37,483 items constitute the Yoochoose dataset, and 204,771 sessions and 43,097 items
constitute the Diginetica dataset. To generate the training and test sets, Yoochoose uses the
last few days of sessions as the test set and Diginetica uses the last few weeks of sessions
as the test set. For example, for an existing session s = [vs,1, vs,2, · · · , vs,n], we generate a
sequence of input sessions and the corresponding labels:

([vs,1], vs,2), ([vs,1, vs,2], vs,3), · · · , ([vs,1, vs,2, · · · , vs,n−1], vs,n) (22)

where [vs,1, vs,2, · · · , vs,n−1] represents the generated sequence and vs,n represents the next
clicked item, i.e., the label of the sequence. Since the Yoochoose dataset is too large, we
take its nearest 1/64 training part, denoted as Yoochoose 1/64. The statistical results of all
the datasets applied in the experiment are shown in Table 1.
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Table 1. Statistics of datasets used in the experiments.

Statistics Diginetica Yoochoose 1/64

#Clicks 982,961 557,248
#Training sessions 719,470 369,859

#Test sessions 60,858 55,898
#Unique items 43,097 16,766
Average length 5.12 6.16

4.2. Baseline

To evaluate the performance of the proposed method, we compare it with the following
representative baseline.

• POP always recommends the most popular program in the entire training set, and
despite its simplicity, it can serve as a powerful baseline in certain situations.

• S-POP recommends the top TOP-N most popular items for the current session.
• Item-KNN [27] recommends items that are similar to the items clicked in previous

sessions, where similarity is defined as the cosine similarity between session vec-
tors. Regularization is introduced to avoid the high similarity problem between
unvisited items.

• BPR-MF [34] proposed a BPR objective function to compute pairwise ranking losses,
using stochastic gradient descent to optimize the pairwise ranking objective function.
The matrix decomposition is applied to session-based recommendations using the
average potential vector of items in a session.

• FPMC [14] is a Markov chain-based sequence prediction method.
• GRU4REC [2] uses RNNs to model user sequences for session-based recommendations,

stacking multiple GRU layers to encode session sequences into a final state. A ranking
loss is used to train the model.

• NARM [28] uses RNN with attention mechanism to capture the main purpose and
sequential behavior of the user.

• STAMP [4] uses the attention layer to replace the RNN encoder, and even com-
pletely relies on the self-attention of the last item in the sequence to make the model
more powerful.

• SR-GNN [5] uses the gated graph convolutional layer to obtain the embedding of
all items, and then it pays attention to each last item like STAMP to calculate the
sequence-level embedding.

4.3. Evaluation Metrics

At each recommendation, a recommender system can give several recommended
items, and the user will select the top ones of them. In order to keep the same setup as
the previous baseline, we mainly chose to use top20 items to evaluate the recommender
system, specifically, using two metrics, Recall@20 and MMR@20.

Recall@ (The number of recalls is calculated by the first Top-K). Recall is the ratio of
the number of correct items to the number of items in the test set for the top K items in the
recommendation ranking, i.e.,

Recall@K =
nhit
N

(23)

where N represents the number of test sequences Stest in the data and nhit represents the
number of items needed among the top K items in the ranking.

MMR@K (Mean inverse ranking) is the average of the inverse of the ranking of the
correct recommendation. When the ranking exceeds 20, the reciprocal value takes 0. MRR
measures the order of the recommendation ranking, and a higher MMR value means that
the correct recommendation is at the front of the ranking list.

MRR@K =
1
N ∑

vlabel∈Stest

1
Rank(vlabel)

(24)
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4.4. Parameter Setting

Following the previous approach [3,4], we made the potential vector dimension
d = 100 for all data sets. In addition, we selected other hyperparameters on a 10% random
validation set. All parameters were initialized using a Gaussian distribution with a mean
of 0 and a standard deviation of 0.1. A small-batch Adam optimizer was used to optimize
these parameters, and the initial learning rate was set to 0.001, decaying by 0.1 after every
3 epochs. In addition, the batch size and L2 penalty were set to 100 and 10−5, respectively.

4.5. Comparison with Baseline Methods

To evaluate the performance of the proposed method, we first compare it with existing
representative baselines. The performance of Recall@20 and MMR@20 is summarized in
Table 2, where the best performance is highlighted in bold.

Table 2. The performance of PIAGNN compared with other baseline methods using two datasets.
The best results highlighted in boldface.

Method
Diginetica Yoochoose 1/64

Recall@20 MRR@20 Recall@20 MRR@20

POP 0.89 0.20 6.71 1.65

BPR-MF 5.24 1.98 31.31 12.08

S-POP 21.06 13.68 30.44 18.35

FPMC 26.53 6.95 45.62 15.01

GRU4REC 29.45 8.33 60.64 22.89

Item-KNN 35.75 11.57 51.60 21.81

NARM 49.70 16.17 68.32 28.63

STAMP 45.64 14.32 68.74 29.67

SR-GNN 50.73 17.59 70.57 30.94

PIA-GNN 52.62 18.39 71.46 31.27

PIAGNN aggregates session items into the session graph, merges user embeddings
to increase the personalized representation of the model, and further considers modeling
user preferences through their interest-aware attention. As can be seen from the table,
the proposed PIAGNN model achieves state-of-the-art performance on all datasets of
Recall@20 and MRR@20, which confirms the effectiveness of the proposed approach.

For traditional popularity-based algorithms such as POP and S-POP, the performance
is relatively poor on both datasets. These simple models make recommendations based
only on repeated identical items or consecutive items, which is problematic in a session-
based recommendation scenario. Nevertheless, S-POP still outperforms methods, such as
POP, BPR-MF, and FPMC, which illustrates the important impact of contextual information
on recommendations in a session. BPR-MF improves performance compared to POP by
analyzing users individually and optimizing the pairwise ranking loss function, which
reflects the importance of user personalization in recommendations. Item-KNN achieves
the best results, but Item-KNN only uses the similarity between items to recommend items
with high similarity without considering the order information, which may be because the
underlying factors representing user preferences play a key role in the recommendation.
It can be seen that Item-KNN outperforms most Markov chain-based methods, which
indicates that the assumptions about the independence of consecutive items, on which
the traditional MC-based approach relies, are unrealistic in the context of a session-based
recommendation scenario.

Compared to the traditional approaches described above, neural network-based
approaches have a greater ability to capture complex user behaviors and therefore offer
a significant performance improvement. Long-term and short-term memory models,
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such as GRU4REC and NARM, use recurrent units to capture users’ general interests.
These methods model users’ global preferences and consider transitions between users’
previous actions and the next click, thus improving the performance of the models. STAMP
performs better than GRU4REC by using the last-clicked item as a short-term memory,
which shows the effectiveness of short-term behavior in predicting the next clicked item. SR-
GNN further modeled sessions as session graphs and applies graph neural networks and
attention mechanisms to capture complex item transitions, outperforming other baselines
on both datasets. However, the performance of these models is still inferior to that of the
proposed approach. PIAGNN incorporates user embeddings to improve the personalized
representation of the model, uses goal-aware attention to explore user interest preferences
to enrich the graph-based model, and activates different user interests for different target
items to improve the expressiveness of the recommendation model. In addition, the
attention mechanism is used to adaptively capture the long-term dependencies between
session items. Taken together, these results demonstrate the effectiveness of the proposed
PIAGNN approach.

4.6. Ablation Studies

Our approach is next compared with different variables to verify the effectiveness of
the PGNN and interest-aware key modules. PIA-GNN(-P): PIA-GNN without user embed-
ding; PIA-GNNN(-I): PIA-GNN without the Interest-aware mechanism, i.e., without con-
sidering the user’s interest preferences; PIA-GNN(-U-I): PIA-GNN does not contain either
PGNN component or Interest-aware mechanism. The same as the session-based approach.
We show the results for Recall@20, MMR@20 in Table 3 and have the following findings.

Table 3. The performance of the PIA-GNN and four ablation models on two datasets with the rating.

Method
Diginetica Yoochoose 1/64

Recall@20 MRR@20 Recall@20 MRR@20

PIA-GNN 52.62 18.39 71.46 31.27

PIA-GNN(-U) 51.83 18.26 71.02 31.22

PIA-GNN(-I) 51.28 18.19 70.98 31.08

PIA-GNN(-I-U-A) 50.94 17.85 70.69 30.99

PIA-GNN (-I) results outperform PIA-GNN (-I-U-A), which illustrates that our per-
sonalized graph neural network PGNN is better than GNN in capturing complex trans-
formational relationships between items. PIA-GNN (-P) results outperform PIA-GNN
(-I-U-A), which indicates that our interest exploration module can capture users’ interest in
specific types of items. PIA-GNN consistently outperforms PIA-GNN (-P) and PIA-GNNN
(-I). The importance of personalized graph neural networks and modeling for user-specific
interests is illustrated.

5. Conclusions

In this paper, we proposed a personalized interest-attention graph neural network,
PIA-GNN, based on session recommendation. Using a personalized graph neural network
(PGNN), user information is added when node embedding is updated to capture the com-
plex transformation relationships between items. Moreover, an interest-attention module
is added to adaptively activate the user’s interest in specific types of items for different
targets. In addition, the long-term dependencies between sessions are captured using a
self-attention module. The model is trained by minimizing the cross-entropy loss func-
tion of the predicted value and ground truth. Subsequently we tested on two real-world
datasets corroborates that the PIA-GNN model outperforms other models in most cases.
The effectiveness of each component of the model is confirmed by comparison tests.
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