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Abstract: Finite mixture models are widely used for modeling and clustering data. When they are
used for clustering, they are often interpreted by regarding each component as one cluster. However,
this assumption may be invalid when the components overlap. It leads to the issue of analyzing
such overlaps to correctly understand the models. The primary purpose of this paper is to establish
a theoretical framework for interpreting the overlapping mixture models by estimating how they
overlap, using measures of information such as entropy and mutual information. This is achieved by
merging components to regard multiple components as one cluster and summarizing the merging
results. First, we propose three conditions that any merging criterion should satisfy. Then, we
investigate whether several existing merging criteria satisfy the conditions and modify them to fulfill
more conditions. Second, we propose a novel concept named clustering summarization to evaluate
the merging results. In it, we can quantify how overlapped and biased the clusters are, using mutual
information-based criteria. Using artificial and real datasets, we empirically demonstrate that our
methods of modifying criteria and summarizing results are effective for understanding the cluster
structures. We therefore give a new view of interpretability/explainability for model-based clustering.

Keywords: model-based clustering; merging mixture components; component overlap; interpretability

1. Introduction
1.1. Motivation

Finite mixture models are widely used for modeling data and finding latent clus-
ters (see McLachlan and Peel [1] and Fraley and Raftery [2] for overviews and refer-
ences). When they are used for clustering, they are typically interpreted by regard-
ing each component as a single cluster. However, the one-to-one correspondence be-
tween the clusters and mixture components does not hold when the components over-
lap. This is because the clustering structure then becomes more ambiguous and complex.
Let us illustrate this using a Gaussian mixture model estimated for the Wisconsin breast can-
cer dataset in Figure 1 (details of the dataset and estimation are discussed in
Section 8.2). A number of the components overlap with one another, which makes it
difficult to estimate the shape of distribution or number of clusters. Therefore, we need an
analysis of the overlaps to correctly interpret the models.
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(a) feature 0, 1 (b) feature 0, 2 (c) feature 1, 2

Figure 1. Estimated Gaussian components for the Wisconsin breast cancer dataset [3].

We address this issue from two aspects. In the first aspect, we consider merging
mixture components to regard several components as one cluster. We repeatedly select the
most overlapping pairs of components to merge them. In this procedure, it is important
how the degree of overlap is measured. A number of criteria for measuring cluster overlaps
have been proposed [4–6], but they have not yet been compared theoretically. We give a
theoretical framework for comparing merging criteria by defining three essential conditions
that any method for merging clusters should satisfy. The more conditions any method satis-
fies, the better it is. From this viewpoint, we evaluate the existing criteria (entropy (Ent) [4],
directly estimated misclassification (DEMP) [5] probability, mixture complexity (MC) [7]).
We also modify these existing criteria so that they can satisfy more essential conditions.

In the second aspect, we consider how to summarize the merging results quantitatively.
After merging mixture components, we obtain two types of clustering structures; those
among the upper-components and those among sub-components within each upper-
component, as illustrated in Figure 2. These structures might be still ambiguous because
the upper-components are determined to be the different clusters, but they may overlap;
the sub-components are determined to belong to the same cluster, but they may be scattered
in the cluster. Therefore, we need to evaluate the degree to which the upper- and sub-
components are discriminated as different clusters. We realize this using the notions
of mixture complexity (MC) [7] and normalized mixture complexity (NMC). They give real-
valued quantification of the number of effective clusters and the degree of their separation,
respectively. We therefore develop a novel method for cluster summarization.

Our hypotheses in this paper are summarized as follows:

• Modifying merging criteria based on essential conditions can improve the ability to
find cluster structures in the mixture model.

• Cluster summarization based on MC and NMC effectively describes the clustering
structures.

We empirically verify them by experiments, using artificial and real datasets.
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Figure 2. Upper-components and sub-components.

1.2. Significance and Novelty of This Paper

The significance and novelty of this paper is summarized below.

1.2.1. Proposal of Theoretical Framework for Evaluating Merging Criteria

We give a theoretical framework for evaluating merging methods by defining the
essential conditions. They are necessary conditions that any merging criterion should satisfy:
(1) the criterion should take the best value when the components are entirely overlapped,
(2) it should take the worst value when the components are entirely separated, and (3)
it should be invariant with respect to the scale of the weights. We empirically confirm
that the more essential conditions any merging method satisfies, the better the clustering
structure obtained in terms of larger interdistances and smaller intradistances.

1.2.2. Proposal of Quantitative Clustering Summarization

We propose a method for quantitatively summarizing clustering results based on
MC and NMC. MC is an extended concept of the number of clusters into a real number
from the viewpoint of information theory [7]. It quantifies the diversity among the compo-
nents, considering their overlap and weight bias. NMC is defined by normalizing MC to
remove the effects of weight bias. It quantifies the degree of the scatter of the components
based only on their overlap. Furthermore, MC and NMC have desirable properties for
clustering summarization: they are scale invariant and can quantify overlaps among more
than two components. We empirically demonstrate that our MC-based method effec-
tively summarizes the clustering structures. We therefore give a novel quantification of
clustering structures.

2. Related Work on Finite Mixture Models and Model-Based Clustering

In this section, we present related work on finite mixture models and model-based clus-
tering in four parts: roles of overlap, model, optimization, and visualization. The overlap
has a particular impact on the construction of models.

2.1. Roles of Overlap

There has been widespread discussion about the roles of overlap in finite mixture
models. One argues that the overlap is emerged to represent various distributions.
While this flexibility is beneficial for modeling the data, various issues arise in apply-
ing them to clustering. For example, McLachlan and Peel [1] pointed out that some
skew clusters required more than one Gaussian component to be represented. More-
over, Biernacki et al. [8] pointed out that the number of mixture components selected
for estimating densities was typically more than that of clusters because of overlapping.



Entropy 2021, 23, 1503 4 of 24

Model selection methods based on clustering (complete) likelihood, such as the integrated
complete likelihood (ICL) [8], the normalized maximum likelihood (NML) [9,10], and
the decomposed normalized maximum likelihood (DNML) [11,12], have been proposed
to obtain less-overlapping mixtures so that one component corresponds to one cluster.
However, they have problems in that they need to define the shape of the clusters in
advance. This leads to a trade-off between shape flexibility and component overlap in
model-based clustering.

Others argue that the overlap represents that the data belong to more than one cluster.
For example, in clustering documents by their topics, the data may have several topics.
Such issues have been widely discussed in the field of overlapping clustering. For example,
Banerjee et al. [13] extended the mixture model to allow the data to belong to multiple
clusters based on membership matrices. Fu and Banerjee [14] considered the product
of cluster distributions to represent multiple memberships of the data. Xu et al. [15]
proposed methods for describing more complex memberships by calculating correlation
weights between the data and the cluster. While these methods allow complex relationships
between the data and the clusters, cluster shapes become simple.

The overlap is also used for measuring the complexity of clustering structures in the
concept of MC [7]. It is a non-integer valued quantity, which implies the uncertainty of
determining the number of clusters. MC was introduced in the scenario of change detection
in [7]. This paper gives a new application scenario of MC in the context of quantifying
clustering structures. Moreover, this paper also newly introduces NMC as a variant of MC,
which turns out to be most effective in this context.

2.2. Model

We discuss the issue of constructing models achieving both flexible cluster shapes
and interpretability. Allowing each cluster to have complex shapes is a solution to tackle
this. For example, mixtures of non-normal distributions have been proposed for this
purpose, as reviewed by Lee and McLachlan [16]. Modeling each cluster as a finite mix-
ture model, called the mixture of mixture model or multi-layer mixture model, has been
considered in this regard. Various methods have been proposed to estimate such mixture
models based on maximum likelihood estimation [17,18] and Bayesian estimation [19,20].
However, additional parameters are required for assigning sub-components to upper-
clusters in many cases because changes of assignment do not change the overall distri-
bution. Merging mixture components [4–6] is an alternative way of the composition of
mixture models using single-layer estimations. In this approach, the criteria to measure
the degree of component overlap have to be identified. Although various concepts have
been developed to measure the degree of overlap, such as entropy [5], misclassification
rate [4,6], and unimodality [4], they have not been satisfactorily compared yet.

2.3. Optimization

Merging components has also been discussed in the scenario of optimizing parameters
in the mixture models. Ueda et al. [21] proposed splitting and merging mixture components
to obtain better estimations, and Minagawa et al. [22] revised their methods to search
the models with higher likelihoods. Zhao et al. [23] considered randomly swapping
the mixture components during optimization, which allows a more flexible search than
splitting and merging components. Because these methods aim only to optimize the
models, there remains the problem of interpreting them.

We also refer to the agglomerative hierarchical clustering as a similar approach to
merging components. Our methods are similar to the Bayesian hierarchical clustering
methods [24,25] in that the number of merging is automatically decided. However, our
approaches can not only create clusters, but also evaluate their shape and closeness under
the assumption that the mixture models are given.
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2.4. Visualization

Methods of interpreting clustering structures have been studied along with visu-
alization methods. Visualizing the values of criteria with a dendrogram is useful for
understanding cluster structures among sub-components [6]. Class-preserved projections
[26] and parametric embedding [27] were proposed for visualizing structures among upper-
clusters by reducing data dimension. We present a method to interpret both structures
uniformly based on the MC and NMC.

3. Merging Mixture Components

We assume that data xN = x1, . . . , xN and a finite mixture model are given. The prob-
ability distribution of the model f is written as follows:

f (x) =
K

∑
k=1

ρkgk(x),

where K denotes the number of components, ρ1, . . . , ρK denote the mixture proportions
of each component summing up to one, and g(x|θ1), . . . , g(x|θK) denote the probability
distributions. We assume that the data xN are independently sampled from f . The random
variable X following f is called an observed variable, because it can be observed as a data
point. We also define the latent variable Z ∈ Z := {1, . . . , K} as the index of the component
from which X originated. The pair (X, Z) is called a complete variable. The distribution of
the latent variable P(Z) and the conditional distribution of the observed variable P(X|Z)
can be given by the following:

P(Z = k) = ρk, P(X|Z = k) = gk(X).

In the case that f is not known, we will replace f by its estimation f̂ under the assumption
that f̂ is so close to f that xN can be approximately regarded as samples from f̂ .

We discuss identifying cluster structures in xN and f by merging mixture components
as described below. First, we define a criterion function denoted as Crit : Z × Z → R,
which measures the degree of overlap or closeness between two components. For simplicity,
we change the sign of the original definitions as needed so that Crit takes smaller values
as the components are closer. Then, we choose the closest two components that minimize
the criterion and merge them. By repeating the merging process several times, we finally
obtain clusters. We show the pseudo-code and computational complexity of this procedure
in Appendix A.

4. Essential Conditions

In this section, we propose three essential conditions that the criteria should satisfy, so
that the criteria can be compared in terms of the conditions. To establish the conditions,
we restrict the criteria to those that can be calculated from the posterior probability of the
latent variables {γk(xn)}k,n defined as follows:

γk(xn) := P(Z = k|X = xn) =
ρkgk(xn)

f (xn)
,

where k is the index of the component. After merging the components i and j, the posterior
probability can be easily updated as follows:

γi∪j(xn) := P(Z ∈ {i, j}|X = xn) = γi(xn) + γj(xn).

Note that some other merging methods reestimate the distribution of the merged
components as a single component [4]. We do not consider these in this study because they
lack the benefit that the merged components can have complex shapes.
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For later use, we define Best(Crit) and Worst(Crit) as the best and worst values that
the criteria can take:

Best(Crit) :=min Crit(i, j) w.r.t.
{

γk,n
}

k,n,

Worst(Crit) :=max Crit(i, j) w.r.t.
{

γk,n
}

k,n,

where {γk,n}k,n is a set of K× N real values in [0, 1] that satisfies ∑k γk,n = 1 for all n.
We formulate the three conditions. They provide natural and minimum conditions

on the behaviors in the extreme cases that the components are entirely overlapped or
separated and on the scale invariance of the criteria. The conditions for the moderate cases
that the components partially overlap should be investigated in further studies.

First, we define the condition that a criterion should take the best value when the two
components entirely overlap. It is formally defined as follows.

Definition 1. If a criterion satisfies that(
∀n, gi(xn) = gj(xn)

)
⇒ Crit(i, j) = Best(Crit),

then, we say that it satisfies the condition BO (best in entirely overlap).

Next, we define the condition that the criterion should take the worst value when the
two components are entirely separated.

Definition 2. We consider that the sequence of the models { ft = ∑k ρk,tgk,t}∞
t=1 satisfies the

following:
∀n, gi,t(xn)gj,t(xn)→ 0 (1)

as t→ ∞. We define Critt(i, j) as the criterion value based on ft. Then, if (1) implies that

lim
t→∞

Critt(i, j)→Worst(Crit),

we say that it satisfies the condition WS (worst in entirely separate).

Note that this definition is written using limits in case that the distribution of the
components has support in the entire space, such as the Gaussian distributions.

Finally, we define the condition that the value of the criterion should be invariant with
the scale of mixture proportions.

Definition 3. We consider that the components i and j are isolated from the other components, i.e.,
the sequence of the models { ft = ∑k ρk,tgk,t}∞

t=1 satisfies the following:(
gi,t(xn) + gj,t(xn)

)
gk,t(xn)→ 0

for all k 6= i, j and n as t → ∞. In addition, we consider another sequence of the mixture model
{ f̄t = ∑k ρ̄k,tgk,t}∞

t=1 with different scales on the mixture proportions of the components i and j,
i.e., ρ̄k,t = aρk,t (k = i, j) holds for some a > 0. We define Critt(i, j) as the criterion value based
on f̄ (t). Then, we say that the criterion satisfies the condition SI (Scale invariance) if for any a, the
following holds:

lim
t→∞

Critt(i, j) = lim
t→∞

Critt(i, j).

5. Modifying Merging Methods

In this section, we introduce the existing merging criteria and propose new criteria by
modifying them so that they can satisfy more essential conditions.
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5.1. Entropy-Based Criterion

First, we introduce the entropy-based criterion (Ent) proposed by Baudry et al. [5]. It se-
lects the components that reduce the entropy of the latent variable the most.
This criterion, denoted as CritEnt, is formulated as follows:

−CritEnt(i, j) :=
N

∑
n=1

(
Ψ(γi(xn)) + Ψ

(
γj(xn)

)
−Ψ

(
γi∪j(xn)

))
,

where Ψ(x) := −x log x.
However, it violates the conditions BO and SI. Therefore, we propose to modify it in

two regards. First, we correct the scale of the weights to make CritEnt satisfy SI. We propose
a new criterion CritNEnt1 defined as follows:

−CritNEnt1(i, j) :=
−CritEnt(i, j)

N
(
ρ̃i + ρ̃j

) ,

where ρ̃k := ∑n γk(xn)/N. This satisfies the condition SI.
Next, we propose removing the effects of the weight biases to make CritNEnt1 satisfy

BO. We further introduce a new criterion CritNEnt2 defined as follows:

CritNEnt2(i, j) :=
CritNEnt1(i, j)

H̃i,j(Z)
,

H̃i,j(Z) := ∑
k∈{i,j}

Ψ

(
ρ̃k

ρ̃i + ρ̃j

)
.

This satisfies all conditions: BO, WS, and SI.

5.2. Directly Estimated Misclassification Probabilities

Second, we introduce the criterion named directly estimated misclassification probabil-
ities (DEMP) [4]. It selects the components with the highest misclassification probabilities.
The criterion is formulated as follows:

−CritDEMP(i, j) := max
{
M̃j,i,M̃i,j

}
,

where

M̃j,i := P̃(ẑ(X) = j|Z = i) := ∑n γi(xn)1(ẑ(xn) = j)
Nρ̃i

,

ẑ(x) = arg max
k=1,...,K

γk(x).

However, this violates the condition BO when ẑ(xn) is not i or j for some n. Therefore,
we modify it by restricting the choice of the latent variable to component i or j. We define
ẑi,j(x) as follows:

ẑi,j(x) := arg max
k=i,j

γk(xn)

and define CritDEMP2 by replacing ẑ(x) with ẑi,j(x) in the definition of CritDEMP. Then, this
satisfies all essential conditions.

5.3. Mixture Complexity

Finally, we propose a new criterion based on mixture complexity (MC) [7]. MC is an
extended concept of (the logarithm of) the number of clusters into a real value considering
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the overlap and bias among the components. It is defined based on information theory,
and formulated as follows:

MC
(
{γk(xn)}k,n; {wn}n

)
:=

K

∑
k=1

Ψ(ρ̃k)−
N

∑
n=1

wn

W

K

∑
k=1

Ψ(γk(xn)),

where {wn}n denotes the weights of the data xN , W := ∑n wn denotes their sum, and ρ̃k
is redefined as ρ̃k := ∑n wnγk(xn)/W. Examples of MC for mixtures of two components
are shown in Figure 3. In them, the exponential of the MCs take values between 1 and 2,
according to the uncertainty in the number of clusters induced by the overlap or weight
bias between the components.

exp(MC) = 1.993

(a)

exp(MC) = 1.394

(b)

exp(MC) = 1.213

(c)

Figure 3. Examples of MC for mixtures of two components. Images are obtained from [7].

We first propose a new merging criterion CritMC to select the components whose MCs
are the smallest. It is defined as follows:

CritMC(i, j) := MC

{ γk(xn)

γi∪j(xn)

}
k∈{i,j},n

;
{

γi∪j(xn)
}

n

.

However, this does not satisfy the condition WS because of the effects of the weight
biases. Therefore, we modify it by removing the biases to propose a new criterion, which we
call the normalized mixture complexity (NMC) CritNMC. The criterion is defined as follows:

CritNMC(i, j) :=
CritMC(i, j)

H̃i,j(Z)
.

It satisfies all conditions BO, WS, and SI. Note that it is equivalent to CritNEnt2 because
CritNMC = 1 + CritNEnt2.

We summarize the relationships between the criteria and the essential conditions in
Table 1. The modification led to the fulfillment of many conditions.

Table 1. Summary of the relationships between the criteria and the essential conditions. Check marks
are attached to the conditions that are satisfied.

Before Modification After Modification

criterion BO WS SI criterion BO WS SI

Ent X NEnt1 X X

DEMP (X) X X DEMP2 X X X

MC X X NMC = NEnt2 X X X
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6. Stopping Condition

We also propose a new stopping condition based on NMC. First, we calculate the
NMC for the (unmerged) mixture model f defined as follows:

NMC0 :=
MC

(
{γk(xn)}k,n; {1}n

)
H̃(Z)

.

Since it represents the average degree of separation in the components of f , it can be
used for the stopping condition for merging. Then, before merging components i and j,
we compare CritNMC(i, j) to NML0. If CritNMC(i, j) ≥ NML0, then the merging algorithm
halts without merging components i and j. Otherwise, the algorithm merges components i
and j and continues further.

Note that this stopping criterion can be applied when a criterion other than CritNMC
is used. In this case, we use the criterion to search the two closest components and use
NMC to decide whether to merge them.

7. Clustering Summarization

In this section, we propose methods to quantitatively explain the merging results,
using the MC and NMC.

We consider that a mixture model with K-component is merged into L upper-
components. We define the sets I1, . . . , IL that partition {1, . . . , K} as the sets of the in-
dices that are contained in each upper-component. Then, the MC and NMC among the
upper-components, denoted as MC(up) and NMC(up), respectively, can be calculated
as follows:

MC(up) := MC

{∑
k∈Il

γk(xn)

}
l,n

, {1}n

,

NMC(up) :=
MC(up)
∑l Ψ(τ̃l)

,

where τ̃l denotes the weight of the upper-component l calculated as follows:

τ̃l :=
1
N ∑

k∈Il

γk(xn) = ∑
k∈Il

ρ̃k.

For each l, the MC and NMC in the sub-components within the upper-component l, written
as MC(l) and NMC(l), respectively, can be calculated as follows:

MC(l) := MC

{ γk(xn)

∑k′∈Il
γk′(xn)

}
k∈Il ,n

;

{
∑

k′∈Il

γk(xn)

}
n

,

NMC(l) :=
MC(l)

∑k∈Il
Ψ
(

ρ̃
(k)
l

) ,

where ρ̃
(k)
l denotes the relative weight of the sub-component k ∈ Il calculated as

ρ̃
(k)
l := ρ̃k/ ∑k′∈Il

ρ̃k′ . NMC is undefined if the denominator is 0.
MC and NMC quantify the degree to which the components are regarded as clusters

in different ways: larger values indicate that the components definitely look like different
clusters. MC quantifies this by measuring (the logarithm of) the number of clusters
continuously, considering the ambiguity induced by the overlap and weight bias among
the components. It takes a value between 0 and the logarithm of the number of the
components. In contrast, NMC measures the scattering of the components based only on
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their overlap. It takes a value between 0 and 1. They have also the desirable properties that
they are scale invariant and can quantify overlaps among more than two components.

Therefore, we propose the summarization of clustering structures by listing MC(up),
NMC(up), component weights, MC(l), and NMC(l) in a table, which we call the clustering
summarization. The clustering summarization is useful for evaluating the confidence level
of the clustering results.

We show an example of the clustering summarization using the mixture model
illustrated in Figure 4. In this example, there are four Gaussian components as illus-
trated in Figure 4a, and two merged clusters on the left and right sides as illustrated in
Figure 4b–d. The clustering summarization is presented in Table 2. For the upper-
components, the exponential of MC is almost two, and the NMC is almost one. This
indicates that two upper-components can be definitely regarded as different clusters.
For both sub-components, the exponential of MC is larger than one. This indicates that
they have more complex shapes than a single component. Moreover, the structures within
Component 1 are more complex than those in 2, because the MC and NMC are larger.

(a) Entire model (b) Interaction

(c) Cluster 1 (d) Cluster 2

Figure 4. Example of the merged mixture model. Images are obtained from [7].
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Table 2. Example of a clustering summarization.

Upper-Components

MC (exp): 0.647 (1.91)
NMC: 0.933

Component 1 Component 2

Weight: 0.494 Weight: 0.506
MC (exp): 0.566 (1.76) MC (exp): 0.324 (1.38)
NMC: 0.817 NMC: 0.467

8. Experiments

In this section, we present the experimental results to demonstrate the effectiveness of
merging the mixture components and modifying the criteria.

8.1. Analysis of Artificial Dataset

To reveal the differences among the criteria, we conducted experiments with artifi-
cially generated Gaussian mixture models. First, we randomly created a two-dimensional
Gaussian mixture model f = ∑K

k=1 ρkN (x; µk, Σk) as follows:

K := 50,

(ρ1, . . . , ρK) ∼ Dir(1, . . . , 1),

µ1, . . . , µK
i.i.d.∼ N

(
µ; [0, 0], 32 × I2

)
,

a1, b1, . . . , aK, bK
i.i.d.∼ U[0.5, 1.5],

Σk := [[ak, 0], [0, bk]] (k = 1, . . . , K),

where Dir(α, . . . , α) denotes the Dirichlet distribution, and U[m, M] denotes the uniform
distribution from m to M. Then, we sampled 5000 points x5000 from f , and ran the
merging algorithms without stopping conditions. The algorithms were evaluated us-
ing the (maximum) intra-cluster distanceDintra and (minimum) inter-cluster distanceDinter
defined as follows:

Dintra := max
k=1,...,K

∑n γk(xn)‖xn − µ̃k‖2

∑n′ γk(xn′)
,

Dinter := min
1≤i<j≤K

‖µ̃i − µ̃j‖2,

where µ̃1, . . . , µ̃K denote the centers of the components defined as

µ̃k := ∑n γk(xn)xn

∑n′ γk(xn′)
.

The clustering structure is said to be better, as Dintra is smaller and Dinter is larger.
Both distances are measured with several K and compared among the algorithms with
different criteria. Although we may obtain better results for these metrics by using them as
merging criteria in a similar way as used in hierarchical clustering [28,29], we used them
only for comparison rather than optimizing them.

The experiments were performed 100 times by randomly generating f and the data.
Accordingly, the ranking of the criteria was calculated for each distance. Table 3 presents
the average rank of each criterion. As seen from the table, the modifications of the criteria
improved the rank. In addition, DEMP2 and NMC, satisfying all essential conditions, were
always in the top three. These results indicate the effectiveness of the essential conditions.
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Table 3. Average ranks of the criteria. For each K, the best rank is denoted in boldface.

Dintra

K 40 30 20 10 5

Ent 6.00 6.00 6.00 5.94 5.58
NEnt1 3.67 4.15 3.93 4.15 4.18
DEMP 4.30 4.56 4.07 2.57 2.13
DEMP2 2.40 2.52 2.45 2.12 1.91

MC 2.25 2.04 3.21 4.53 4.94
NMC 2.37 1.73 1.35 1.69 2.27

Dinter

K 40 30 20 10 5

Ent 5.02 5.14 5.38 5.50 5.19
NEnt1 4.29 4.23 4.26 4.56 3.99
DEMP 4.99 4.97 4.82 2.88 2.63
DEMP2 3.56 3.55 3.17 2.85 2.48

MC 2.09 2.06 2.35 3.90 4.86
NMC 1.06 1.04 1.03 1.29 1.84

To further investigate the relationships between the essential conditions and resulting
cluster structures, we illustrated the cluster obtained in a trial where the intra-cluster
distance was the largest in Figure 5. For the criterion Ent, one cluster continued to grow.
This is because Ent lacks the condition SI, and is advantageous for larger clusters. For the
criterion NEnt1, the growth of the larger clusters was mitigated by adding the condition
SI to Ent. Nevertheless, the intra-cluster distances were still large because NEnt lacked
the condition BO. It tended to create unnecessarily large clusters because it tended to
merge larger and more distant components rather than smaller and closer components.
The criterion NMC improved such a disadvantage by adding the condition BO to NEnt1.
For the criterion MC, distant components were merged, as the condition WS was not
satisfied. NMC overcame this by adding the condition WS to MC. The differences between
DEMP and DEMP2 were unclear in Figure 5c,d, and both criteria elucidated the cluster
structure well because they satisfied relatively many conditions. We conclude that the
essential conditions are effective for obtaining better cluster structures.
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(a) Ent (11.07) (b) NEnt1 (3.79) (c) DEMP (3.72)

(d) DEMP2 (3.45) (e) MC (3.92) (f) NMC (2.79)

Figure 5. Scatter plots for the cluster with K = 20 whose intra-cluster distance is the largest. The thickness of the color
corresponds to the posterior probabilities. The numbers in the parenthesis show Dintra.

8.2. Analysis of Real Dataset

We discuss the results of applying the merging algorithms and clustering summariza-
tion to eight types of real datasets with true cluster labels. The details of the datasets and
processing are described in Appendix B.

8.2.1. Evaluation of Clustering Using True Labels

First, we compared the clustering performance of the merging algorithms by measur-
ing similarity between estimated and true cluster labels. Formally, given the dataset {xn}n
and the true labels {z?n}n, we first estimated the clustering structures using {xn}n without
seeing {z?n}n, and obtained the estimated labels {ẑn}n. We define K? and K̂ as the number
of the true and estimated clusters. Then, we evaluated the similarity between {z?n}n and
{ẑn}n using the adjusted Rand index (ARI) [30] and F-measure. ARI takes values between
-1 and 1, and F-measure takes values between 0 and 1. Their larger value corresponds
to better clustering. Both indices can be applied when the number of true and estimated
clusters is different.

To run the merging algorithms, the mixture models should be estimated first. In our
experiments, we estimated them by the variational Bayes Gaussian mixture model with
K = 20 [31] implemented in the Scikit-learn package [32]; we adopted this, as it exhibited
good performance in our experiments. We used the prior distributions of the mixture
proportions as the Dirichlet distributions with α = 0.1, and we set the other parameters
for prior distributions as the default values in the package. For each dataset, we fitted the
algorithm ten times with different initializations and used the best one.

We compared the merging algorithms with three types of model-based clustering
algorithms based on the Gaussian mixture model, which are summarized in Table 4. First,
we estimated the number of components, using BIC [33]. It selects a suitable model for
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describing the densities, and the mixture components tend to overlap. Nevertheless, it
has been widely used for clustering by regarding each component as a cluster. Second,
we estimated the number of clusters using DNML [11,12]. It selects a model whose
components can be regarded as clusters by considering the description length of the latent
and observed variables. Finally, we estimated the clusters as the mixture of Gaussian
mixture models implemented by Malsiher-Walli et al, [20]. By fixing two integers K and L,
K Gaussian mixture models were estimated with L components. The number of clusters
was automatically adjusted by shrinking the redundant clusters. As in the original paper,
we set K = 30, L = 15 (and some specific parameters in the paper) for the DLB dataset and
K = 10, L = 5 for the other datasets.

Table 4. Overview of the comparison methods.

Abbreviation Method Reference

GMM + BIC GMM and BIC criterion [33]

GMM + DNML GMM and DNML criterion [11,12]

MixMix Mixture of Gaussian mixture models [20]

We estimated the models ten times and compared the average score among the
methods. The average number of clusters are listed in Table 5, and F-measure and ARI are
listed in Tables 6 and 7.

Two clusters that achieved the best score and that were obtained by the heuristics
proposed in Section 6 are described. The best scores of the merging algorithms exceeded
those of all other methods for six out of eight datasets. In particular, the merging methods
satisfying many essential conditions, such as DEMP, DEMP2, and NMC, obtained high
scores with a smaller number of clusters. Therefore, it can be said that the merging algo-
rithms with more essential conditions are effective for elucidating the clustering structures.
Moreover, the scores with NMC-based stopping conditions exceeded those of all other
methods for four out of eight datasets.

Table 5. Estimated number of clusters. Merge (best F-measure) is the number of clusters when F-measure is highest.
Merge (best ARI) is the number of clusters when ARI is highest. Merge (NMC) is the number of clusters obtained by the
NMC-based stopping condition.

Dataset AIS BTL CRB DLC ECL SDS WSC YST
K? 2 3 4 4 5 3 2 2

GMM + BIC 3.0 2.6 3.0 6.6 4.0 2.0 3.0 3.5

GMM + DNML 1.0 1.0 1.0 2.8 4.0 1.0 2.0 1.0

MixMix 2.7 1.2 1.0 7.4 4.5 3.2 2.1 2.8

Merge
(Best F-measure)

Ent 18.0 20.0 19.1 17.6 19.0 19.4 19.2 18.6

NEnt1 2.0 3.0 5.7 10.2 8.9 6.7 5.3 8.8

DEMP 2.0 3.0 4.3 4.9 6.2 4.7 3.4 2.3

DEMP2 2.0 3.0 4.3 4.9 5.7 4.1 2.7 2.0

MC 2.0 3.0 5.6 3.6 4.9 7.1 2.7 2.0

NMC 3.0 3.0 4.3 7.1 6.4 4.3 2.0 2.1

Merge
(Best ARI)

Ent 19.0 20.0 19.4 17.6 19.0 19.4 19.2 18.6

NEnt1 3.0 3.0 5.7 3.2 7.0 6.7 5.3 8.8

DEMP 2.4 3.0 4.3 4.9 6.2 4.9 3.6 2.3

DEMP2 2.0 3.0 4.3 5.0 6.1 4.5 2.7 2.0
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Table 5. Cont.

Dataset AIS BTL CRB DLC ECL SDS WSC YST
K? 2 3 4 4 5 3 2 2

MC 2.0 3.0 5.6 3.6 4.9 7.1 4.0 2.0

NMC 4.0 3.0 4.3 7.0 6.4 4.4 2.0 2.1

Merge
(NMC)

Ent 19.0 20.0 17.8 17.6 19.0 18.1 19.2 18.6

NEnt1 4.0 3.0 3.6 6.9 4.7 4.9 5.6 8.9

DEMP 4.8 3.0 3.3 9.1 5.7 5.3 4.4 8.0

DEMP2 5.0 3.0 3.3 9.2 5.7 5.2 3.6 8.5

MC 5.0 3.0 6.2 11.3 9.0 8.6 6.1 9.7

NMC 4.0 3.0 3.1 6.4 4.3 3.2 2.9 6.9

Table 6. F-measure for the real datasets. For each merging algorithm, scores that exceed all comparison methods are denoted
in boldface.

Dataset AIS BTL CRB DLC ECL SDS WSC YST

GMM + BIC 0.912 0.805 0.810 0.734 0.787 0.794 0.857 0.864

GMM + DNML 0.671 0.590 0.400 0.903 0.787 0.500 0.914 0.850

MixMix 0.925 0.578 0.400 0.761 0.829 0.849 0.947 0.826

Merge
(Best)

Ent 0.916 0.986 0.866 0.931 0.874 0.900 0.897 0.867

NEnt1 0.901 0.986 0.889 0.922 0.860 0.928 0.904 0.868

DEMP 0.906 0.986 0.877 0.952 0.874 0.908 0.905 0.942

DEMP2 0.906 0.986 0.877 0.952 0.875 0.912 0.905 0.944

MC 0.931 0.986 0.863 0.921 0.870 0.886 0.886 0.928

NMC 0.916 0.986 0.893 0.949 0.875 0.938 0.945 0.942

Merge
(NMC)

Ent 0.892 0.986 0.822 0.931 0.874 0.852 0.897 0.867

NEnt1 0.892 0.986 0.828 0.905 0.823 0.822 0.904 0.868

DEMP 0.822 0.986 0.823 0.758 0.867 0.886 0.881 0.870

DEMP2 0.805 0.986 0.822 0.754 0.867 0.892 0.880 0.820

MC 0.803 0.986 0.831 0.706 0.860 0.878 0.858 0.771

NMC 0.892 0.986 0.828 0.916 0.848 0.810 0.925 0.878
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Table 7. ARI for the real datasets. For each merging algorithm, scores that exceed all comparison methods are denoted
in boldface.

Dataset (K?) AIS BTL CRB DLC ECL SDS WSC YST

GMM + BIC 0.743 0.603 0.595 0.506 0.590 0.542 0.617 0.516

GMM + DNML 0.000 0.000 0.000 0.870 0.590 0.000 0.685 0.000

MixMix 0.751 0.110 0.000 0.501 0.673 0.623 0.799 0.589

Merge
(Best)

Ent 0.700 0.958 0.707 0.913 0.759 0.767 0.688 0.508

NEnt1 0.701 0.958 0.739 0.852 0.719 0.810 0.688 0.511

DEMP 0.666 0.958 0.732 0.934 0.763 0.782 0.734 0.769

DEMP2 0.657 0.958 0.731 0.936 0.763 0.788 0.732 0.773

MC 0.741 0.958 0.700 0.849 0.744 0.745 0.664 0.709

NMC 0.700 0.958 0.748 0.928 0.769 0.832 0.791 0.760

Merge
(NMC)

Ent 0.700 0.958 0.626 0.913 0.759 0.657 0.688 0.508

NEnt1 0.700 0.958 0.642 0.834 0.638 0.594 0.688 0.511

DEMP 0.576 0.958 0.640 0.523 0.754 0.728 0.670 0.514

DEMP2 0.545 0.958 0.639 0.521 0.754 0.745 0.670 0.402

MC 0.534 0.958 0.660 0.452 0.700 0.728 0.633 0.313

NMC 0.700 0.958 0.643 0.878 0.725 0.575 0.732 0.524

To further investigate the relationships between the performances of the algorithms
and the shapes of the datasets, we estimated the proportion of outliers based on the k-
nearest neighbor distances D(5)

nn . We calculated the ratio of the 5-nearest neighbor distance
D(5)

nn (xn) and its average (1/N)∑n′ D
(k)
nn (xn′) for each data point, and we plotted the

proportions for which the ratio exceeded 2.0, 3.0, 4.0, and 5.0 in Figure 6. As seen from
the figure, the datasets where the merging methods did not work well, such as AIS, DLB,
WSC, and YST, contained relatively many outliers. This is reasonable because the merging
algorithms do not aim to merge distant clusters. We can conclude that the merging methods
are particularly effective when the datasets have fewer outliers or when we want to find
the aggregated clusters.

Figure 6. The proportions of the data xn that satisfy D(5)
nn (xn)/[(1/N)∑n′ D

(5)
nn (xn′ )] > 2.0, 3.0, 4.0, 5.0.
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8.2.2. Results of Clustering Summarization

Next, we analyzed the results of the merging methods using the clustering summa-
rization proposed in Section 7. As examples, we show one result obtained using the NMC
and NMC-based stopping conditions for the Flea beetles and Wisconsin breast cancer
datasets. The clustering results are summarized in Tables 8 and 9, respectively. For the
upper-components in Flea beetles dataset, the exponential of MC(up) was close to 3.0,
and NMC(up) was close to 1.0; we see that the effective number of clusters was around
three, and the clusters were well-separated. Components 2 and 3 were unmerged, and
the exponentials of MC and NMC of Component 1 were close to 1.0 and 0.0, respectively.
This indicates that each cluster can be represented by almost a single Gaussian distribution.
Furthermore, the (exponentials of) MC and the NMC of the upper-components in the Wis-
consin cancer dataset were 1.66 and 0.763, respectively. It can be expected that the situation
was a partial overlap of the two clusters. For Components 1 and 2, NMCs were relatively
large. This shows that partially separated components are needed to describe each com-
ponent. MC of Component 2 was smaller than that of Component 1. Then, it is expected
that Component 2 had simpler shapes than Component 1; however, the former seemed
to have small components that might be outliers because NMC was larger. Plots of the
predicted clusters are illustrated for the Flea beetles and Wisconsin breast cancer datasets in
Figures 7 and 8, respectively. We observe that the predictions described previously match
to the actual plots. Therefore, we can reveal significant information about the clustering
structures by observing the clustering summarizations.

Table 8. Clustering summarization for the Flea beetles dataset.

Upper-Components

MC (exp): 0.963 (2.62)
NMC: 0.897

Component 1 Component 2 Component 3

Weight: 0.440 Weight: 0.268 Weight: 0.293
MC: 0.057 MC: 0.000 MC: 0.000
(exp) (1.06) (exp) (1.00) (exp) (1.00)
NMC: 0.209 NMC: - NMC: -

Table 9. Clustering summarization for the Wisconsin breast cancer dataset.

Upper-Components

MC (exp): 0.509 (1.66)
NMC: 0.763

Component 1 Component 2

Weight: 0.387 Weight: 0.613
MC (exp): 0.714 (2.04) MC (exp): 0.270 (1.31)
NMC: 0.613 NMC: 0.676
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Figure 7. Predicted cluster labels for the Flea beetles dataset.
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Figure 8. Predicted cluster labels for the Wisconsin breast cancer dataset.

8.2.3. Relationships between Clustering Summarization and Clustering Quality

Finally, we confirmed that MC and NMC in the sub-components were also related
to the quality of classification. To confirm this, we conducted additional experiments
discussed below. First, we ran the merging algorithms until K = 1 without the stopping
conditions. Then, for every merged clusters created at K = Kstart, . . . , 1, we counted the
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number of data points classified into them. We define N(k)
C as the number of points with

true labels k classified into the merged cluster C. Then, we evaluated the quality of the
cluster C using the entropy calculated as follows:

HC = −
K?

∑
k=1

N(k)
C

∑k′ N(k)
C

log
N(k)

C

∑k′ N(k)
C

,

where the cluster C for ∑k′ N(k)
C = 0 were omitted. This takes values between 0 and log K?.

Smaller values are preferred, because HC becomes small when most of the points within
the component share the same cluster label. We calculated the MC/NMC and HC within
the clusters for all datasets and merging algorithms, and we plotted the relationships
between them in Figure 9. Note that the unmerged clusters were omitted because the NMC
could not be defined. From the figure, it is evident that both MC and NMC had positive
correlations with HC. The correlation coefficients were 0.794 and 0.637 for MC and NMC,
respectively. This observation is useful in applications. If the obtained cluster has smaller
MC and NMC, then we can confirm that it contains only one group. Otherwise, we need to
assume that it contains more than one group. Therefore, we conclude that MC and NMC
indicate the confidence level of the cluster structures.

(a) (b)

Figure 9. Scatter plots of the MC/NMC and the entropy of the true cluster label.

9. Discussion

To improve the interpretability of the mixture models with overlap, we have estab-
lished novel methodologies to merge the components and summarize the results.

For merging mixture components, we proposed essential conditions that the merg-
ing criteria should satisfy. Although there have been studies creating some rules in the
clustering approach [34,35], they have not been applied to clustering by merging compo-
nents. The proposed essential conditions for merging criteria contributed to comparing
and modifying existing criteria. The limitation of our conditions is that they only provide
the necessary conditions for extreme cases, where the components are entirely overlapped
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or separated. The conditions for the moderate cases that the components partially overlap
should be investigated in further studies.

We also proposed a novel methodology to interpret the merging results based on
clustering summarization. While previous studies [6,26,27] have focused on interpreting
the structures among sub-components or upper-clusters only, our methods can quantify
both structures uniformly based on the MC and NMC. They represented the overview
of the structures in the mixture models by evaluating how much the components were
distinguished based on the degree of overlap and weight bias.

We verified the effectiveness of our methods, using artificial and real datasets. In the
artificial data experiments, we confirmed that the intra- and inter-cluster distances were
improved corresponding to the modification of the criteria. Further, by observing the
clusters with maximum intra-cluster distance, we found that the essential conditions were
helpful to prevent the clusters from merging distant components or growing too much.
In the real data experiments, we confirmed that the best scores of the proposed methods
were better than the comparison methods for many datasets, and the scores obtained
using the stopping condition were also better for the datasets containing relatively smaller
outliers. In addition, we confirmed that the clustering summary was helpful to interpret
the merging results. It was related to the shape of the clusters, weight biases, and the
existence of the outliers. Further, we found that the MC and NMC within the components
were also related to the quality of the classification. Therefore, the clustering summary also
represented the confidence level of the cluster structures.

10. Conclusions

We have established the framework of theoretically interpreting overlapping mixture
models by merging the components and summarizing merging results. First, we proposed
three essential conditions for evaluating cluster-merging methods. They declared necessary
properties that the merging criterion should satisfy. In this framework, we considered Ent,
DEMP, and MC and their modifications to investigate whether they satisfied the essential
conditions. The stopping condition based on NMC was also proposed.

Moreover, we proposed the clustering summarization based on MC and NMC. They
quantify how overlapped the clusters are, how biased the clustering structure is, and how
scattered the components are in a respective cluster. We can conduct this analysis from
higher level clusters to lower level components to give a comprehensive survey of the
global clustering structure. We then quantitatively explained the shape of the clusters,
weight biases, and existence of the outliers.

In the experiments, we empirically demonstrated that the modification of the merging
criteria improved the ability to find better clustering structures. We also investigated the
merging order for each criterion and found that the essential conditions were helpful to
prevent the clusters from merging distant components or growing too much. Further,
we confirmed, using the real dataset, that the clustering summary revealed varied infor-
mation in the clustering structure, such as the shape of the clusters, weight biases, the
existence of the outliers, and even the confidence level of the cluster structures. We be-
lieve that this methodology gives a new view of the interpretability/explainability for
model-based clustering.

We have studied how to interpret the overlapping mixture models after they were
estimated. It remains for future study to apply merging criteria even in the phase of
estimating mixture models.
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Appendix A. Details of the Merging Algorithm

We show the pseudo-code and computational complexity of the merging algorithm.
First, the pseudo-code of merging mixture components is shown in Algorithm A1.

Algorithm A1 Merging mixture components

Require: data xN , finite mixture model f , criterion function Crit.
1: while (The number of components) > 1 do
2: i, j := arg min

i<j
Crit(i, j)

3: if a certain stopping condition is satisfied then
4: return The current components.
5: end if
6: Merge components i and j.
7: end while
8: return The current components.

Next, we discuss the computational complexity in this algorithm given xN and f
below. First, the cost of calculating {γk(xn)}k,n can be written as O(TdistNK), where Tdist is
the cost to calculate f (x) for a point. To merge components, it is needed to repeat updating
{Crit(i, j)}i,j and {γk(xn)}k,n at most (K − 1) times. The cost for updating {Crit(i, j)}i,j

and {γk(xn)}k,n are O(TcritK2) and O(N), respectively, where Tcrit is the cost to calculate
Crit(i, j) for a pair of the components. Overall, we need O(K(Tdist + TcritK2 + N)) to
complete the algorithm.

For the criteria referred to in this section, their computational complexity Tcrit are
O(N) for Ent, NEnt1, DEMP2, MC, and NMC (NEnt2), and O(NK) for DEMP.

Appendix B. Details of the Datasets in the Real Data Experiment

The datasets used in the real data experiment are summarized in Table A1. We show
the detail and preprocessing of them below. All variables in the datasets are normalized
after they are selected.

https://github.com/ShunkiKyoya/summarize_cluster_overlap
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Table A1. Summary of the real dataset, where N denotes the number of points, d denotes the number
of features, and K? denotes the number of true clusters.

Dataset Abbreviation (N, d) K?

AIS AIS (202, 3) 2

Flea beatles BTL (74, 2) 3

Crabs CRB (200, 5) 4

DLBCL DLB (7932, 3) 4

Ecoli ECL (327, 6) 5

Seeds SDS (210, 7) 3

Wisconsin breast cancer WSC (569, 3) 2

Yeast YST (626, 3) 2

The AIS dataset [36] consists of the physical measurements of athletes who trained at
the Australian Institute of Sport. Two cluster labels are male and female. As did Lee and
McLachlan [16] and Malsiner-Walli et al. [20], we use three variables: BMI, LBM, and body
fat percentage (BFat).

The Flea beetles dataset [37] consists of two physical measurements (width and angle)
of flea beetles. Three cluster labels are the different species, named Concinna, Heikertingeri,
and Heptapotamica.

The Crabs dataset [38] describes five morphological measurements (frontal lobe size,
rear width, carapace length, carapace width, and body depth) of 200 crabs. Four cluster
labels are formed by combining two color forms and two sexes (male and female).

The DLBCL dataset [39] contains fluorescent intensities of multiple conjugated anti-
bodies (markers) on the cells derived from the lymph nodes of patients diagnosed with
DLBCL (diffuse large B-cell lymphoma). As did Lee and McLachlan [40] and Malsiner-Walli
et al. [20], we consider four labels corresponding to the cell populations.

The Ecoli dataset [41,42] contains cellular localization sites of proteins. We consider
five variables named mcg, gvh, aac, alm1, and alm2. Binary attributes are omitted here.
For the labels, we consider five localization sites named cp, im, imU, om, and pp. The other
localization sites are omitted because there are little data assigned to them.

The Yeast dataset [41,42] also describes cellular localization sites of proteins. As did
Franczac et al. [43] and Malsiner-Walli et al. [20], we select three variables and two cluster
labels from the dataset. For the variables, we consider three attributes of proteins, named
mcg, alm, and vac. For the labels, we consider two localization sites named CYT and ME3.

The Seeds dataset [44] consists of the seven geometric parameters of grains: area,
perimeter, compactness, length of kernel, width of the kernel, asymmetry coefficient, and
length of kernel groove. Three cluster labels are kernels belonging to different varieties of
wheat: Kama, Rosa, and Canadian.

The Wisconsin breast cancer dataset [3] describes characteristics of the cell nuclei in the
images of breast masses. Two cluster labels are benign and malignant. As did Fraley and
Raftery [2] and Malsiner-Walli et al. [20], we select three variables: extreme area, extreme
smoothness, and mean texture.
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