
entropy

Article

Random Integer Lattice Generation via the Hermite
Normal Form

Gengran Hu 1,2,* , Lin You 1 , Liang Li 1 , Liqin Hu 1 and Hui Wang 1

����������
�������

Citation: Hu, G.; You, L.; Li, L.;

Hu, L.; Wang, H. Random Integer

Lattice Generation via the Hermite

Normal Form. Entropy 2021, 23, 1509.

https://doi.org/10.3390/e23111509

Academic Editor: T. Aaron Gulliver

Received: 27 August 2021

Accepted: 10 November 2021

Published: 14 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Cyberspace, Hangzhou Dianzi University, Hangzhou 310018, China;
mryoulin@gmail.com (L.Y.); liangli@hdu.edu.cn (L.L.); huliqin@hdu.edu.cn (L.H.);
h.wang@hdu.edu.cn (H.W.)

2 State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China

* Correspondence: grhu@hdu.edu.cn

Abstract: Lattices used in cryptography are integer lattices. Defining and generating a “random
integer lattice” are interesting topics. A generation algorithm for a random integer lattice can be used
to serve as a random input of all the lattice algorithms. In this paper, we recall the definition of the
random integer lattice given by G. Hu et al. and present an improved generation algorithm for it via
the Hermite normal form. It can be proven that with probability ≥0.99, this algorithm outputs an
n-dim random integer lattice within O(n2) operations.
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1. Introduction

Lattices are discrete subgroups inRn. Since Ajtai’s discovery of the average-case/worst-
case connection in lattice problems [1], lattice-based cryptography has attracted much
attention [2–5]. Up to now, lattice-based cryptographic schemes have been considered to
be a promising alternative to more traditional ones based on the factoring and discrete
logarithm problems since lattice-based schemes can be resistant to efficient quantum al-
gorithms [6]. Lattice algorithms such as LLL [7] and BKZ [8,9] are commonly used in
analyzing these lattice-based schemes’ security. The lattices used in cryptography and
lattice algorithms are integer lattices (discrete subgroups of Zn). Thus, the problem of
suitably defining and generating a random integer lattice is a meaningful topic. In [10],
P. Q. Nguyen found that for dimensions up to 50, LLL almost outputs the shortest lattice
vector, while in theory, LLL’s output is just an approximately short vector. Once we are
able to generate a random integer lattice, such a generation algorithm can be used to serve
as a random input for all lattice algorithms to obtain their output qualities on average.

In [1], M. Ajtai defined a family of “random integer lattices” in terms of the worst-case
to average-case connection and showed how to generate one from this lattice family. For
uniform A ∈ Zn×m

q , the lattice family is defined as Λ⊥(A) = {Ax ∈ Zm : Ax = 0 ∈ Zn
q}.

In [10], P. Q. Nguyen and D. Stehle gave a definition of the “random integer lattice” in the
sense of the Haar measure, which was approximated by the Goldstein–Mayer method [11].
For large number N, this “random integer lattice” is uniformly chosen from the set of all
n× n Hermite normal forms with the determinant equal to N. When N is prime, to generate
such a random integer lattice, one only needs to set hnn = N, hin ∈ [0, N) uniformly and
hii = 1 for i < n. This type of “random integer lattice” is used in many cryptographic
applications. From the perspective of mathematics, studying whether the requirement that
N be a prime can be removed is also a meaningful issue.

In [12], G. Maze studied the probabilistic distribution of the random HNF with a
special diagonal structure, where the randomness was derived from a random square
matrix whose elements were all chosen uniformly from [−B, B] for large enough B. In [13],
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G. Hu et al. introduced a different definition of randomness, in which the definition
“random integer lattice” means the lattice’s HNF is chosen uniformly from all n× n HNFs
whose determinants are upper bounded by a large number M. In the same paper [13], G.
Hu et al. also presented a complete random integer lattice generation algorithm. In this
algorithm, the first step is to generate a determinant. To make the final output uniform, it is
necessary to compute the total number of HNFs with fixed determinant N. Since the total
number can be figured out only in the case that the factorization of N is known, a subroutine
to factor integers is necessary in this algorithm. In this paper, we improved this algorithm
with the help of the diagonal elements’ distribution in the random HNF. This improved
algorithm first generates the diagonal elements h11, · · · , hn−1,n−1 without computing the
total number of HNFs with a fixed determinant, then it uses the reverse sampling method
to generate the final diagonal element hnn. Thus, the factorization subroutine is no longer
needed in this improved algorithm, which makes it more efficient.

The remainder of the paper is organized as follows. In Section 2, we give some
necessary preliminaries. In Section 3, we recall the definition of the random integer lattice
given by G. Hu et al. and discuss the distribution of all the diagonal elements in the random
integer lattice’s HNF. For the next section, we present our improved algorithm to generate
the random integer lattice via the HNF. Finally, we give our conclusion in Section 5.

2. Preliminaries

We denote by Z the integer ring and R the real number field. We use GLn(Z) to denote
the general linear group over Z. For convenience, we denote the set of all n× n nonsingular
integer matrices by GLn(R) ∩Zn×n.

Lattice and the HNF

Given a matrix B = (bij) ∈ Rn×m with rank n, the lattice L(B) spanned by the rows of
B is:

L(B) = {xB =
n

∑
i=1

xibi|xi ∈ Z},

where bi is the i-th row of B. We call m the dimension of L(B) and n its rank. The
determinant of L(B), say det(L(B)), is defined as

√
det(BT B). It is easy to see that when

B is full-rank (n = m), its determinant becomes |det(B)|.
Two lattices L(B1) and L(B2) are exactly the same when there exists a matrix U ∈

GLn(Z) s.t. B1 = UB2. Lattices used in cryptography are usually “integer lattices”, whose
basis matrices are over Z instead of R. Thus, the space of all full-rank integer lattices is
actually (GLn(R) ∩Zn×n)/GLn(Z).

The Hermite Normal Form (HNF) is a useful tool to study integer matrices:

Definition 1. A square nonsingular integer matrix H ∈ Zn×n is called in the HNF if:
• H is upper triangular, i.e., hij = 0 for all i > j;
• All diagonal elements are positive, i.e., hii > 0 for all i;
• All nondiagonal elements are reduced modulo the corresponding diagonal element at the

same column, i.e., 0 ≤ hij < hjj for all i < j.

There exists a famous result for the HNF [14] (Chapter 2, page 66):

Theorem 1. For every A ∈ GLn(R)∩Zn×n, there exists a unique n× n matrix B ∈ Sn,Z (HNF)
of the form B = UA with U ∈ GLn(Z).

By this theorem, an integer lattice corresponds to its unique HNF, implying that
generating an integer lattice is actually equivalent to generating an HNF.
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3. Random Integer Lattice
3.1. Definition

In this part, we refer to [13] to recall some results related to the random integer lattice.
First, for M, N ∈ Z+,

H≤n (M) , {H is n-dim HNF|det(H) ≤ M},

Hn(N) , {H is n-dim HNF|det(H) = N}.

Gruber [15] counted the size of |Hn(N)|:

Theorem 2. If N has prime decomposition N = pr1
1 . . . prt

t , then:

|Hn(N)| =
t

∏
i=1

n−1

∏
j=1

pri+j
i − 1

pj
i − 1

.

There exists an asymptotic estimation for |H≤n (M)| in [13]:

Theorem 3. For large positive integer M,

|H≤n (M)| = ∏n
s=2 ζ(s)

n
Mn + O(Mn−1 log M).

H is called an n-dim random nonsingular HNF if for large integer M > 0, H is chosen
from H≤n (M) uniformly, and the lattice L(H) generated by such an H is called a random
integer lattice.

3.2. Diagonal Distribution

In [13], Hu et al. studied the expectation and variance of every entry and the probabil-
ity distribution of every diagonal entry:

Theorem 4. Let H = (hij) be an n-dim random nonsingular HNF with the determinant bounded
by M > 0 and t be an integer in [1, n− 1], given an increasing subset {i1, · · · , it} of {1, · · · , n}
and its increasing complementary subset {j1, · · · , jn−t}, for positive integers b1 · · · bt; when
M→ +∞, we have:

P(hik ,ik = bk for all k) =

0 (it = n)
∏n−t−1

k=1 ζ(n+1−jk)
∏n

s=2 ζ(s) ∏t
l=1 bil−n−1

l (it < n)
(1)

If we take t = 1, a one-element set T = {i}(i ∈ [1, n− 1]), and positive integers b, then
the increasing complementary subset of T in {1, 2, · · · , n} is {1, · · · , i− 1, i + 1, · · · , n}. We
apply the above theorem and obtain the following corollary:

Corollary 1. Let H = (hij) be an n-dim random nonsingular HNF with the determinant bounded
by M > 0, then for i ∈ [1, n− 1] and positive integer b, when M→ +∞, we have:

P(hii = b) =
1

ζ(n + 1− i) · bn+1−i (b = 1, 2, · · · ).

We denote this distribution of hii by D(n, i).

Remark 1. Notice that in Theorem 4, when it < n and M→ ∞, both cases: t = 1 and 1 < t < n
are valid conditions, which corresponds to the joint distribution of hik ,ik (k = 1, · · · , t) for 1 < t < n
or a marginal distribution of the single variable hi1,i1 for t = 1 as in Corollary 1. Considering
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Theorem 4 and Corollary 1, it can be deduced that when M→ ∞, the first n− 1 diagonal elements
h11, · · · , hn−1,n−1 are independent variables.

4. Generating the Random Integer Lattice via the HNF

In this section, we present our random integer lattice generation algorithm via the
HNF. Firstly, we introduce the inverse sampling method in probability theory to generate
all the diagonal elements. Then, we generate all the nondiagonal elements accordingly.

4.1. Inverse Sampling Method

Given a distribution D over some ordered set A, we can use the inverse sampling
method to generate a random variable according to the distribution D. We present two
versions of the inverse sampling method: continuous-ISM and discrete-ISM.

Theorem 5. (Continuous-ISM) For distribution D over interval [a, b] with cumulative distribu-
tion function FX(x), choose a random y uniformly from [0, 1] and compute z s.t. F(z) = y, then
the resulting variable Z has distribution D.

Proof. Our goal is to prove Z has FX as its cumulative distribution function. Namely, for
any x ∈ [a, b], we have to prove P(Z ≤ x) = FX(x). Since F is a monotonically increasing
function, we have:

P(Z ≤ x) = P(FZ(z) ≤ FX(x)) = P(y ≤ FX(x)) = FX(x)

where the second equality comes from F(z) = y and the last one is a direct result of y’s
uniformity in [0, 1]. Thus, the cumulative distribution function of Z is actually FX , which
completes the proof.

Theorem 6. (Discrete-ISM) For distribution D over finite-ordered set A = {ak}n
k=1 ⊆ Z with

corresponding density fk = P(X = ak), choose a random number y uniformly from [0, 1] and
compute the minimum j s.t. ∑

j
k=1 fk ≥ y; then, we let Z = aj, and Z will have distribution D.

Proof. For any aj ∈ A, we need to prove P(Z = aj) = f j. Since j is the minimum value s.t.

∑
j
k=1 fk ≥ y, we know that ∑

j−1
k=1 fk < y. Then, we have:

P(Z = aj) = P(
j

∑
k=1

fi ≥ y,
j−1

∑
k=1

fi < y)

= P(
j

∑
k=1

fk ≥ y)− P(
j−1

∑
k=1

fk ≥ y))

=
j

∑
k=1

fk −
j−1

∑
k=1

fk (since y is uniform in [0, 1])

= f j

which completes the proof.

4.2. Generating the Random Integer Lattice via the HNF

From Section 3.1, we can generate a random integer lattice by equivalently generating
a random nonsingular HNF. To begin with, we generate the first n− 1 diagonal elements
h11, h22, · · · , hn−1,n−1. Then, we generate the last diagonal element hnn. Finally, all the
nondiagonal elements are generated, and we output the matrix H as a lattice basis for our
random integer lattice.
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4.2.1. Generating h11, h22, · · · , hn−1,n−1

From Corollary 1, we know that for an n-dim nonsingular HNF, when i ∈ [1, n− 1],
the distribution of hii is:

D(n, i) : P(X = x) =
1

ζ(n + 1− i)
· x−(n+1−i) (x = 1, 2 . . . ). (2)

Therefore, we generate these diagonal elements h11, h22, · · · , hn−1,n−1 according to D(n, i)
by discrete-ISM (Theorem 6).

For i ∈ [1, n− 1], we choose y uniformly randomly from [0, 1] and increasingly iterate
ji starting from 1 until it satisfies 1

ζ(n+1−i) ∑
ji
k=1 k−(n+1−i) ≥ y. Then, we set hii = ji. By

Theorem 6, each diagonal hii has distribution D(n, i), which is what we need.

4.2.2. Generating hnn

After generating the first n− 1 diagonal elements hii, we set Dn−1 , ∏n−1
i=1 hii. Since

the determinant upper bound is M, the last diagonal element hnn should be in [1, b M
Dn−1
c].

We point out that Dn−1 is a small number compared to M with high probability. More
specifically, the following theorem can be proven.

Theorem 7. Let H = (hij) be an n-dim random nonsingular HNF with the determinant bounded
by M > 0; for Dn−1 , ∏n−1

i=1 hii, we have:

E(Dn−1) =
1

ζ(n)
log M + O(1).

Moreover, by Markov’s inequality, we find that:

P(Dn−1 ≥ (log M)2) ≤ 1
log M

.

To prove Theorem 7, the following lemma from [13] is needed.

Lemma 1. Given an integer n ≥ 4 and a large integer M > 0, for any non-negative increasing
sequence (si)1≤i≤n s.t. sn − sn−3 ≥ 2, sn − sn−2 ≥ 1 and a respective summation:

S(M, s1 . . . sn) , ∑
ai∈Z+ ,∏n

i=1 ai≤M
as1

1 · · · a
sn
n ,

we have the following Table 1 on asymptotic formulas for S(M, s1 . . . sn).

Table 1. Asymptotic formulas of S(M, s1 . . . sn) in different cases.

S(M, s1 . . . sn) If

∏n−1
j=1 ζ(sn+1−sj)

sn+1 Msn+1 + O(Msn log M) sn−3 ≤ sn−2 < sn−1 < sn
∏n−1

j=1 ζ(sn+1−sj)

sn+1 Msn+1 + O
(

Msn(log M)2) sn−3 < sn−2 = sn−1 < sn
∏n−2

j=1 ζ(sn+1−sj)

sn+1 Msn+1 log M + O(Msn+1) sn−3 ≤ sn−2 < sn−1 = sn

where ζ(s) = ∑∞
i=1 i−s is the well-known Riemann zeta function and the constant in the O

notation is only relevant to n.

Now, we start to prove Theorem 7.
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Proof. For the expectation of Dn−1 = ∏n−1
i=1 hii, we find that:

E(Dn−1) = ∑
k≤M

k · P(Dn−1 = k)

=

∑
k≤M

k · |Hn−1(k)| · ∑
an≤M/k

an−1
n

|H≤n (M)|

=

∑
k≤M

∏n−1
j=1 aj ∑

∏n−1
j=1 aj=k

∏n−1
j=1 aj−1

j ∑
an≤M/k

an−1
n

|H≤n (M)|

=

∑
k≤M

∑
∏n−1

j=1 aj=k
∏n−1

j=1 aj
j ∑

an≤M/k
an−1

n

|H≤n (M)|

=

∑
∏n

j=1 aj≤M
∏n−1

j=1 aj
j · a

n−1
n

∑
∏n

j=1 aj≤M
∏n

j=1 aj−1
j

=
S(M, 1, 2, · · · , n− 2, n− 1, n− 1)

S(M, 0, 1, · · · , n− 2, n− 1)
(as in Lemma 1)

=
∏n−1

s=2 ζ(s)
n ·Mn log M + O(Mn)

∏n−1
s=2 ζ(s)

n Mn + O(Mn−1 log M)
(by Lemma 1)

=
∏n−1

s=2 ζ(s)
n · log M + O(1)

∏n−1
s=2 ζ(s)

n + O(log M/M)

=
1

ζ(n)
log M + O(1),

which completes the first part of Theorem 7.
For the second part, recall that for any non-negative random variable X, Markov’s

inequality tells us that:
P(X ≥ a) ≤ E(X)/a.

Since Dn−1 is non-negative, we apply Markov’s inequality to it by setting a = (log M)2

and obtain:

P(Dn−1 ≥ (log M)2) ≤ (
1

ζ(n)
log M + O(1))/(log M)2 ≤ 1

log M

which completes the second part of the proof.

From Theorem 7, we know that Dn−1 is small compared to M with high probability;
thus, b M

Dn−1
c is still large enough for us to obtain a similar result for hnn. We think this

is a relatively reasonable way to describe the distribution of hnn. Thus, for the random
nonsingular HNF with the determinant bounded by M, on the condition that ∏n−1

i=1 hii =
Dn−1, the distribution of hnn is the following:

D̃(n, M, Dn−1) : P(X = x)

=
1

∑
bM/Dn−1c
k=1 kn−1

· xn−1

=
1

1
n b

M
Dn−1
cn + O(b M

Dn−1
cn−1)

· xn−1 (x = 1, 2 . . . , b M
Dn−1

c).

(3)
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Moreover, the corresponding cumulative distribution function is:

FX(x) = P(X ≤ x)

=
1

1
n b

M
Dn−1
cn + O(b M

Dn−1
cn−1)

·
x

∑
k=1

kn−1

=
1
n xn + O(xn−1)

1
n b

M
Dn−1
cn + O(b M

Dn−1
cn−1)

(x = 1, 2 . . . , b M
Dn−1

c).

(4)

Since b M
Dn−1
c is still super large, we know that:

FX(x) ≈ xn/n
bM/Dn−1cn/n

= (
x

bM/Dn−1c
)n , GX(x).

As a result, GX(x) is a rather good estimation for FX(x). In fact, if we define the
distribution D̃0(n, M, Dn−1) by the cumulative distribution function GX(x) as follows:

D̃0(n, M, Dn−1) : P(X ≤ x)

= (
x

bM/Dn−1c
)n (x = 1, 2 . . . , b M

Dn−1
c),

(5)

then we have the following theorem.

Theorem 8. For large enough M ∈ Z+ and positive integer Dn−1 = o(M), the statistical distance
between D̃(n, M, Dn−1) and D̃0(n, M, Dn−1) is at most n ·O(Dn−1

M ).

Proof. According to (4), the cumulative distribution function of D̃(n, M, Dn−1) is FX(x) =
1
n xn+O(xn−1)

1
n b

M
Dn−1

cn+O(b M
Dn−1

cn−1)
, since the cumulative distribution function of D̃0(n, M, Dn−1) is

GX(x) = ( x
bM/Dn−1c

)n; denote b M
Dn−1
c by M̃, then x ≤ M̃, and for every x ∈ [1, M̃],

we have:

|FX(x)− GX(x)|

=|
1
n xn + O(xn−1)

1
n M̃n + O(M̃n−1)

− (
x
M̃

)n|

=| xn + n ·O(xn−1)

M̃n + n ·O(M̃n−1)
− (

x
M̃

)n|

=| (xn + n ·O(xn−1))M̃n − (M̃n + n ·O(M̃n−1))xn

M̃2n + n ·O(M̃2n−1)
|

=|n ·O(xn−1)M̃n − n ·O(M̃n−1)xn

M̃2n + n ·O(M̃2n−1)
|

=|n ·O(M̃n−1)M̃n − n ·O(M̃n−1)M̃n

M̃2n + n ·O(M̃2n−1)
|(since x ≤ M̃)

=| n ·O(M̃2n−1)

M̃2n + n ·O(M̃2n−1)
|

=|
n ·O( 1

M̃ )

1 + n ·O( 1
M̃ )
| = n ·O(

1
M̃

) = n ·O(
Dn−1

M
)

which implies that the statistical distances D̃(n, M, Dn−1) and D̃0(n, M, Dn−1) are bounded
by n ·O(Dn−1

M ).
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Since bM/Dn−1c is still super large, we can generate hnn according to D̃0(n, M, Dn−1)
(close enough to D̃(n, M, Dn−1)) by continuous-ISM (Theorem 5).

We choose y uniformly randomly from [0, 1] and compute z ∈ R+ s.t.:

(
z

bM/Dn−1c
)n = y.

Then, we set hnn = bze. By Theorems 6 and 8, the diagonal hnn has distribution D̃0(n, M, Dn−1),
which is close enough to D̃(n, M, Dn−1).

4.2.3. Generating hij(i 6= j)

This part is relatively easier. For i, j = 1, . . . , n, let hij be chosen from [0, hjj) uniformly
randomly if i < j and let hij = 0 if i > j.

4.2.4. Correctness

By the discussion above, for large enough M > 0, the distribution of the diagonal
h11, · · · , hnn generated by this algorithm is close enough to its distribution as a random
nonsingular HNF. For i < j ∈ [1, n], since a random nonsingular HNF’s hij is uniform in
[0, hjj) and hij is generated in the same way, we know that the output of this algorithm
is also close enough to a real random nonsingular HNF, which implies the correctness of
this algorithm.

4.3. Algorithm 1: Generate Random Integer Lattice

Now we present the Algorithm 1 to generate a random integer lattice.

Algorithm 1 Random Integer Lattice Generation

Require: Dimension n, large integer M
Ensure: n-dim random integer lattice L with det(L) ≤ M

Step 1: Generate h11, · · · , hn−1,n−1
D0 = 1
for i = 1 to n− 1 do

ji = 1, si = 1
choose yi ∈ [0, 1] uniformly
while si < ζ(n + 1− i) · yi do

ji = ji + 1
si = si + j−(n+1−i)

i
end while
Di = Di−1 · ji
set hii = ji

end for
Step 2: Generate hnn
choose y ∈ [0, 1] uniformly
z = y1/n

z = z · b M
Dn−1
c

set hnn = bze
Step 3: Generate hij(i 6= j)
for j = 1 to n do

for i = 1 to j− 1 do
choose hij ∈ [0, hjj) uniformly

end for
for i = j + 1 to n do

set hij = 0
end for

end for
Step 4: Set H = (hij), and output L(H)
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4.4. Time Complexity of Algorithm 1

Now, we analyze the time complexity of Algorithm 1. Obviously, the most time-
consuming part of Algorithm 1 is the floating-point operations si = si + j−(n+1−i)

i inside

the while iteration for each i in Step 1. Denote the number of computing si = si + j−(n+1−i)
i

in the i-th while iteration by T(i). Notice that:

P(hii = 1) =
1

ζ(n + 1− i)
;

since ζ(s) converges to one quite fast as s grows, the majority of hii will be set to one. In
fact, by the numerical results, we have following result:

Fact 1: For any integer n ≥ 10,

1
∏n

s=10 ζ(s)
≥ 0.999.

By this fact, for i ≤ n − 10, all the hii are very likely to be set to one, implying that
T(1), T(2), · · · , T(n− 10) = 0 with probability≥ 0.999. Then, we consider T(n− 9), T(n−
8), · · · , T(n− 1). If we set the probability bound for each T(i) to be 0.999, then by accurate
numerical results, we have the following Table 2:

Table 2. Upper bound for T(i) with probability≥ 0.999.

T(i) Upper Bound

T(n− 9) 0
T(n− 8) 1
T(n− 7) 1
T(n− 6) 1
T(n− 5) 2
T(n− 4) 3
T(n− 3) 6
T(n− 2) 19
T(n− 1) 607

Thus, we have the following theorem:

Theorem 9. The number of floating-point operations performed in Algorithm 1 is bounded by 1300
with probability ≥ 0.99.

Proof. By the above table, ∑n−1
i=n−9 T(i) is bounded by 640 with probability ≥ 0.9999.

Since T(1), T(2), · · · , T(n − 10) = 0 with probability ≥ 0.999, we know that ∑n−1
i=1 T(i)

is bounded by 640 with probability ≥ 0.99910 ≥ 0.99. Notice that each si = si + j−(n+1−i)
i

needs two floating-point operations, and it also needs another four floating-point opera-
tions to generate hnn in Step 2; thus, with probability ≥ 0.99, the total number of floating-
point operations performed in Algorithm 1 is bounded by 640× 2 + 4 = 1284 < 1300,
which completes the proof.

Remark 2. We point out that the accuracy of the floating-point affects the actual running time of
Algorithm 1. By experiments, 150 bit are a suitable option.

It is not hard to see that in Algorithm 1, besides the floating-point operations, the
remaining parts of Step 1, Step 2, and Step 3 take O(n2), O(1), and O(n2) operations,
respectively. Combining this with Theorem 9, we have the following result:
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Theorem 10. Algorithm 1 outputs a random integer lattice within O(n2) operations with proba-
bility ≥ 0.99.

5. Conclusions

In this paper, we presented an improved algorithm for generating random integer
lattices and discussed its time complexity. We proved that with probability ≥0.99, this
algorithm outputs an n-dim random integer lattice within O(n2) operations. We pointed
out that there is still space for improvement of our algorithm, and we leave this as an
open problem.
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