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Abstract: Detecting multipartite quantum coherence usually requires quantum state reconstruction,
which is quite inefficient for large-scale quantum systems. Along this line of research, several efficient
procedures have been proposed to detect multipartite quantum coherence without quantum state
reconstruction, among which the spectrum-estimation-based method is suitable for various coherence
measures. Here, we first generalize the spectrum-estimation-based method for the geometric measure
of coherence. Then, we investigate the tightness of the estimated lower bound of various coherence
measures, including the geometric measure of coherence, the l1-norm of coherence, the robustness
of coherence, and some convex roof quantifiers of coherence multiqubit GHZ states and linear
cluster states. Finally, we demonstrate the spectrum-estimation-based method as well as the other
two efficient methods. We observe that the spectrum-estimation-based method outperforms other
methods in various coherence measures, which significantly enhances the accuracy of estimation.

Keywords: multipartite quantum coherence; coherence measures; coherence estimation

1. Introduction

Quantum coherence, as a fundamental characteristic of quantum mechanics, describes
the ability of a quantum state to present quantum interference phenomena [1]. It also plays a
central role in many emerging areas, including quantum metrology [2,3], nanoscale thermody-
namics [4–7], and energy transportation in the biological system [8–11]. Recently, a rigorous
framework for quantifying coherence as a quantum resource was introduced [12–14]. Mean-
while, the framework of the resource theory of coherence has been extended from a single
party to the multipartite scenario [15–18].

Based on the general framework, several coherence measures have been proposed,
such as the l1 norm of coherence, the relative entropy of coherence [12], the geometric
measure of coherence [17], the robustness of coherence [19,20], some convex roof quanti-
fiers of coherence [21–25], and others [26–32]. These coherence measures make it possible
to quantify the role of coherence in different quantum information processing tasks, es-
pecially in the multipartite scenario, such as quantum state merging [33], coherence of
assistance [34], incoherent teleportation [35], coherence localization [36], and anti-noise
quantum metrology [37]. However, detecting or estimating most coherence measures
requires the reconstruction of quantum states, which is inefficient for large-scale quan-
tum systems.

Efficient protocols for detecting quantum coherence without quantum state tomogra-
phy have been recently investigated [38–46]. However, the initial proposals require either
complicated experimental settings for multipartite quantum systems [38–40] or complex nu-
merical optimizations [41]. An experiment-friendly tool, the so-called spectrum-estimation-
based method, requires local measurements and simple post-processing [42], and has
been experimentally demonstrated to measure the relative entropy of coherence [43].
Other experiment-friendly tools, such as the fidelity-based estimation method [44] and
the witness-based estimation method [46], have been successively proposed very recently.
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The fidelity-based estimation method delivers lower bounds for coherence concurrence [25],
the geometric measure of coherence [17], and the coherence of formation [22], and the
witness-based estimation method can be used to estimate the robustness of coherence [19].

Still, there are several unexplored matters along this line of research. First, on the
theoretical side, although it has been studied that the spectrum-estimation-based method
is capable of detecting the coherence of several coherence measures [42], there still exists
some coherence measures that are unexplored. On the experimental side, the realization
is focused on the detection of relative entropy of coherence [43], and its feasibility for
other coherence measures has not been tested. Second, the tightness of estimated bounds
on multipartite states with spectrum-estimation-based method has not been extensively
discussed. Third, while the efficient schemes have been studied either theoretically or
experimentally, their feasibility and comparison with the same realistic hardware are under
exploration. In particular, implementing efficient measurement schemes and analyzing how
the noise in realistic hardware affects the measurement accuracy are critical for studying
their practical performance with realistic devices.

The goal of this work is to investigate the spectrum-estimation-based method in three
directions: First, we generalize the spectrum-estimation-based method to detect the geo-
metric measure of coherence, which has not been investigated yet. Second, we investigate
the tightness of the estimated bound with the spectrum-estimation-based method on multi-
partite Greenberger–Horne–Zeilinger (GHZ) states and linear cluster states. Finally, we
present the comparison of the efficient methods with the same experimental data.

The article is organized as follows. In Section 2, we briefly introduce the theoretical
background, including the review of definitions of well-explored coherence measures,
the present results of coherence estimation with the spectrum-estimation-based method
and the construction of constraint in the spectrum-estimation-based method. In Section 3,
we provide the generalization of the spectrum-estimation-based method for the geometric
measure of coherence. In Section 4, we discuss the tightness of estimated bounds on
multipartite states. In Section 5, we present the results of comparison for three estimation
methods. Finally, we conclude in Section 6.

2. Theoretical Background
2.1. Review of Coherence Measures

A functional C can be regarded as a coherence measure if it satisfies four postu-
lates: non-negativity, monotonicity, strong monotonicity, and convexity [12]. For a n-qubit
quantum state ρ in Hilbert space with dimension of d = 2n, the relative entropy of co-
herence Cr(ρ), l1 norm of coherence Cl1(ρ) [12] and the geometric measure of coherence
Cg(ρ) [17] are distance-based coherence measures, and are defined as:

Cr(ρ) = SVN(ρd)− SVN(ρ) (1)

Cl1(ρ) = ∑
i 6=j
|ρij| (2)

Cg(ρ) = 1−max
σ∈I

F(ρ, σ), (3)

respectively, where SVN = −Tr[ρ log2 ρ] is the von Neumann entropy, ρd is the diagonal
part of ρ in the incoherent basis and F(ρ, σ) = ‖√$

√
σ‖2

1.
The robustness of coherence is defined as,

CR(ρ) = min
τ

{
s ≥ 0 | ρ + sτ

1 + s
=: δ ∈ I

}
, (4)

where I is the set of incoherent states and CR(ρ) denotes the minimum weight of another
state τ such that its convex mixture with ρ yields an incoherent state δ [19].
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Another kind of coherence measure is based on convex roof construction [21,23], such
as coherence concurrence C̃l1 [25], and coherence of formation C f [22] in form of

C̃l1(ρ) = inf
{pi ,|ϕi〉}

∑
i

piCl1(|ϕi〉), (5)

C f (ρ) = inf
{pi ,|ϕi〉}

∑
i

piCr(|ϕi〉), (6)

where the infimum is taken over all pure state decomposition of ρ = ∑i pi|ψi〉〈ψi|.
It is also important to consider the l2 norm of coherence Cl2(ρ) = minδ∈I ||ρ− δ||2l2 =

∑i 6=j
∣∣ρij
∣∣2 = SL(d)− SL(λ) with SL(p) = 1−∑d

i=1 p2
i being the Tsallis-2 entropy or linear

entropy, and λ is the spectrum of ρ [12].
The different coherence measures play different roles in quantum information pro-

cessing. The relative entropy of coherence plays a crucial role in coherence distillation [22],
coherence freezing [15,47], and the secrete key rate in quantum key distribution [48]. The l1-
norm of coherence is closely related to quantum multi-slit interference experiments [49]
and is used to explore the superiority of quantum algorithms [50–52]. The robustness of
coherence has a direct connection with the success probability in quantum discrimination
tasks [19,20,53]. The coherence of formation represents the coherence cost, that is, the mini-
mum rate of a maximally coherent pure state consumed to prepare the given state under
incoherent and strictly incoherent operations [22]. The coherence concurrence [25] and the
geometric measure of coherence [17] can be used to investigate the relationship between
the resource theory of coherence and entanglement.

2.2. Spectrum-Estimation-Based Method for Coherence Detection

Spectrum estimation is a powerful tool in quantum information processing, which can
be used in the characterization of distillability [54,55], entanglement transformations [56],
and coherence estimation [42]. Specifically, the estimation of coherence can be utilized
in the investigation of coherence freezing [42] and quantum metrology [37]. In the fol-
lowing, we summarize the coherence estimation for some coherence measures based on
spectrum estimation.

We consider the relative entropy of coherence Cr(ρ) and l2 norm of coherence Cl2(ρ)
that can be estimated with spectrum-estimation-based algorithm [42]. The former is:

Cr(ρ) ≥ lCr (ρ) = SVN(d)− SVN
(
d ∨

(
∧p∈X p

))
. (7)

The latter is determined by:

Cl2(ρ) ≥ lCl2
(ρ) = SL(d)− SL

(
d ∨

(
∧p∈X p

))
. (8)

d = (d1, . . . , d2n) are the diagonal elements of ρ, p = (p1, . . . , p2n) is the estimated probabil-
ity distribution of the measurement on a certain entangled basis {|ψk〉}2n

k=1,∨ is majorization
joint, and ∧p∈X p is the majorization meet of all probability distributions in X [42]. Here the
majorization join and meet are defined based on majorization. Without loss of generality,
the probability distribution p in X set can be restricted by some equality constraints and
inequality constraints, that is, X = {p|Ap ≥ α, Bp = β}.

Cl1(ρ) and CR(ρ) have relations to lCl2
(ρ) as:

Cl1(ρ) ≥ lCl1
(ρ) =

√
2lCl2

(ρ)
d(d−1)/2

∑
k=1

√
v̂k,

CR(ρ) ≥ lCR(ρ) =
√

2lCl2
(ρ)

d(d−1)/2

∑
k=1

v̂k√
uk

,

(9)
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where u↓ = (uk)
d(d−1)/2
k=1 is a descending sequence with uk = (2didj/Cl2(ρ))i<j,

v̂k =


uk for k ≤ M
1−∑M

l=1 ul for k = M + 1
0 for k > M + 1

, (10)

and M is the largest integer satisfying ∑M
l=1 ul ≤ 1. It is notable to consider the following

case: if u1 ≥ 1, then v̂1 = 1 and v̂k = 0 for all k 6= 1 according to Equation (10), which leads
v̂k = ûk = (1, 0, · · · , 0).

The convex roof coherence measures C f (ρ) and C̃l1(ρ) have relations to lCr (ρ) and
lCl1

(ρ), respectively. It is well known that the value of convex roof coherence measure is
greater than that of distance-based coherence measure, so that it is natural to obtain:

C f (ρ) ≥ Cr(ρ) ≥ lCr (ρ),

C̃l1(ρ) ≥ Cl1(ρ) ≥ lCl1
(ρ).

(11)

Henceforth, we denote lC(·) as results from estimations, while C(·) as the results
calculated with density matrix (theory) or reconstructed ρ

ψ
expt (experiment).

2.3. Constructing Constraint with Stabilizer Theory

For a n-qubit stabilizer state |ψk〉, the constraint X = {p|Ap ≥ α, Bp = β} can be con-
structed by the stabilizer Si of |ψk〉. However, considering the experimental imperfections,
the constraint can be relaxed as [43]:

A = Id, α = 0, (12)

and 〈S1〉 − wσ1
...

〈Sd〉 − wσd

 ≤ B · p ≤

〈S1〉+ wσ1
...

〈Sd〉+ wσd

, (13)

where σi is the statistical error associated with experimentally obtained {〈Si〉}, and wσi
with w ≥ 0 is the deviation to the mean value 〈Si〉 represented in σi. Note that 〈I⊗n〉 = 1
must be set in the constraint.

3. Detecting the Geometric Measure of Coherence with
Spectrum-Estimation-Based Method

We present that the geometric measure of coherence Cg(ρ) is related to lCl2
(ρ).

Theorem 1. The lower bound of the geometric measure of coherence lCg(ρ) of a n-qubit quantum
state is related to lCl2

(ρ) by:

Cg(ρ) ≥ lCg(ρ) =
d− 1

d

(
1−

√
1− d

d− 1
lCl2

(ρ)

)
. (14)

Proof of Theorem 1. It has been proved that [57]:

Cg(ρ) ≥ 1− 1
d
− d− 1

d

√√√√1− d
d− 1

(
Tr(ρ2)−

d

∑
i=1

ρ2
ii

)
. (15)
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We rewrite the right side of Equation (15) and denote the function of Cl2 as G(Cl2) by:

1− 1
d
− d− 1

d

√√√√1− d
d− 1

(
Tr(ρ2)−

d

∑
i=1

ρ2
ii

)

=
d− 1

d

(
1−

√
1− d

d− 1
(SL(d)− SL(λ))

)

=
d− 1

d

(
1−

√
1− d

d− 1
(
Cl2(ρ)

))
= G

(
d, Cl2(ρ)

)
.

(16)

It is easy to check that G
(
d, Cl2(ρ)

)
is an increasing function of Cl2(ρ) when d > 1,

which implies Cg(ρ) ≥ G
(
d, Cl2(ρ)

)
≥ G

(
d, lCl2

(ρ)
)
= lCg(ρ), that is,

Cg(ρ) ≥ lCg(ρ) =
d− 1

d

(
1−

√
1− d

d− 1
lCl2

(ρ)

)
. (17)

4. Tightness of Estimated Lower Bounds

The lower bounds lCr , lCl2
, lCl1

and lCR are tight for pure states [42]. lC̃l1
and lC f

related to lCl1
and lCr as shown in Equation (11) are tight for pure states as well. However,

the tightness of lCg is quite different. As shown in Equation (14), lCg is related to the
dimension of quantum system d as well as lCl2

. Although lCl2
is tight for stabilizer states,

lCg is generally not due to the fact of d−1
d . The equality in Equation (14) holds for a special

family of states, that is, the maximal coherent states |Ψd〉 = 1√
d ∑d−1

α=0 eiθα |α〉 [57].
To investigate the tightness of the estimated bounds lC on multipartite states, we

consider the graph states
|G〉 = ∏

(i,j)∈E
CZ(i,j)|+〉⊗n. (18)

For a target graph G with n qubits (vertices), the initial states are the tensor product
of |+〉 = (|0〉 + |1〉)/

√
2. An edge (i, j) ∈ E corresponds to a two-qubit controlled Z

gate CZ(i,j) acting on two qubits i and j. Particularly, we investigate two types of graphs.
The first one is star graph, and the corresponding state is n-qubit GHZ states |GHZn〉 =

1√
2
(|0〉⊗n + |1〉⊗n) with local unitary transformations acting on one or more of the qubits.

The second one is linear graph, and the corresponding state is n-qubit linear cluster state
|Cn〉 [58], which is the ground state of the Hamiltonian

H(n) =
n−1

∑
i=2

Z(i−1)X(i)Z(i−1) − X(1)Z(2) − Z(n−1)X(n), (19)

where X(i), Y(i) and Z(i) denote the Pauli matrices acting on qubit i.
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Figure 1. The theoretical results PC of coherence measures of C f (Cr), C̃l1 (Cl1 ), Cg and CR on states
(a), |GHZn〉 and (b), |Cn〉, where the x axis is the number of qubit. The theoretical results PC on
states (c), ρGHZ4

Noisy , (d), ρC4
Noisy, where the x axis is the noisy parameter η.

For |GHZn〉 and |Cn〉with n up to 10, we calculate PC = lC/C to indicate the tightness
(accuracy) of estimations, and the results are shown in Figure 1a,b, respectively. For |GHZn〉,
we observe that PC is 1 in the estimation of C f (Cr), C̃l1(Cl1) and CR, which indicates the
corresponding bounds are tight as the target states are pure state. The reason is that lCg is
determined by d and lCl2

as shown in Equation (14). For |GHZn〉, lCl2
= 1/2 regardless of

n. Then, we take the partial derivative of lCg in Equation (14) with respect to d, and obtain:

∂lCg

∂d
=
−
(

2(d− 1)[
√

1− d
d−1 lCl2

− 1] + dlCl2

)
√

1− d
d−1 lCl2

(2d2 − 2d3)

≤ −
3(d− 1)− 2(d− 1)

√
1− d

d−1 lCl2√
1− d

d−1 lCl2
(2d3 − 2d2)

≤ 0.

(20)

It is clear that lCg is monotonically decreasing with respect to d. Note that lCg →
(
√

2− 1)/
√

2 ≈ 0.2929 and PC → 2(
√

2− 1)/
√

2 ≈ 0.5858 when d→ ∞.
The results of |Cn〉 is quite different as shown in Figure 1(b). PC is 1 in the estimation of

Cg as |Cn〉 is in the form of maximally coherent state |Ψd〉 = 1√
d ∑d−1

α=0 eiθα |α〉. For example,

|C3〉 = (|+ 0+〉+ | − 1−〉)/
√

2 and we rewrite it in the computational basis:

|C3〉 =
1√
23

(|000〉+ |001〉+ |010〉 − |011〉+ |100〉+ |101〉 − |110〉+ |111〉). (21)

By re-encoding |α1α2α3〉 to |α〉 by α = α122 + α221 + α320, |C3〉 can be represented in
the form of maximally coherent state 1√

d ∑d−1
α=0 eiθα |α〉 with θα = (0, 0, 0, π, 0, 0, π, 0).

Furthermore, we investigate the robustness of P of GHZ states and linear cluster
states in a noisy environment. We consider the following imperfect GHZ state and linear
cluster state

ρ
ψ
Noisy = (1− η)|ψ〉〈ψ|+ η

d
Id, (22)
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with |ψ〉 being either |GHZn〉 or |Cn〉 and 0 ≤ η ≤ 1. Note that ρ
ψ
Noisy can be written in the

form of graph-diagonal state , i.e., ρ
ψ
Noisy = ∑ λk|ψk〉〈ψk| so that lCr and lCl2

are tight for

ρ
ψ
Noisy [43]. The estimation of lCl1

is equivalent to the optimization of

minimize
vk

√
2lCl2

d(d−1)/2

∑
k=1

√
vk

subject to
d(d−1)/2

∑
k=1

vk = 1,

0 6 vk 6 uk.

(23)

For ρGHZn
Noisy in the form of:

ρGHZn
Noisy =



1
2 (1− η) + 1

2n η 0 . . . 1
2 (1− η)

0 1
2n η . . . 0

...
...

. . .
...

0 . . . 1
2n η 0

1
2 (1− η) 0 . . . 1

2 (1− η) + 1
2n η

, (24)

it is easy to calculate that u1 ≥ 1 and v̂k = ûk = (1, 0, · · · , 0). As lCl2
is tight for ρGHZn

Noisy so
that we can obtain:

lCl1
=
√

2Cl2 =

√
2 ∑

i 6=j
|ρGHZn

Noisy |2ij = 1− η = ∑
i 6=j
|ρGHZn

Noisy |ij = Cl1 , (25)

which indicates lCl1
is tight for ρGHZn

Noisy . Following the same way, We can also obtain lCR = CR.

For ρCn
Noisy, as its matrix elements satisfy

|ρCn
Noisy|ij =

{
1
d for i = j
1−η

d for i 6= j
, (26)

so that we can calculate the Cl2 = lCl2
= d−1

d (1− η)2, CR = Cl1 = (d− 1)(1− η) and

v̂k = ûk = {
1

d(d−1)
2 (1− η)2

, . . . ,
1

d(d−1)
2 (1− η)2︸ ︷︷ ︸

M

, 1− M
d(d−1)

2 (1− η)2
, 0, 0, 0, . . . , 0, 0︸ ︷︷ ︸

d(d−1)
2 −(M+1)

}.
(27)

M = b d(d−1)
2 (1− η)2c is the largest integer satisfying ∑M

l=1 ul ≤ 1. With lCl2
and M,

we can calculate lCl1
and lCR :

lCl1
= lCR =

√
2(d− 1)

d
(1− η)2

(
M

√
1

d(d−1)
2 (1− η)2

+

√
1− M

d(d−1)
2 (1− η)2

)
. (28)

As M ≈ d(d−1)
2 (1− η)2 so we have lCl1

= lCR ≈ (d− 1)(1− η)2. Therefore, PC of lCl1
and lCR for noisy cluster state is lCl1

/Cl1 = lCR /CR ≈ 1− η.
To give an intuitive illustration of our conclusion about the tightness of lC on noisy

states, we calculatePC on 4-qubit noisy GHZ state and linear cluster state, that is, |GHZ4〉 =
(|0000〉 + |1111〉)/

√
2 and |C4〉 = (| + 0 + 0〉 + | + 0 − 1〉 + | − 1 − 0〉 + | − 1 + 1〉)/2.

The results are shown in Figure 1c,d, respectively. In Figure 1c, PC of lCr , lCl1
and lCR are
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still tight. In Figure 1d, PC of lCr is tight while PC of lCl1
and lCR linearly decrease with η.

lCg also exhibits a linear decrease with η in Figure 1c,d because lCl2
∼ (1− η)2.

5. Comparison with Other Coherence Estimation Methods

Besides the spectrum-estimation-based method, another two efficient coherence esti-
mation methods for multipartite states have been proposed recently, namely the fidelity-
based estimation method [44] and the witness-based estimation method [46], respectively.
Specifically, C f ,Cg,C̃l1 can be estimated via the fidelity-based estimation method and CR
can be estimated via the witness-based estimation method. In this section, we compare the
accuracy of lC with the difference estimation method with experimental data of ρGHZ3

expt and

ρGHZ4
expt from Ref. [43].

To this end, we first estimate lC of the coherence measures C introduced in Section 2
on states ρGHZ3

expt and ρGHZ4
expt via the spectrum-estimation-based method. We employ the

experimentally obtained expected values of the stabilizing operators SGHZn and the cor-
responding statistical errors σ to construct constraints in X, and w ≥ 0 is the deviation to
the mean value 〈Si〉 represented in σi [43]. We denote the lower bound of estimated mul-
tipartite coherence as lw

C,m, where C is the coherence measure ∈ {C f (Cr), C̃l1(Cl1), Cg, CR}
and m ≤ 2n − 1 is the stabilizing operators we selected for construction of constraints in X.
In our estimations, all results are obtained by setting w = 3, which is based on the 3-sigma
rule of normal distribution.. Here, we only consider the case of maximal lC,m. In the ideal
case, the maximal lC,m is obtained by setting all m stabilizing operators in the constraint.
However, a larger m might lead to the case of no feasible solution due to the imperfec-
tions in experiments. In practice, the maximal estimated coherence is often obtained with
m ≤ 2n − 1 stabilizing operators. Let lmax

C be the maximal estimated coherence over all
subsets {Si}, where the number of subset is ∑2n−1

m=1 (2n−1
m ) = 22n−1 − 1. The results of lmax

C
are shown in Table 1.

Table 1. Comparison of the spectrum-estimation-based [42], fidelity-based [44] and witness-based
coherence estimation methods [46] on ρGHZ3

expt and ρGHZ4
expt . The cases of W1 and W3 are discussed in

Ref. [46].

Coherence Measure Method ρGHZ3
expt ρGHZ4

expt
lmax
C PC lmax

C PC

Cr/C f

Tomography 0.8755(19) 0.9059(29)
Spectrum Est. 0.8099 92.51(22)% 0.8680 95.81(32)%
Fid.-Based Est. 0.2216(2) 25.31(31)% 0.2163(3) 34.91(46)%

Cl1 /C̃l1

Tomography 1.2810(47) 1.4248(46)
Spectrum Est. 0.9393 73.09(37)% 0.9420 66.11(32)%
Fid.-Based Est. 0.9287(6) 72.50(43)% 0.9139(8) 64.14(41)%

Cg

Tomography 0.3571(11) 0.3728(17)
Spectrum Est. 0.2789 78.10(31)% 0.2710 72.69(46)%
Fid.-Based Est. 0.0229(0) 6.41(31)% 0.0222(0) 5.95(46)%

CR

Tomography 1.2680(50) 1.3942(48)
Spectrum Est. 0.9393 73.84(39)% 0.9420 67.56(34)%
−Tr(W3ρ) 1 0.4644(3) 36.62(46)% 0.4659(4) 33.42(43)%
−Tr(W1ρ) 2 0.4714(3) 37.17(46)% 0.4684(4) 33.60(43)%

1 W3 = 1
2 I−|GHZn〉〈GHZn|; 2 W1 = ∆(|GHZn〉〈GHZn|)−|GHZn〉〈GHZn|, where ∆(ρ) = ∑d

i=1 |i〉〈i|ρ|i〉〈i|.

The accuracy estimated bounds is indicated by PC = lmax
C /C. Note that Cr and Cl1 of

ρ
ψ
expt can be calculated directly according to the definition in Equations (1) and (2), while

the calculations of Cg(·) and CR(·) require converting them to the convex optimization
problem [19,20,59] and the corresponding solution [60–62]. The calculation of C f , C̃l1
requires optimizing all pure state decomposition, and there is no general method for
analytical and numerical solutions except a few special cases. Therefore, we replace
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C f , C̃l1 of these tomographic states by their Cr, Cl1 when calculating the estimated accuracy,
respectively. The replacement increases PC when we compare the two estimation methods
of spectrum-estimation-based and fidelity-based so that it does not affect our conclusion
about the comparison.

We also perform the fidelity-based estimation method and witness-based estimation
method on the same experimental data to obtain lC and PC. The results of lC and PC with
these three estimation methods are shown in Table 1. We find that the spectrum-estimation-
based and fidelity-based coherence estimation methods have similar performance on
the estimation of C̃l1 , in which the accuracy is beyond 0.7 for ρGHZ3

expt and 0.6 for ρGHZ4
expt .

Importantly, the spectrum-estimation-based method shows a significant enhancement in
the estimation of C f and Cg compared with the fidelity-based method, as well as in the
estimation of CR compared with the witness-based method.

6. Conclusions

In this work, we first develop the approach to estimating the lower bound of coherence
for the geometric measure of coherence via the spectrum-estimation-based method, that is,
we present the relation between the geometric measure of coherence and the l2 norm of
coherence. Then, we investigate the tightness of estimations of various coherence measures
on GHZ states and linear cluster states, including the geometric measure of coherence,
the relative entropy of coherence, the l1-norm of coherence, the robustness of coherence,
and some convex roof quantifiers of coherence. Finally, we compare the accuracy of the esti-
mated lower bound with the spectrum-estimation-based method, fidelity-based estimation
method, and the witness-based estimation method on the same experimental data.

We conclude that the spectrum-estimation-based method is an efficient toolbox for
indicating various multipartite coherence measures. For n-qubit stabilizer states, it only
requires n measurements to the minimum instead of the 3n measurements required in
quantum state tomography. Second, the tightness of the lower bound is not only determined
by whether the target state is pure or mixed but also by the coherence measures. We provide
examples showing that the lower bound of the geometric measure of coherence is tight for
n-qubit linear cluster states but is not tight for noisy n-qubit GHZ states, and the lower
bounds of the robustness of coherence and the l1-norm of coherence are tight for noisy
n-qubit GHZ states but are not tight for noisy n-qubit linear cluster states. Third, we find
that the spectrum-estimation-based method has a significant improvement in coherence
estimation compared to the fidelity-based method and the witness-based method.

There are two potential directions along this line of research. On the one hand, the en-
hancement of accuracy is observed on experimentally prepared 3- and 4-qubit GHZ states.
Whether the superiority of the spectrum-estimation-based scheme still remains for other
entangled states is an open question. We conjecture that the superiority still remains as it
employs more information (expected values of stabilizing operators) for the conclusion
instead of one indicator. However, a rigorous conclusion about the comparison between dif-
ferent efficient schemes for general entangled states still requires sophisticated calculations.
On the other hand, there have been remarkable advances in the certification of intermediate-
scale quantum systems [63], such as the classical shadows method [64–67] and quantum
overlapping tomography [68]. The incorporation of the spectrum-estimation-based scheme
into these advanced schemes may shed light on the investigation of multipartite coherence.
For example, the quantum overlapping tomography is able to efficiently reconstruct the
density matrices of subsystems [68]. Thus, the distribution of coherence in the multipartite
system [16] could be efficiently detected using the spectrum-estimation-based scheme and
quantum overlapping tomography.
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