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Gotovac, B.; Kozulić, V.; Gotovac, H.
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Abstract: Estimation of the probability density function from the statistical power moments presents
a challenging nonlinear numerical problem posed by unbalanced nonlinearities, numerical instability
and a lack of convergence, especially for larger numbers of moments. Despite many numerical
improvements over the past two decades, the classical moment problem of maximum entropy
(MaxEnt) is still a very demanding numerical and statistical task. Among others, it was presented
how Fup basis functions with compact support can significantly improve the convergence properties
of the mentioned nonlinear algorithm, but still, there is a lot of obstacles to an efficient pdf solution
in different applied examples. Therefore, besides the mentioned classical nonlinear Algorithm 1,
in this paper, we present a linear approximation of the MaxEnt moment problem as Algorithm
2 using exponential Fup basis functions. Algorithm 2 solves the linear problem, satisfying only
the proposed moments, using an optimal exponential tension parameter that maximizes Shannon
entropy. Algorithm 2 is very efficient for larger numbers of moments and especially for skewed
pdfs. Since both Algorithms have pros and cons, a hybrid strategy is proposed to combine their best
approximation properties.

Keywords: maximum entropy; Shannon entropy; Fup basis functions; probability density function

1. Introduction

Many physical processes cannot be characterized deterministically owing to the
presence of intrinsic or parametric uncertainty due to their physical nature, interpretation
or measurements. Therefore, results are usually given in the form of a certain number of the
first few statistical power moments or, rarely, as a probability density function (pdf) [1–3].

The maximum entropy principle, defined by Jaynes [4], is a versatile tool for statistical
inference of the probability density function from its moments by maximizing Shannon
entropy [5]. The principle states that among all possible pdfs that satisfy our incomplete
information about the system, the one that maximizes entropy is the least biased estimate
that can be made. It agrees with everything that is known but carefully avoids anything
that is unknown [6,7].

In the past few decades, a great number of maximum entropy algorithms (MEAs) have
been developed and applied in various fields of science, such as continuum mechanics [8],
signal processing [9,10], chemical engineering [11–13] and heat transfer [14]. In coastal
engineering, a MEAs are used as a powerful tool for the prediction of extreme significant
wave heights [15–17] and for the distribution of streamwise velocity in open channels [18].
MEAs are especially popular in structural reliability analysis [19–25]. Their application
goes much further, though; for example, MEAs used for the evaluation of the reliability
of semiconductor devices [26]. MEAs have even been extended to multidimensional
problems [27–30] and models in 2D domains and on surfaces [31].

MaxEnt algorithms for a higher number of moments are subjected to highly unbal-
anced nonlinearities, ill-conditioned Jacobian and Hessian matrices in Newton algorithms
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and many other numerical problems, such as insufficient arithmetic precision [3]. To
overcome these difficulties, the MaxEnt algorithm uses orthogonal polynomials [2] and
splines [32,33] instead of classic monomials.

Gotovac and Gotovac (2009) [34] employed a different and original idea using finite
and localized basis functions with compact support closely related to algebraic polynomials,
which made an efficient MaxEnt algorithm possible with more balanced nonlinearities and
the ability to solve a higher number of moments. They used Fup basis functions of the
second order with compact support, which are similar to wavelets and splines and belong
to the class of atomic basis functions (ABF).

The history of the ABFs originates from V. L. and V. A. Rvachevs, [35]. The first
monographs on the results of research were published in [36,37], while in [38,39] a detailed
analysis of the current publications on ABF is provided, from the first publications until now.
Furthermore, based on ABF theory, many different classes of weight functions have arisen,
which are often used, especially in digital signal processing [40–47] and groundwater flow
modeling [48–51]. A very interesting theory of atomic solitons is based on ABF theory
that is used in new areas, like matter quantization, quantum gravity, Higgs fields, unified
theory of nature, as well as in non-traditional areas, like medicine and life sciences, geology
and financial markets [52–55].

In this paper, we will use two types of Fup basis functions that belong to the class
of atomic basis functions (ABFs) [56]: the algebraic-type, Fupn(x), and the exponential
type, EFupn(ω, x), containing an additional tension parameter, ω. While atomic basis
functions of the algebraic type have been used for many years, ABFs of the exponential
type are still not widely used [57]. This work uses Fup and EFup basis functions of the
fourth order by, which monomials up to the fourth degree can be represented accurately.
This approximation property of the basis functions affects the numerical precision of the
requested pdf since it is the first few moments that give the greatest impact on the solution
function of the MaxEnt problem.

Based on the algebraic Fup4(x) and exponential EFup4(x,ω) basis functions, two
Algorithms for solving the maximum entropy problem from known statistical moments
are derived and presented. Algorithm 1 is a classical nonlinear algorithm [34], while
Algorithm 2 is a fast linear algorithm. Exponential basis functions, EFup4(x,ω), use an
unknown parameter, ω, that is selected considering the maximization of the Shannon
entropy functional. Both Algorithms have their advantages and disadvantages, which will
be demonstrated in various examples of the probability density functions.

2. Maximum Entropy Principle

Let f(x) be an unknown probability density function (pdf) defined in a finite real
interval that satisfies a basic normalized zero statistical moment, which says that all pdf
outcomes present a certain event:

b∫
a

f(x)dx = 1, f(x) ≥ 0 ∀ x ∈ [a, b] (1)

Suppose that the additional moment constraints on f are given in the form of classical
statistical moments of the higher order:

b∫
a

xif(x)dx = µi, i = 1, . . . , m (2)

where µi represents given and known statistical moments. Without losing generality, the
interval [a, b] can be transformed into the interval [0, 1], as we will write later in this article.

The estimation of the function, f(x), by the maximum entropy principle is obtained by
maximizing the Shannon entropy, H(f), associated with the function, f, with constraints
given by Equation (2), where the Shannon entropy is given in the form:
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H(f) = −
1∫

0

f(x) ln[f(x)]dx (3)

Jaynes [4] showed that maximizing H(f) with respect to f, under constraints (2), leads
to the following analytical solution:

f(x) = e−λ0−λ1x−...−λmxm
(4)

where Lagrange multipliers λ0, . . . , λm satisfy the following relations:
1∫

0

exp

(
−

m

∑
j =1

λjxj

)
dx = exp(λ0) (5)

∫ 1
0 xi exp

(
−∑m

j=1 λjxj
)

dx∫ 1
0 exp

(
−∑m

j=1 λjxj
)

dx
= µi, i = 1, . . . , m (6)

From a practical point of view, determining the maximum entropy of a pdf from
given moments comes down to solving a nonlinear system of m Equation (6), creating a
challenging nonlinear numerical problem faced by unbalanced nonlinearities, numerical
instability and lack of convergence, especially for larger numbers of moments.

3. Numerical Algorithms Using Fup Basis Functions

This chapter describes two basic numerical algorithms for estimating the probability
density function from a finite number of known moments. Both algorithms for solving
the classical moment problem were developed using atomic basis functions, one of the
algebraic type, Fup4(x), and one of the exponential type, EFup4(x,ω).

The function Fup4(x) is shown in Figure 1.
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Figure 1. Function Fupସ(x). 

The function support contains six characteristic intervals. By a linear combination of 
these functions, shifted from each other by the length of the characteristic interval, alge-
braic polynomials up to the fourth degree can be accurately represented (see Appendix A, 
Appendix A.1). To approximate the pdf using the maximum entropy principle in the 
range [0,1], a base of at least six basis functions, Fupସ(x), is required, as shown in Figure 
2. 

Figure 1. Function Fup4(x).

The function support contains six characteristic intervals. By a linear combination
of these functions, shifted from each other by the length of the characteristic interval,
algebraic polynomials up to the fourth degree can be accurately represented (see Appendix
A, Appendix A.1). To approximate the pdf using the maximum entropy principle in the
range [0, 1], a base of at least six basis functions, Fup4(x), is required, as shown in Figure 2.

Therefore, the MaxEnt optimization procedure for estimating the probability density
function starts from the sixth moment (with the zeroth moment engaged, i.e., m = 5). For
numerical operations in the domain to be performed efficiently, it is necessary to modify
basis functions that have non-zero values within the domain and the vertices of which are
outside the domain by expressing them in the form of a linear combination of the original
basis functions [50]. Figure 3 shows the basis functions in the observed domain for the
estimation with six moments (m = 5).
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Fup basis functions of the exponential type are much less well-investigated than those
of the algebraic type [56]. The linear combination of the functions EFupn(x,ω) can accu-
rately represent the exponential function E(x) = e2nωx (Appendix A, Appendix A.2). The
EFup4(x,ω) function retains all the properties of the Fup4(x) function, such as smoothness,
finiteness, polynomial development, etc. The special feature of these functions is that
they contain the parameterω, which allows them to change the slope depending on the
parameter value, as shown in Figure 4.
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Figure 4 shows function EFup4(x,ω) for different values of parameter ω. It can be
seen that the function EFup4(x,ω) for ω > 0 is tilted to the right, and if ω < 0, the
function is tilted to the left. In the boundary case whenω = 0, the function is symmetric
and identical to the algebraic function Fup4(x). Thus, a vector function space of the
functions EFupn(x,ω) also contains functions Fupn(x).

This property of EFup functions of the exponential type gives them an advantage over
other finite functions (such as algebraic Fups, splines, wavelets), and it is their flexibility
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that allows them to “adapt” more to the solution. On a similar track, exponential splines
that also contain a tension parameter are used in the literature; these are often applied to
solve the singularly perturbed boundary problem [58,59]. When using the exponential
type of atomic basis functions, the basic task is to determine the value of the parameterω.
Since the optimization problem of maximum entropy is the search for a pdf that maximizes
the Shannon integral (3), the above will be taken as the criterion for choosing the parameter
ω. Thus, of all possible solutions obtained for different values of the parameterω, the one
that gives the maximum value of the Shannon entropy functional (3) is adopted.

3.1. Classic MaxEnt Algorithm (Algorithm 1)

Here, we describe the procedure for solving the problem of pdf estimation from
known moments using the principle of maximum entropy and Fup4(x) basis functions [34].
The procedure is simplified in relation to [34] and consists of the following steps:

1. Let the set of m algebraic moments, µi, be given on the general interval [a, b]. Its
values on the unit interval [0, 1] are calculated using a simple linear transformation.

2. In expression (4), we express the monomials xi, i = 0, . . . , m as a linear combination of
basis functions Fup4j(x), j = 0, . . . , m, as shown in Appendix A, Appendix A.1. Since
the Fupn basis functions exactly describe algebraic monomials up to and including
the nth order in the algorithm from [34], the residual function εi(x) is introduced, i.e.,:

xi =
m

∑
j =0

dijFupnj(x) + εi(x), i = 0, . . . , m (7)

where
εi(x) ≡ 0 for i ≤ n
εi(x) 6= 0 for i > n

(8)

are residual functions that describe the difference between monomials of the mth order
and their Fupn approximation, and dij presents the connection matrix, which depends
on the Fupn approximation and on the location and number of basis functions and,
consequently, moments. For instance, the collocation procedure [48] calculates exact
monomials in the collocation points, and residual functions εi(x) fluctuate around
zero, with significantly smaller values than Fup basis functions. For increasing
numbers of moments and basis functions, the residual functions εi(x) converge to
zero, i.e., in the limit, for m→ ∞ , εi(x) is zero. Given the fact that the influence of
lower moments in the process of determining the pdf is the largest, in this paper,
we choose the Fup basis function of the higher order, i.e., n = 4, which allows us to
simplify the algorithm from [34] (leaving in mind that monomials above the fourth
degree are now expressed approximately):

xi ≈
m

∑
j =0

dijFup4j(x), i = 0, . . . , m (9)

Next, we calculate the connection matrix dij. Unlike [34], where the connection matrix
dij is obtained by the collocation method, here, it is obtained by the Galerkin method:

m
∑

j =0
dij

1∫
0

Fup4j(x) Fup4k(x)dx =
1∫

0
xi Fup4k(x), i = 0, . . . , m,

k = 0, . . . , m
(10)

Multiplying expression (9) with the optimal pdf in the form

f∗(x) = e∑m
j =0 γjFup4j(x) (11)

and integrating over the domain [0, 1], we can relate the classical algebraic and
Fup4 moments

µi =
m

∑
j =0

dij·µj
Fup4 ; i = 0, . . . , m (12)
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where µi represents the given moments of the requested pdf, while

µi
Fup4 =

1∫
0

Fup4i(x)·e∑m
j =0 γjFup4j(x)dx (13)

represents the moments of the Fup4 basis functions. Since the Lagrange multipliers,
γj, are unknown, the system of Equation (13) must be solved iteratively.

3. The algorithm starts with the initial pdf assumption, i.e., for the step k = 0, the initial
values of the Lagrange multipliers γj

(k =0), j = 0, . . . , m are selected, from which the
initial pdf is calculated according to (11). For simplicity, for initial values, γj

(k =0),
we take zero values, as the numerical procedure is not sensitive to the selection of
the initial pdf. Then, the Fup moments µj

Fup4 ; j = 0, . . . , m are determined in the kth
iterative step by solving system (12).

4. From the known Fup moments, the problem of pdf estimation using the principle of
maximum entropy is now solved:

1∫
0

Fup4i(x)·e∑m
j=0 γjFup4j(x)dx = µi

Fup4 ; i = 0, . . . , m (14)

To determine the Lagrange multipliers, γj, the nonlinear system of Equation (14) is
not solved at once but is solved iteratively by the classical Newton-Raphson method,
equation by equation, using Romberg’s numerical integration.

5. The index of the current equation, i, is set. The correction of the ith Lagrange coeffi-
cient is performed using the classical Newton iterative procedure. If we demand that
the residual function of the Lagrange coefficient, Ψ

(
γk

i
)

, weighs zero, then for the
k + 1 iterative step, the relation holds:

γk+1
i = γk

i −
Ψ
(
γk

i
)

Ψ′
(
γk

i
) (15)

In the current iterative step, k, the correction of the value γk
i is required in a way so

that first the residual of the Lagrange coefficient belonging to a particular moment
is determined:

Ψ
(
γk

i

)
=

1∫
0

Fup4i(x)·e∑m
j =0 γjFup4j(x)dx− µi

Fup4 (16)

and then the first derivation of that residual:

Ψ′
(
γk

i

)
=

1∫
0

Fup4i(x)·e∑m
j =0 γjFup4j(x)·Fup4i(x) dx (17)

and the correction of the Lagrange multiplier in the kth iterative step:

∆γk
i = −

Ψ
(
γk

i
)

Ψ′
(
γk

i
) , γk+1

i = γk
i + ∆γk

i (18)

If all values of ∆γk
i , i = 0, . . . , m are less than the given tolerance, the iterative

procedure is stopped; otherwise, step k + 1 is taken and point five is repeated until the
convergence condition is satisfied or until the maximum number of given iterative steps
is reached.

3.2. Fast Linear Algorithm (Algorithm 2)

Instead of solving a nonlinear system of Equation (13) in the classical MaxEnt problem,
which, in some cases, can cause greater numerical instabilities and slow the solution
convergence, the process of pdf estimation from known moments using the maximum
entropy principle can be simplified by reducing the problem to solving the linear system of
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equations. The procedure is described using EFup4(x,ω) basis functions and consists of
the following steps:

1. The probability density function is assumed in the form of a linear combination of
EFup4 basis functions:

f(x) ≈
m

∑
j =0

cj·EFup4j(x,ω) (19)

The procedure of pdf determination from the given moments, µi, comes down to
directly solving a linear system of equations:

cj

1∫
0

xi·EFup4j(x,ω)dx = µi ; i, j = 0, . . . , m (20)

from which follow the coefficients of the linear combination, cj.
2. By including the calculated coefficients, cj, in expression (19), a pdf estimation is

obtained, which can also have negative values. Since the probability density function
must be positive by definition, i.e., non-negative in the range [0, 1], the corresponding
R-function [60] is used to remove the negative part of the function (or to control the
lower limit of the pdf):

f∗(x) =
1

1 + α

(
f1(x) + f2(x) +

√
f1(x)

2 + f2(x)
2 − 2α·f1(x)·f2(x)

)
(21)

where α = α(f1(x), f2(x)) is an arbitrary function that satisfies the condition:

− 1 < α(f1(x), f2(x)) ≤ 1 (22)

For α = 1 follows:

f∗(x) =
1
2
{f1(x) + f2(x) + |f1(x)− f2(x)|} (23)

In the case of maximum entropy, f1(x) represents the probability density function,
and the function f2(x) is the lower limit that has a value of zero, so (21) becomes:

f∗(x) =
1
2
{f1(x) + |f1(x)|} (24)

If f(x) obtained from (19) i (20) is already a non-negative function, then (21) has no
effect on the solution of the pdf.

3. The function obtained according to expression (21) is normalized for the pdf to fulfill
the basic probability condition (1). The moments of the pdf obtained in this way
are calculated, compared with the given moments and the error of the calculated
moments is estimated. The value of Shannon entropy is also calculated according to
expression (3).

4. The procedure is repeated for a number of real parameters, ω, within the selected
interval. The interval can be arbitrary and contain positive and negative values
of parameters. When ω = 0, the EFup4 basis functions are identical to the Fup4
basis functions.

5. A pdf with the parameterω that gives the highest value of Shannon entropy according
to expression (3) is selected.

In the limit, when m→ ∞ , the obtained function f(x) approaches the exact pdf
function because it satisfies all moments. For a finite number of moments, the procedure is
approximate, but the possibility of choosing the parameter,ω, which gives the maximum
possible value of the functional (3) and also adapts to the shape of the pdf, often allows
for a very good approximation of the pdf. On the other hand, the pdf vector space of the
maximum entropy (4) shows that it belongs to a function of the exponential type; thus,
the EFup4 basis functions make very good candidates for the linear approximation (19).
The procedure is particularly suitable for greater numbers of moments when Algorithm 1
can fail.
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4. Examples

In this section, the approximation possibilities of the proposed algorithms and their
computational efficiency are explored through various examples of pdfs in order to
show the advantages and disadvantages of nonlinear classical Algorithm 1 and linear
Algorithm 2.

4.1. Example 1–Impulse Function

The efficiency of Algorithm 1 is demonstrated in the example of a numerically de-
manding probability density function, which, for the MaxEnt moment problem (1–2),
represents a challenging numerical problem. It is an impulse function that is very similar
to Dirac’s function in the form:

δ(x) =
256√

π·ERF(128)
e−4096(4x−2)2

(25)

The peak of this function is in the coordinate x = 0.5 with a value of 144.4325. Since
this function is symmetric, the parameterω is zero, which means that Algorithm 1 and basis
functions of the algebraic type Fup4(x) are used. It is interesting to show the convergence
of the solution (Figure 5) that is obtained with only six basis functions, i.e., using the
minimum number of moments for this algorithm, with an increase in the number of
iterative nonlinear steps.
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Figure 5. Approximation of the impulse pdf function for m = 5 in the nonlinear procedure of Algorithm 1 with different
numbers of iterations: (a) No.Iter. = 5000, (b) No.Iter. = 50,000, (c) No.Iter. = 100,000, (d) No.Iter. = 1,000,000.
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For 3·106 iterations, the achieved pdf shape practically coincides with the shape of
the analytical function. Table 1 shows how the moment error calculated using Algorithm 1
decreases with the total number of iterations and how the value of the pdf increases at the
point x = 0.5 of the observed area.

Table 1. Absolute moment errors and pdf values in relation to the total number of iterations for m = 5.

Total Number of Iterations 5 × 103 5 × 104 105 106 3 × 106

Absolute moment error 0.26 × 10−2 0.68 × 10−3 0.42 × 10−3 0.12 × 10−4 0.29 × 10−7

Maximum pdf value 50.154 85.738 99.018 138.902 144.279

This example shows the accuracy and stability of numerical Algorithm 1 but also the
deficiency of a nonlinear algorithm that requires a large number of iterations. With only six
moments, an excellent solution is achieved. With a fast linear Algorithm 2 for this example
of a symmetric impulse pdf function, it is not possible to achieve a satisfactory solution,
nor can one be achieved with a larger number of moments due to, among other things,
the oscillations that occur around the point x = 0.5. For example, the maximum pdf value
obtained with 20 moments is 16.097, which is very far from the exact value.

4.2. Example 2—Bimodal Function

In the second example, we consider a bimodal function composed of two Gaussian
distributions normalized to the domain [0, 1]. Figure 6a–c show approximations of the
bimodal pdf obtained by Algorithm 1, and Figure 6d–f show approximations obtained
using Algorithm 2 for m = 5, 13 and 20. Since this function is approximately symmetric,
a value close to zero is obtained for the parameterω so that the numerical calculation is
done using Fup4(x) basis functions.

Improving the pdf estimation by increasing the number of moments taken into account,
besides its shape, is monitored through the achieved accuracy of the moments and through
the values of the Shannon entropy functional using expression (3). The exact value of the
Shannon integral for a bimodal function is H(f) = −0.42420.

Tables 2 and 3 show that as the number of constraints of the required pdf function
increases, the absolute moment error decreases, while the approximation of the Shannon
entropy functional (3) improves for calculations using Algorithm 1 and Algorithm 2, re-
spectively. Algorithm 1 approximately satisfies the moments due to solving a nonlinear
system of equations and the selected accuracy criterion (“threshold”), as well as approxi-
mation of monomials with Fup4 basis functions. On the other hand, functional (3) is also
approximately calculated, and with an increasing number of moments, converges relatively
slowly to the exact value of H(f) = 0.42420. Algorithm 2 only solves a linear system that
satisfies the given moments. With a small number of moments (m = 5) in the symmetric
type of pdf, the solution is significantly worse than that of Algorithm 1, which is reflected
not only in the visual effect but also in the accuracy of the moments and the value of the
functional (3). Yet, when the number of moments reaches m = 13, very accurate results are
obtained with a much simpler procedure.

The calculation time (“CPU time”) depending on the number of moments taken for
both algorithms is graphically shown in Figure 7. The computer time is given in seconds
and is obtained using the classic programming language Fortran on a computer with an
Intel i7 2.80 GHz processor. As the number of moments increases, both algorithms require
a nonlinear increase in computation time. When the number of moments exceeds the limit
of m = 10− 12 a significant saving of computation time is obtained with Algorithm 2. As
seen in Figure 7, in the log-log scale, an approximately linear dependence of the number of
moments and CPU time is obtained.
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Table 2. Absolute moment error and values of functional (3) for Algorithm 1.

Number of Moments 6 (m = 5) 14 (m = 13) 21 (m = 20)

Absolute moment error 0.33 × 10−6 0.36 × 10−7 0.47 × 10−9

Value of the Shannon functional −0.39841 −0.42283 −0.42419

Table 3. Absolute error of moments and values of functional (3) for Algorithm 2.

Number of Moments 6 (m = 5) 14 (m = 13) 21 (m = 20)

Absolute moment error 0.14 × 10−1 0.18 × 10−4 0.25 × 10−33

Value of Shannon functional −0.24727 −0.42416 −0.42420
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From the presented results, it can be concluded that the classical nonlinear MaxEnt
Algorithm 1 gives an approximate pdf shape with only six moments. By increasing the
number of moments or the number of basis functions, the calculated pdf shape approaches
the exact form of the bimodal function, the accuracy of the moments increases and the
value of the Shannon entropy functional also approaches the exact value. It can be said
that a satisfactory solution is achieved with 21 moments.

However, due to the large number of iterative steps required to solve a nonlinear sys-
tem of equations, this procedure is a computationally expensive and also very numerically
sensitive. Algorithm 2 is a fast algorithm, is not numerically demanding and the procedure
is stable. The system of linear equations is solved directly, and, as can be seen in Figure 7,
the required computational time is significantly less than that of Algorithm 1. Note that
the pdf estimation for a small number of moments is not sufficient; with nine moments,
the obtained pdf shape has the characteristics of the required solution that Algorithm 1
provides with only six moments.

However, for a larger number of moments (m ≥ 13), the accuracy of the solution
increases significantly (see Table 3) both in terms of pdf approximation approaching the
exact function shape and in terms of the moment accuracy and the Shannon integral value
(3). Using 21 moments, a pdf solution was achieved in which the absolute error of the
moments was practically equal to zero and the value of H(f) coincided with the exact value.
The advantages of both numerical algorithms for estimating the pdf from known moments
can be combined in a way by first obtaining the shape of the required function with six
moments using the Fup MaxEnt Algorithm 1, from which one can conclude the basic
characteristics of the function, and then with the fast Algorithm 2 to get a more accurate
pdf estimation using a greater number of moments.



Entropy 2021, 23, 1559 12 of 19

4.3. Example 3—Beta Function

The third example of the beta distribution is given in the form:

f(x) = 3990x18(1− x)2 (26)

When applying atomic basis functions of exponential type EFup4(x,ω), the basic task
is to determine the value of the parameter ω. Function (26) is asymmetric and inclined
to the right, which means that the parameterω > 0 (see Figure 4). Since the principle of
maximum entropy requires a pdf that maximizes the Shannon integral (3), this condition
will be used as a criterion for selecting the parameterω. The procedure is reduced to the
simultaneous direct solution of the linear system (20) for different values of the parameter
ω. Of all the numerical solutions thus obtained, the one that gives the maximum value of
Shannon entropy (3) is adopted.

The procedure for determining the parameterω for pdf estimation by the principle
of maximum entropy with 12 moments using basis functions EFup4(x,ω) is illustrated in
Figure 8. The exact value of the integral (3) for the beta function of pdf (26) is H(f) = 1.29632,
and the closest value is obtained withω = 22.5.
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Figure 9 compares the numerical solutions obtained by applying basis functions
Fup4(x) and EFup4(x,ω) with Algorithms 1 and 2, respectively, for m = 5. The value of
the parameterω for Algorithm 2, determined by the previously described procedure for
pdf estimation with six moments, isω = 23.0.

From Figure 9, we can see the advantage that exponential finite basis functions have in
relation to basis functions of the algebraic type when it comes to pdf approximation, which
is quite an asymmetric function. The greater accuracy of numerical solutions obtained
using basis functions EFup4(x,ω) can also be seen in Table 4, where the absolute errors are
given of approximate moments for calculations with both algorithms using algebraic and
exponential Fup basis functions.

Table 4 shows the convergence of the values of the Shannon entropy functionals (3)
obtained by increasing the number of moments starting from m = 5 using Algorithms 1
and 2 and using the atomic basis functions Fup4(x) and EFup4(x,ω). In this example of
the probability density function, the advantage that exponential finite functions have over
basis functions of the algebraic type comes down to expression. It can be seen that the
functions EFup4(x,ω) achieve a significantly better convergence of the numerical values
of the Shannon integral to the exact value of H(f) = −1.29632. Since exponential functions
adapt better to the shape of the MaxEnt problem solution thanks to the parameter ω,
they ensure the stability of the numerical procedure, which is especially important for the
classical MaxEnt algorithm. In this example, this indicated an extreme numerical sensitivity
when using Fup4(x) basis functions.



Entropy 2021, 23, 1559 13 of 19Entropy 2021, 23, x  14 of 21 
 

 

  
(a) (b) 

Figure 9. Estimates of pdf for beta distribution obtained for given six moments with (a) Algorithm 1 and (b) Algorithm 
2. 

From Figure 9, we can see the advantage that exponential finite basis functions have 
in relation to basis functions of the algebraic type when it comes to pdf approximation, 
which is quite an asymmetric function. The greater accuracy of numerical solutions ob-
tained using basis functions EFupସ(x, ω) can also be seen in Table 4, where the absolute 
errors are given of approximate moments for calculations with both algorithms using al-
gebraic and exponential Fup basis functions. 

Table 4. Absolute moment errors and Shannon integral values obtained for m = 5, 11 and 20 for 
Algorithms 1 and 2 with Fupସ(x) basis functions and EFupସ(x, ω), respectively. 

No. of Moments 6 (m = 5) 12 (m = 11) 21 (m = 20) 

Abs. Moment Error 
Algorithm 1 0.69 × 10−5 0.120 × 10−4 0.743 × 10−4 
Algorithm 2 0.337 × 10−2 0.144 × 10−4 0.194 × 10−6 

Shannon Integral 
Algorithm 1 −1.29590 −1.29571 −1.29686 
Algorithm 2 −1.29223 −1.29591 −1.29631 ω Algorithm 2 23.0 22.5 17.2 

Table 4 shows the convergence of the values of the Shannon entropy functionals (3) 
obtained by increasing the number of moments starting from m = 5 using Algorithms 1 
and 2 and using the atomic basis functions Fupସ(x) and EFupସ(x, ω). In this example of 
the probability density function, the advantage that exponential finite functions have over 
basis functions of the algebraic type comes down to expression. It can be seen that the 
functions EFupସ(x, ω) achieve a significantly better convergence of the numerical values 
of the Shannon integral to the exact value of H(f) = −1.29632. Since exponential functions 
adapt better to the shape of the MaxEnt problem solution thanks to the parameter ω, they 
ensure the stability of the numerical procedure, which is especially important for the clas-
sical MaxEnt algorithm. In this example, this indicated an extreme numerical sensitivity 
when using Fupସ(x) basis functions. 

For practical application, i.e., for estimating the pdf from known moments when the 
form of the function is unknown, the advantages of both described numerical algorithms 
can be used. First, using the nonlinear MaxEnt Algorithm 1 with basis functions Fupସ(x), 
which are easier to apply than FEupସ(x, ω), we get the appearance of the required function 
with six moments (m = 5), from which can be drawn certain conclusions about the basic 

x

f(x
)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

m = 5 (A1)
Exact pdf

x

f(x
)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

m = 5 (A2)
Exact pdf

Figure 9. Estimates of pdf for beta distribution obtained for given six moments with (a) Algorithm 1 and (b) Algorithm 2.

Table 4. Absolute moment errors and Shannon integral values obtained for m = 5, 11 and 20 for Algorithms 1 and 2 with
Fup4(x) basis functions and EFup4(x,ω), respectively.

No. of Moments 6 (m = 5) 12 (m = 11) 21 (m = 20)

Abs. Moment Error
Algorithm 1 0.69 × 10−5 0.120 × 10−4 0.743 × 10−4

Algorithm 2 0.337 × 10−2 0.144 × 10−4 0.194 × 10−6

Shannon Integral Algorithm 1 −1.29590 −1.29571 −1.29686

Algorithm 2 −1.29223 −1.29591 −1.29631

ω Algorithm 2 23.0 22.5 17.2

For practical application, i.e., for estimating the pdf from known moments when the
form of the function is unknown, the advantages of both described numerical algorithms
can be used. First, using the nonlinear MaxEnt Algorithm 1 with basis functions Fup4(x),
which are easier to apply than FEup4(x,ω), we get the appearance of the required function
with six moments (m = 5), from which can be drawn certain conclusions about the basic
characteristics of the pdf, such as its shape, position peaks, number of peaks and inclination,
while the number of statistical moments required to accurately describe all the properties
of the pdf can be assumed. If an approximately symmetric function is obtained, such a first
approximation, the calculation can be continued with the basis functions Fup4(x).

If the first approximation gives an asymmetric function or a larger number of moments
is required, then using the fast linear Algorithm 2, the parameter ω is determined with
the criterion for finding the maximum of the Shannon entropy functional (3), and the
calculation continues with exponential functions FEup4(x,ω). If it is a simple pdf for which
less than six moments are enough, Algorithm 1 with Fup2 [34] or Fup1 basis functions can
be used. In this way, using the accuracy and robustness of the classic nonlinear MaxEnt
Algorithm 1 up to 10–12 moments, we can solve a large number of problems and diagnose
the condition if more moments are needed, especially with pdf asymmetry, when linear
Algorithm 2 becomes much simpler and more efficient. With this hybrid technique, a large
number of challenging problems can be solved in a much easier way than could be solved
individually with the two presented algorithms.

5. Conclusions

In this paper, the application has been shown of numerical algorithms based on
the maximum entropy principle using Fup basis functions that belong to the class of
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atomic basis functions with a compact support. The pdf examples selected in this paper
demonstrate the efficiency of two algorithms for probability-density-function estimation
from a finite number of known moments. These algorithms use Fup basis functions of the
algebraic and exponential types. The simulation results show the convergence properties
of the proposed algorithms by increasing the number of moments taken into account. The
example of a pdf in the form of a pulse function shows the accuracy and stability of the
numerical procedure of Algorithm 1, where with only six moments, a satisfactory solution
can be achieved by increasing the number of iterations in the calculation.

With such demanding pdfs, the number of iterative steps in the nonlinear procedure
becomes very large. The characteristics of numerical solutions obtained with Algorithms 1
and 2 using algebraic finite basis functions are shown in the example of a demanding
bimodal function. The classic nonlinear MaxEnt Algorithm 1 gives a good pdf shape
approximation with only six moments. By increasing the number of moments or the
number of basis functions, the approximate solution converges to the exact function.
However, the numerical procedure is computationally expensive and sensitive to the
computer’s precision, so the optimization problem becomes poorly conditioned. Fast linear
Algorithm 2 ensures complete stability of the procedure, but a higher number of moments
is required to satisfy the accuracy of the pdf estimation.

The third example of a pdf is a beta function that represents a polynomial of the 20th
degree, which is why it is numerically demanding to approximate. Nonlinear Algorithm 1
showed special sensitivity in this pdf when applying algebraic finite basis functions. In
the example of quite an asymmetric pdf function, the advantage of exponential finite
basis functions over functions of the algebraic type can be noted both in the stability of
the nonlinear classical MaxEnt algorithm and in the achieved accuracy of calculated pdf
moments and calculated Shannon integral values as a basic criterion for pdf estimation by
the principle of maximum entropy.

For practical applications, i.e., for pdf estimation from known moments when the
shape of the function is unknown, we can use the advantages of both numerical algorithms
described here, which we defined as a hybrid strategy in this article.
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Appendix A. Fupn and EFupn Basis Functions

Appendix A.1. Calculation and Approximation Properties of the Fupn Basis Functions

Atomic basis functions are infinitely-differentiable functions with compact support [35,56].
Atomic functions are defined as solutions of differential functional equations of the follow-
ing type:

Ly(x) = λ
M

∑
k=1

Ck y(ax− bk) (A1)

where L is a linear differential operator with constant coefficients, λ is a nonzero scalar, Ck
are coefficients of the linear combination, a > 1 is a parameter that defines the length of the
compact support, and bk are coefficients that determine displacements of the basis functions.
Rvačev and Rvačev, in their pioneering work [35], called these basis functions “atomic”
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because they span the vector spaces of all three fundamental functions in mathematics:
algebraic, exponential and trigonometric polynomials.

The simplest function, which is the most studied of the atomic basis functions, is the
up(x) function. The function up(x) is a smooth function with compact support over [−1, 1],
which is obtained as a solution of a differential functional equation

up′(x) = 2·up(2x + 1)− 2·up(2x− 1) (A2)

with the normalized condition
∫ +∞
−∞ up(x)dx =

∫ 1
−1 up(x)dx = 1. The function up(x) can

be expressed as an inverse Fourier transform:

up(x) =
1

2π

+∞∫
−∞

e−itx·
∞

∏
j =1

sin
(
t/2j)

t/2j dt (A3)

Since (A3) represents an exact but mathematically intractable expression, in [36,56], a
more numerically adequate expression for calculating the function up(x) is provided:

up(x) = 1−
∞

∑
k=1

(−1)1+p1+...+pk pk

k

∑
j =0

Cjk·(x− 0, p1 . . . pk)
j (A4)

where coefficients Cjk are rational numbers determined according to the following expression:

Cjk =
1
j!

2j(j+1)/2up
(
−1 + 2−(k−j)

)
; j = 0 , 1 , . . . , k ; k = 1 , 2 , . . . , ∞ (A5)

Calculation of up(−1 + 2−r) r[0, ∞] in binary-rational points (A5), as well as all details
regarding the calculation of the function up(x) values, is provided in [56,61]. The argument
(x− 0, p1 . . . pk) in (A1.4) is the difference between the real value of coordinate x and its
binary form in k bits, where p1 . . . pk are digits, 0 or 1, of the binary representation of the x
coordinate. Therefore, the accuracy of the x coordinate computation, and thus the accuracy
of the up(x) function at an arbitrary point, depends on machine accuracy.

The Fupn(x) function satisfies the following differential-functional equation:

Fup′n(x) = 2
n+2

∑
k=0

(
Ck

n+1 −Ck−1
n+1

)
·Fupn

(
2x− k

2n+1 +
n + 2
2n+2

)
(A6)

where Ck
n+1 and Ck−1

n+1 are binomial coefficients and n is the Fup order. Index n also denotes
the highest degree of the polynomial that can be expressed exactly as a linear combination
of n + 2 Fupn(x) basis functions, uniformly displaced by a characteristic interval 2−n.

For n = 0, Fup0(x) = up(x) since Fupn(x) and its derivatives can be calculated using
a linear combination of displaced up(x) functions:

Fupn(x) =
∞

∑
k=0

Ck(n)·up
(

x− 1− k
2n +

n + 2
2n+1

)
(A7)

where C0 = 2C2
n+1 = 2n(n+1)/2. In turn, Ck(n) = C0(n)·C′k(n), where a recursive formula

is used for calculating auxiliary coefficients C′k(n):

C′0(n) = 1 , when k = 0 ; i.e., when k > 0

C′k(n) = (−1)kCk
n+1 −

min { k ; 2n+1−1}
∑

j =1
C′k−j(n) · δj+1

(A8)

Fupn(x) is defined over the compact support
[
−(n + 2)·2−n−1, (n + 2)·2−n−1]. Figure 1

in the manuscript shows the Fup4(x) function.
Linear combination of displaced Fupn(x) functions in the form:

ϕ(x) =
∞

∑
k=−∞

Dk·Fupn

(
x− k

2n

)
(A9)

is a polynomial of nth degree if coefficients Dk are the polynomials of degree n of index k.
Coefficients Dk are determined using collocation procedure [36].
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Therefore, a polynomial of nth degree can be exactly expressed on a 2−n long interval
as a linear combination of basis functions obtained by function Fupn(x) displacement over
a characteristic interval ∆xn = 2−n.

A linear combination of displaced Fup4(x) basis functions at the interval [0, 1] de-
scribes exactly the monomials:

x0 = 1
24

3
∑

k=−2
Fup4(x− k/16)

x1 = ∆x
28

3
∑

k=−2
k·Fup4(x− k/16)

x2 = (∆x)2

212

3
∑

k=−2

(
k2 − 4

9

)
·Fup4(x− k/16)

x3 = (∆x)3

216

3
∑

k=−2

(
k3 − 4

3 k
)
· Fup4 (x− k/16)

x4 = (∆x)4

220

3
∑

k=−2

(
k4 − 8

3 k2 + 857
1350

)
· Fup4 (x− k/16)

(A10)

Other higher-order monomials are expressed approximately. Differences between
monomials and their Fup4(x) approximations are defined by residual functions εi(x) (see
article, Point 3.1).

Appendix A.2. Calculation and Approximation Properties of the EFupn Basis Functions

The EFupn(x,ω) functions are atomic finite functions of class C∞ with compact sup-
port [35] and are the elements of the linear vector space EUPn. The simplest function from
the class EFupn(x,ω) is the function Eup(x,ω) for n = 0 [57], which, analogous to the
algebraic ABF [56], is called the maternal function. The functions EFupn(x,ω) retain all
the properties of ‘their’ maternal basis function, Eup(x,ω) [57]. The index ′n′ denotes the
largest degree of an exponential polynomial that can be represented exactly in the form of
a linear combination of shifted EFupn(x,ω) functions on a segment of length ∆xn = 2−n.
The parameter ω gives them an additional property of ‘adaptability’ with respect to the
ABF of the algebraic type (see Figure 4).

The Fourier transform (FT) of atomic basis functions EFupn(x,ω) is of the form:

Fn(t) =
n+1
∏
j=1

ω

2jsh(ω/2j)
· sh(ω/2j+i·t/2n+1)

ω/2j+i·t/2n+1 ·
∞
∏

k=n+2

ω
2sh(ω/2) ·

sh(ω/2+i·t/2k)
ω/2+i·t/2k (A11)

and, according to expression (A11), is equal to the multiplication of (n + 1) FT of exponen-
tial splines of zero degree ϕj

0(x,ω), normalized to the interval h0 = 2−n:

ϕ
j
0(x,ω) = 2j−1·ω

sh(ω/2n−j+1)
e2jωx , j = 0, . . . , n

supp ϕj
0(x,ω) =

[
−2−(n+1), 2−(n+1)

]
and the FT of maternal function Eup(x,ω) also compressed to the support supp Eup(x,ω) =[
−2−(n+1), 2−(n+1)

]
. Thus, the function EFupn(x,ω) can be written using convolution the-

orem in the following form:

EFupn(x,ω) = ϕ0
0(x,ω) ∗ . . . ∗ϕn

0 (x,ω) ∗ 2n+1Eup
(
2n+1x,ω

)
(A12)

The support of the function EFupn(x,ω) is an interval composed of (n + 2) subinter-
vals of length 2−n:

supp EFupn(x,ω) =
[
−(n + 2)·2−n−1, (n + 2)·2−n−1

]
The characteristic points are the boundary points of the subintervals.
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The inverse Fourier transform, i.e., the function EFupn(x,ω), with the satisfaction of
the Paley-Wiener normalization condition, can be expressed in the form:

EFupn(x,ω) =
1

2π

∞∫
−∞

e−itx Fn(t) dt (A13)

By developing expression (A13) in the Fourier series, the ˝original˝ of the function
EFupn(x,ω) can be determined at arbitrary points. However, practically, the most optimal
possibility of constructing functions EFupn(x,ω) is in the form of a linear combination of
mutually shifted Eup(x,ω) basis functions.

EFupn(x,ω) =
∞

∑
k=0

Ck(n) · Eup
(

x− 1− k
2n +

n + 2
2n+1 ,ω

)
(A14)

where Ck(n) are the coefficients of the linear combination

Ck(n) =
EFupn

(
− n+2

2n+1 +
k+1
2n ,ω

)
−∑k

i =1 Ci−1(n) · Eup
(
−1 + k+2−i

2n ,ω
)

Eup(−1 + 2−n,ω)
(A15)

and the coefficients C0(n) are determined by

C0(n) =
n

∏
i =1

(eω/2n−i+1
+ 1)

i
(A16)

The derivatives and integrals of the functions EFupn(x,ω) are also obtained by a
linear combination of the derivatives/integrals of the shifted functions Eup(x,ω) using
the coefficients (A15) and (A16).

The exponential function e2mωx, m = 0, 1, . . . , n, n ∈ N on an interval 2−n can be
accurately represented by a linear combination (n + 2)·2n of the basis function EFupn(x,ω),
offset from one another by 2−n in the form

e2mωx =
∞

∑
k=−∞

e2m·ω·k·∆xn

A(m)
n,x

·EFupn(x− k·∆xn, 2n·ω·∆xn); m = 0, 1, . . . , n

where the coefficients A(m)
n,x are

A(m)
n,x =

(n+2)·2n−1

∑
i=−(n+2)·2n−1

e2m·ω·i·∆xn
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