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Abstract: Bitcoin has attracted attention from different market participants due to unpredictable
price patterns. Sometimes, the price has exhibited big jumps. Bitcoin prices have also had extreme,
unexpected crashes. We test the predictive power of a wide range of determinants on bitcoins’ price
direction under the continuous transfer entropy approach as a feature selection criterion. Accordingly,
the statistically significant assets in the sense of permutation test on the nearest neighbour estimation
of local transfer entropy are used as features or explanatory variables in a deep learning classification
model to predict the price direction of bitcoin. The proposed variable selection do not find significative
the explanatory power of NASDAQ and Tesla. Under different scenarios and metrics, the best results
are obtained using the significant drivers during the pandemic as validation. In the test, the accuracy
increased in the post-pandemic scenario of July 2020 to January 2021 without drivers. In other words,
our results indicate that in times of high volatility, Bitcoin seems to self-regulate and does not need
additional drivers to improve the accuracy of the price direction.

Keywords: local transfer entropy; long-short-term-memory; Bitcoin

1. Introduction

Currently, there is tremendous interest in determining the dynamics and direction
of the price of Bitcoin due to its unique characteristics, such as its decentralization, trans-
parency, anonymity, and speed in carrying out international transactions. Recently, these
characteristics have attracted the attention of both institutional and retail investors. Thanks
to technological developments, investor trading strategies are benefited by digital plat-
forms; therefore, market participants are more likely to digest and create information
for this market. Of special interest is its decentralized character, since its value is not
determined by a central bank but, essentially, only by supply and demand, recovering the
ideal of a free market economy. At the same time, it is accessible to all sectors of society,
which breaks down geographic and particular barriers for investors. The fact that there
are a finite number of coins and the cost of mining new coins grows exponentially has
suggested to some specialists that it may be a good instrument for preserving value. That
is, unlike fiat money, Bitcoin cannot be arbitrarily issued, so its value is not affected by the
excessive issuance of currency that central banks currently follow, or by low interest rates
as a strategy to control inflation. In other words, it has been recently suggested that bitcoin
is a safe-haven asset or store of value, having a role similar to that once played by gold and
other metals.

The study of cryptocurrencies and bitcoin has been approached from different per-
spectives and research areas. It has been addressed from the point of view of financial
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economics, econometrics, data science, and more recently by econophysics. In these
approaches, various methodologies and mathematical techniques have been utilised to
understand different aspects of these new financial instruments. These topics range from
systemic risk, the spillover effect, autoscaling properties, collective patterns, price forma-
tion, and forecasting in general. Remarkable work in the line of multiscale analysis of
cryptocurrency markets can be found in [1]. However, this paper is motivated by using the
econphysics approach, incorporated with rigorous control variables to predict Bitcoin price
patterns. We would like to offer a comprehensive review of the determinants of Bitcoin
prices. The first pillar can be defined as sentiment and social media content. While Bitcoin
is widely considered a digital financial asset, investors pay attention to this largest market
capitalization by searching its name. Therefore, the strand of literature on Google search
volume has become popular for capturing investor attention [2]. Concomitantly, not only
peer-to-peer sentiment (individual Twitter accounts or fear from investors) [3,4] but also
influential accounts (the U.S. President, media companies) [5–7] significantly contribute
to Bitcoin price movement. Given the greatest debate on whether Bitcoin should act as
a hedging, diversifying or safe-haven instrument, Bitcoin exhibits a mixture of investing
features. More interestingly, uncertain shocks might cause changes in both supply and
demand in Bitcoin circulation, implying a change in its prices [8]. Thus, the diverse stylized
facts of Bitcoin, including heteroskedasticity and long memory, require uncertainty to be
controlled in the model. While uncertainties represent the amount of risk (compensated by
the Bitcoin returns) [9], our model also includes the price of risk, named the ‘risk aversion
index’ [10]. These two concepts (amount of risk and the price of risk) demonstrate discount
rate factors in the time variation of any financial market [11]. In summary, the appearance
of these determinants could capture the dynamics of the cryptocurrency market. Since
cryptocurrency is a newly emerging market, the level of dependence in the market structure
is likely higher than that in other markets [12]. Furthermore, the contagion risk and the
connectedness among these cryptocurrencies could be considered the risk premium for
expected returns [13,14]. More importantly, this market can be driven by small market
capitalization, implying vulnerability of the market [15]. Hence, our model should con-
tain alternative coins (altcoins) to capture their movements in the context of Bitcoin price
changes. Finally, investors might consider the list of these following assets as alternative
investment, precious metals being the first named. They are not only substitute assets [16]
but also predictive factors (for instance, gold and platinum) [17], which additionally in-
clude commodity markets (such as crude oil [18,19], exchange rate [20], equity market [21]),
and Tesla’s owner [22]). In summary, there are voluminous determinants of Bitcoin prices.
In the scope of this study, we focus on the predictability of our model, especially the
inclusion of social media content, representing the high popularity of information, on the
Bitcoin market. However, the more control variables there are, the higher the accuracy of
prediction. Our model thus may be a useful tool by combining the huge predictive factors
for training and forecasting the response dynamics of Bitcoin to other relevant information.

This study approaches Bitcoin from the framework of behavioural and financial
economics using an approach from econophysics and data science. In this sense, it seeks to
understand the speculative character and the possibilities of arbitrage through a model
that includes investor attention and the effect of the news, among other factors. For this,
we will use a causality method originally proposed by Schreiber [23], and we will use the
information as characteristics of a deep learning model. The current literature only focuses
on specific sentiment indicators (such as Twitter users [3] or the number of tweets [24,25]),
and our study crawled the original text from influential Twitter social media users (such
as the President of United States, CEO of Tesla, and well-known organizations such as
the United Nations and BBC Breaking News). Then, we processed language analyses to
construct the predictive factor for Bitcoin prices. Therefore, our model incorporates a new
perspective on Bitcoin’s drivers.

In this direction, the work of [26] uses the effective transfer entropy as an additional
feature to predict the direction of U.S. stock prices under different machine learning
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approaches. However, the approximation is discrete and based on averages. Furthermore,
the employed metrics are not exhaustive to determine the predictive power of the models.
In a similar vein, the authors of [27] perform a comparative analysis of machine learning
methods for the problem of measuring asset risk premiums. Nevertheless, they do not
take into account recurrent neural network models or additional nontraditional features.
Furthermore, an alternative approach to study the main drivers of Bitcoin is discussed
in [28], where the author explores wavelet coherence to examine the time and frequency
domains between short- and long-term interactions. In the same vein, the recent studies
employed the correlation networks and vector error correction models to explain the price
prediction and exchange spillovers [29,30]. Of course, Bitcoin prediction is more likely to
have sentimental and ‘noise’ factors differing from stock prediction.

On the other hand, there are methodologies to explain machine learning results known
as eXplainable Artificial Intelligence (XAI). Among these, two of the most popular are Local
Interpretable Model Agnostic [31] and Shapley Additive Explanation (SHAP) [32]. Both
techniques are based on disturbing the model locally. The former assumes a linear model to
obtain the score of the characteristics in terms of the importance of making predictions; the
latter uses game theory concepts to find the best feature fitting in terms of predictive gain.
In [33] these techniques are extended to include temporal dependencies and demonstrate
the need to develop XAI techniques applicable to time series. In [34,35] is proposed an XAI
method applicable to credit risk. In a similar vein, the authors of [36] mention the difficulty
of estimating out-of-sample behavior in stress scenarios. An interesting work is [37], where
it is considered a gradient boosting decision trees approximation to predict the drops of the
S&P 500 markets using a large number of characteristics. The authors claim that retaining
a small and carefully selected amount of features improves the learning model results.

However, as mentioned in the cornerstone work [31] it is not possible to explain a
highly non-linear model through local perturbations. That is, there is a high instability
derived from the characteristics of the inherent dynamical system. In addition, the examples
of the articles mentioned above run in most cases in seconds or minutes. Therefore, the
LIME and SHAP methods are appropriate mainly for machine learning models or simple
deep learning scenarios [38]. In this spirit, it is not practical to follow the traditional XAI
approach, given the computational demand derived from the number of hyperparameters
and configurations to be implemented. However, our proposal to use transfer entropy in
the variable selection process can be considered an alternative strategy to XAI. In particular,
of interest for highly non-linear dependency conditions, such as bitcoin dynamics.

Our study embodied a wide range of Bitcoin’s drivers from alternative investment,
economic policy uncertainty, investor attention, and so on. However, social media is our
main contribution to predictive factors. Specifically, we study the effect that a set of Twitter
accounts belonging to politicians and millionaires has on the behaviour of Bitcoin’s price
direction. In this work, the statistically significant drivers of Bitcoin are detected in the
sense of the continuous estimation of local transfer entropy (local TE) through nearest
neighbours and permutation tests. The proposed methodology deals with non-Gaussian
data and nonlinear dependencies in the problem of variable selection and forecasting.
One main aim is to quantify the effects of investor attention and social media on Bitcoin
in the context of behavioural finance. Another aim is to apply classification metrics to
indicate the effects of including or not the statistically significant features in an LSTM’s
classification problem.

The next Section 2 introduce the local transfer entropy, the nearest neighbour esti-
mation technique, the deep learning forecasting models, and the classification metrics.
Section 3 describes the data and their main descriptive characteristics. Section 4 presents
and highlights the main results. Finally, Section 5 highlights the implications of the results,
and future work is proposed.
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2. Materials and Methods
2.1. Transfer Entropy

Transfer Entropy (TE) [23] measures the flow of information from system Y over
system X in a nonsymmetric way. Denote the sequences of states of systems X, Y in the
following way: xi = x(i) and yi = y(i), i = 1, . . . , N. The idea is to model the signals or
time series as Markov systems and incorporate the temporal dependencies by considering
the states xi and yi to predict the next state xi+1. If there is no deviation from the generalized
Markov property p(xi+1|xi, yi) = p(xi+1|xi), then Y has no influence on X. Hence, TE is
derived using the last idea and defined as

TY→X(k, l) = ∑ p(xi+1, x(k)i , y(l)i ) log
p(xi+1|x

(k)
i , y(l)i )

p(xi+1|x
(k)
i )

, (1)

where x(k)i = (xi, . . . , xi−k+1) and y(l)i = (yi, . . . , yi−l+1).
TE can be thought of as a global average or expected value of a local transfer entropy

at each observation [39]

TY→X(k, l) =
〈

log
p(xi+1|x

(k)
i , y(l)i )

p(xi+1x(k)i )

〉
(2)

The main characteristic of the local version of TE is to be measured at each time n for
each destination element X in the system and each causal information source Y of the
destination. It can be either positive or negative for a specific event set (xi+1, x(k)i , y(l)i ),
which gives the opportunity to have a measure of informativeness or noninformativeness
at each point of a pair of time series.

On the other hand, there exist several approximations to estimate the probability
transition distributions involved in TE expression. Nevertheless, there is not a perfect
estimator. It is generally impossible to minimize both the variance and the bias at the same
time. Then, it is important to choose the one that best suits the characteristics of the data
under study. That is the reason finding good estimators is an open research area [40]. This
study followed the Kraskov-Stögbauer-Grassberger) KSG estimator [41], which focused on
small samples for continuous distributions. Their approach is based on nearest neighbours.
Although obtaining insight into this estimator is not easy, we will try it in the following.

Let X = (x1, x2, . . . , xd) now denote a d-dimensional continuous random variable
whose probability density function is defined as p : Rd → R. The continuous or differential
Shannon entropy is defined as

H(X) = −
∫
Rd

p(X) log p(X)dX (3)

The KSG estimator aims to use similar length scales for K-nearest-neighbour distance in
different spaces, as in the joint space to reduce the bias [42].

To obtain the explicit expression of the differential entropy under the KSG estimator,
consider N i.i.d. samples χ = {X(i)}N

i=1, drawn from p(X). Beneath the assumption
that εi,K is twice the (maximum norm) distance to the k-th nearest neighbour of X(i), the
differential entropy can be estimated as

ĤKSG,K(X) ≡ ψ(N)− ψ(K) +
d
N

N

∑
i=1

log εi,K, (4)
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where ψ is known as the digamma function and can be defined as the derivative of the
logarithm of the gamma function Γ(x)

ψ(K) =
1

Γ(K)
dΓ(K)

dK
(5)

The parameter K defines the size of the neighbourhood to use in the local density
estimation. It is a free parameter, but there exists a trade-off between using a smaller or
larger value of K. The former approach should be more accurate, but the latter reduces the
variance of the estimate. For further intuition, Figure 1 graphically shows the mechanism
for choosing the nearest neighbours at K = 3.

Figure 1. Graphical representation of nearest-neighbors selection. At a given sample point, X(i), the
max-norm rectangle contains the K = 3 nearest-neighbors.

The KSG estimator of TE can be derived based on the previous estimation of the
differential entropy. Yet, in most cases, as analysed in this work, no analytic distribution
is known. Hence, the distribution of TYs→X(k, l) must be computed empirically, where
Ys denotes the surrogate time series of Y. This is done by a resampling method, creating
a large number of surrogate time-series pairs {Ys, X} by shuffling (for permutations or
redrawing for bootstrapping) the samples of Y. In particular, the distribution of TYs→X(k, l)
is computed by permutation, under which surrogates must preserve p(xn+1|xn) but not
p(xn+1|xn, yn).

2.2. Deep Learning Models

We can think of artificial neural networks (ANNs) as a mathematical model whose
operation is inspired by the activity and interactions between neuronal cells due to their
electrochemical signals. The main advantages of ANNs are their non-parametric and
nonlinear characteristics. The essential ingredients of an ANN are the neurons that receive
an input vector xi, and through the point product with a vector of weights w, generate an
output via the activation function g(·):

f (xi) = g(xu · w) + b, (6)

where b is a trend to be estimated during the training process. The basic procedure is the
following. The first layer of neurons or input layer receives each of the elements of the
input vector xi and transmits them to the second (hidden) layer. The next hidden layers
calculate their output values or signals and transmit them as an input vector to the next
layer until reaching the last layer or output layer, which generates an estimation for an
output vector.

Further developments of ANNs have brought recurrent neural networks (RNNs),
which have connections in the neurons or units of the hidden layers to themselves and are
more appropriate to capture temporal dependencies and therefore are better models for
time series forecasting problems. Instead of neurons, the composition of an RNN includes
a unit, an input vector xt, and an output signal or value ht. The unit is designed with
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a recurring connection. This property induces a feedback loop, which sends a recurrent
signal to the unit as the observations in the training data set are analysed. In the internal
process, backpropagation is performed to obtain the optimal weights. Unfortunately,
backpropagation is sensitive to long-range dependencies. The involved gradients face
the problem of vanishing or exploding. Long-short-term memory (LSTM) models were
introduced by Hochreiter and Schmidhuber [43] to avoid these problems. The fundamental
difference is that LSTM units are provided with memory cells and gates to store and forget
unnecessary information.

The final ANNs we need to discuss are convolutional neural networks (CNNs). They
can be thought of as a kind of ANN that uses a high number of identical copies of the same
neuron. This allows the network to express computationally large models while keeping
the number of parameters small. Usually, in the construction of these types of ANNs, a
max-pooling layer is included to capture the largest value over small blocks or patches
in each feature map of previous layers. It is common that CNN and pooling layers are
followed by a dense fully connected layer that interprets the extracted features. Then, the
standard approach is to use a flattened layer between the CNN layers and the dense layer
to reduce the feature maps to a single one-dimensional vector [44].

2.3. Classification Metrics

In classification problems, we have the predicted class and the actual class. The
possible scenarios under a classification prediction are given by the confusion matrix. They
are true positive (TP), true negative (TN), false positive (FP), and false negative (FN).
Based on these quantities, it is possible to define the following classification metrics:

• Accuracy = TP+TN
TP+TN+FP+FN

• Sensitivity, recall or true positive rate (TPR) = TP
TP+FN

• Specificity, selectivity or true negative rate (TNR) = TN
TN+FP

• Precision or Positive Predictive Value (PPV) = TP
TP+FP

• False Omission Rate (FOR) = FN
FN+TN

• Balanced Accuracy (BA) = TPR+TNR
2

• F1 score = 2 PPV×TPR
PPV+TPR .

The most complex measure is the area under the curve (AUC) of the receiver operating
characteristic (ROC), where it expresses the pair (TPRτ , 1− TNRτ) for different thresholds
τ. Contrary to the other metrics, the AUC of the ROC is a quality measure that evaluates
all the operational points of the model. A model with the aforementioned metric equal to
0.5 is considered a random model. Then, a value significantly higher than 0.5 is considered
a model with predictive power, with a value of 1 the upper bound of this quantity.

3. Data

An important part of the work is the acquisition and preprocessing of data. We focus
on the period of time from 1 January 2017 to 9 January 2021 at a daily frequency for a
total of n = 1470 observations. As a priority, we consider the variables listed in Table 1 as
potential drivers of the price direction of Bitcoin (BTC). Investor attention is considered
Google Trends with the query = “Bitcoin”. Additionally, the number of mentions is properly
scaled to make comparisons between days of different months because by default, Google
Trends weighs the values by a monthly factor. Then, the log return of the resulting time
series is calculated.
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Table 1. Type of driver and variable name.

Type Variables

Investor attention Google Trends

Social media BBC Breaking News

Department of State

United Nations

Elon Musk

Donald Trump

Twitter-EPU Twitter-based Uncertainty Index

Risk Aversion Financial Proxy to Risk Aversion and Economic Uncertainty

Cryptocurrencies ETH

LTC

XRP

DOGE

TETHER

Financial indices Gold

Silver

Palladium

Platinum

DCOILBRENTEU

DCOILWTICO

EUR/USD

S&P 500

NASDAQ

VIX

ACWI

Tesla

The social media data are collected from the Twitter API (https://developer.twitter.
com/en/docs/twitter-api, accessed on 15 January 2021). Nevertheless, the API of Twitter
only enables downloading the latest 3200 tweets of a public profile, which generally was
not enough to cover the period of study. Then, the dataset has been completed with the
freely available repository of https://polititweet.org/ (accessed on 15 January 2021). In
this way, the collected number of tweets was 21,336, 22,808, 24,702, 11,140, and 26,169 for
each of the profiles listed on Table 1 in the social media type, respectively. The textual
data of each tweet in the collected dataset are transformed to a sentiment polarity score
through the VADER lexicon [45]. Then, the scores are aggregated daily for each profile.
The resulting daily time series have missing values due to the inactivity of the users, and
then a third-order spline is considered before calculating their differences. The last is to
stationarize the polarity time series. It is important to remember that Donald Trump’s
account was blocked on 8 January 2021, so it was also necessary to impute the last value to
have series of the same length.

The economic policy uncertainty index is a Twitter-based uncertainty index (Twitter-
EPU). The creators of the index used the Twitter API to extract tweets containing keywords
related to uncertainty (“uncertain”, “uncertainly”, “uncertainties”, “uncertainty”) and econ-

https://developer.twitter.com/en/docs/twitter-api
https://developer.twitter.com/en/docs/twitter-api
https://polititweet.org/
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omy (“economic”, “economical”, “economically”, “economics”, “economies”, “economist”,
“economists”, “economy”). Then, we use the index consisting of the total number of
daily tweets containing inflections of the words uncertainty and economy (Please consult
https://www.policyuncertainty.com/twitter_uncert.html for further details of the index,
accessed on 15 January 2021). The risk aversion category considers the financial proxy to
risk aversion and economic uncertainty proposed as a utility-based aversion coefficient [10].
A remarkable feature of the index is that in early 2020, it reacted more strongly to the new
COVID-19 infectious cases than did a standard uncertainty proxy.

As complementary drivers, it includes a set of highly capitalized cryptocurrencies and
a heterogeneous portfolio of financial indices. Specifically, Ethereum (ETH), Litecoin (LTC),
Ripple (XRP), Dogecoin (DOGE), and the stable coin TETHER are included from yahoo
finance (https://finance.yahoo.com/, accessed on 15 January 2021). The components of the
heterogeneous portfolio are listed in Table 1, which takes into account the Chicago Board
Options Exchange’s CBOE Volatility Index (VIX). This last information was extracted from
Bloomberg (https://www.bloomberg.com/, accessed on 15 January 2021). It is important
to point out that risk aversion and the financial indices do not have information that
corresponds to weekends. The imputation method to obtain a complete database consisted
of repeated Friday values as a proxy for Saturday and Sunday. Then, the log return of the
resulting time series is calculated. This last transformation was also made for Twitter-EPU
and cryptocurrencies. The complete dataset can be found in the Supplementary Material.

Usually, the econophysics and data science approaches share the perspective of ob-
serving data first and then modelling the phenomena of interest. In this spirit, and with
the intention of gaining intuition on the problem, the standardized time series (target and
potential drivers), as well as the cumulative return of the selected cryptocurrencies and
financial assets are plotted in Figures 2 and 3. The former figure shows high volatility in
almost all the studied time series around March 2020, which might be due to the declaration
of the pandemic by the World Health Organization (WHO) and the consequent fall of the
worlds main stock markets. The latter figure exhibits the overall best cumulative gains for
BTC, ETH, LTC, XRP, DOGE, and Tesla. It is worth noting that the only asset with a compa-
rable profit to that of the cryptocurrencies is Tesla, which reaches high cumulative returns
starting at the end of 2019 and increases its uptrend immediately after the announcement
of the worldwide health emergency.

Figure 2. Standardized time series after preprocessing, as explained in the main text.

https://www.policyuncertainty.com/twitter_uncert.html
https://www.policyuncertainty.com/twitter_uncert.html
https://finance.yahoo.com/
https://www.bloomberg.com/
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Figure 3. Cumulative returns of the selected cryptocurrencies and financial assets. The scale is logarithmic in the y-axis and
starts in one to be financially interpreted as the gains.

Furthermore, Figure 4 shows the heatmap of the correlation matrix of the preprocessed
dataset. We can observe the formation of certain clusters, such as cryptocurrencies, metals,
energy, and financial indices, which tells us about the heterogeneity of the data. It should
also be noted that the VIX volatility index is anti-correlated with most of the variables.

Figure 4. Correlation matrix of the preprocessed time series.

Additionally, the main statistical descriptors of the data are presented in Table 2. The
first column is the variable’s names or tickers. The subsequent columns represent the mean,
standard deviation, skewness, kurtosis, Jarque Bera test (JB), and the associated p value
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of the test for each variable, i.e., target, and potential drivers. Basically, none of the time
series passes the test of normality distribution, and most of them present a high kurtosis,
which is indicative of heavy tail behaviour. Finally, stationarity was checked in the sense of
Dickey-Fuller and the Phillips-Perron unit root tests, where all variables pass both tests.

Table 2. The symbols **, and *** denote the significance at the 5%, and 1% levels, respectively.

Variable Mean Std. Dev. Skewness Kurtosis JB p-Value

BTC 0.0025 0.0424 −0.8934 12.7470 10,073.5034 ***

Google Trends 0.0018 0.1915 0.2611 6.8510 2868.6001 ***

BBC Breaking News 0.0007 3.5295 −0.1789 15.5376 14,686.4748 ***

Department of State −0.0013 4.0610 0.0941 8.4698 4362.1014 ***

United Nations 0.0007 3.2689 0.1748 0.2747 11.9228 **

Elon Musk 0.0035 1.8877 0.0672 3.8630 906.9805 ***

Donald Trump 0.0001 4.8294 0.0461 5.2434 1670.4686 ***

Twitter−EPU 0.0009 0.3001 0.3049 3.6071 812.4777 ***

Risk Aversion 0.0001 0.0726 3.7594 165.2232 1,664,075.5884 ***

ETH 0.0034 0.0566 −0.3991 9.7009 5759.1438 ***

LTC 0.0025 0.0606 0.6919 10.5404 6870.4947 ***

XRP 0.0027 0.0753 2.2903 36.2405 81,162.9262 ***

DOGE 0.0026 0.0669 1.2312 15.0342 14,113.2759 ***

TETHER 0.0000 0.0062 0.3255 20.0952 24,581.8501 ***

Gold 0.0006 0.0082 −0.6595 5.5761 1995.0834 ***

Silver 0.0005 0.0164 −1.1304 13.0841 10,720.4362 ***

Palladium 0.0015 0.0197 −0.9198 20.5312 25,840.0775 ***

Platinum 0.0004 0.0145 −0.9068 10.7274 7196.3125 ***

DCOILBRENTEU −0.0004 0.0374 −3.1455 81.2272 403,755.7220 ***

DCOILWTICO 0.0006 0.0358 0.7362 38.4244 89,931.3161 ***

EUR/USD 0.0002 0.0042 0.0336 0.8999 49.0930 ***

S&P 500 0.0006 0.0125 −0.5714 20.5446 25,746.7436 ***

NASDAQ 0.0008 0.0145 −0.3601 11.7771 8463.6169 ***

VIX −0.0061 0.0810 1.4165 8.4537 4833.8826 ***

ACWI 0.0006 0.0115 −1.1415 20.4837 25,833.5682 ***

Tesla 0.0017 0.0371 −0.3730 5.5089 1877.5034 ***

4. Results
4.1. Variable Selection

The observed characteristics of the data in the previous section justify the use of a non-
parametric approach to determine the explainable features to be employed in the predictive
classification model. Therefore, the variable selection procedure consisted of applying the
continuous transfer entropy from each driver to Bitcoin using the KSG estimation. Figure 5
shows the average transfer entropy when varying the Markov order k, l and neighbour
parameter K from one to ten for a total of 1000 different estimations by each driver. The
higher the intensity of the colour, the higher the average transfer entropy (measured in
nats). The grey cases do not transfer information to BTC. In other words, these cases do not
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show a statistically significant flow of information, where the permutation test is applied to
construct 100 surrogate measurements under the null hypothesis of no directed relationship
between the given variables.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 5. Average transfer entropy from each potential driver to BTC. The y-axis indicates the driver, and the x-axis indicates
the Markov order pair k, l of the source and target. From (a) to (j), nearest neighbours K run from one to ten, respectively.
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The tuple of parameters {k, l, K} that give the highest average transfer entropy from
each potential driver to BTC are considered optimal, and the associated local TE is kept as
a feature in the classification model of Bitcoin’s price direction. Figure 6 shows the local
TE from each statistically significant driver to BTC at the optimal parameter tuple {k, l, K}.
Note that the set of local TE time series is limited to 23 features. Consequently, the set of
originally proposed potential drivers is reduced from 25 to 23. Surprisingly, NASDAQ and
Tesla do not send significative information to BTC for any value of {k, l, K} in the grid of
the 1000 different configurations. The variations are smooth on K, but not on the Markov
order k, l. It is also notorious the negligible amounts of the flow of information at k = l = 1.

Figure 6. Local TE of the highest significant average values on the tuple {k, l, K}. NASDAQ and Tesla are omitted because
they do not send significative information to BTC for any considered value on the grid of the tuple {k, l, K}.

4.2. Bitcoin’s Price Direction

The task of detecting Bitcoin’s price direction was done through a deep learning
approach. The first step consisted of splitting the data into training, validation, and test
datasets. The chosen training period runs from 1 January 2017 to 4 January 2020, or 75%
of the original entire period of time, and is characterized as a prepandemic scenario. The
validation dataset is restricted to the period from 5 January 2020 to 11 July 2020, or 13%
of the original data, and is considered the pandemic scenario. The test dataset involves
the postpandemic scenario from 12 July 2020 to 9 January 2021 and contains 12% of the
complete dataset. Deep learning forecasting requires transforming the original data into
a supervised data set. Here, samples of 74 historical days and a one-step prediction
horizon are given to the model to obtain a supervised training dataset, with the first
dimension being a power of two, which is important for the hyperparameter selection of
the batch dimension. Specifically, the sample dimensions are 1024, 114, and 107 for training,
validation, and testing, respectively. Because we are interested in predicting the direction
of BTC, the time series are not demeaned and instead are only scaled by their variance
when feeding the deep learning models. An important piece in a deep learning model is
the selection of the activation function. In this work, the rectified linear unit (ReLU) was
selected for the hidden layers. Then, for the output layer, the sigmoid function is chosen
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because we are dealing with a classification problem. In addition, an essential ingredient
is the selection of the stochastic gradient descent method. Here, Adam optimization is
selected based on adaptive estimation of the first- and second-order moments. In particular,
we used version [46] to search for the long-term memory of past gradients to improve the
convergence of the optimizer.

There exist several hyperparameters to take into account when modelling a classifica-
tion problem under a deep learning approach. These hyperparameters must be calibrated
on the training and validation datasets to obtain reliable results on the test dataset. The
usual procedure to set them is via a grid search. Nevertheless, deeper networks with
more computational power are necessary to obtain the optimal values in a reasonable
amount of time. To avoid excessive time demands, we vary the most crucial parame-
ters in a small grid and apply some heuristics when required. The number of epochs,
is selected under the early stopping procedure. Another crucial hyperparameter is the
batch, or the number of samples to work through before updating the internal weight
of the model. For this parameter the selected grid was {32, 64, 128, 256}. Additionally,
we consider the initial learning rates at which the optimizer starts the algorithm, which
were {0.001, 0.0001}. As an additional method of regularization, the effect of dropping
between consecutive layers is added. This value can take values from 0 to 1. Our grid
for this hyperparameter is {0.3, 0.5, 0.7}. Finally, because of the stochastic nature of the
deep learning models, it is necessary to run several realizations and work with averages.
We repeat the hyperparameter selection with ten different random seeds for robustness.
The covered scenarios are the following: univariate (S1), where bitcoin is self-driven; all
features (S2), where all the potential drivers listed in Table 1 are included as features of the
model; significative features (S3), only statistically significant drivers under the KSG transfer
entropy approach are considered as features; local TE, only the local TE of the statistically
significant drivers are included as a feature; and finally the significative features + local TE
(S5) scenario, which combines scenarios (S3) and (S4). Finally, five different designs have
been proposed for the architectures of the neural networks, which are denoted as deep
LSTM (D1), wide LSTM (D2), deep bidirectional LSTM (D3), wide bidirectional LSTM (D4),
and CNN (D5). The specific designs and diagrams of these architectures are displayed in
Figure 7. In total, 6000 configurations or models were executed, which included the grid
search for the optimal hyperparameters, the different scenarios and architectures, and the
realizations on different seeds to avoid biases due to the stochastic nature of the considered
machine learning models.

The computation was done in a workstation with the following characteristics: Alien-
ware Aurora R7, Ubuntu 20.10, Processor i9-9900X 8 cores, 16 logic, 64 GB RAM, Dual
NVIDIA RTX 2080 ti, 3TB HHD. On this equipment, the computational demand extends
the execution to nearly 60 h of computation. Tables 3 and 4 present the main results for
the validation and test datasets, respectively. Table 2 explicitly states the best value for the
dropout, learning rate (LR), and batch hyperparameters. In both tables, the hashtag (#)
column indicates the number of times the specific scenario gives the best score for the
different metrics considered so far. Hence, the architecture design D3 for case S3 yields the
highest number of metrics with the best scores in the validation dataset. In contrast, in the
test dataset, the highest number of metrics with the best scores correspond to design D2 for
case S1. Nevertheless, design D5 from case S5 is close in the sense of the # value, where it
presents the best AUC and PPV scores. An important point to keep in mind is that only
during the validation stage we find models with an AUC greater than 0.6, so this metric
does not give evidence of predictive power in the testing stage.
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Figure 7. From (top) to (bottom): D1, D2, D3, D4, and D5.
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Table 3. Classification metrics on the validation dataset.

Design Case Dropout LR Batch Acc AUC TPR TNR PPV FOR BA F1 #

D1 S1 0.3 0.001 32 57.11 0.5388 84.75 25.28 56.63 40.97 55.02 67.89

S2 0.3 0.001 128 57.28 0.5391 80.33 30.75 57.18 42.40 55.54 66.80

S3 0.7 0.001 128 58.07 0.5379 74.43 39.25 58.51 42.86 56.84 65.51

S4 0.3 0.001 256 57.98 0.5304 75.41 37.92 58.30 42.74 56.67 65.76

S5 0.3 0.001 256 57.19 0.5100 87.54 22.26 56.45 39.18 54.90 68.64

D2 S1 0.3 0.001 64 59.82 0.5444 81.97 34.34 58.96 37.67 58.15 68.59

S2 0.3 0.001 32 61.14 0.5909 65.57 56.04 63.19 41.42 60.81 64.36

S3 0.3 0.001 128 62.28 0.6062 62.95 61.51 65.31 40.94 62.23 64.11 5

S4 0.5 0.0001 32 55.44 0.4964 75.08 32.83 56.27 46.63 53.96 64.33

S5 0.7 0.001 32 58.07 0.5706 63.77 51.51 60.22 44.74 57.64 61.94

D3 S1 0.3 0.001 128 56.23 0.4865 88.52 19.06 55.73 40.94 53.79 68.40

S2 0.3 0.001 64 59.65 0.5816 68.69 49.25 60.90 42.26 58.97 64.56

S3 0.3 0.001 128 60.09 0.5619 76.72 40.94 59.92 39.55 58.83 67.29

S4 0.3 0.001 32 58.16 0.5350 79.18 33.96 57.98 41.37 56.57 66.94

S5 0.3 0.001 256 59.47 0.5702 68.69 48.87 60.72 42.44 58.78 64.46

D4 S1 0.5 0.001 32 57.28 0.5276 80.16 30.94 57.19 42.46 55.55 66.76

S2 0.7 0.001 128 58.68 0.5447 66.23 50.00 60.39 43.74 58.11 63.17

S3 0.7 0.001 64 58.25 0.5468 64.26 51.32 60.31 44.49 57.79 62.22

S4 0.5 0.001 256 57.11 0.5092 78.36 32.64 57.25 43.28 55.50 66.16

S5 0.7 0.0001 32 57.11 0.5328 70.33 41.89 58.21 44.91 56.11 63.70

D5 S1 0.7 0.001 128 60.09 0.5834 72.13 46.23 60.69 40.96 59.18 65.92

S2 0.3 0.001 64 60.00 0.5683 67.70 51.13 61.46 42.09 59.42 64.43

S3 0.5 0.001 32 59.39 0.5648 68.03 49.43 60.76 42.67 58.73 64.19

S4 0.5 0.001 32 59.12 0.5572 75.57 40.19 59.25 41.16 57.88 66.43

S5 0.3 0.001 128 60.79 0.5825 70.33 49.81 61.73 40.67 60.07 65.75

In a robustness discussion, we would like to compare our predictive feature with
the existing approaches. While the current studies look at the conventional approach of
econometrics [29,30], our study sheds light on the deep learning method. Accordingly,
we had two samples (training sample and test group). Therefore, it allows us to validate
our findings with different periods. The unique, comparable study that we have found
in the area of learning models is due to [26]. However, they only show the results for two
accuracy metrics when predicting the direction of the US markets. Even so, barely the
metrics exceed the value of 0.6, and it is not clear if they are considering a test set.
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Table 4. Classification metrics on the test dataset.

Design Case Acc AUC TPR TNR PPV FOR BA F1 #

D1 S1 64.30 0.4981 90.99 11.67 67.01 60.38 51.33 77.18

S2 56.82 0.4946 74.08 22.78 65.42 69.17 48.43 69.48

S3 61.78 0.5188 79.58 26.67 68.15 60.17 53.12 73.42 2

S4 51.96 0.4898 60.70 34.72 64.71 69.06 47.71 62.65

S5 60.47 0.4842 83.66 14.72 65.93 68.64 49.19 73.74

D2 S1 60.75 0.4786 85.92 11.11 65.59 71.43 48.51 74.39

S2 52.06 0.4870 56.48 43.33 66.28 66.45 49.91 60.99

S3 53.46 0.4997 56.76 46.94 67.85 64.50 51.85 61.81

S4 55.70 0.4794 70.56 26.39 65.40 68.75 48.48 67.89

S5 50.93 0.4806 55.49 41.94 65.34 67.67 48.72 60.02

D3 S1 65.05 0.5072 95.21 5.56 66.54 62.96 50.38 78.33 3

S2 55.70 0.5248 63.38 40.56 67.77 64.04 51.97 65.50

S3 57.38 0.5176 67.32 37.78 68.09 63.04 52.55 67.71

S4 51.40 0.5051 52.96 48.33 66.90 65.75 50.65 59.12

S5 54.21 0.5094 60.56 41.67 67.19 65.12 51.12 63.70

D4 S1 61.21 0.4831 86.48 11.39 65.81 70.07 48.93 74.74

S2 48.13 0.4718 48.17 48.06 64.65 68.02 48.11 55.21

S3 47.20 0.4771 43.24 55.00 65.46 67.05 49.12 52.08

S4 45.98 0.4359 50.99 36.11 61.15 72.80 43.55 55.61

S5 51.96 0.4743 55.49 45.00 66.55 66.11 50.25 60.52

D5 S1 58.04 0.5017 78.59 17.50 65.26 70.70 48.05 71.31

S2 55.23 0.4942 62.39 41.11 67.63 64.34 51.75 64.91

S3 54.21 0.4994 63.10 36.67 66.27 66.50 49.88 64.65

S4 54.49 0.5269 62.39 38.89 66.82 65.60 50.64 64.53

S5 55.79 0.5316 61.83 43.89 68.49 63.17 52.86 64.99 2

5. Discussion

We start from descriptive statistics as a first approach to intuitively grasp the complex
nature of Bitcoin, as well as its proposed heterogeneous drivers. As expected, the variables
did not satisfy the normality assumption and presented high kurtosis, highlighting the
need to use non-parametric and nonlinear analyses.

The KSG estimation of TE found a consistent flow of information from the potential
drivers to Bitcoin through the considered range of K nearest neighbours. Even when, in
principle, the variance of the estimate decreases with K, the results obtained with K = 1 do
not change abruptly for larger values. In fact, the variation in the structure of the TE matrix
for different Markov orders k, l is more notorious. Additionally, attention must be paid
to the evidence about the order k = l = 1 through values near zero. Practitioners usually
assume this scenario under Gaussian estimations. A precaution must then be made about
the memory parameters of Markov, at least when working with the KSG estimation. The
associated local TE does not show any particular pattern beyond high volatility, reaching
values of four nats when the average is below 0.1. Thus, volatility might be a better proxy
for price fluctuations in future studies.
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In terms of intuitive explanations, we found that the drivers of Bitcoin might not
truly capture its returns in distressed periods. Although we expected to witness that the
predictive power of these determinants might play an important role across time horizons,
it turns out that the prediction model of Bitcoin relies on a choice of a specific period. Thus,
our findings also confirm the momentum effect that exists in this market [47]. Due to
the momentum effect, the timing of market booms could not truly be supported much
for further analysis by our models. In regard to our main social media hypothesis, the
popularity of Bitcoin content still exists as the predictive component in the model. More
noticeably, our study highlights that Bitcoin prices can be driven by momentum on social
media [24]. However, the selection of training and testing periods should be cautious with
the boom and burst of this cryptocurrency. Apparently, while the fundamental value of
Bitcoin is still debatable [48], using behavioural determinants could have some merits in
predicting Bitcoin. Thus, we believe that media content would support the predictability
of Bitcoin prices alongside other financial indicators. Concomitantly, after clustering these
factors, we found that the results seem better able to provide insights into Bitcoin’s drivers.

On the other hand, the forecasting of Bitcoin’s price direction improves in the valida-
tion set but not for all metrics in the test dataset when including significant drivers or local
TE as a feature. Nonetheless, the last assertion relies on the number of metrics with the
best scores. Although the test dataset having the best performance corresponds to the deep
bidirectional LSTM (D3) for the scenario univariate (S3), this case only beat three of the eight
metrics. The other five metrics are outperformed by scenarios including significative features
(S3) and significative features + local TE (S5). Furthermore, the second-best performances are
tied with two of the eight metrics with leading values. Interestingly, the last case shows
the best predictive power on the CNN model using significant features as well as local TE
indicators (D5–S5). In particular, it outperforms the AUC and PPV overall, yet AUC is in
the border of a random model. To delve into the explainable aspect, a future work will
seek to apply the Shapley-Lorentz decomposition proposed in [49,50]. There the authors
develop a global methodology, which can be associated with a generalization of AUC-ROC.

Moreover, it is important to note that the selected test period is atypical in the sense of
a bull period for Bitcoin as a result of the turbulence generated by the COVID-19 public
health emergency; this might induce safe haven behaviour related to this asset and increase
its price and capitalization. This atypical behaviour opens the door to propose future work
to model Bitcoin by the self-exciting process of the Hawkes model during times of great
turbulence.

We would like to end by emphasizing that we were not exhaustive in modelling
classification forecasting. In contrast, our intention was to exemplify the effect of including
the significant features and local TE indicators under different configurations of a deep
learning model through a variety of classification metrics. Two methodological contribu-
tions to highlight are the use of nontraditional indicators such as market sentiment, as
well as a continuous estimation of the local TE as a tool to determine additional drivers
in the classification model. Finally, the models presented here are easily adaptable to
high-frequency data because they are non-parametric and nonlinear in nature.
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