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Abstract: In the era of the Internet of Things and big data, we are faced with the management of
a flood of information. The complexity and amount of data presented to the decision-maker are
enormous, and existing methods often fail to derive nonredundant information quickly. Thus, the
selection of the most satisfactory set of solutions is often a struggle. This article investigates the
possibilities of using the entropy measure as an indicator of data difficulty. To do so, we focus on real-
world data covering various fields related to markets (the real estate market and financial markets),
sports data, fake news data, and more. The problem is twofold: First, since we deal with unprocessed,
inconsistent data, it is necessary to perform additional preprocessing. Therefore, the second step
of our research is using the entropy-based measure to capture the nonredundant, noncorrelated
core information from the data. Research is conducted using well-known algorithms from the
classification domain to investigate the quality of solutions derived based on initial preprocessing
and the information indicated by the entropy measure. Eventually, the best 25% (in the sense of
entropy measure) attributes are selected to perform the whole classification procedure once again,
and the results are compared.

Keywords: entropy measure; real-world data; preprocessing; decision table; classification

1. Introduction

In present times, we are facing the problem of a large amount of data flowing from
different sources. In the era of the Internet of Things (IoT) and big data, the challenge is to
effectively use and present the acquired data without generating redundant information.
Due to the size of data available for decision-makers, it is nearly impossible to manually
make any complex decisions. This difficulty is experienced even in machine learning
algorithms, which must manage too many attributes, variables, and additional constraints,
resulting in the whole process being lengthy and complicated [1]. As such, it is essential to
simplify data in the cases where the decisions should be made very quickly, and a need
exists to use a decision support system to maintain the decision-maker’s sovereignty.

The main drawback of the existing datasets is their uniform structure. For the data
related to a single domain, the distribution of attribute values, the size of data, or the
overall difficulty of the given dataset classification is expected to be on a similar level.
However, in the case of more general approaches, we often face inconsistency in data,
including the need to use additional knowledge from the domain experts. In general, data
available in repositories are mostly preprocessed and directed on a particular problem (like
the classification or the regression). At the same time, the initially collected data may still
be very complex.

The above problem had led to the construction of many complex algorithms and
methods intending to decrease the complexity of the data used in the decision process.
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Among these methods, we can emphasize approaches for reducing the number of variables
included in the algorithm [2,3]. The idea of initially preprocessing the data related to
the feature selection, removing the redundant data, or including more general attributes
replacing the existing ones is not a new concept and it was deeply studied in many articles,
where initial data limitation was needed. Examples of such feature selection methods can
be found, for example, in extensions of the Principal Component Analysis method. One
of the newest review articles in this subject can be found in [4]. A more general approach
for future selection involving the swarm methods is presented in [5,6]. In comparison, one
of the newest review articles related to the swarm methods is [7]. The second large set
of algorithms used for the feature selection is related to the tree-based methods. In these
methods, the attributes can be selected based on the importance of the attribute in the
process of building the tree (classifier). An example of comparison for such algorithms can
be found in [8].

For many cases, data dependencies are not linear. Thus, a complex method of vari-
ables elimination should be applied. For example, in the case of periodically important
variables or in situations where the linear dependencies between elements are not obvious,
different methods must be used to emphasize the crucial variables in the system. To avoid
redundancy in the data, the selected variables should exhibit little or no mutual correlation.
This requirement was described by [9], in which the phenomenon of the illusion of validity
occurs: people have confidence in the results, which are based on redundant data. Thus,
in decision support systems and during attribute selection, the role of decision-makers can
also be marginalized.

A method that effectively identifies the crucial variables present in the complex
data can be essential for the whole system’s efficiency. However, in the case where the
data structure and its complexity makes the data difficult or even impossible to process,
the decision-maker faces a two-step problem: First, there is a need to adapt the data to
fit the algorithm’s input format. This can be achieved by some additional preprocessing
methods, leading to a data format acceptable as the algorithm’s input. However, the whole
process may be lengthy and complex. It often covers concepts such as filling the missing
data, discretization, and scalarization. Dealing with missing data cannot be solved with
simple methods, and the literature covers various approaches to this problem [10–12].

Thus, today we observe many algorithms dedicated to a particular domain, which,
opposite to the general approaches, can deal with the problems more efficiently. However,
one should know that such available methods can still be beneficial, even as a starting point
for emerging domains related to complex or big data. Our idea was to collect raw data from
different fields and prepare it in a uniform, easy-to-analyze format based on decision tables.
At the same time, we tried to use as general tools as possible, which unfortunately can lead
to a decrease in classification quality. However, it maintains the generalized approach for
all datasets.

Furthermore, we selected entropy as a concept, which allows us to describe the
disorder of the data. By the disorder, we understand here the measure of complexity, where
the more complex data (fewer dependencies between objects and attributes is visible)
is defined by the higher entropy values. Therefore, we assumed that the increase in
entropy could be equated with data difficulty. Furthermore, this assumption is verified by
performing the actual classification on various datasets. Eventually, the results from the
classification on the full set of attributes and subset generated on the basis of entropy can
be compared. It is expected that high entropy should lead to less effective classification.

The entropy measure is considered from the point of view of all attributes. Thus, it
is possible to identify the attributes with small disorder values (smaller entropy values).
A subset of attributes with small entropy could be used to perform the classification while
the data is limited.

In our data, a clear distinction exists between conditional attributes and decision
class. Data from various fields cover several objects as well as different numbers of
attributes. However, the common goal is to perform a classification task on the presented
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data. The second step of our research completely focused estimating the impact of the
entropy-based measure on the classification task. First, we tried to determine if entropy
can be effectively used to indicate data difficulty. Eventually, we investigated the results of
the classification of the data. We expected that, initially, all conditional attributes analyzed
in the dataset could be treated uniformly (i.e., have similar entropy values). Thus, the main
questions were: is there a correlation between the entropy values and the quality of
classification, and can the entropy-based measure be used to select the best-fitted attributes
for the classification problem? To summarize, our research steps were as follows:

• initial preprocessing of real-world data;
• entropy calculation for different datasets;
• classification on all datasets;
• selection of the best-fitted 25% of attributes based on the lowest entropy measure;
• the comparison between the classification results for the full and limited set of at-

tributes on different datasets.

To generalize our observations as much as possible, we tried to select data from various
fields and describe the whole preprocessing framework with the use of domain knowledge
presented by experts from different fields. Moreover, this preprocessing schema allowed
us to use a general data format, which can be effectively used in entropy calculation and,
finally, in classification problems.

The paper is organized as follows: In the next section, we present the related studies.
In Section 3, we discuss the theoretical background related to the subject, including a
description of entropy, decision tables, and efficiency measures used in classification
tasks. Section 4 contains a description of the real-world data covering different domains.
Section 5 presents the results of our experiments based on entropy calculation as well as
the classification problem. Eventually, we conclude the study in Section 6.

2. Related Works

By classical entropy, we understand the measure of uncertainty related with some
data. The idea was introduced by Shannon in 1948 [13] and further extended, for example,
by Renyi and Tsallis [14,15], where Renyi entropy is the generalization of the Shannon
entropy for specific parameters.

The classical entropy measure is used as a crucial element in many different algorithms
and methods. Amongst the most prominent examples are the well-known classification
algorithm C4.5 developed by Quinlan [16] as an extension of algorithm ID3 [17]. In both
examples, entropy was used as a measure to generate a classifier (a decision tree). In C4.5,
entropy was used for all algorithm steps to calculate the information gain based on the
entropy for every attribute available in the dataset. A similar idea is used in greedy
heuristic ID3, where, once again, the attribute used as a split criterion for the data is based
on the highest information gain. Such an approach has been successfully used in machine
learning [18] and signal processing [19].

Entropy is often used as an element of broader methods rather than a standalone
measure. It has a role in novel metaheuristics such as an extension of classical particle
swarm optimization [20]. In [21], it was used as an alternative approach to the concept of
fuzzy sets to measure the uncertainty of the task in a task assignment problem. Entropy
was used as an extension of the binary classification problem solved by particle swarm
optimization [22]. In many articles, entropy has often been used as a replacement for
classical measures such as variance [23].

Entropy mixed with the concept of fuzzy sets was included in an outlier detection
approach [24]. In [25], entropy was included as a part of the feature selection mechanism
based on fuzzy sets. Finally, a more complex approach, including the fuzzy multicriteria
approach based on the TOPSIS method, was presented in [26].

Entropy was used in many different approaches to measure randomness in a clinical
trial [27]. In [28], entropy was introduced to measure the uncertainty of ordered sets.
In general, it can be used as an idea of measure for different fields such finance [29,30],
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chemistry [31], physics [32], and more. However, no works used entropy as a general
measure for different domains simultaneously. A separate direction of research is devoted
to various extensions of classical entropy. In [33], the idea of measuring an entropy
on different scales (multiscale entropy) was presented. In the case of time-series data,
the concept of approximate entropy is often used [34]. In [35], approximate entropy was
extended, called sample entropy. This idea was further extended in [36]. Both methods
were used in different applications to address various dynamic aspects of systems.

Another prevalent extension of the classical measure is permutation entropy, effec-
tively used as a nonlinear measure in different fields such as cyber-security [37] and
fault diagnosis in systems [38]. Some preliminary comparisons between the classical en-
tropy measure and Pearson correlation were introduced [39]. In this example, the authors
focused on the data derived from the system from the Internet of Things, focusing on
spatio-temporal data.

The idea of using entropy as a complexity measure is well-known, and it has been
recently studied by many researchers. Among interesting examples, we mention [40],
where information entropy was used to measure the genetic diversity in colonies. Another
example covers the general idea of measuring the complexity of time series [41].

Entropy as a measure of diversity was presented in [42], where the authors used
Shannon entropy to measure the urban growth dynamics for a case study related to
real-world data from the city of Sheffield in the U.K. More complex examples related
to health and perception can be found in [43,44]. In the first case, the authors used
entropy-based concepts for knowledge discovery in heart rate variability, whereas in the
second example, approximate entropy was used for EEG data. Finally, among the newest
works from the medical domain, Coates et al. [45] used entropy in the Parkinson’s disease
recognition process.

3. Methodology

For a set of objects X, every element can be described by a vector of n conditional
attributes ~xatr = {xatr1 , xatr2 , . . ., xatrn} where n is a number of conditional attributes. A de-
cision class is denoted as xclass. Thus, every object is described by a pair ( ~aatr, xclass).
For every conditional attribute, we have the attribute and value pair, and every attribute
can have a numeric or symbolic value. In the case of attributes with continuous values,
the discretization procedure, leading to limiting the number of values for a single attribute,
is often performed.

In classification problems, the decision class xclass, including information about the
decision class for a single object, has one of the values belonging to the decision class set
of values.

In this article, we perform the preprocessing of real-world data, which allows trans-
forming the initial raw data into a decision table defined as follows:

DS = (X, ~xatr, xclass). (1)

All analyzed data differ in terms of the size of set X and the number of attributes in the
vector of conditional attributes ~xatr. We did not assume simplifications related to the
cardinality of the decision class. Thus, for some sets, this attribute is continuous, and an
additional discretization procedure is needed. Eventually, for all datasets, the number of
values in decision class xclass is discrete.

3.1. Entropy as a Measure of Classification Uncertainty

According to our aim, we wanted to explore the possibility of using entropy as an
indicator of data difficulty. Therefore, we treated entropy as a measure of classification
uncertainty. In addition, we explored how data can be simplified using only attributes
selected in terms of entropy value. Therefore, we also examined the information attribute
to assess the usefulness of entropy for data simplification.
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Assuming that several different symbols describe information, entropy, in its basic
form, can be calculated as follows:

E(DS) = −
|C|

∑
i=1

pi · log(pi), (2)

where |C| is the number of different decision classess, and pi is the probability of occurence
of the i-th decision class. With such a definition, entropy can be understood as a measure
of data complexity. With an increasing number of decision classess available in the data,
the overall complexity increases. In the most trivial case, for a single decision class, the pi
value is equal to 1, whereas log(pi) is zero (as well as the entropy). Thus, any increase in
this value leads to higher entropy.

The value of the information attribute (Equation (3)) is determined for each conditional
attribute to determine how it can change the entropy of the decision table DS. The resulting
value determines the entropy that can be obtained by considering that attribute.

The information attribute is thus based on the calculation of entropy due to decision
classes (Equation (2)), but this is performed due to the cases grouped by the values of the
attribute being analyzed.

Formally, the information attribute is written as Equation (3), but note that these
determinations are required for each attribute, where k is the number of attributes being
analyzed, m is the number of possible values of the k-th attribute, and |DSi| is the number
of instances having the i-th attribute value (analogously, DSi is the subset of the decision
table DS that has only the i-th attribute value on attribute k).

in f o_att(k, DS) =
m

∑
i=1

|DSi|
|DS| · E(DSi) (3)

In our considerations, in f o_att is crucial for simplifying the dataset. For each decision
table DS with the number of conditional attributes n, values are determined based on
Equation (4). This observation is used for further analysis.

all_in f o_att(DS) =
n

∑
k=1

in f o_att(k, DS) (4)

3.2. Classification Measures

In our research, we wanted to examine the classification quality using state-of-the-art
machine learning algorithms. We chose decision trees (CART algorithm) and ensemble
methods: Random Forest, Bagging, and AdaBoost. To assess the quality of classification,
in addition to the classical measures of classification quality (accuracy), we also used
precision (called positive predictive value (PPV)) and recall (called true positive rate (TPR)).
Notably, these are binary classification measures, i.e., for a dataset with only two decision
classes. In real datasets, there are often more decision classes. Several methods can be used
to generalize precision and recall. We wanted to provide as much information as possible
in our solutions, so we computed precision and recall for each decision class.

Therefore, for PPV, the analyzed decision class is treated as positive and all others as
negative, and analogously for TPR. So, in the definition of the measures of the quality of
classification (accuracy in Equation (5), precision in Equation (6), and recall in Equation (7)),
we denote:

TP: to identify all correctly classified cases of the analyzed class;
TN: to identify all cases outside the analyzed class that were not assigned to this class;
FP: to identify all cases outside the analyzed class that were assigned to this class;
FN: to identify all misclassified cases of the analyzed class.

accuracy = TP+TN
TP+TN+FP+FN , (5)
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PPV =
TP

TP + FP
, (6)

TPR =
TP

TP + FN
. (7)

4. Data Preparation and Preprocessing

In this section, we provide details of the real-world data used in further experiments.
The data were collected from external sources and cover various fields. We adapted the
raw data into a decision table format, described in detail in the previous section, to perform
the tests based on the classification problem. All necessary steps for data processing are
described in this section.

However, despite the processing of all datasets, some general preprocessing steps
were used. Below we indicate these steps in points with a short description.

• collect data in the raw format—the first step was to obtain the entire data. Please note
that for some cases, these data were obtained from different sources; however, all
information initially was presented as a table;

• join data tables from different sources—this step was used to merge all obtained data
into a single table structure;

• eliminate all missing and incomplete data—no artificial methods allowing to repair
missing data were included in this point;

• eliminate potential outliers in the data—by outlier, we mean observation outside the
range 〈Q1− 3· IQ : Q3 + 3· IQ〉 (where Q1 is the first quartile, Q3 is the third quartile,
and IQ is the interquartile range);

• perform discretization for selected attributes (attributes pointed out by the domain
expert having a relatively large number of values).

Please note that the last step was used for both conditional attributes as well as the
decision attribute (if needed). Moreover, these were general steps adapted for all data.
However, additional steps were explicitly performed for the selected data (for example,
related to the natural language processing), described in detail in subsections related to
different data.

4.1. Fake News Data

Universal access to the Internet created the possibility of the rapid creation and gaining
of knowledge by users, which became a threat through the easy spread of false information
in the form of fake news. Fake news aims to present users with a view that is not in line
with reality or leads them to make wrong decisions or actions based on false information.

The problem of disinformation is best visible on social networking services and news
sites, where fake news is spreading widely in the form of sharing, passing on to friends,
or creating documents based on unreliable sources [46]. Therefore, it is essential to quickly
classify the documents posted and adequately mark the articles as true or fake news.
The subject matter of the documents from the fake news dataset is related to many different
fields; in particular, it concerns political, media, and financial content, as well as current
events [47,48].

Kannan et al. [49] claimed that preprocessing real text data for analysis using machine
learning algorithms is always the longest stage and often amounts to around 80% of the
total processing time. Therefore, to transform the fake news dataset into a decision table,
we propose applying the statistical approach of natural language processing (NLP).

In the first step of NLP, the tokenization process is carried out, dividing a given text
into the smallest unit (e.g., a sequence of words, bytes, syllables, or characters) called a
token. The result is the creation of an n-gram model that is used to identify and analyze
attributes used in natural language modeling and processing [50]. In our research, we
used n-gram to define individual words from document titles, from which we additionally
rejected words appearing on the stop word list. An example of a stop words list is presented
in Figure 1.
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a, an,
about,
are, be, is, was, will,
as, how,
by, f or, o f , f rom,
in, on,at,
or, and,
the, that, these, this,
too,
what, when, where, who,

Figure 1. A sample list of rejected words, the so-called Stop Words.

The next step in NLP is to perform the normalization process using two methods:
stemming and lemmatization. The stemming method is used to extract the subject and the
endings of the words. Eventually, similar words are replaced by the same base word [51].
The method of lemmatization consists of reducing the word to its basic form [52]. The pur-
pose of the normalization process is to reduce the variability in the set of terms.

The final step in the NLP covered in this research is creating a word vector model
as a document representation. Our vector model is presented as a matrix (Figure 2),
where documents ( dok_1–dok_n) are presented in the form of feature vectors representing
particular attributes (at_1–at_n). In the model, we use a binary representation, where
each value from the {0,1} set determines whether the word appears in a given document.
In addition, the number of attributes is limited to the most common words in the title of
the document. On this basis, the fake news dataset was transformed into a decision table
consisting of the attributes of the most common words and a decision attribute (decision)
containing two classes (true or fake).

at_1 at_2 at_3 at_4 at_5 at_6 at_7 at_8 . . . at_n decision

dok_1 1 0 0 1 0 0 1 0 . . . 0 0

dok_2 1 0 1 0 0 0 0 0 . . . 0 0

dok_3 0 0 0 0 1 0 0 1 . . . 0 0

dok_4 0 0 0 1 0 0 0 0 . . . 1 1

dok_5 0 1 0 0 0 1 0 0 . . . 0 0

dok_6 0 0 1 0 1 0 0 0 . . . 0 0

dok_7 0 1 0 0 0 0 0 0 . . . 0 1

dok_8 0 0 0 0 0 1 0 0 . . . 0 0

dok_9 0 1 0 0 0 0 0 1 . . . 1 0

dok_10 0 0 0 1 0 0 0 0 . . . 0 0

dok_11 0 1 0 0 0 0 0 0 . . . 1 0

dok_12 0 0 0 0 0 0 0 0 . . . 0 0

dok_13 0 0 0 0 0 0 0 0 . . . 0 1

dok_14 0 0 0 0 0 0 0 0 . . . 1 0

dok_15 0 0 0 1 0 0 1 0 . . . 0 1

dok_16 0 0 0 1 0 0 1 0 . . . 0 0

dok_17 1 0 1 0 0 0 1 0 . . . 0 1

dok_18 0 0 0 1 0 0 0 0 . . . 1 0

dok_19 0 0 0 0 0 0 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dok_n 0 0 0 0 0 0 0 0 . . . 0 0

Figure 2. The sample matrix of words occurrence (selected as conditional attributes) in documents.
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The decision table structure consists of columns with conditional attributes and one
decision, whereas rows include all documents from the set. Conditional attributes are
words most often appearing in the text. The presence of specific words (in the decision table)
is strictly dependent on the analyzed dataset. For this reason, the number of attributes
is limited. Table 1 shows an example of the frequency of words (selected as conditional
attributes) in the titles of true and fake news.

Table 1. The example frequency of words (selected as conditional attributes).

Attribute Name True News Fake News

word_1 608 463

word_2 592 715

word_3 1036 78

word_4 1151 655

word_5 840 585

word_6 631 692

word_7 2193 47

word_8 572 1441

word_9 2520 666

word_10 1227 654

word_11 859 975

word_12 371 970

word_13 471 1167

word_14 577 821

word_15 920 269

word_16 8843 5538

word_17 8369 40

word_18 592 703

word_19 1975 36

word_20 2874 815

Real text datasets are challenging to analyze due to the large number of attributes [53]
that constitute single words for the fake news dataset. The distribution of attribute values
due to decision classes (fake and true) is presented in Figure 3.

For each attribute, there is one histogram (Figure 3) consisting of two columns, which
corresponds to the number of values for each attribute. The first column shows the number
of objects (article content) in which the selected word does not appear (as an attribute
value), while the second column shows the number of objects in which the selected word
appears at least once. These numbers are shown in the chart. Additionally, each column
shows the assignment of a word to the appropriate class: blue is the true class, and red is
the fake class.

By such a distribution of attributes due to decision classes (fake and true), it can be
seen that some words (such as word_3, word_7, word_17, word_19) do not appear at all in
the fake class—the right column is entirely blue. However, in the case of the first column,
the division into both classes is equal for almost all attributes.
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Figure 3. The distribution of attribute values due to decision classes for fake news data.

4.2. User Websites Navigation Data

Electronic commerce (e-commerce) has become popular as the Internet has grown,
with many websites offering online sales, and e-commerce activity is undergoing a signifi-
cant revolution. The major challenges in research are the collection, identification, and adop-
tion of data supplied by Internet services to provide actionable marketing intelligence.

The main difficulty in web usage mining is the procurement of the desired database,
as the only information we can collect from users visiting a website is through tracing the
pages they have accessed.

Data collected from log files must be processed before data mining techniques (based
on machine learning algorithms) can be used. Then, the personalization process is per-
formed in the six main steps generally used in the field:

1. Data collection: Collecting the data from the server or the user side.
2. Data filtering: Removing or correcting undesirable data such as the log information

obtained by crawlers.
3. User identification: Identification of user by IP address, cookies, and direct identifi-

cation.
4. Session identification: Tracking the activity of the same user.
5. Characteristics selection: Selecting characteristics that can be useful for user behavior

analysis.
6. User behavior analysis: Studying the behavior of different users for selecting dom-

inant ones (i.e., the characteristics that change significantly from one behavior to
another).

The main idea of analyzing the users’ behavior during user navigation was to limit
the users’ sessions to 10 actions. Each action corresponds to a one-page view by the users.
We chose the 10 actions limitation in the session because it was impossible to perform
a pertinent clustering using less than 10 actions for the user session; the cluster was not
significant enough, and differences between clusters were negligible.

Before the phase of navigation conditional attributes selection, the hierarchy of the
website was derived. An example division of the site is as follows: First, we separated
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thematic websites to create universes. Websites from each universe were about the same
topic. Then, we divided the entire site into seven different universes:

1. Store: the main universe (for example with products list),
2. Quick order: direct purchases by entering the catalog reference,
3. Shopping cart (purchase),
4. Sales,
5. Consulting: customers questions and FAQs,
6. Condition: Terms of sale and shipping, and
7. Various: all others, such as home pages.

The universe store was divided into three levels of hierarchy: section, subsection,
and subsubsection. Generally, the final product page corresponds to the subsubsection.

From this hierarchy, we selected conditional attributes that describe the user naviga-
tion of our commercial partner’s website. The attributes are presented in Table 2.

Table 2. Session attributes.

User ID Session ID

Day/Month/Year Hour of begin

Hour of end Purchase

Total amount No. products bought

No. references bought Discount code

New user Source of navigation

Total time Time universe (1–7)

No. total pages seen No. pages universe (1–7) seen

No. universes changes No. sections changes

No. subsect. changes No. subsubsect. changes

No. of section seen No. of subsection seen

No. product pages seen No. of same product seen

The presented attributes are described as follows:

• User ID describes the ID based on cookies, a unique ID for each user;
• Session ID describes the session ID during one day each session is considered as

closed after 30 min of inaction;
• Purchase is a binary value that shows if the user made a purchase during their action;
• Discount code is a boolean value describing the presence of a discount code during

the purchase;
• New user describes whether the user was recognized as a user who already made a

purchase on the site;
• Source of navigation describes whether the user is entered into our commercial

partner’s site voluntarily by using, for example, the search engine, or was pushed to
visit the site by a mail company;

• Total time describes the length of a session in seconds;
• Total universe (1–7) represents the seven different attributes that describe the time

that a visitor spends in each universe;
• Total no. of pages seen describes the number of all the pages visited by the user

during a session;
• No. pages universe (1–7) seen represents the seven different attributes that describe

the number of pages visited by a user in each universe;
• No. of universe, section, subsection, and subsubsection changes are the four fea-

tures that describe the number of changes the user makes during their navigation. If,
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for example, the user switches universe and then returns to the previous one, the value
of this attribute is equal to 2;

• No. of sections or subsections seen are the two attributes that describe the number
of different sections or subsections seen during the user session;

• No. of product pages seen describes the number of product pages seen in total;
• No. of same product seen describes the sum of product pages that have been seen

several times.

For the decision attribute, we chose the binary attribute purchase. Decisions classes
were “yes” and “no”. All the attributes were normalized.

The distribution of attribute values due to decision classes—purchase is presented
in the Figure 4. Two colors correspond to the decision classes: blue indicates sessions
not completed with the purchase, and red indicates the sections in which the purchase
was made.

Figure 4. The distribution of attribute values due to decision classes for user websites navigation data.

As we can see in the Figure 4, some attributes do not discriminate the decision
class. For example, the decision class distribution is identical for attributes such as
Day/Month/Year, Hour_o f _end, and Source_o f _navigation. On the other hand, attributes
such as Discount_code, Total_time, or New_user, clearly indicate the purchase class. Ac-
cording to the presented data distribution, we can determine that the user’s session
ending with purchase has the following attribute values: avg._no_o f _pages_viewed and
average_amount_o f _time_spent_on_navigation, the customer is not the first time on the
website, and he has a discount code, the customer does not spend a lot of time in the store
section, but frequently changes subpages in this category.

4.3. Real Estate Market Data

The real estate market has grown rapidly during the recent years [54]. As such, both
the volume of data and the number of processed details have increased. Investors are
looking for attractive properties from which profit can easily be earned. As customer habits
change, so do the features connected to a particular property that is essential for buyers.

The change in investor and end-consumer behavior has led to the inclusions of ad-
ditional details in advertisements of properties. Each advertisement is currently filled
with much additional information, some of it structured and some of it only provided
in descriptive text. The real estate market data used in this paper originated from actual
advertisements presented on multiple Polish market web pages. The details of the adverts
are often hidden inside the text describing a particular property. However, many details
are often presented in a structured form, allowing less sophisticated automatic scrapers to
gather the data. For some of the conditional attributes, it is still necessary to perform more
advanced processing. For instance, the_ f loor_number is usually provided as a number in
the vast majority of cases. However, there are some occasions where it is stated verbally
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as “ground floor” or “higher than the 10th floor”. Most of the advertising portals do not
provide a good enough validation of this data, which is why, during the data acquisition,
we had to construct more detailed methods to handle the special types of values and data.
A similar process had to be performed for geo-encoding the spatial data. In almost every
advertisement, the exact address of the property was not given; only the street name and
the city were described. Sometimes the street names had spelling errors, were not correctly
placed on a map, or used an old street name before the mandatory change of street names
in Poland that recently occurred [55].

Notably, the process of acquiring data from web pages is complicated. The dataset
used in the current study consists of the following conditional attributes:

• Build date is the year the property was built. This attribute needed extra preprocessing
steps, as some of the records provided a textual representation such as “the late 1980s”.
Therefore, the dates were given as is without any numerical processing.

• Total number of floors in a whole building. As mentioned before, more advanced
NLP methods were applied to clean up the data.

• Building material. As the materials change across the decades, a whole dictionary
of construction materials was created using both automatic methods and expert
knowledge. We also constructed a synonyms dictionary. The provided value was then
compared to the dictionaries and cleaned up. This is a categorical attribute.

• Floor number on which the particular property is situated.
• Area] of the property. Here, the vast majority of data were provided in square meters,

but some of the land properties provided this value in acres, which had to be converted
to an SI-derived unit of measure.

• Building type is a categorical attribute denoting the building type (e.g., semi-detached
building, loft, etc.). Here, we used similar preprocessing techniques to those used for
building material.

• Condition state describes the overall condition of a property. As this is highly sub-
jective, as there are virtually no norms that can standardize this attribute, we used a
two-fold approach. As a starting point, the value presented in the advertisement was
taken directly as-is. Next, this value was then compared to the dictionary of values
and corrected for spelling errors and synonyms. In a second step, the description
text was analyzed to find keywords that could decrease or increase the overall condi-
tion of a property. For instance, if the property was marked as “ready to move in”,
but the description mentioned that “painting needed” or “kitchen is not equipped
with stove”, the overall condition was decreased. Although this is considered a cate-
gorical attribute, current works involve introducing the order relation to items from
the condition dictionary. Additionally, we are working on an image classifier that will
automatically label the state of a property.

• Windows with which the property is equipped (wooden, PCV, etc.).
• Private ad is a dichotomous attribute discriminating if an advert was published by

a professional dealer or a private party. As research has shown, these two types are
constructed vastly differently. Most of the time, private advertisements have lower-
quality photographs, but the description is more accurate and meaningful than in
professional ads. The former often includes additional costs in the description (such
as a mandatory extra-paid parking space).

• Market type has two values: primary and aftermarket.
• Ownership type describes the legal ownership type of a given property.

The last attribute, being the decision one, denotes the price per square meter. As this
value can fluctuate widely, we transformed it using a simple discretization:

bucket = d price_per_sq_mt
1000 e. (8)

Because of the nature of scrapped data and the frequent necessity for repairing or
transforming the data (e.g., converting units of measurement between imperial and metri-
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cal), this data is rather difficult to analyze. Furthermore, many attributes, all interesting for
the end-user, make this processing even more complicated.

The distribution of attribute values in accordance with decision classes was created,
as shown in the Figure 5. Please note that due to many values in the decision class, there
was no visible distinction related to color for each class.

Figure 5. The distribution of attribute values due to decision classes for real estate market data.

Even though the data has been preprocessed extensively, some of the original values
with mistakes were left intact. This is the case for area attribute, where one of the flat’s
areas is set to 349,000 square meters. This is clearly seen in the distribution plot, where the
plot is heavily skewed. The same thing is happening with the build_date (a building has
a date set to 892,007; there are also some spelling errors with a date like 19,000 or 20,014
where an individual probably inserted an additional 0). Because the number of records
with such mistakes is relatively small (less than 0.02%), the authors included these outliers
in the dataset to determine their influence on the overall entropy and classification results.

It is clearly seen that most of the properties are situated below fourth floor, which is
expected, as it is far more easy to build such buildings in Poland compared to skyscrappers
due to legal reasons. The owners tend to over-estimate the quality of interior, therefore
the vast majority of apartments have the “ready to be moved” condition_state. Most of the
analyzed apartments also have modern PVC windows.

4.4. Sport Data

Sport is a valuable part of many people’s lives, understood both as physical activity
and in terms following individual teams or athletes. Football is the most popular sport
known, with the European leagues being some of the most famous in the world. Therefore,
the top leagues from Germany, Italy, and Spain were selected for our analysis.

Numerous studies based on both expert analysis and machine learning techniques
for predicting sports results can be found in the literature [56–59]. The most popular and
accessible are predictions of match results in the form of win/loss/draw; however, both
analyses and predictions may concern other elements such as the number of goals scored,
the exact score, or the number of yellow cards [56,60].

The dataset was created from the tabular data available on a website [61]. For complete
information, the data were extracted using the scraping method from two tables. The first
one contains data about the league table. The second one consists of information about
individual matches. The tables were then combined to obtain a full decision table that was
divided into sets for each country. The conditional attributes included in the decision tables
are presented below:
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• Season: The season in which the games were played: a nominal variable using data
for 10 consecutive seasons from 2011–2012 (“11/12”) to 2020–2021 (“20/21”).

• Round: The number of competition rounds. A quotient, integer variable ranging from
six to 34 for Germany, and to 38 for Spain and Italy. Based on conducted experiments
and the arguments indicated in the literature, the data for the first five rounds of each
of the seasons were excluded from the analysis [62].

• Team1: The name of the first team. Categorical variable taking different values 28 for
Germany 28, 34 for Italy 34, and 33 for Spain.

• Position T1: Position of Team1 in the competition table. A quotient, integer variable
ranging from 1 to 18 for Germany, and 20 for Spain and Italy.

• Match T1: Match played by Team1 up to the current round. A quotient, integer
variable ranging from six to 34 for Germany, and to 38 for Spain and Italy.

• Winnings T1: The number of matches won by Team1 up to the current round. A quo-
tient, integer variable ranging from six to 34 for Germany, and to 38 for Spain and Italy.

• Draws T1: The number of draws for Team1 up to the current round. A quotient,
integer variable ranging from six to 34 for Germany, and to 38 for Spain and Italy.

• Losses T1: The number of matches lost by Team1 up to the current round. A quotient,
integer variable with values ranging from six to 34 for Germany, and to 38 for Spain
and Italy.

• Goals scored T1: Goals scored by Team1 up to the current round. A quotient, integer
variable.

• Goals conceded T1: Goals conceded by Team1 up to the current round. A quotient,
integer variable.

• Goal difference T1: Difference between goals scored and lost by Team1. A quotient,
integer variable.

• Points T1: The number of points gained by Team1 up to the current round.
• Series T1: Series of results match for Team1. A nominal variable, consisting of

three symbols containing information about the results of the last three games played
by the team. In the first position, there is the last played game, where W is team wins,
R is a draw, P is team loss, and B indicates no data.

The same attributes are available for the second team as for the first team. The con-
ditional attributes for the second team were marked by “T2”. The last of the attributes is
the decision class (match_result), which can have three values: 1 indicates a win for team 1,
2 indicates a win for team 2, and X is a draw. Team 1 is the team playing the game on its
home field; team 2 is the team playing away.

The Figure 6 shows examples of distributions for the data of the German Bundesliga.
A significant part of the data is characterized by right-hand asymmetry, which is naturally
related to the domain specificity of the data. Representative examples of this fact are,
among others, Winnings_T1, Draws_T1, Goals_scored_T1, Goals_conceded_T1, Points_T1.
A team starts with a value of 0 for the number of games won/lost, goals scored/conceded
or the number of points. During the game, teams increase the values of these attributes,
or they remain unchanged. This behavior contributes to the right asymmetry in the data.
The distribution for Goal_di f f erence_T1 is much closer to the normal distribution. In the
decision class distribution, it can be seen that the most common values are related to
the home team win (color = red), then the visiting team wins (color = cyan) and draw
(color = blue). The last two classes have numbers much more similar to each other. The fol-
lowing rules are also observed for the “Team2” data and for other countries’ leagues.
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Figure 6. The distribution of attribute values due to decision classes for sport data.

4.5. Financial Data

From financial data, we can highlight two main groups of data. The first one is
related to the well-known Markowitz model (and its extensions) and the portfolio selection
problem, which is beyond the scope of this study. The second group is related to the price
and indicator data from various markets. In this group, the most popular data are obtained
from the financial markets (also known as forex market or foreign exchange market) and
concerns the currency pairs.

A single market indicator (or group of indicators used jointly) is used in trading
systems to generate buy signals. All indicator data were calculated according to market
indicator formulas, which can be divided into two separate groups. The first covers trend-
following indicators, which include the moving average (MA) market indicator. The MA
for time t and s periods, denoted MAs(t), is calculated as:

MAs(t) =
∑t−1

i=t−s pricei

s
, (9)

where pricei is the value of the corresponding instrument at time i. In the above context,
the period is the number of values considered when calculating the indicator. The second
group of indicators covers the oscillators, whose primary purpose is to indicate rising or
falling potential for the given currency pair. The indicator value is calculated using the
currency value and can include the closing, opening, minimum, or maximum currency
pair value from previous sessions (or any combination of the above). As an example,
the oscillator Relative Strength Index (RSI ) is calculated based on the last n periods in
time t as follows:

RSIs(t) = 100− 100

1− avggain
avgloss

, (10)

where avggain is the sum of gains over the past s periods and avgloss is the sum of losses
over the past p periods.

All mentioned, indicators are calculated based on the currency pair value, which was
included in the data. The decision (BUY or SELL) is based on the indicator value in time t
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and its relation to the indicator value at time t− 1. Therefore, the general rule for opening
the trade for indicators can be defined as follows:

condBuy = true if (inds(t− 1) < c) ∧ (inds(t) > c), (11)

where inds(t) is the value of indicator ind in the present reading t considering the last s
readings, t− 1 is the value in the previous reading, and c is the indicator level (different for
each indicator), which should be crossed, to observe the signal.

As shown, the crucial aspect related to generating the signal by the indicator is the
value difference between two successive readings. Thus, we decided to include this infor-
mation in our data in some limited way (in the case of the MA indicator). For the remaining
indicators, a discretization procedure was performed because, in the classification process
performed in the experimental section, only a limited number of indicator values was
accepted. The summary for each indicator is presented in Table 3.

Table 3. Discretization procedure for the market indicators. * in the rare cases, where indicator value
exceeds the border value (cases with the word “above” or “below”, the indicator value is set to the
border value).

Indicator Name Range * Discretization Step

Bulls 〈0 : 0.01〉 0.0005

Bulls 〈−0.01 : 0〉 0.0005

Bulls Above 0.1 0.005

Bulls Below −0.1 0.005

CCI 〈−200 : 200〉 20.0

DM 〈0 : 1〉 0.1

OSMA 〈0 : 0.01〉 0.0005

OSMA 〈−0.01 : 0〉 0.0005

OSMA Above 0.1 0.005

OSMA Below −0.1 0.005

RSI 〈0 : 100〉 10.0

Stoch 〈0 : 100〉 10.0

Each of our readings in data also included the decision taken as one of the following
values: STRONG BUY, BUY, WAIT, SELL, or STRONG SELL. Each set’s decision was
based on calculating the difference between the present instrument value and the value
observed after p readings. This schema is presented in Figure 7. In this study, we examined
p equal to 5.

Figure 7. Decision calculation method for the financial data.
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The distribution of attribute values in accordance to decision classes was created,
as shown in Figure 8. We selected an example data for the AUDUSD instrument; however,
a similar distribution of attribute values was noted for the remaining datasets. The blue
color on the chart denotes the number of objects for which the STRONG BUY class was
observed. Cyan color is related to the STRONG SELL class. Both classes cover the majority
of all objects in the data. The red color shows the objects belonging to the SELL class.
The two remaining classes are BUY and WAIT, respectively.

In general, we can divide the whole attribute set into three different categories.
The first one is related to the instrument price (which is Close on the chart) and two
indicators (the_moving_average) based on the price. For this category, we observe at-
tributes, for which there are several values with a reasonably high number of objects
assigned. The second category is related to the same indicators, where the difference be-
tween two successive readings was calculated. It gives us a distribution close to the normal
distribution, where the minor differences (close to the 0) have a high number of objects
assigned. Finally, the last category is related to the oscillator indicators like Bulls or OSMA,
for which once again the approximation of the normal distribution is observed. Also,
for these attributes, relative change between successive readings was included. The main
problem in this data is that the slight differences (the middle part of attributes number 4 to
11) are frequently observed in the data. At the same time, most information comes from
the relatively significant differences (tails of the distribution). Thus the most promising
attribute values are the least observed in the data.

Figure 8. The distribution of attribute values due to decision classes for financial data.

5. Numerical Experiments

In this section, we describe the experiments we performed on different real-world
datasets. For every set, the experiments consisted of four steps:

• calculation of the information for each conditional attribute (information attribute);
• classification of the obtained data;
• classification on the limited set of attributes (including the best 25% of the conditional

attributes selected based on the information attributes) as well as the classification on
the set of attributes selected by the correlation-based approach;
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• sensitivity analysis on the parameter related to the percent of attributes included in
the limited set of attributes.

We selected a group of well-known state-of-the-art algorithms for the classification:
decision tree, Random Forest, Bagging, and AdaBoost. Two measures were used to estimate
the quality of classification: the positive predictive value (PPV) and the true positive rate
(TPR). Additionally, the accuracy of the classification was measured.

5.1. Fake News Data

The fake news detection research was conducted on the ISOT Fake News Dataset pro-
vided by the University of Victoria, Canada [63]. This collection includes 44,898 documents,
of which 21,417 are real news cases and 23,481 are fake news. Each document in the set is
described with the following attributes:

• title,
• text,
• subject,
• date.

Additionally, to determine the decision class, the main file was divided into two
separate files:

• FAKE: documents that were detected and marked by Politifact.com as untrue sources;
• TRUE: real documents from Reuters.com, accessed on 31 August 2021.

In our fake news detection experiments, the dataset was limited to the title, and the
decision (true or fake news) attributes only. This restriction allowed us to quickly mark the
document based on the title without analyzing its content. In our previous research [64], we
showed that the fake news detection model analyzing the titles produces accurate results
and reduces the runtime of classification algorithms compared to the analysis of the entire
content of the document.

In the first step of the experiments, we calculated the entropy of the decision class
(see Equation (2)) and the information for each conditional attribute, which were the most
common words in the documents. Notably, the values of the decision table (frequency of
the occurrence of certain words) are strictly dependent on the documents that comprise
the set on which the algorithm was trained. For this reason, the number of attributes was
limited to 20. The results of this experiment are presented in Table 4. As can be seen, almost
all information values for individual attributes are close to the maximum entropy value
(1.0) and are in the range of 0.958–0.998. However, the last row in Table 4 shows the entropy
value for the entire dataset.

In general, it is difficult to determine the set of attributes that most impact the clas-
sification results. Only attribute word_17 has an advantage over other attributes because,
for attribute word_17, the value of the information is visibly lower and amounts to 0.83.
This means that after a single attribute—in this case, one word per document title—whether
the document’s full title is true or false cannot be determined. Moreover, the conditional
attributes are different for a different set of documents, which entails the possibility of
entirely different entropy values.

In the next step of the experiments, the values of the classification evaluation measures
were calculated using selected machine learning algorithms, which were derived for each
of two decision classes (true or fake news). Table 5 shows the results for the classification
of fake news data by decision class for all twenty attributes.

In the case of decision class FAKE, PPV values were in the range of 91.38–98.88%,
where the best result was obtained using a decision tree, where TPR values were in the
range 46.05–58.67%, and the best result was obtained with Bagging. However, in the case of
decision class TRUE, PPV values were in the range of 62.70–67.46% (Bagging was superior),
and TPR values were in the range of 94.65–99.43% and the best results were obtained by
the decision tree.

Reuters.com
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We also checked the influence of a limited number of attributes on the classification
results. For this purpose, 25% of the attributes with the lowest value information attribute
were selected (in this case, the top five attributes were selected). The obtained results are
presented in Table 6, where the values are similar to those in Table 5. This proves that
with a significantly limited number of attributes—in this case, up to 5 single words per
document—the classification results for the algorithms used are the same as for a full set of
conditional attributes.

The classification accuracy values for the entire set were calculated in terms of the
number of attributes (five or 20 attributes), and the results are presented in Table 7. As can
be seen, for the three algorithms, the accuracy was in the range of 74.17–75.49%, while for
the decision tree, the accuracy was slightly lower at 71.51%.

When detecting fake news by title only, the classification accuracy measure determined
how many documents were correctly classified. However, when using the PPV and TPR
measures, it was possible to assess how many documents in a given class were correctly
recalled and with what confidence (precision).

Table 4. Information attribute values for fake news data.

Attribute Name Value Count Information Attribute

word_1 2 0.998331

word_2 2 0.998048

word_3 2 0.983818

word_4 2 0.996864

word_5 2 0.998051

word_6 2 0.998287

word_7 2 0.957435

word_8 2 0.990542

word_9 2 0.981507

word_10 2 0.996318

word_11 2 0.998106

word_12 2 0.992925

word_13 2 0.992260

word_14 2 0.997342

word_15 2 0.993210

word_16 2 0.986877

word_17 2 0.803497

word_18 2 0.998101

word_19 2 0.961002

word_20 2 0.998470

Attribute Name Value Count Entropy

Decision 2 0.998473
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Table 5. Classification results for fake news data by decision class for full set of attributes [in %] (all
bold numbers correspond the best values obtained).

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

FAKE 98.88 46.05 93.95 54.87 91.38 58.67 92.10 56.88

TRUE 62.70 99.43 66.02 96.12 67.46 93.93 66.69 94.65

Table 6. Classification results for fake news data by decision class for limited set of attributes
(5 attributes selected) [in %] (all bold numbers correspond the best values obtained).

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

FAKE 98.88 46.05 93.68 54.04 93.67 54.28 93.67 54.28

TRUE 62.70 99.43 65.58 96.00 65.69 95.97 65.69 95.97

Table 7. Accuracy results for the classification over fake news data [in %].

Decision Tree Random Forest Bagging AdaBoost

Accuracy (20 attributes) 71.51 74.55 75.49 74.89

Accuracy (5 attributes) 71.51 74.56 74.17 74.17

5.2. User Websites Navigation Data

The vital part of preprocessing the data is converting the raw data into a set of
navigation attributes. During our research, we obtained the data of our commercial partner
for one entire year. This data was more than 85 GB in size. For our learning base, we
used a sample of data of one month. We chose the month of April due to avoid any
marketing actions. The database for one month represents more than one million sessions
with more than 10 actions performed. On account of the scale of the database, the treatment
is time-consuming. After performing the limitation, we obtained 211,639 user sessions.

For entropy and classification analyses, we eliminated significantly correlated at-
tributes such as total_amount. In the end, we obtained 31 attributes and one binary decision
attribute, purchase.

The dataset for user behavior analysis consists of 211,639 unique rows. Each entry
represents a unique user navigation session. First, the entropy value represents the entropy
of a decision class of individual conditional attributes. Second, the results are shown in
Table 8 along with the cardinality of the value set for each conditional attribute.

The entropy values for most attributes were near 0.5. For several attributes, the entropy
value was lower than 0.5. For few attributes, the entropy was less than 0.2. An explanation
may be the distribution of values for these attributes, which was strongly unbalanced.
In most cases, the value of an attribute was equal to zero, only occasionally taking different
values. Examples of these attributes are discount_code and new_user. When analyzing
other attributes, the values of entropy were similar, indicating that most attributes carried
an equivalent level of information. Intuitively, it seems that some attributes should be more
discriminatory, but the analysis of the results did not confirm this. There were no highly
biased attributes in the analyzed dataset.

Table 9 provides the classification results for the same dataset divided by each deci-
sion class value. The efficiency measures indicated relatively accurate results: PPV, TPR,
and accuracy values were in the range of 0.89–1. However, both PPV and TPR were better
for the decision class equal to “no”. The results for the decision tree, Random Forest,
and AdaBoost were similar. The results obtained using the Bagging algorithm were visibly
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worse than for the other algorithms. The PPV value for the class “yes” was around 0.5.
Again, the reason seems to be the uneven distribution of the values of the target class.

Table 8. Information attribute values for user websites navigation data.

Attribute Name Value Count Information Attribute

No. o f session 14 0.478533

No. total pages seen 65 0.465879

Hour o f begin 101 0.478267

Hour o f end 101 0.479259

Day/Month/Year 30 0.474476

Total time 77 0.402749

Discount code 2 0.173014

New customer 2 0.161386

Source o f navigation 3 0.479204

No. universes changes 87 0.364767

Time Universe quick order 64 0.347537

Time Universe store 74 0.445645

Time Universe shopping cart 61 0.214535

Time Universe sales 27 0.481156

Time Universe consulting 36 0.481021

Time Universe condition 48 0.481082

Time Universe various 74 0.323663

No. pages universe quick order 38 0.339926

No. pages universe store 65 0.432955

No. pages universe shopping cart 60 0.217707

No. pages universe sales 20 0.481144

No. pages universe consulting 7 0.481129

No. pages universe condition 7 0.481159

No. pages universe various 64 0.349787

No. subsections seen 16 0.439947

No. o f section changes 47 0.464543

No. product pages seen 64 0.478707

No. o f same product seen 42 0.468668

No. o f subsection seen 88 0.436594

No. subsection changes 78 0.471988

No. subsubsection changes 89 0.470698

Attribute Name Value Count Entropy

Purchase (Decision) 2 0.481233

Finally, we performed the limitation of the attributes used in classification. The lim-
itation was based on the analysis of the value of entropy for each attribute. We selected
the 25% most significant conditional attributes and performed the classification with a
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limited number of attributes. The classification results for user websites navigation data
by decision class values for 25% of the attributes with the lowest information attribute are
presented in Table 10.

The accuracy of the results for user websites navigation data is compared in Table 11.
The number of all attributes participating in the classification process was 31. After limiting
the set of attributes to seven, the results of the classifier efficiency increased, which may be
counterintuitive. Depending on the classifier used, the improvement in efficiency ranges
from 0% (DT) to 10% (Bagging). The presented analysis shows the importance of limiting
the attributes at the data preprocessing stage and of classification parameterization.

Table 9. Classification results for user websites navigation data by decision class values for full set of
attributes [in %].

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

Purchase = yes 99.91 89.50 99.92 87.44 49.46 92.55 89.15 91.49

Purchase = no 98.80 99.99 98.56 99.99 99.03 89.03 99.01 98.70

Table 10. Classification results for user websites navigation data by decision class values for limited
set of attributes (7 attributes selected) [in %].

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

Purchase = yes 99.92 89.50 99.92 89.50 96.70 92.42 98.83 90.61

Purchase = no 98.80 99.99 98.80 99.99 99.13 99.63 98.92 99.88

Table 11. Accuracy results for user websites navigation data [in %].

Decision Tree Random Forest Bagging AdaBoost

Accuracy (31 attributes) 98.90 98.69 89.40 97.96

Accuracy (7 attributes) 98.90 98.90 98.89 98.91

5.3. Real Estate Market Data

The goal of the real estate market data experiment presented in this paper was to find
which attributes are crucial and essential for AI model creation based on the presented
decision table. To achieve this, the values of the information attributes were computed.

The dataset consisted of 14,344 unique rows. There were 13 conditional attributes (de-
scribed earlier) and one decision (price bucket). In the first experiment, we computed the
entropy of a decision class and the information of individual conditional attributes. The re-
sults are shown in Table 12, along with the cardinality of the value set for each attribute.

Because the data were obtained from actual advertisements, the cardinality of a
decision class fell more or less in a normal distribution (Figure 9). The most frequent price
fell into the PLN 6000–7000 per square meter bucket. The far-right side of the histogram
plot shows the luxury properties that are part of the dataset. Remember that the property’s
region heavily influences the real estate market. A property located in the capital is far more
expensive than the same property in a less rich part of the country. The overall decision
entropy is relatively high, as the classification problem is rather difficult. Most of the
attributes maintain a similar entropy value, with a single exception being the property area.
Because of the cardinality of this attribute and the fact that the price of a property is usually
heavily correlated with the location, this is to be expected. However, the surprising finding
is that the value of entropy is also relatively high, which means that the price fluctuation
between a property with a similar area is also significant. We found no noticeable changes
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in information for attributes such as market_type or ownership_type, indicating that such
features have secondary importance for the selling price.

All attributes except the area obtained an information value close to the maximal
entropy for the whole dataset. That means that no single conditional attribute was enough
to predict the price bucket of a given property. Even the area conditional attribute, with a
visibly lower information value equal to 2.07, was insufficient to correctly predict the price
range. The price range agrees with intuition: a large but poorly located and unfurnished
ruin might be cheaper than a downtown loft.

Table 13 provides the classification results for the same dataset divided by each
decision class value. The Bagging algorithm produced the best results by far in nearly
every decision class, both in terms of PPV and TPR. When using the limited set of attributes
the following results were obtained (Table 14). Overall accuracy results were also superior
using the Bagging algorithm (Table 15). Further research is required to determine whether
a precise fine-tuning of hyper-parameters would increase the quality of results produced
by the other algorithms.

Table 12. Information attribute values for real estate market data.

Attribute Name Value Count Information Attribute

Build date 166 3.294200

Total number o f f loors 35 3.418894

Building material 6 3.529588

Floor number 14 3.536040

Area 3,698 2.071138

Building type 5 3.455887

Condition state 6 3.485657

Windows 3 3.542212

Private ad 2 3.576844

Market type 2 3.552212

Ownership type 2 3.572712

Attribute Name Value Count Entropy

Price bucket (decision) 16 3.579787

Figure 9. Histogram of cardinality of the decision set.
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Table 13. Classification results for real estate market data by decision class for full set of attributes [in
%] (all bold numbers correspond the best values obtained).

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

1 40.00 9.52 0.00 0.00 25.00 23.80 0.16 23.81

2 0.00 0.00 100.0 0.00 99.47 99.68 24.61 10.02

3 0.00 0.00 0.00 0.00 99.27 99.85 0.00 0.00

4 0.00 0.00 0.00 0.00 99.12 99.47 0.00 0.00

5 0.00 0.00 0.00 0.00 99.23 100.0 0.00 0.00

6 0.00 0.00 0.00 0.00 97.24 99.64 0.00 0.00

7 0.00 0.00 49.08 21.62 94.47 94.47 27.44 87.80

8 0.00 0.00 0.00 0.00 79.01 60.95 0.67 9.52

9 0.00 0.00 0.00 0.00 93.09 92.33 0.00 0.00

10 99.57 100.00 100.00 7.10 99.57 99.74 99.57 79.98

11 0.00 0.00 0.00 0.00 98.97 100.0 0.00 0.00

12 21.55 100.00 31.25 21.79 99.91 100.0 67.78 10.03

13 99.85 100.00 32.13 91.97 99.85 99.90 0.00 0.00

14 99.82 0.99 73.49 100.0 99.82 99.65 38.48 100.0

15 100.00 100.00 87.70 100.0 100.0 100.0 39.41 9.97

Table 14. Classification results for real estate market data by decision class for a limited set of
attributes (3 attributes selected) [in %]. (all bold numbers correspond the best values obtained).

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

1 0.00 0.00 0.00 0.00 27.78 23.81 0.16 23.81

2 0.00 0.00 56.27 15.61 99.58 99.79 24.61 10.02

3 0.00 0.00 0.00 0.00 99.14 100.00 0.00 0.00

4 0.00 0.00 0.00 0.00 98.79 99.82 0.00 0.00

5 0.00 0.00 0.00 0.00 99.24 100.00 0.00 0.00

6 0.00 0.00 0.00 0.00 96.91 99.64 0.00 0.00

7 0.00 0.00 0.00 0.00 89.01 90.89 27.44 87.80

8 0.00 0.00 0.00 0.00 60.38 30.48 0.67 9.52

9 0.00 0.00 0.00 0.00 89.37 91.53 0.00 0.00

10 99.57 100.00 98.91 15.57 99.57 99.66 99.57 79.98

11 0.00 0.00 0.00 0.00 98.79 99.82 0.00 0.00

12 21.56 100.00 39.43 30.61 99.92 99.92 67.78 10.03

13 99.85 100.00 30.61 99.95 99.85 99.74 0.00 0.00

14 99.74 100.00 94.89 100.00 99.74 99.82 38.49 100.00

15 100.00 100.00 98.98 100.00 100.00 100.00 39.55 10.03
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Table 15. Accuracy results for the classification over real estate data [in %].

Decision Tree Random Forest Bagging AdaBoost

Accuracy (15 attributes) 69.00 53.69 99.07 28.92

Accuracy (3 attributes) 69.00 56.71 98.71 28.92

5.4. Sport Data

Three datasets with 3362 unique rows for Spain, 2674 for Germany, and 3359 for
Italy were analyzed. There was a total of 26 conditional attributes with match_result as
a decision class. In the first stage, we calculated the entropy of a decision class and the
information attribute values. The results are shown in Table 16, along with the cardinality
of the value set for each attribute.

In all three analyzed datasets, the information attribute value was relatively small.
It was the lowest for Goal difference T1 and Goal difference T2, oscillating between 1.38 and
1.40. The highest information attribute value was recorded for Season. The next conditional
attributes with high values were Round and Matches T1 (T2). For the remaining measures,
the values of attributes were similar. Table 16 presents the entropy of the datasets, all of
which are similar (1.52–1.55).

Of the selected methods, random forest had the highest accuracy, followed by the Ad-
aBoost algorithm. The decision tree performed the worst in the classification. None of the
algorithms provided a significant advantage in terms of efficiency measures. A summary
of the results is presented in Table 17.

Tests were also conducted using fewer attributes (from 24 to 6; 25% of the set based on
the information attributes values). The results obtained are presented in Tables 18 and 19.
As can be observed, similar results were obtained with a limited list of attributes. For some
cases, the results obtained with a limited set of attributes were better. The best algorithms,
in this case, were AdaBoost and random forest, whereas Bagging worked poorly.

Table 16. Information attribute values for sport data.

Attribute Name Value Count Information Attribute

Germany

Season 10 1.535055

Round 30 1.514509

Team1 (Team2) 28 (28) 1.471725 (1.464826)

Position T1 (T2) 18 (18) 1.417129 (1.438857)

Matches T1 (T2) 30 (30) 1.514509 (1.514509)

Winnings T1 (T2) 30 (30) 1.461058 (1.469589)

Draws T1 (T2) 16 (16) 1.506093 (1.502721)

Losers T1 (T2) 24 (25) 1.473808 (1.468121)

Goals scored T1 (T2) 92 (94) 1.457664 (1.454900)

Goals conceded T1 (T2) 74 (77) 1.476410 (1.470156)

Goal di f f erence T1 (T2) 116 (117) 1.382856 (1.395159)

Points T1 (T2) 85 (86) 1.440930 (1.452137)

Series T1 (T2) 40 (40) 1.505347 (1.498025)

Match Result (Decision) 3 1.539089



Entropy 2021, 23, 1621 26 of 36

Table 16. Cont.

Attribute Name Value Count Entropy

Match Result (Decision) 3 1.545029

Italy

Season 10 1.538402

Round 34 1.531829

Team1 (Team2) 34 (34) 1.458934 (1.460329)

Position T1 (T2) 20 (20) 1.415896 (1.424320)

Matches T1 (T2) 34 (34) 1.531829 (1.531829)

Winnings T1 (T2) 33 (32) 1.468639 (1.475596)

Draws T1 (T2) 19 (19) 1.514713 (1.512888)

Losers T1 (T2) 29 (30) 1.469099 (1.465326)

Goals scored T1 (T2) 92 (91) 1.481346 (1.475606)

Goals conceded T1 (T2) 86 (86) 1.484403 (1.488688)

Goal di f f erence T1 (T2) 112 (110) 1.397699 (1.398332)

Points T1 (T2) 97 (97) 1.448064 (1.454139)

Series T1 (T2) 40 (40) 1.506473 (1.516376)

Attribute Name Value Count Entropy

Match Result (Decision) 3 1.545029

Spain

Season 10 1.519782

Round 34 1.514018

Team1 (Team2) 33 (33) 1.438616 (1.436341)
Position T1 (T2) 20 (20) 1.403615 (1.401159)

Matches T1 (T2) 34 (34) 1.514018 (1.514018)

Winnings T1 (T2) 32 (32) 1.451360 (1.455801)
Draws T1 (T2) 19 (19) 1.493165 (1.486429)

Losers T1 (T2) 27 (27) 1.462337 (1.453162)

Goals scored T1 (T2) 115 (111) 1.448292 (1.437169)

Goals conceded T1 (T2) 82 (81) 1.467792 (1.464831)

Goal di f f erence T1 (T2) 130 (132) 1.376633 (1.375712)

Points T1 (T2) 95 (94) 1.438554 (1.435251)

Series T1 (T2) 40 (40) 1.493445 (1.488321)

Attribute Name Value Count Entropy

Match Result (Decision) 3 1.523545
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Table 17. Classification results for sport data by decision class for full set of attributes [in %] (all bold
numbers correspond the best values obtained).

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

Germany

1 53.66 85.51 53.96 88.01 56.94 70.36 58.71 68.44

2 55.74 48.34 58.74 51.66 51.92 49.94 55.05 50.92

X 38.18 3.18 0.00 0.00 33.09 20.45 38.31 30.30

Italy

1 54.45 87.44 54.57 89.79 60.39 70.85 58.90 69.58

2 56.56 52.63 59.12 53.13 52.04 55.81 50.17 57.10

X 45.16 1.62 100.00 0.46 34.40 21.21 39.87 20.97

Spain

1 55.78 88.11 55.57 90.12 59.72 69.23 60.34 69.79

2 52.00 46.88 54.85 44.87 49.55 46.98 50.73 40.53

X 0.00 0.00 58.33 0.85 30.29 22.83 31.73 29.47

Table 18. Accuracy results for the classification over sport data [in %].

Decision Tree Random Forest Bagging AdaBoost

Germany 53.89 55.24 51.83 53.70
Accuracy 24 attributes

Germany 53.31 54.84 49.01 55.78
Accuracy 6 attributes

Italy 54.96 55.85 53.59 53.35
Accuracy 24 attributes

Italy 54.47 54.85 50.09 53.54
Accuracy 6 attributes

Spain 54.82 55.41 51.55 51.64
Accuracy 24 attributes

Spain 55.01 55.49 51.74 55.31
Accuracy 6 attributes

The results (Table 17) show a problem with the prediction of class X (draw), which is
best exemplified by the complete lack of prediction results by the Random Forest algorithm
for data from Germany and Spain; for the remaining cases, this class had poor results.
The unbalanced values in the decision class may be the reason for this finding. Note that a
draw between teams seldom occurs.

The classification accuracy for the three sets and all selected algorithms oscillated
between 51.55% and 55.85%, being higher than the random approach (for the three decision
classes = 33.33%). The Random Forest algorithm achieved the highest classification accuracy
on the Italy dataset and the lowest was achieved by Bagging on the Spain dataset. The exact
results are presented in Table 18.
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Table 19. Classification results for sport data by decision class values for for limited set of attributes
(6 attributes selected) [in %] (all bold numbers correspond the best values obtained).

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

Germany

1 53.43 84.93 54.28 86.59 56.06 65.86 57.08 80.27

2 54.53 48.83 56.27 52.40 49.08 49.20 54.77 60.76

X 22.22 1.21 0.00 0.00 26.62 18.06 40.24 5.01

Italy

1 54.47 86.83 53.73 89.05 58.12 67.61 55.92 80.31

2 55.76 54.32 57.96 51.34 49.85 50.94 52.44 55.51

X 2.00 0.12 0.00 0.00 27.26 18.89 28.39 5.10

Spain

1 55.98 87.78 55.88 89.48 60.12 71.28 58.03 85.14

2 52.24 48.15 54.28 46.98 49.23 47.62 51.08 50.26

X 0.00 0.00 0.00 0.00 27.84 18.96 31.68 3.86

5.5. Financial Data Results

We used daily forex data in this study, which means that every new value was
obtained at the beginning of the daily market session. We selected four different currency
pairs as separate datasets: AUDUSD, EURUSD, GBPUSD, and NZDUSD, each containing
2865 readings. In addition, we used six different oscillator indicators: the Bulls indicator
(Bulls), Commodity Channel Index (CCI), DeMarker indicator (DM), Oscillator of Moving
Average (OSMA), Relative Strength Index (RSI), and the stochastic_oscillator. Additionally,
the moving average (MA) indicator, calculated for 14 (MA14) and 50 (MA50) past readings,
were included. For the results, we used the MA indicator and MA to denote the absolute
difference between two successive readings for the indicator. It provided us with an overall
number for 10 attributes.

In Table 20, we present the entropy of the decision class along with the information
attributes values for the four different datasets. Firstly, there are no visible differences
between the entropy values for the different datasets. However, a significant difference
exists in the case of trend-following indicators (the first four attributes related to the MA
indicator). This is obvious for MA14 and MA50. However, these attributes were not
preprocessed and were used as was. Small entropy values suggest the strong predictive
power of these indicators; however, their practical usability is lower due to a large number
of different attribute values (in comparison to other oscillator indicators such as RSI).

In the case of oscillators, information attribute values were held on the same level
instead, and it would not be easy to identify the best (in the sense of information) indicators.
However, it is easy to find many examples of articles confirming that indicators’ predictive
capabilities are similar.

Table 21 presents the results of classification based on the PPV and TPR measures
for the complete set of attributes available in the dataset. The decision class values were
highly unbalanced, and for some cases, values such as BUY or SELL did not occur even
once. For other cases (such as in the case of the GBPUSD dataset), the results were poor
quality because we observed the STRONG BUY or STRONG SELL decision for most cases.
However, in general, the AdaBoost algorithm for these rare cases with buying or selling
values was slightly better than the Bagging algorithm. For the remaining cases, all four
algorithms achieved similar results oscillating between 30% and 40%. Lower results for
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some cases (such as the STRONG BUY for the EURUSD dataset) could be related to the
market situation and overall advantage of the bearish trend.

Table 20. Information attribute values for the financial data (all bold numbers correspond the best values obtained).

Attribute Name
AUDUSD EURUSD GBPUSD NZDUSD

Value Inf. Value Inf. Value Inf. Value Inf.
Count Attribute Count Attribute Count Attribute Count Attribute

SMA14 2714 0.077183 2717 0.078407 2749 0.050490 2665 0.098638

SMA50 2686 0.087042 2673 0.094808 2734 0.057822 2653 0.119658

SMA14′ 689 1.380616 767 1.258658 853 1.103368 623 1.417858

SMA50′ 440 1.612055 497 1.467387 510 1.355281 389 1.652498

Bulls 341 1.747386 336 1.654923 296 1.584065 290 1.800077

CCI 78 1.936437 76 1.852890 80 1.752818 80 1.964629

DM 10 2.008175 11 1.928776 10 1.807938 9 2.035717

OSMA 154 1.899572 166 1.812773 214 1.653933 131 1.939371

RSI 5 2.014515 5 1.931348 6 1.812072 5 2.039597

Stoch 10 2.008801 11 1.928170 12 1.807163 11 2.034959

Attribute Name Value Entropy Value Entropy Value Entropy Value EntropyCount Count Count Count

Decision 5 2.321928 5 1.935982 5 1.815961 5 2.044563

Table 21. Classification results for the financial data by decision class for full set of attributes [in %].

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

AUDUSD

BUY 4.05 1.53 - - 1.52 2.55 - -

SELL - - - - 1.99 3.23 6.25 0.46

STRONG BUY 35.55 34.77 33.22 49.91 31.03 30.81 33.15 37.32

STRONG SELL 35.08 53.50 30.57 32.15 26.75 21.89 35.76 49.59

WAIT - - - - 1.29 0.93 5.88 0.47

EURUSD

BUY - - - - 1.83 2.30 2.22 0.57

SELL - - - - 1.44 1.62 - -

STRONG BUY 33.01 20.79 29.45 19.65 35.46 38.43 34.06 35.28

STRONG SELL 38.06 66.58 37.71 65.08 36.43 34.42 35.80 44.44

WAIT - - - - 1.49 0.61 4.76 0.61

GBPUSD

BUY - - - - 2.27 0.88 - -

SELL - - - - 1.56 2.05 - -

STRONG BUY 42.92 84.02 46.09 65.25 42.82 48.61 43.09 51.39

STRONG SELL 44.44 16.84 47.45 43.72 41.20 40.00 44.17 49.72

WAIT - - - - 2.22 0.67 - -
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Table 21. Cont.

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

NZDUSD

BUY - - - - 5.95 4.81 12.82 2.40

SELL - - - - 5.21 4.80 7.27 1.75

STRONG BUY 40.20 85.76 39.35 83.06 37.41 45.94 40.11 62.01

STRONG SELL 39.63 13.94 39.29 16.25 33.80 31.02 38.48 35.00

WAIT - - - - 5.81 2.50 - -

Next, we performed the classification once again on the limited set of attributes.
The results are presented in Table 22. For both measures (PPV and TPR), the quality of
classification slightly worsened. However, the results improved for some rare cases (for
example, EURUSD and GBPUSD and the TPR measure). This was achieved despite consid-
erably reducing the number of conditional attributes included in the classification process.

Table 22. Classification results for the financial data by the decision class values for 25% of attributes
with the lowest information attribute (in %).

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

AUDUSD

BUY 2.74 1.02 4.44 1.02 2.33 3.06 2.33 0.51

SELL - - - - 2.95 4.61 - -

STRONG BUY 33.43 29.69 32.32 36.56 33.85 34.45 36.80 44.23

STRONG SELL 34.89 56.49 31.99 44.60 29.72 23.89 32.94 43.60

WAIT - - - - 4.85 5.12 - -

EURUSD

BUY - - - - 2.97 3.45 - -

SELL - - - - 3.91 5.41 - -

STRONG BUY 32.11 21.50 34.14 28.23 38.10 38.20 30.41 24.21

STRONG SELL 39.37 67.34 37.81 59.23 41.24 38.76 36.59 58.48

WAIT - - - - 3.73 3.05 - -

GBPUSD

BUY - - - - 2.70 2.65 16.67 0.88

SELL - - - - 2.11 3.42 - -

STRONG BUY 41.28 37.05 44.40 54.92 42.92 42.95 42.87 48.77

STRONG SELL 42.52 60.73 43.32 47.53 42.21 41.05 44.39 52.55

WAIT - - - - - - - -
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Table 22. Cont.

Decision Tree Random Forest Bagging AdaBoost

Decision Class PPV TPR PPV TPR PPV TPR PPV TPR

NZDUSD

BUY 3.51 0.96 - - 1.27 1.44 - -

SELL - - - - 6.46 8.30 27.27 1.31

STRONG BUY 39.61 84.97 38.87 82.60 37.45 38.72 40.69 70.28

STRONG SELL 39.13 11.63 42.26 16.90 29.32 27.89 39.56 30.10

WAIT - - - - 2.50 1.50 5.13 1.00

Eventually, we analyzed the classical accuracy measure for two cases: with the full set
of conditional attributes along with the limited set. These results are presented in Table 23.
Surprisingly, the results do not indicate that the full set of attributes allows obtaining
the highest accuracy values. These results are ambiguous; for some cases, (AUDUSD or
EURUSD with the Bagging algorithm), accuracy was higher using the limited number
of attributes.

These observations were also confirmed for the remaining sets. Thus, it can be
assumed that some core sets of attributes can allow obtaining a relatively accurate clas-
sification. However, dependencies between these attributes are more sophisticated than
simple linear correlations.

Table 23. Accuracy results for the classification over the financial data [in %].

Decision Tree Random Forest Bagging AdaBoost

AUDUSD 34.45 32.15 21.12 33.93

AUDUSD 2 atr. 33.55 31.70 23.78 34.32

EURUSD 36.13 35.04 30.02 32.74

EURUSD 2 atr. 36.73 36.03 32.19 34.11

GBPUSD 43.04 46.63 38.12 43.32

GBPUSD 2 atr. 41.97 43.89 36.28 43.47

NZDUSD 39.55 39.34 30.99 38.32

NZDUSD 2 atr. 38.41 39.39 26.89 39.63

5.6. Attributes Selection and the Sensitivity Analysis

To test and evaluate our results based on the attributes selection (based on the en-
tropy values), we used the well-known correlation-based feature selection (CFS) method
implemented in the WEKA system [65]. As a result, a subset of attributes, including the
essential elements, were selected—comparison of a number of attributes obtained by our
method and the WEKA system can be found in Table 24. As it can be noted, for most
cases, the number of attributes in our approach is smaller than the number of attributes
selected by the CFS method. For example, only the User Websites Navigation Data at-
tribute selection is shown five instead of seven (out of 31 possible) attributes. In the case of
the financial data, the number of attributes was the same for both methods. In contrast,
for the remaining datasets, our proposed method allowed us to use a smaller number of
attributes—extreme cases related to Real Estate Market Data indicated nine instead of three
(out of 31) attributes.
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Table 24. Number of attributes after selection.

CFS Proposed Approach Original

Fake News Data 8 5 20

User Websites Navigation Data 5 7 31

Real-Estate Market Data 9 3 15

Sport Data (Germany) 8 6 24

Financial Data (GBPUSD) 2 2 11

A smaller number of attributes resulting from the use of our method does not affect
the overall quality of classification. The results of classification after the selection are
presented in Table 25 (names of datasets were written as an acronym). The table shows
the difference in classification based on the attribute set calculated using the CFS method
and our proposed approach. As can be observed, despite the smaller number of attributes
indicated by the proposed method, the classification quality is similar—mostly does not
exceed 0.3%. Only for the Random Forest method used for the Real Estate Market Data,
an overall improvement close to 1% is observed—it is the case, where the number of
attributes selected by the CFS method was equal to nine (instead of three in our proposed
method). Similarly for the Sport Data, where there is improvement around 1%. While for
the Financial Data, the highest differences (favoring our proposed method) were observed.
In the case of the Random Forest and Bagging algorithms, the attributes selection worsens
the results for over 2%. For the Financial Data for both cases, the classification was
performed based on two attributes.

Table 25. Accuracy results for the classification over the data after selection [in %].

Data Decision Tree Random Forest Bagging AdaBoost

FN 71.51 74.24 74.25 74.27
Change: — −0.32 +0.08 +0.10

UWN 98.90 98.90 98.60 98.81
Change: — — −0.29 −0.10

R-EM 69.00 57.67 98.93 28.92
Change: — +0.96 +0.22 —

SD 53.87 55.67 50.39 55.89
Change: +0.56 +0.83 +1.38 +0.10

FD 42.44 41.55 33.52 43.51
Change: +0.47 −2.34 −2.76 +0.04

In the case of the proposed method, we used the threshold of 25% of attributes
included in the classification. It was shown to evaluate if the small subset of attributes
allows maintaining the relatively high classification quality. Attributes were selected as
the most important from the point of view of the entropy measure. This threshold was
set experimentally, and it was based on several different indicators. Going below the 25%
could limit the subset of attributes to two or even a single value in the case of analyzed
data. At the same time, in the case of many attributes, it was possible to observe the
visible decrease of classification quality. An example chart for the Sport Data (Germany)
is presented in Figure 10, where the quality of classification (the Y-axis) is presented
depending on the number of attributes (the X-axis). The vertical line points out the 25% of
attributes used in the article.
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Figure 10. Classification accuracy depending on the number of attributes.

6. Conclusions and Future Works

In this study, we investigated the possibilities of using the entropy measure to select
the best set of conditional attributes to be used in a classification problem. The general idea
of the entropy, related works, and the problem background was introduced in the first part
of the article. We also selected real-world data covering different fields. These data were
retrieved and described with the use of domain knowledge experts. Finally, preprocessing
was applied to all datasets, which were transformed into decision tables.

The datasets differed in their complexity, number of objects, number of conditional
attributes, and the number of decision classes. Our goal was to calculate the entropy of
decision classes and the information attribute values. Furthermore, we performed the
classification with a set of well-known state-of-the-art algorithms. To estimate the quality
of classification, we used the recall, precision, and accuracy measures. After the initial
results, we selected the 25% best attributes (attributes with the best information attribute
values) and performed the classification on the limited number of attributes.

For most of the cases, the algorithms obtained similar results. However, there were
some examples, such as the real estate dataset, in which the Random Forest produced
better results using only the limited attribute set. The Bagging algorithm showed slightly
lower classification accuracy. The nature of the Random Forest algorithm, as the name
implies, conducts each run providing similar but different results. The hyperparameters of
Random Forest are the most prone to fine-tuning, but optimizing the parameter of each
used algorithm for each used dataset was beyond the scope of this study. Notably, the value
of real estate cannot be classified only using the significance of attributes but also must
consider emotions and non-technical factors. For instance, we were unable to quantize the
“cool” factor of a given property.

For the remaining datasets, the results were not uniform. It was difficult to identify the
attributes with the best information attributes value. Differences in these values amongst
the attributes in the single dataset were often negligible. However, eventually, we were
able to select a subset of attributes with which the classification procedure was performed
once again. Surprisingly, the limited set of attributes often allowed obtaining similar
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classification results. Unfortunately, it was impossible to capture the complex, nonlinear
relations amongst the conditional attributes within the single dataset.

In the case of classification, we used the classical algorithms considered as a state-of-art
approach. However, the multicriteria efficiency measure based on different entropy types
could give much more useful information. This can be the case, especially for complex
datasets without uniform structure (like Big Data). At the same time, we only investigated
entropy in its basic form. An interesting approach could be related to introducing different
entropy measures or even deriving estimates based on other entropy types.

In this article, we obtained some advantages over classical methods; however, the
obtained results are not uniform. Therefore, our future goal could be related to extending
the number of analyzed sets and emphasizing the quantitative results rather than focusing
on the description of every single piece of data used in the experiments.
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