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Abstract: We consider a retrospective change-point detection problem for multidimensional time
series of arbitrary nature (in particular, panel data). Change-points are the moments at which the
changes in generating mechanism occur. Our method is based on the new theory of ε-complexity of
individual continuous vector functions and is model-free. We present simulation results confirming
the effectiveness of the method.

Keywords: ε-complexity; change-point detection; model-free segmentation

1. Introduction

In retrospective studies, all observations are collected a priori. A retrospective analysis
of multivariate time series begins by checking their homogeneity. We call data homo-
geneous if the same mechanism generates them. When the homogeneity assumption is
violated (i.e., the data generation mechanism changes during their collection), we must
perform segmentation of the data into homogeneous increments. In cases of stochastic data
generating mechanism, the segmentation problem is well-known as the “change-point
detection” problem in the retrospective setting. A vast amount of literature is devoted to
the change-point detection for stochastic processes in both “off-line” and “on-line” formu-
lation, see e.g., [1–3].) In this case, the change-points are the moments of changes in their
probabilistic characteristics.

Segmentation problems arise in econometrics and financial mathematics. In these
areas, the change-points are called structural breaks. In the last 20 years, detecting structural
breaks in the so-called panel data has attracted the attention of many researchers. Panel
data is data that contains observations about different cross-sections across time. Groups
that may make up panel data series include countries, firms, individuals, or demographic
groups. The primary difference between panel data models and time series models is that
panel data models allow for heterogeneity across groups and introduce individual-specific
effects. Panel data are usually high-dimensional (have hundreds of components). In the
literature, there are many interesting publications on such problems (see e.g., [4–7]). In
such studies, only the stochastic models were used to model panel data.

However, in many applications, the data are more complex and cannot always be
modeled as stochastic processes. There is a large class of complex systems that, being
deterministic, exhibit stochastic behavior. Such systems are called chaotic. The existing
mathematical theory of chaotic systems (see, for example, [8]) suggests that they should
be described by an unchanging equation of evolution. Meanwhile, in real chaotic systems,
changes in parameters can occur, resulting in conditions in which the system can pass
from one regime to another. This is how the multifractality phenomenon can arise, which is
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currently receiving much attention in the literature (see, for example, [9]). It follows that
the problem of checking homogeneity and segmentation is no less critical for the analysis
of chaotic systems.

These considerations lead to a broader interpretation of the term “change-point” (or
“moments of disorder”). Namely, we mean by this term the moment of change in the generating
mechanism of a multidimensional time series, regardless of what its nature is.

All currently known methods for solving problems on the change-point detection of
stochastic processes in one way or another rely on their models (i.e., on the knowledge about
the model that generates data). However, information about data generation mechanisms
is not always available. A typical example here is the EEG signal, which, according to most
experts, is one of the most demanding physical processes to study, and there is no generally
accepted model of such a process. The situation is similar in this sense in applications
to financial series, some biological problems, etc., where there are no firmly established
models of the observed processes. The situation with chaotic systems seems to be even
more complicated in this respect. Thus, in many applications, a vicious circle situation arises:
for adequate data segmentation, it is required to know the model of this data, and the
model can be built only after data segmentation into “homogeneous” fragments.

In this paper, we propose a model-free method for retrospective detection of multiple
change-points in multidimensional time series. This method is based on the theory of the
ε-complexity of continuous vector-functions. The theory of the ε-complexity of continuous
functions was developed in our recent works [10,11]. It enables us to develop a model-
free method for detection of change-points (i.e., in our terminology, moments of change
in the generating mechanism) for multivariate time series of arbitrary nature (stochastic,
deterministic, or mixed). We demonstrate the effectiveness of the method with the help
of simulations. In our simulations, we consider examples of multivariate time series,
which are generated by a multidimensional stochastic process with dependent components
(vector autoregressive model); multidimensional chaotic deterministic processes, with some
dependent components; and the mixed process, which has some stochastic components
and some chaotic deterministic components.

The proposed method is a modification of the method published in [12]. In that paper,
we presented the method for retrospective detection of change-points in a time series of
small dimensions (6 independent components of a vector series). The main differences
between this article and [12] are as follows:

(a) Here, we rely on more exact definitions and formulations of the theory of ε-complexity
(which did not lead to a change in the basic relations), given in [11]. (The general idea of
ε-complexity was created about 8 years ago. This idea was quickly implemented in computer
algorithms and successfully used to solve problems of disorder detection and classification.
However, as is often the case with new ideas, rigorous mathematical formulations took more
time. The definitions and results of the theory are given in [11] and, in this paper, we rely on
the improved definitions and theory.)

(b) We made a change in the algorithm for calculating the complexity coefficients (see
Section 2 below), which made it possible to detect changes in mean value and variance.

(c) For simulations of stochastic components, we used a general multidimensional linear
model of high dimension (50 components of the vector series, interconnected by linear
relations) and investigated the possibility of detecting changes in the matrices of this
model and the mean value of the vector series.

(d) We investigated the effectiveness of our method in the case when abrupt changes did
not occur in all components of the time series.

The paper is organized as follows: in Section 2, we present the basic concepts and
results of the theory of ε-complexity at a meaningful level, referring the reader to the exact
formulations in [11]. Section 3 describes the method of retrospective detection of changes
in the mean value, variance, and parameters of chaotic processes in multidimensional
time series of an arbitrary nature. Section 4 shows the results of the simulations. Section 5
provides conclusions.
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2. Brief Description of the Results of the Theory of ε-Complexity

In this section, we present the results of the theory of the ε-complexity of continuous
vector functions at the meaningful level. Mathematically rigorous definitions and results
are given in [11].

Let a continuous vector function x(·) = (x1(·), . . . , xm(·)) be defined on a finite
time interval. Denote Ri = maxt |xi(t)|, i ∈ I = (1, . . . , m) and we will assume
that R = mini∈I Ri > 0.

Without loss of generality, we assume that vector function x(·) is defined on [0, 1].
Consider a uniform grid on [0, 1] with some step 1 > h > 0. We call an arbitrary Borel
function that transfers a finite set of discrete vector function values (i.e., m-dimensional
vectors, the number of which is determined by the value h) into some bounded vector
function on [0, 1] the method of recovery (approximation) of a continuous vector function (a
uniform metric is introduced in the space of bounded vector functions).

Let us fix an arbitrary countable set of Borel vector functions with values in the space
of bounded vector functions depending, respectively, on 1, 2, 3, . . . arguments. We call a list
the union of these countable sets. The list contains a countable set of recovery methods for
all h > 0.

Let us fix some list F of recovery methods. Throughout what follows, the symbol
F denotes an arbitrary nonempty subset of F containing some collection of Borel vector
functions from 1, 2, 3, . . . . . . arguments.

The sets F (and, accordingly, the lists F for F = F) are admissible if they con-
tain methods of approximation by piecewise constant (stepwise) vector functions and
power polynomials.

The recovery methods are “physically realizable” if they can be represented as com-
puter programs. Such recovery methods contain a finite set of bounded piecewise continu-
ous vector functions of a finite number of variables with values in the space of bounded
vector functions. Note that any finite set of “physically realizable” recovery methods is
included in some admissible list.

We set
δFi (h) = inf

x̂i,h(·)∈F
sup

t∈[0,1]
|x̂i,h(t)− xi(t)|, i = 1, 2 . . . m.

Here, the symbol x̂i,h(·) ∈ F denotes the estimates of the i-th component of the vector
function x(·) by its finite set of values with step h obtained by methods of the family F . In
the case when F = F, all functions included in F are used for evaluation.

Lemma 1 (Density lemma). Let F be an arbitrary fixed admissible list. The set of continuous
vector functions that cannot be precisely reconstructed from a finite number of functions’ values by
the methods from the list F is everywhere dense in the space of all continuous vector functions.

Vector functions that cannot be exactly reconstructed by methods of an arbitrary nonempty
admissible subset F ⊆ F we call F -nontrivial.

Let F be a fixed admissible list and F ⊆ F be an arbitrary nonempty admissible subset.
Let x(t) be F -nontrivial vector function. For sufficiently small ε > 0, put

h∗i (ε,F ) =
{

inf{h ≤ 1 : δFi (h)
Ri

> ε}, if xi(·) isF − nontrivial
1, in opposite case

Set

h∗x(ε,F ) =
m

∏
i=1

h∗i (ε,F )

Definition 1. The (ε,F )-complexity of a continuous vector function x(·) is the value Sx(ε,F ) =
− log h∗x(ε,F ).
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If a vector function is not F -nontrivial (i.e., it can be reconstructed exactly from a finite
number of its values), then we assume that its (ε,F )-complexity is zero (see definition
above). Thus, the Density Lemma implies that “almost all” continuous vector functions
have nonzero (ε,F )-complexity for any F ⊆ F for an arbitrary fixed admissible list F.

Note that h∗i (ε,F ) > 0 for ε > 0 and limε→0 h∗i (ε,F ) = 0 if xi is F -nontrivial. On
the other hand, limh→0 maxi δFi (h) = 0. Therefore, for any (sufficiently small) ε > 0, there
exists η(ε) > 0, η(ε)→ 0 for ε→ 0 such that maxi δFi (h∗x(·)) ≤ η(ε).

Considering that 1/h∗x(ε,F ) is an estimate of the number of values of a vector function,
we obtain that the (ε,F )-complexity is (logarithm) of the number of its values that are
required for its reconstruction by methods of the family F with a relative error of at
most R−1η(ε). In other words, we can say that this is the the shortest description of the
vector function by these methods with a given precision. In this sense, our definition is
consistent with the main idea of A.N. Kolmogorov that the complexity of an object should
be measured by the length of its shortest description.

In most modern applications, a researcher deals with time series given by a discrete
set of their values on a uniform grid. Assuming that such a collection of values is the
restriction of a continuous vector function on some uniform grid, we can extend the theory of
ε-complexity to this case.

Let the number 0 < S < 1 be chosen. Let us discard some part of the initial n
values of the vector function so that after discarding [Sn], values will retain (discarding
the sample points should be done in such a way that the remaining sample points are
approximately evenly spaced). Thus, S is the fraction (of the total n) of sample points that
remain after discarding.

Denote by εi(n,F , S) def
= εi(·) minimal (by all methods of the collection F ) recovery

error for the i-th components of the vector function x(·) (now it is a multidimensional
vector time series) by the remaining [Sn] time points. The recovery error can be measured
in any finite dimensional standard norm.

We set

log ρ = ∑
i

(
log

εi
Ri

+ log εi

)
(1)

Let us present the main result of the theory of ε-complexity for the case when a
continuous vector function is given by its restriction on a fixed uniform grid.

For any Hölder vector function from an everywhere dense set, given by its restriction on a
fixed uniform grid, the following relation holds

log ρ ≈ A(n) + B(n) log S. (2)

The richer set of approximation methods F , and the greater the number of function values n
on a fixed time interval, the more accurate the recovery is. (In our paper [13], relation (2) was given
for the case when the sum in relationship (1) contained only the first term. However, the general
theory of ε-complexity implies that the addition of the second term in (1) does not fundamentally
change relation (2). The need to introduce the second term in (1) is caused by the desire to capture
changes in the mean and the variance. Without this term, such changes may not be detected using the
complexity coefficients).

The coefficients A(n), B(n) in (2) will be called the ε-complexity coefficients. The com-
plexity coefficients have nothing to do with the time series generation mechanism (i.e., the
model that generates them). Therefore, any method that utilizes these coefficients will be
automatically model-free. The method for detecting change-points in a multidimensional time
series of an arbitrary nature, described below, is based on the ε-complexity coefficients.

3. Method for Detection of Changes in Generating Mechanism in Multidimensional
Time Series of Arbitrary Nature

The main idea of our methodology for retrospective detection of change-points in
multidimensional time series of arbitrary nature is as follows.
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Let X = {x(t)}N
t=1 be a time series with unknown moments of change in the generation

mechanism (MCGM) ti, i = 2, . . . , k (such moments may not be present). We emphasize
that the mechanisms for generating the series are unknown and can be stochastic, deterministic,
or mixed.

Segments of the series [ti, ti+1], t1 = 1, tk+1 = N, which are generated by the same
mechanism, we call homogeneous and assume that the homogeneity segments are sufficiently
long.

As shown in Section 2, the ε-complexity of a segment is determined by the parameters
R = (A, B). Notice that in relationship (2), A and B depend on n; further, the windows size
n will be fixed, and therefore, A(n) = A and B(n) = B.

Let us choose a window of size n (it is assumed that n� min
i
(ti+1 − ti)) and for each

segment of the series x(t), t ∈ [jn + 1, (j + 1)n], j = 0, 1 . . . , [N/n], we will calculate the
complexity coefficients R(j + 1). As a result, we obtain a new diagnostic vector sequence
{R(j)}j=[N/n]

j=1 .
The key idea of the proposed method is the following hypothesis: on the i -th homogene-

ity segment [ti, ti+1] of the time series X for ti ≤ t, (t + n) < ti+1 (and for corresponding
intervals of the diagnostic sequence), the complexity coefficients satisfy the relation

R(j) = Ri + ξ i(j),

where ξ i(j) is a random vector sequence with zero mathematical expectation.
Note that when the moving window crosses any moment of the MCGM (if our

hypothesis is true), the mathematical expectation of the sequence R changes according
to some transient process from one constant to another. However, since, by assumption,
the window size is significantly less than the length of any homogeneity segment, such a
transient will not significantly affect the estimates of the MCGM.

Thus, if the given hypothesis is valid, the problem of time series segmentation is
reduced to the change-point detection problem with the change in the mean values in the
diagnostic vector sequence R(j).

To detect change-points in diagnostic sequences, we use a 3-step procedure (intro-
duced in [2]) based on the family of statistics

Y(s, δ) =
(
(N− s)s/N2

)δ
(

s−1
s

∑
k=1

z(k)− (N− s)−1
N
∑

k=n+1
z(k)

)
,

where 0 ≤ δ ≤ 1, 1 ≤ s ≤ N− 1,N = [N/n], Z = {z(k)}Nk=1—implementation of the
components of the diagnostic sequence R(j).

The first version of this family of statistics was proposed in [14]; a short description of
the 3-step detection procedure can be found in [13].

It can be shown (see [2] for details) that under broad assumptions about random
sequences {ξ i(j)}, the statistic leads to asymptotically (for N → ∞) minimax estimates for
the moment of change in the generation mechanism.

So, our method for detecting MCGM in a multidimensional time series is as follows:

1. Choose the size of the disjoint intervals or sliding window for the considered time series.
2. Calculate complexity coefficients for each window. For this purpose, the parameter S

in (2) is assigned different values S1, . . . , Sk; for each value of Sj, j = 1, . . . k, the value
log ρj is determined (in this case, averaging over all possible locations of the row
counts remaining after discarding) and then using the set of pairs (log ρj, log Sj), the
complexity coefficients A, B for the window under consideration are calculated using
the standard least squares method. The scheme of these calculations is described
in detail in [12]. It is necessary to take into account the replacement of the error
appearing there by the value ρ from (1).

3. The above 3-step change-point detection procedure is applied to each component of
the sequence of complexity coefficients.
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4. We combine detected change-points from both components of the complexity coeffi-
cients sequence. As a result, we obtain the estimates of MCGM.

4. Simulations

In this section, we present our simulations, which demonstrate the performance of
our method.

4.1. Stochastic and Deterministic Processes Used in the Simulations

Lets us first describe the processes that we employed in our simulation study.
The stochastic process we utilize here is vector autoregressive process of order p (de-

noted by VAR(p)). It is given as follows.

xt = µ + Θ1xt−1 + · · ·+ Θpxt−p + ut, t = 0,±1,±2, . . . , (3)

where xt, ut, and µ are (K× 1) vectors and Θi are (K× K) matrices for each i = 1, . . . , p. In
addition, the error term ut is a white noise random vector such that E(ut) = 0, E(utu′t) = Σu,
and E(utu′s) = 0 for s 6= t, where Σu is a (K × K) positive definite matrix. Such model
is often used to simulate panel data and investigate structural breaks in panel data, see
e.g., [15]. This model can be rewritten in a compact form (see e.g., [16]),

Xt = µ + ΘXt−1 + Ut, t = 0, 1, 2, . . . (4)

where Xt = [x
′
t, x

′
t−1, . . . x

′
t−p+1]

′, µ = [µ′, 0, . . . , 0]′, Ut = [u
′
t, 0

′
, . . . 0

′
]′ are (Kp × 1)

vectors and

Θ =


Θ1 Θ2 · · · Θp−1 Θp
Ik 0 · · · 0 0
0 Ik · · · 0 0
...

. . .
...

...
0 0 · · · Ik 0

 (5)

is a (Kp×Kp) matrix. The model (5) is stable if and only if |λmax(Θ)| < 1, where |λmax(Θ)|
denotes the largest absolute value of the eigenvalues of the matrix Θ.

Using this model, we simulate multivariate time series with dependent components.
Our segments of multivariate time series have either different variance covariance matrices
Σu1 and Σu2 or different lag matrices Θ1 and Θ2. The mean values of the components of
our processes change too. In our simulations, we report spectral norms of the matrices Σui ,
Θi, i = 1, 2.

Let us remind that the spectral norm of a matrix D is the largest singular value of
the matrix D, i.e., the square root of the largest eigenvalue of the matrix D∗D, where D∗

denotes the conjugate transpose of D:

‖D‖2 =
√

λmax(D∗D)

(see e.g., [17]).
We also consider chaotic deterministic processes in discrete time. The change in

generating mechanisms in some of these processes will correspond to the change in the
parameters. In another case, we concatenate different chaotic processes, where changes are
the points of the concatenation.

All processes that we consider are as follows: xt = f (xt−1) , t = 1, 2 . . . . The functions
f (x) are described below.

We consider the following maps.

1. The logistic map

f (x) = αx(1− x) x0 ∈ (0, 1) (6)
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The parameter for this process is α. In our simulations, we use 3.85 ≤ α ≤ 4. It is
well known (see [18]) that under these parameter values, the corresponding processes
exhibit chaotic behavior.

2. The quadratic map, see e.g., [19]

f (x) = c− x2, 0 < c ≤ 2, x0 ∈ (0, 1). (7)

3. Process 3
f (x) = 1− |1− 2x|, x0 ∈ (0, 1) (8)

4. The Interval map, see e.g., [20]

f (x) = 2x(mod 1), x0 ∈ (0, 1). (9)

Let us notice that the process 3 given by function (8) and the Interval map given by
function (9) does not have parameters that can be changed.

We also consider two-dimensional maps of the following form zt = f (zt−1), where

zt =

(
xt
yt

)
.

5. The Hénon Map, see [21]

f (z) =
(

1− ax2 + y
bx

)
(10)

6. The Ikeda map, see [22]

f (z) =
(

1 + µ(x cos φ(x, y)− y sin φ(x, y)
µ(x sin φ(x, y) + y cos φ(x, y))

)
(11)

Here, φ(x, y) = 0.4− 6
1+x2+y2

4.2. Results of Simulations

In each example, we simulate multidimensional time series. We take into account the
fact that in chosen processes, stationary probability distributions are established sufficiently
fast. Here, we discard the beginning of the simulated process before such stabilization. We
will concatenate three or four homogeneous multidimensional time series. The length of
each homogeneous component will be 5000. In some examples, we will change the coeffi-
cients in the models. In other examples, we will link different deterministic processes. After
concatenation, we will separate each multidimensional time series into non-overlapping
segments of length 100. For each segment, the ε-complexity coefficients will be calculated.
As a result, we generate two-dimensional diagnostic sequences. For each component of
a diagnostic sequence, we will apply the 3-step nonparametric change-point detection
procedure of Brodsky and Darkhovsky. If we observe a change in at least one component
of the diagnostic sequence, we will assume that the change occurred. To ensure the stability
of the results, we perform 1000 replications of each numerical experiment.

Example 1. Stochastic process, VAR(1).

In this example, we consider the VAR(1) process. We choose K = 50; as a result, we
have 50 dimensional multivariate time series with dependent components. We simulated
5 different segments of length 5000, concatenated them, and obtained the time series of
length 25,000 with four change-points (or MCGM). We performed 1000 replications of
the experiment.

The description of the segments is provided in Table 1. The first column lists the
type of matrices that define the model. The 2nd, 3rd, 4th, and 5th columns correspond
to the specification for each segment. In the first row, one can see which model matrices
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are the same and which are different for corresponding segments. In the second row, we
provided the corresponding norms of the model matrices. In the third row, one can see
which variance–covariance matrices are the same and which are different for corresponding
segments. In the fourth row, we provided corresponding norms for variance–covariance
matrices. The first MCGM corresponds to the change in the mean in half of the components.
The second disorder corresponds to the change in model matrix Θ. The third MCGM
corresponds to the change in variance–covariance matrix U. The fourth disorder is the
change in the mean for all components.

Table 1. Example 1. Description of the segments in simulations.

Segm 1 Segm 2 Segm 3 Segm 4 Segm 5

Mean µ1:50 = 0 µ1:25 = 2, µ26:50 = 0, µ1:50 = 0 µ1:50 = 0 µ1:50 = 1.5

Model Matrix Θ1 Θ1 Θ2 Θ2 Θ2
Norms of Θ 0.13 0.13 0.09 0.09 0.09

Variance–covariance U1 U1 U1 U2 U2
Norms of U 44.2 44.2 44.2 52.6 52.6

Figure 1 shows an example of the simulated process from Example 1. The Left plot
shows all 50 components of the process. In this realization, each homogeneous segment
(the one with the same generating mechanism) has a length of 500 points. The right plot
shows only ten components. It allows us to see better the behavior of the process.

Example 1. VAR(1), K=50

500 1000 1500 2000 2500

1

2

3

4

5

6

7

8

9

10

Figure 1. Example 1. Realization of the VAR(1) process. Left: All 50 components. Right: selected
10 components.

Figure 2 shows the examples of the diagnostic sequences A (Left plot) and B (Right
plot) and detected change-points. Black solid lines correspond to the diagnostic sequences,
horizontal blue lines correspond to the mean values between the detected change-points.
The jump points correspond to the detected change-points. The vertical red lines corre-
spond to the true change-points.

The numerical results are presented in Tables 2 and 3. The percentage of the number
of detected points for diagnostic sequences of coefficients A and B are presented in Table 2.
Let us notice that the coefficient B was not useful for detecting change-points in this
example. The percentages of correctly found numbers of each of the four change-points
(true positive rate) and corresponding bootstrap confidence intervals are presented in
Table 3. To compare the new method with the old method, we present in Table 4 the
percentages of correctly found numbers of each of the four change-points (true positive
rate) and corresponding bootstrap confidence intervals for our old method.
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0 0.5 1 1.5 2 2.5

104

-360

-350

-340

-330

-320

-310

-300

-290

A

Example 1. VAR(1), K=50, Coeff A

0 0.5 1 1.5 2 2.5

104

-70

-65

-60

-55

-50

-45

B

Example 1. VAR(1), K=50, Coeff B

Figure 2. Example 1. Diagnostic sequences and detected MCGM. Left: Coefficient A; Right: Coeffi-
cient B. Black solid lines correspond to the diagnostic sequences; horizontal blue lines correspond
to the mean values between the detected MCGM. The jump points correspond to the detected
change-points. The vertical red lines correspond to the true change-points.

Table 2. Example 1. The percentage of the number of detected change-points for diagnostic sequences
of coefficients A and B.

] of Detected Points Coeff A(t) Coeff B(t)

1 0% 32.3%

2 0% 65.9%

3 1% 1.6%

4 74.5% 0.2%

5 20% 0%

7 0.8% 0%

Table 3. Example 1. The percentages of correctly found numbers of each of the four change-points
(true positive rate) and corresponding bootstrap confidence intervals using the proposed method.

Change-Point True Positive Rate, Coeff A CI, Coeff A True Positive Rate, Coeff B CI, Coeff B

1 96.6% (4800, 5200) 0.1% N/A

2 98.9% (9800, 10,176) 26.1% (9100, 10,900)

3 95.5% (14,500, 15,300) 12.7 (14,100, 15,733)

4 78.3 % (19,900, 20,100) 0 N/A

Table 4. Example 1. The percentages of correctly found numbers of each of the four change-points
(true positive rate) and corresponding bootstrap confidence intervals using the old method.

Change-Point True Positive Rate, Coeff A CI, Coeff A True Positive Rate, Coeff B CI, Coeff B

1 1.6% (4100, 5800) 2.3% (4100,5700)

2 99.8% (9900, 10,200) 89.9% (9600, 10,750)

3 5.8% (14,200, 15,900) 3.0 (14,125, 15,875)

4 56.4 (19,300, 20,700) 37.5 (19,300, 20,700)

In the first change-points, the change occurred in 50% of the components, and the size
of the shift was approximately 0.77σ = 2. Here, σ is the maximal standard deviation of
the components. If we reduce the number of components or decrease the size of the shift,
our accuracy will decrease. For the last change-point, we decrease the size of the change
in the mean but have a change in the mean of all components. In this case, the shift was
approximately 0.75σ.



Entropy 2021, 23, 1626 10 of 16

To measure differences between the matrices and variance–covariance matrices for which
we were able to detect changes, we report spectral norms ‖Θ1 −Θ2‖2 and ‖Σu1 − Σu2‖2
and ratios ‖Θ1 − Θ2‖2/(0.5‖Θ1‖2 + 0.5‖Θ2‖2), ‖Σu1 − Σu2‖2/(0.5‖Σu1‖2 + 0.5‖Σu2‖2).
Thus, for the second change-point, when the change occurred in the model matrix, ‖Θ1 −
Θ2‖2 = 0.053 and ‖Θ1 − Θ2‖2/(0.5‖Θ1‖2 + 0.5‖Θ2‖2) = 0.49. For the third change-
point, where change occurred in variance–covariance matrix, ‖Σu1 − Σu2‖2 = 12.64 and
‖Σu1 − Σu2‖2/(0.5‖Σu1‖2 + 0.5‖Σu2‖2) = 0.25.

As one can see from Tables 3 and 4, we detected the first and third change-points with
the proposed method, and the old approach did not detect them. In the case of the fourth
change-point, the old method detected 56% of simulations while the proposed method
detected 78.3% of simulations.

Example 2. Chaotic deterministic processes.

In this example, we created a seven-dimensional series with chaotic components. The
processes and parameters for each process are presented in Table 5. In the first column,
we gave the index of the component. In the second column, we presented the name of
the process. In parentheses, we provided the reference to the equations that generate the
process. For components 1–6 in columns 3, 4, and 5 (with titles Segment 1, Segment 2,
Segment 3), we provided parameters of the processes used to generate corresponding
segments. For component 7, the processes do not have parameters, and we provide the
reference to the generating equation and its name. We generated segment 4 the same way
as segment 3, but we added a shift of size 0.5 of the standard deviation of the components
of segment 3.

Table 5. Example 2. Processes and changes in the parameters.

Component Process Segment 1 Segment 2 Segment 3

1 Logistic map, (6) α = 3.94 α = 4 α3 = 3.89

2 Hénon Map, x (10) a1 = 1.5 a2 = 1.3 a3 = 1.4
b1 = 0.2 b2 = 0.2 b3 = 0.2

3 Hénon Map, y (10)

4 Ikeda map, x (11) µ1 = 0.9 µ2 = 0.87 µ3 = 0.9
c1 = 1.97 c2 = 1.99 c3 = 1.97

5 Ikeda map, y (11)

6 Quadratic map (7) c1 = 2 c2 = 1.87 c3 = 1.95

7 Process 3 (8) Interval map (9) Interval map (9)

One can see that the first change in generating mechanism occurred in all components.
The second change occurred in the parameters of the first six components. The third change
in generating mechanism is due to the shift.

Figure 3 shows an example of the simulated process from Example 2. In this realization,
each homogeneous segment has length 500 points.

Figure 4 shows the examples of the diagnostic sequences A (Left plot) and B (Right
plot) and detected change-points for Example 2. Black solid lines correspond to the
diagnostic sequences; horizontal blue lines correspond to the mean values between the
detected change-points. The jump points correspond to the detected change-points. The
vertical red lines correspond to the actual change-points.
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Example 2. Chaotic processes
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Figure 3. Example 2. Realization of the chaotic multidimensional process.
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Example 2. Chaotic processes, Coeff A
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Figure 4. Example 2. Diagnostic sequences and detected MCGM. Left: Coefficient A; Right: Coeffi-
cient B. Black solid lines correspond to the diagnostic sequences; horizontal blue lines correspond to
the mean values between the detected change-points. The jump points correspond to the detected
change-points. The vertical red lines correspond to the true change-points.

The numerical results are presented in Tables 6 and 7. The percentage of the number
of detected points for diagnostic sequences of coefficients A and B are presented in Table 6.
The percentages of correctly found numbers of each of the three change-points (true positive
rate) and corresponding bootstrap confidence intervals are presented in Table 7. The results
for the old method are presented in Table 8. Let us notice that the coefficient B was more
efficient for detecting changes in generating mechanism when one chaotic process changes
by another one. In this case, we do have change in the Hölder constant and, therefore,
coefficient B detection works best. Let us notice that the second MCGM was detected only
in 75% of cases by coefficient B. In this case, it was no change for one of the components.

We observe that the first two points can be detected using coefficient B. It agrees with
our hypothesis that for such processes, the Hölder constant changes. The shift cannot be
detected using coefficient B. In terms of coefficient B, our proposed method and our old
method detect a similar proportion of first and second change-points. However, we could
not detect a change in the mean of the multivariate process using the old method (see,
Table 8). The new method detected this change in 95.3% of the simulations.

Example 3. Mixed process.

In this example, we combine processes from the first examples and parametric pro-
cesses from the second example. As a result, we obtained a multidimensional time series
that has stochastic and deterministic components. In this example, we simulated 20 com-
ponents of the multivariate stochastic process and eight components of deterministic
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processes. We simulated five homogeneous segments of length 5000. The total length is
25,000. There are four MCGMs.

Table 6. Example 2. The percentage of the number of detected change-points for diagnostic sequences
of coefficients A and B.

] of Detected Points Coeff A(t) Coeff B(t)

1 16% 0%

2 13.7% 99.5%

3 52% 0.5%

4 15.2% 0%

5 1.4% 0%

6 0.3% 0%

7 0.1% 0%

Table 7. Example 2. The percentages of correctly found numbers of each of the three change-points
(true positive rate) and corresponding bootstrap confidence intervals, proposed method.

Change-Point True Positive A CI, Coeff A True Positive B CI, Coeff B

1 66.9% (4900, 5000) 98.1% (4900, 5000)

2 69.4% (9700, 10,700) 75.1% (10,000, 10,100)

3 95.3 % (14,800, 15,800) 0.2% N/A

Table 8. Example 2. The percentages of correctly found numbers of each of the three change-points
(true positive rate) and corresponding bootstrap confidence intervals using the old method.

Change-Point True Positive A CI, Coeff A True Positive B CI, Coeff B

1 1.1% (51,000, 5900) 98.8% (4900, 5000)

2 5.8% (9400, 10,100) 74.9% (10,000, 10,100)

3 0 % N/A 0.6% N/A

The processes and parameters for each process are presented in Table 9.
In the first column, we present the index of the component. In the second column, we

provide the name of the process. In parentheses, we provide the reference to the equations
that generate the process. The first 20 components are trajectories of the VAR(1) model.
In Table 9, one can see which matrices are the same and which are different for different
segments. For components 21–28 in columns 3, 4, 5, and 6 (with titles Segment 1, Segment
2, Segment 3, Segment 4), we provide parameters of the processes we used to generate
corresponding segments. We generated segment four in the same way as segment three,
but for each component. We added shifts of size 0.3 of the standard deviation of the
components for segment 4.

The first change in generating mechanism occurred only in the deterministic compo-
nents. The second change occurred in model matrix Θ of the VAR(1) process. The third
MCGM corresponds to the change in variance–covariance matrix of the VAR(1) process and
one component of deterministic process. The fourth change is the change in the mean value
for all components. Here, we keep parameters of each component as it is in segment 4 but
added the shift 0.3 of standard deviation for segment 4 of the corresponding components.

Figure 5 shows an example of the simulated process from Example 3. The Left plot
shows all 27 components of the process. In this realization, each homogeneous segment has
a length of 500 points. The right plot shows only ten components (five are stochastic and five
are deterministic) of the given process, which allows us to see the process’ behavior better.
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Table 9. Example 3. Processes and changes in the parameters.

Component Process Segm 1 Segm 2 Segm 3 Segm 4

1–20 VAR(1) Θ1, U1 Θ1, U1 Θ2, U1 Θ2, U2
norms Θ 0.16 0.02 0.02 0.16
norms U 8.6 8.6 8.6 12.7

21 Logistic map, (6) α = 4 α = 3.98 α3 = 3.97 α4 = 3.98

22 Hénon Map, x (10) a1 = 1.5 a2 = 1.3 a3 = 1.4 a4 = 1.4
b1 = 0.2 b2 = 0.2 b3 = 0.2 b4 = 0.2

23 Hénon Map, y (10)

24 Hénon Map, x (10) a1 = 1.5 a2 = 1.2 a3 = 1.2 a4 = 1.4
b1 = 0.18 b2 = 0.2 b3 = 0.2 b4 = 0.2

25 Hénon Map, y (10)

26 Ikeda map, x (11) µ1 = 0.9 µ2 = 0.86 µ3 = 0.86 µ4 = 0.86
c1 = 1.97 c2 = 1.995 c3 = 1.995 c4 = 1.995

27 Ikeda map, y (11)

28 Quadratic map (7) c1 = 2 c2 = 1.9 c3 = 1.9 c4 = 1.97

Example 3. Stochastic and Chaotic processes.
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Figure 5. Example 3. Realization of the mixed process (some components are stochastic and some
are deterministic). Left: All components. Right: selected 10 components.

Figure 6 shows the examples of the diagnostic sequences A (Left plot) and B (Right
plot) and detected change-points for Example 3. Black solid lines correspond to the
diagnostic sequences; horizontal blue lines correspond to the mean values between the
detected change-points. The jump points correspond to the detected change-points. The
vertical red lines correspond to the actual change-points.

The numerical results are presented in Tables 10 and 11. The percentage of the number
of detected points for diagnostic sequences of coefficients A and B in 1000 replications
are presented in Table 10. The percentages of correctly found numbers of each of the four
change-points (true positive rate) and corresponding bootstrap confidence intervals are
presented in Table 11. The results for the old method are presented in Table 12.

In this example, the diagnostic sequence of coefficient A works better for this example.
Let us also observe that the second change in generating mechanism (change in the param-
eter α of the Logistic map and parameter a of the Hénon map) is better detected by the old
method (see, Table 12). For other MCGMs, the new method works better.
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Figure 6. Example 3. Diagnostic sequences and detected MCGM. Left: Coefficient A; Right: Coeffi-
cient B. Black solid lines correspond to the diagnostic sequences; horizontal blue lines correspond to
the mean values between the detected change-points. The jump points correspond to the detected
change-points. The vertical red lines correspond to the true change-points.

Table 10. Example 3. The percentage of the number of detected change-points for diagnostic
sequences of coefficients A and B.

] of Detected Points Coeff A(t) Coeff B(t)

1 7.3% 25.1%

2 13.6% 51%

3 60% 19.2%

4 11.6% 3.6%

5 4.6% 0.9%

6 2.2% 0.2%

7 0.7% 0%

Table 11. Example 3. The percentages of correctly found numbers of each of the four change-points
(true positive rate) and corresponding bootstrap confidence intervals using the proposed method.

Change-Point True Positive A CI, Coeff A True PositiveB CI, Coeff B

1 98.8.9% (4700, 5400) 79.1.1% (4300, 5770)

2 71.0% (9600, 10,600) 51.5% (9100, 10,700)

3 81.2% (14,400, 15,300) 0.4% (14,100, 15,900)

4 82.5% (20,000, 20,100) 0.6% N/A

Table 12. Example 3. The percentages of correctly found numbers of each of the four change-points
(true positive rate) and corresponding bootstrap confidence intervals using the old method.

Change-Point True Positive A CI, Coeff A True PositiveB CI, Coeff B

1 1.9% (4200, 5900) 79.2.9% (4200, 5800)

2 99.6.0% (9900, 10200) 88.7.5% (9600, 10,700)

3 5.4.2% (14,100, 15,820) 3.5% (14,300, 15,900)

4 58.5.5% (19,200, 20,700) 45.5.6% (19,200, 20,800)

5. Conclusions

In this paper, we proposed the model-free method for retrospective detection of
moments of changes in generating mechanisms of multivariate time series. The detection
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of moments of changes in the generating mechanism is important for the subsequent
analysis of the collected data. It allows one to carry out segmentation of the data on
homogeneous fragments.

In econometrics, the moments of changes in the generation mechanism of multidimen-
sional data are called structural breaks. The problem of detection of changes in chaotic
processes arises in the study of the phenomenon of multifractality.

However, often, the mechanism for generating a time series is either known inaccu-
rately or entirely unknown. Typical examples here are multidimensional EGG signals,
financial time series, some biological data, etc. Thus, it is essential to develop methods for
detecting the moments of changes in the generation mechanism of time series that do not
use models.

We proposed the method for the detection of changes regardless of the generating
mechanisms of arbitrary nature. This method is an extension of our approach proposed
in [12]. The given simulation results demonstrate the effectiveness of the new version of
our method.

In our simulation study, we considered three examples. In the first example, we
simulated the VAR(1) process with four change-points. The first one corresponds to the
change of the mean values of 50% of the component. The change was approximately
0.77σ = 2, where σ is the maximal standard deviation of the components. In case of change
in the mean of all components, we detected a change of 0.77σ = 2. The new method was
able to catch them while our previous method did not detect this change. The new method
detected the change in the variance–covariance matrix U but the old approach did not.
Both methods were able to detect the change in the model matrix Θ. To measure differences
between the matrices and variance–covariance matrices for which we were able to detect
changes, we provided the following spectral norms ‖Θ1 −Θ2‖2 and ‖Σu1 − Σu2‖2 and
ratios ‖Θ1 −Θ2‖2/(0.5‖Θ1‖2 + 0.5‖Θ2‖2), ‖Σu1 − Σu2‖2/(0.5‖Σu1‖2 + 0.5‖Σu2‖2).

In the second example, we detected changes in multivariate chaotic deterministic
processes with some dependent components. In this case, we were able to detect a shift
0.5σi, where σi is the standard deviation of the i-th component. We observed that old and
new methods detected changes in the parameters of the chaotic deterministic processes
with similar accuracy; however, only the new approach enabled us to detect changes in the
mean of multivariate chaotic deterministic processes.

In the last example, we considered the process with stochastic and chaotic components.
We observed that the new method was superior to detecting changes in the VAR(1) process
and a change in the mean value of the process.

The limitation of our method is that it requires a relatively long sequence of multivari-
ate time series. To calculate the complexity coefficient, we need at least 100 data points. To
ensure that the limiting distribution for statistics from our 3-step algorithm will start to
work, the diagnostic sequence for each homogeneous increment should be several dozen.
In our examples, we used non-overlapping windows. Note that when a non-overlapping
window intersects any MCGM, the mathematical expectation of the sequence of complexity
coefficient varies according to a certain transient process from one constant to another.
However, when the window size is much less than the length of any homogeneity interval,
such a transient process does not significantly affect the estimates of MCGM.

A fundamental feature of the proposed method is its independence from the model of
the observed process. As far as we know, model-free methods for solving such problems
have not been considered in the literature. The independence from the process model is
achieved by utilizing our theory of the ε-complexity of continuous vector functions, which
is consistent with the general idea of A.N. Kolmogorov on how it is expedient to evaluate
the complexity of an object.
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