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Abstract: Optical coherence tomography (OCT) images coupled with many learning techniques have
been developed to diagnose retinal disorders. This work aims to develop a novel framework for
extracting deep features from 18 pre-trained convolutional neural networks (CNN) and to attain high
performance using OCT images. In this work, we have developed a new framework for automated
detection of retinal disorders using transfer learning. This model consists of three phases: deep fused
and multilevel feature extraction, using 18 pre-trained networks and tent maximal pooling, feature
selection with ReliefF, and classification using the optimized classifier. The novelty of this proposed
framework is the feature generation using widely used CNNs and to select the most suitable features
for classification. The extracted features using our proposed intelligent feature extractor are fed to
iterative ReliefF (IRF) to automatically select the best feature vector. The quadratic support vector
machine (QSVM) is utilized as a classifier in this work. We have developed our model using two
public OCT image datasets, and they are named database 1 (DB1) and database 2 (DB2). The proposed
framework can attain 97.40% and 100% classification accuracies using the two OCT datasets, DB1
and DB2, respectively. These results illustrate the success of our model.

Keywords: OCT image classification; diabetic macular edema (DME); hybrid deep feature generation;
iterative feature selection; digital image processing

1. Introduction

Optical coherence tomography (OCT) is an imaging technique using low coherence
light sources to produce high-resolution cross-sectional images of the retina and optic
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nerve. It is useful to diagnose various pathologies causing optic atrophy or optic nerve
swelling [1]. It displays the retinal layers in three dimensions and allows the evaluation of
changes in the macula. It is widely used in the detection of diabetic macular edema (DME)
and age-related macular degeneration (AMD) [2,3].

DME is an eye disease caused by damage or proliferative blood vessels in the retina,
particularly at the macula [4]. DME, which is an important complication of diabetes in
the eyes, can lead to irreversible vision loss. On the other hand, AMD is degeneration at
the macula region caused by various external risk factors, such as age, genetic variants,
family history, smoking, etc. It usually occurs in individuals over the age of 60 years [5].
The prevalence rate of AMD increases with age and is the leading cause of blindness in the
elderly [6].

Vision loss is not observed in the early stage of DME and AMD. However, it causes
vision loss and blindness in advanced stages [7]. Therefore, early diagnosis of DME
and AMD is very important. However, analyzing each section in OCT individually is
time consuming and increases the workload of clinicians [8]. Many machine learning
techniques have been proposed for the automatic classification and abnormality detection
of OCTs [9–11]. In these techniques, segmentation of the retinal layer or classification
of images with the same characteristics is generally studied [4]. These techniques offer
high-performance analysis support at a low cost. Deep learning (DL) methods, which work
effectively using large databases, are of immense interest in the literature [12–15].

In this work, a novel intelligent system is proposed using the most effective DL model.
One way to achieve this is to use multiple deep network based feature extractors, and in
this study, we present a new hybrid and multileveled deep feature generator. Moreover,
we employ hybrid pooling methods to generate compressed images. The utilized pooling
methods are maximum, max-min, and max-mean. The routing problem is solved by using
these three pooling methods together, and multileveled deep features are generated with
three simple pooling functions. The main purpose of the IRF selector is to automatically
choose the most appropriate feature vector, and the chosen optimal feature vector is fed
as input of the quadratic SVM classifier [16]. As discussed above, our work presents a
deep feature engineering framework developed with two widely used public OCT image
datasets, and the key contributions of our model are the following:

• An intelligent deep feature generator is presented using transfer learning. Using trans-
fer learning, 1000 features are generated from each pre-trained CNN, 18 pre-trained
networks are involved in this framework, and an 18-feature generation function is
proposed using these pre-trained CNNs and three maximum pooling methods. The
proposed framework generates the best deep features to attain the best classifica-
tion rates.

• An effective learning model is presented by deploying the proposed multiple CNNs
based on a deep feature generator, iterative feature selector (IRF), and classification
with SVM. This learning model is developed using two public OCT image datasets. It
attained the highest classification performance using both OCT datasets.

The rest of this paper is organized as follows. The literature review is tabulated
and discussed in Section 2. The material (datasets) and the proposed DL-based feature
engineering method are presented in Section 3. The calculated classification results and
performance analysis are given in Section 4. The results and findings are discussed in
Section 5. Section 6 ends with the main conclusions of the research and gives an outlook on
future directions.

2. Literature Review

Deep learning methods are widely used to diagnose many different diseases and
have attained high performance [17–20]. The convolutional neural network (CNN) is
one of the most widely used models in deep learning and is often preferred for OCT
image analysis [21]. The classification of OCT images has also been conducted using
handcrafted methods. Rajagopalan et al. [22] proposed a deep CNN framework with
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OCT images for the diagnosis and classification of drusen macular degeneration (DMD),
DME and normal. The framework achieved a classification accuracy of 95.7%. Alsaih
et al. [23] proposed a classification (DME vs. normal) pipeline with spectral domain optical
coherence tomography (SD-OCT) images. The pipeline comprised pre-processing, feature
extraction, feature representation, and feature classification. With principal component
analysis and a linear-support vector machine (SVM), they achieved a sensitivity of 87.5%
and a specificity of 87.5%. Sunija et al. [24] proposed a deep CNN method that has six
convolutional blocks for the classification of DME, drusen, choroidal neovascularization
(CNV) from normal OCT images. The proposed method achieved an accuracy of 99.69%.
Das et al. [25] proposed a method that introduces a multi-scale deep feature fusion-based
classification approach using CNN for classification of DME and two stages of AMD
(drusen and CNV) from healthy OCT images. The proposed method achieved an average
sensitivity, specificity, and accuracy of 99.6%, 99.87% and 99.6% respectively. In elsewhere,
Lemaitre et al. proposed a method for automatic identification of patients with DME versus
normal subjects based on local binary patterns features to describe the texture of OCT
images and they compared different local binary pattern feature extraction approaches to
compute a single signature for the whole OCT volume [26]. The proposed method achieved
a specificity of 75.00% and sensitivity of 87.50%.

Rong et al. [2] proposed a surrogate-assisted classification method to classify retinal
OCT images based on CNNs. The proposed method achieved a classification (AMD, DME
and normal) accuracy of 100%. Tayal et al. [27] presented an automatic diagnostic tool
based on a deep-learning framework (three different CNN models) for the classification
of CNV, DME, drusen and normal based on images of OCT scans. The diagnostic tool
obtained a classification accuracy of 96.5%.

Srinivasan et al. [28] presented an automated algorithm that utilizes multiscale his-
tograms of oriented gradient descriptors as feature vectors of a support vector machine-
based classifier for the detection of retinal diseases via OCT imaging. Their classifier
correctly identified 100% with AMD, 100% with DME and 86.67% normal.

Hussain et al. [29] proposed a model with random forest for the detection of DME,
AMD and normal, using retinal features from SD-OCT images. The classification method
uses features such as the thickness of the retina and the thickness of the individual retinal
layers. They obtained an accuracy of more than 96%. The studies described above are
summarized in Table 1.

Table 1. Summary of recent studies involving OCT images.

Study Method Purpose Results (%)

Rajagopalan et al. [22] CNN Detecting DMD, DME and normal using
OCT images Acc: 95.70

Alsaih et al. [23]
Local binary patterns and

histograms of oriented
gradients

Classification of DME and normal using
SD-OCT images

Spe: 87.50
Sen: 87.50

Sunija et al. [24] CNN Classification of CNV, DME, Drusen and
normal using OCT images Acc: 99.69

Das et al. [25] CNN Classification of DME, Drusen, CNV and
normal using OCT images Acc: 99.60

Lemaitre et al. [26] Local binary patterns
Identification of patients with DME

versus normal subjects with SD-OCT
images

Spe: 75.00
Sen: 87.50

Rong et al. [2] CNN Classification of AMD, DME and normal
using OCT images Acc: 100.0
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Table 1. Cont.

Study Method Purpose Results (%)

Tayal et al. [27] CNN Identification of CNV, DME, Drusen and
normal using OCT images Acc: 96.50

Srinivasan et al. [28] CNN Classification of normal, AMD and DME
with SD-OCT images

Acc:
100.0 AMD
100.0 DME

86.67 normal

Hussain et al. [29] Random forest technique Classification of normal, AMD and DME
with SD-OCT images

Acc: 97.33 for two
classes case (DME and

normal)
Acc: 95.58 for three
classes case (DME,
AMD, and normal)

DL models have generally been used to develop automatic classification methods [30–32].
The deep models have unique benefits and have achieved good results for computer vision
problems. As seen from Table 1, CNNs are the flagship of OCT image classification, but
there are various types of CNNs in the literature, and each CNN has its own peculiarity,
resulting in variable performance on OCT image datasets. The main goal of hand-crafted
methods is to create discriminative features for attaining high classification performance
with low time complexity. However, they cannot attain high performance on large/complex
datasets. To overcome this problem, deep learning models have been used to classify OCT
images. Deep models can attain high performance but there are many deep networks, and
each of them has individual performance. The primary purpose of our framework is to
use the activity of 18 widely known pre-trained CNNs. In addition, a package learning
model is presented without using the trial-and-error method. With this framework, there
is no longer the need to propose many methods based on the various CNN models for the
classification of OCT images. A general image classification model is now proposed by
using these networks together. This model can also be used to solve other computer vision
problems, as it is a self-organizing framework. This framework can select the most suitable
CNNs based on the context of the problem.

3. Material and Method
3.1. Material

Two public image datasets (DB1 and DB2) were used to develop the proposed retinal
abnormality classification system using OCT images. The details of these databases are
given below.

3.1.1. First OCT Image Dataset (DB1)

The used OCT image dataset comprised 11,000 OCT images with four classes, named
choroidal neovascularization (CNV), diabetic macular edema (DME), Drusen, and nor-
mal (https://data.mendeley.com/datasets/rscbjbr9sj/3, accessed on 10 October 2021).
There were 2750 OCT images in each of the four categories [33,34]. In this OCT database,
10,000 images out of 11,000 were used for training, and 1000 were used for testing. In the
test database, 250 images were used in each category. The dimension of each image was
496 × 1024, and they were stored in jpeg format. Sample images of this dataset are shown
in Figure 1.

https://data.mendeley.com/datasets/rscbjbr9sj/3
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Figure 1. Sample OCT images of the used OCT dataset (CNV—choroidal neovascularization, DME—
diabetic macular edema). Images reproduced from ref. [33]. (a) CNV sample image, (b) DME sample
image, (c) a sample image Drusen class, (d) a sample of healthy OCT.

3.1.2. Second Image Dataset (DB2)

The utilized second database is named DB2, and it contained 3194 images belonging to
three categories: age-related macular degeneration (AMD), DME, and healthy classes (https:
//people.duke.edu/~sf59/Srinivasan_BOE_2014_dataset.htm, accessed on 10 October
2021). It contained 686 AMD, 1101 DME, and 1407 healthy images [28]. The images were
stored in tiff format. Sample images of this dataset are depicted in Figure 2.
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Figure 2. Sample OCT images of DB2 dataset (AMD—age related macular degeneration; DME—diabetic
macular edema). Images reproduced from ref. [28]. (a) AMD disorder, (b) DME disorder, (c) healthy.

3.2. The Proposed Framework

A new framework is presented to select the best deep features and correctly classify
OCT images. The proposed framework consists of three fundamental phases: deep feature
extraction using intelligent deep transfer learning, iterative feature choosing, and classifica-
tion. Pseudocode for this framework is provided in Algorithm 1. The MATLAB (2020b)
programming environment was used to implement this algorithm, and 18 pre-trained
networks were included, using Get Add-Ons options.

https://people.duke.edu/~sf59/Srinivasan_BOE_2014_dataset.htm
https://people.duke.edu/~sf59/Srinivasan_BOE_2014_dataset.htm
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Algorithm 1: Pseudocode of proposed framework

Input: OCT images
Output: Results
01: Load OCT image dataset
02: for k = 1 to 1000 do
03: Read each image
04: for j = 1 to 18 do//Feature generation using 18 pre-trained networks
05: X j(k, 1 : 1000) = CNN j(Image);//Extract deep features using jth CNN
06: cnt = 1000;//Counter defining to calculate the number of features.
07: for i = 1 to 3 do//Creating multilevel feature generation network
08: c1 = maxp1(Image, [3× 3]);//Apply maximum pooling with 3 × 3 sized blocks
09: c2 = maxp2(Image, [3× 3]); //Apply max-mean pooling
10: c3 = maxp3(Image, [3× 3]);//Apply max-min pooling

11: X j(k, cnt + 1 : cnt + 3000) = conc
(

CNN j(c1), CNN j(c2), CNN j(c3));

//In Line 11, conc(.) defines concatenation operator and pre-trained CNN generates 3000 features from compressed images.
12: cnt = cn + 3000
13: new = maxp1(Image, [2× 2]);//Compress using images
14: I = new;
15: end for i
16: end for j
17: end for k
18: for j = 1 to 18 do
19: Select the best 1000 features ( f j) from X j with a length of 10,000.
20: Calculate loss values deploying SVM classifier with 5-fold cross-validation
21: end for j
22: Select the best five features using calculated loss values. We have used quadratic support vector machine (QSVM) as a loss
value generator in this phase. An error array with a length of 18 is created using this classifier. The optimal five CNNs are chosen
using the created loss array. The minimum loss valued CNNs is the optimal performing CNNs.
23: Concatenate these features and obtain 5000 sized feature vector.
24: Apply IRF to 5000 sized feature vector for selecting the best feature vector.25: Classify the selected feature vector using SVM and
obtain predicted results.

A graphical summary of this framework is presented in Figure 3. More explanations
about this framework are provided in Sections 3.2.1–3.2.3.

Table 2. Phases and parameters used in our proposed method.

Phase Method Parameter

Feature extraction

Multiple multilevel pooling
decomposition

Number of level: 3
Pooling methods: maximum, max-mean and max-min

Number of compressed image: 9

Deep feature generation and feature
merging

18 pre-trained convolutional neural networks are used to extract deep
features from fully connected layers of these networks.
18 feature vectors with a length of 10,000 are created

Feature selection using ReliefF The top 1000 features of 10,000 features generated are chosen.

Loss value calculation Quadratic SVM

Top feature vectors selection The top five feature vectors have been selected.

Feature selection Iterative ReliefF Range of iteration: [100, 1000]
Loss value generator: Quadratic SVM

Classification SVM

Kernel function: Polynomial
Polynomial order: 2
Kernel scale: Auto
Box constraint: 1

Standardize: True
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Figure 3. Graphical illustration of the proposed multilevel fused/hybrid deep feature extraction-
based OCT image classification model. Maximum, max-min, and max-mean pooling algorithms were
used to generate decomposed images (c1, c2, . . . , c9). By employing transfer learning, 10,000 features
were generated from each pre-trained CNN. These networks were trained on the ImageNet dataset.
This dataset contained about 1.2 million images belonging to 1000 classes. In this work, we have used
the last fully connected layer of each network. Thus, we generated 1000 features for each image. An
original and nine compressed images are fed to each pre-trained network. Thus, 10,000 features are
generated from an OCT image. One thousand features are selected from the generated 10,000 features
utilizing ReliefF, and 18 loss values are calculated in the misclassification rate calculation block. The
top five feature vectors were selected using calculated loss values, and the last feature vector with a
length of 5000 is determined using the selected feature vectors. The IRF function selected the top
features for classification, and results are obtained from SVM with a 10-fold cross-validation strategy.
The parameters used in each framework are tabulated in Table 2.

More details about the suggested model and steps involved in various steps are
given below.

3.2.1. Deep Feature Extraction

The most important phase of the proposed framework is deep feature extraction, and
this phase is a novel component of the model. For our study, 18 pre-trained commonly used
CNNs, three pooling functions, ReliefF [35] and SVM [16] were used together to create the
best feature vector. As can be seen from the used methods, the proposed feature extraction
model contains machine learning components. This model’s main feature generation
functions are pre-trained CNNs; the utilized pre-trained CNNs are listed in Table 3.

In Table 3, the FE layer is the feature extraction layer, the last fully connected layer
used for feature generation. In this work, we use the MATLAB programming environment
and we use 18 pre-trained networks. Our main aim is to create a general feature generation
framework. The results of all pre-trained networks are obtained, and this framework is
used to choose the most valuable ones to solve computer vision problems.
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Table 3. Deep CNNs used for deep feature generation.

No. CNN FE Layer No. CNN FE Layer

1 ResNet18 fc1000 10 NasNetMobile predictions

2 ResNet50 fc1000 11 NasNetLarge predictions

3 ResNet101 fc1000 12 DenseNet201 fc1000

4 DarkNet19 avg1 13 InceptionV3 predictions

5 MobileNetV2 Logits 14 InceptionResNetV2 predictions

6 DarkNet53 conv53 15 GoogLeNet loss3-classifier

7 Xception predictions 16 AlexNet fc8

8 EfficientNet b0 MatMul 17 VGG16 fc8

9 ShuffleNet node_202 18 VGG19 fc8

The general steps of this generator are summarized below.
Step 1: Read each OCT image.
Step 2: Decompose OCT images using multileveled and multiple pooling-based

methods. In our study, maximum, max-min, and max-mean pooling algorithms are
utilized as compression methods. The mathematical definitions of this compression method
are given below. Furthermore, this compression method is defined in lines 07–15 of
Algorithm 1.

ci = maxp1(I, [3× 3]), i ∈ {1, 4, 7} (1)

ci+1 = maxp2(I, [3× 3]) (2)

ci+2 = maxp3(I, [3× 3]) (3)

I = maxp1(I, [2× 2]), i = i + 3 (4)

where ci is the ith compressed image, I defines image, and maxp1(., .), maxp2(., .), maxp3(., .)
are the maximum, max-mean, and max-min pooling functions, respectively. Moreover, the
mathematical definitions of maxp2 and maxp3 are given below.

t(k) = mean(block(:, k)) (5)

maxp2(block, [k× k]) = max(t) (6)

i(k) = min(block(:, k)) (7)

maxp3(block, [k× k]) = max(i) (8)

Herein, t and i are arrays with a length of k, and they store average and minimum
values of a matrix (block) with a size of k× k. The mean(.) function is the average value
calculation function, and min(.) is the minimum value calculation function. Equations (5)
and (6) define the proposed maxp2 function, and Equations (7) and (8) explain maxp3

function.
A graphical representation of the three pooling functions used is depicted in Figure 4.
The general problem of the pooling models is the routing problem [36]. An exam-

ple of the routing problem caused by pooling is given as follows. Only the peak value
can be routed by using maximum pooling. In order to solve this problem using the
available pooling methods, our proposed multiple pooling function is presented and by
using our proposed pooling function, the average, minimum and maximum values are
routed together. The utilized pooling functions take two parameters: input image and
used size of the non-overlapping blocks. Nine compressed images are calculated using
Equations (1)–(4). This compression model uses three different pooling methods to solve
the routing problem, and it has three levels created, using maximum pooling with 2 × 2
sized non-overlapping blocks.
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select the maximum column, and according to this example, the maximum column is [8,9,25]. By
using [8,9,25] vector, max-mean pooling finds 25+8+9

3 = 14, and max-min pooling selects 8 as a
compressed value.

Step 3: Generate deep features from the compressed nine images and original OCT
image with 18 pre-trained CNNs as a deep feature generator.

X j(k, 1 : 1000) = CNN j(I), k ∈ {1, 2, . . . , dim}, j ∈ {1, 2, . . . , 18} (9)

X j(k, 1000× i + 1 : 1000× (i + 1)) = CNN j
(

ci
)

, i ∈ {1, 2, . . . , 9} (10)

where X j is the jth feature in the deep feature vector (this extractor generates 18 feature
vectors with a length of 10,000), dim defines the number of used OCT images, and CNN j

represents jth pre-trained deep feature generator.
In Equations (5) and (6), the deep feature generator is defined using 18 pre-trained

CNNs (see Table 3). Each pre-trained CNN is employed for the original OCT and com-
pressed images to extract features. Each CNN generates 1000 features, and 10 images are
utilized as input for each CNN. Therefore, 10,000 features are extracted in total from an
OCT image.

Step 4: Select the most informative 1000 features from the extracted 10,000 features
using the ReliefF selector.

idxj = RF
(

X j, y
)

; (11)

f j(k, t) = X j
(

k, idxj(t)
)

; t ∈ {1, 2, . . . , 1000} (12)

where idxj is the sorted indexes of the jth feature vector using ReliefF (RF(., .)) selector, y is
the actual output and f j is the selected 1000 features.

Step 5: Calculate the loss value using SVM classifier with 10-fold CV.

L(j) = SVM
(

f j, y, 10
)

(13)

Herein, L is loss value, SVM(., ., .) defines the SVM classifier and it requires three
parameters. These parameters are feature vector, labels, and k value of the used cross-
validation method.
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Step 6: Select the best five feature vectors using the L vector and merge the selected
feature vectors.

l f (k, 1000× (h− 1) + 1 : 1000× h) = f idx(h)(k, 1 : 1000), h ∈ {1, 2, . . . , 5} (14)

where l f is the last feature vector with a length of 5000, and idx is the index of the sorted
loss values arranged by ascending terms.

These six steps defined our presented intelligent deep feature generator.

3.2.2. Feature Selection Using Iterative ReliefF

In this phase, an iterative selector is preferred to select the most informative fea-
tures. The feature selection aims to increase the classification ability and decrease the time
complexity of the used classifier. To achieve both of these aims, various feature selectors
are presented in the literature. ReliefF [37,38] is a commonly used feature selector, and
it is weight based. It generates both negative and positive features. Negative weights
are calculated from redundant features. Positive and larger weights are calculated from
informative/discriminative features. The indexes of the feature are calculated using ReliefF
weights. However, ReliefF cannot select the best feature vector without a trial-and-error
method. Therefore, IRF was presented by Tuncer et al. [39] in 2021. IRF can select the best
feature vector automatically, and it is a parametric selector. The parameters used are a
number of features range and loss generators. These parameters are chosen as [100, 1000]
and SVM with 10-fold CV, respectively. IRF selects 794 features from the extracted 5000
features as the length of an optimal feature vector. Steps of the used IRF are given below.

Step 7: Apply ReliefF to generate 5000 features and generate qualified indexes (ind).

ind = RF(l f , y) (15)

Step 8: Select features iteratively by using feature range. The length of the first feature
vector is chosen as 100, and the length of the last feature vector is selected as 1000. Therefore,
901 feature vectors are selected.

Step 9: Calculate the loss value of all selected feature vectors using the SVM classifier.
Step 10: Choose the best feature vector.

3.2.3. Classification

In this section, the last phase, classification, is performed using quadratic kernelled
SVM with a 10-fold cross-validation strategy. The SVM classifier is one of the widely
preferred traditional classifiers and has many kernels [16,40]. The Bayesian optimization
technique is used to select the best kernel for this OCT image classification problem. The
hyperparameters search range of the Bayesian optimizer is given as follows: multiclass
method, One-vs.-One, One-vs.-All; box constrains, 1–1000; kernel scale, 0.001–1000; kernel,
Gaussian, quadratic, linear, and cubic; and standardize, false or true. Options of this
optimizer are as follows: a maximum number of iterations is 30, and the fitness function is
the minimum misclassification ration. The utilized optimizer selects quadratic SVM as the
optimum SVM, and this classifier is used in feature extraction, IRF, and classification. The
selected hyper-parameters of the used classifier are as follows:

Kernel: Quadratic (2nd degree polynomial),
Kernel scale: Auto,
Box constraint: 1,
Standardize: True.

The last step (classification step) is denoted below.
Step 11: Classify the selected features employing quadratic SVM with 10-fold CV (for

DB2) or hold-out validation (for DB1).
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4. Results

The proposed retinal abnormality classification using OCT images based on an intel-
ligent hybrid deep feature generator and IRF was implemented on a simple configured
computer. The 18 CNNs were trained on the ImageNet dataset, and each CNN generated
1000 features. This framework was implemented on the MATLAB (2020b) platform. The
proposed framework is a parametric framework, and the parameters used are presented in
Table 2.

In this work, two databases were used to test our proposed transfer learning and the
ReliefF-based framework. We included 18 CNNs in this model, and the best five CNNs
were selected to create the final features. The performance parameters, namely accuracy
(Acc), precision (Pre), Cohen Kappa (CK), F1-score (F1), Matthew coefficient correlation
(MCC), and recall (Rec), were used to evaluate the performance of the developed model.
The first dataset (DB1) dataset comprises 11,000 images and is a homogenous dataset. The
confusion matrix of the proposed classification framework for DB1 is given in Figure 5.
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It can be noted from Figure 5 that the best results are obtained for DME and nor-
mal classes (our proposal reached 98.80% class-wise accuracy on these classes), and our
framework attained 97.40% classification accuracy with this dataset (DB1).

The DB2 dataset has 3194 images with three categories, and the results obtained using
DB2 dataset are calculated, and the confusion matrix for the DB2 is denoted in Figure 6.

It can be noted from Figure 6 that the proposed framework attained high accuracy
(100%) with the DB2 dataset.

The summary of the results obtained using our proposed model with DB1 and DB2
datasets is listed in Table 4.
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Table 4. Summary of results obtained using two datasets.

Overall Result DB1 DB2

Accuracy 97.40 100

Precision 97.40 100

Cohen Kappa 96.40 100

F1-score 97.40 100

MCC 96.53 100

Recall 96.53 100

The time complexity of the proposed framework is calculated using theta (Θ) notation
and is given below.

Feature extraction: Θ(p× d× nlogn + p× t)
Feature selection: Θ(i× t + s)
Classification: Θ(t)
Total: Θ(p× d× nlogn + p× t + i× t + s + t)

It can be noted from the above expressions that the proposed model used multiple
pooling and pre-trained networks-based deep feature extraction. Herein, p defines the
number of the used pre-trained networks, and n is the size of the used images. The used
multiple pooling function creates decomposed images, and the decomposed images have
lower sizes. Therefore, the complexity is equal to Θ(nlogn). Furthermore, we used the best
feature vector selection process in the feature extraction phase, and the complexity of this
step is equal to p× t, where t defines the complexity of the used loss value (classifier). d is
the time complexity of the used pre-trained network. An iterative feature selector was used.
Herein, i is the number of iterations, and s is the time complexity of the feature selector.
These results demonstrate that our proposed framework has linear time complexity.

5. Discussion

This work proposes a new framework for retinal disorder detection using two OCT
image datasets (DB1 and DB2) consisting of 11,000 (4 classes) and 3194 (3 classes) images,
respectively. The proposed framework is comprised of an intelligent deep feature generator
using 18 pre-trained CNNs and multilevel multiple pooling decomposition, IRF selector,
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and classification. The proposed intelligent feature extractor utilized 18 pre-trained net-
works as the feature generator. The graph of accuracy rates obtained using 18 pre-trained
CNNs is denoted in Figure 7a, and the iterative feature selection process is shown in
Figure 7b.
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It can be noted from the results that the proposed framework selected deep features
of 6th (DarkNet53), 5th (MobileNetV2), 4th (DarkNet19), 8th (EfficientNet b0), and 12th
(DenseNet201) CNNs for DB1. DarkNet53 attained 94.84% classification accuracy with
DB1. The selected CNNs for DB2 are 4th (DarkNet19), 5th (MobileNetV2), 3rd (ResNet101),
6th (DarkNet53), and 8th (EfficientNet b0) deep feature generators.

It can be noted from Figure 7a that we achieved an accuracy of 90.63% to 94.50% for
DB1 and 99.22% to 99.97% for DB2 using QSVM. By merging five deep features, a feature
vector of length 5000 is created for classification. These results denote that DarkNet19,
DarkNet53, and MobileNetV2 are the top deep feature generators for both OCT datasets.
Thereafter, IRF is applied to the feature vector. The lengths of the selected optimal feature
vectors are 935 and 178 for the two OCT datasets, respectively.

Figure 7b shows the error rates obtained for various features with two datasets. These
graphs clearly indicate the error rate via the number of features. The error rates become 0
for DB2; hence, the classification accuracy is 100%. The error rates are low for DB1, and
hence, the accuracy is high.

Student’s t-test is applied to the generated and selected 935 features of DB1 to validate

these classification results. There are four categories in this dataset. Therefore, C
(

4
2

)
= 6

couples were used to calculate p-values, and obtained p-values are shown in Figure 8.
Figure 8 shows the statistical properties of our features, and it validates the classifica-

tion accuracies calculated using a conventional classifier (QSVM). According to Figure 7b,
there are 250 observations in each class, and the number of observations with p-values
smaller than 0.05 is calculated as 216, 234, 233, 234, 226, and 220 for 1, 2, 3, 4, 5, and 6
respectively. On the other hand, our framework attained 100% accuracy on the DB2, and
the minimum p-values of all couples are calculated as 0.



Entropy 2021, 23, 1651 14 of 18Entropy 2021, 23, x FOR PEER REVIEW 14 of 18 
 

 

  
(a) (b) 

Figure 8. t-test results: (a) boxplot of the calculated p-values, (b) number of observations with p-
values are smaller than 0.05 via couple. 

Figure 8 shows the statistical properties of our features, and it validates the classifi-
cation accuracies calculated using a conventional classifier (QSVM). According to Figure 
7b, there are 250 observations in each class, and the number of observations with p-values 
smaller than 0.05 is calculated as 216, 234, 233, 234, 226, and 220 for 1, 2, 3, 4, 5, and 6 
respectively. On the other hand, our framework attained 100% accuracy on the DB2, and 
the minimum p-values of all couples are calculated as 0. 

Furthermore, comparison results are listed in Table 5 to denote the high classification 
success of the proposed framework. 

Table 5. Summary of state-of-the-art retinal disorder classification models developed using OCT images. 

Study Method Classifier Dataset Split Ratio 
Number of 

Class The Results (%) 

Rong et al. [2] 
Convolution neural 

network 
Convolution neural 

network 

45 subjects  
195 Test 1 
195 Test 2 
207 Test 3 
267 Test 4 
207 Test 5 

72:10:18 3 
Acc: 100.0 

for volume level 

Rasti et al. [3] 
Multi-Scale Convolu-

tional Neural Net-
work Ensemble 

Softmax 

Dataset 1 
862 DME, 969 

AMD 
2311 normal 

Dataset 2 
856 DME 
711 AMD 

1707 normal 

5-fold cross 
validation 3 

AUC: 99.80 
Rec: 99.36 
F1:99.34 

for Dataset 1 
AUC: 99.9 
Rec: 97.78 

F1:97.71 for Da-
taset2 

Fang et at. [41] 
Lesion-aware convo-

lution neural net-
work 

Softmax 

500 CNV 
500 DME 

500 Drusen 
500 Normal 

10-fold cross 
validation 

4 
Acc: 90.10 
Sen: 86.80 
Pre: 86.20 

He et al. [42] 
Label smoothing 

generative adversar-
ial network 

Convolution neural 
network 

1. 
37.455 CNV 
11.598 DME 
8866 Drusen 

26.565 Normal 
1.581 CNV 

Leave-p-out 
cross- valida-

tion 

1. 4 
2. 4 

1. Pre: 87.25 
Sen: 87.21 
Spe: 95.09 
F1: 87.11 

2. Pre: 68.36 
Sen: 66.68 

Figure 8. t-test results: (a) boxplot of the calculated p-values, (b) number of observations with
p-values are smaller than 0.05 via couple.

Furthermore, comparison results are listed in Table 5 to denote the high classification
success of the proposed framework.

Table 5. Summary of state-of-the-art retinal disorder classification models developed using OCT images.

Study Method Classifier Dataset Split Ratio Number of Class The Results (%)

Rong et al. [2] Convolution
neural network

Convolution
neural network

45 subjects
195 Test 1
195 Test 2
207 Test 3
267 Test 4
207 Test 5

72:10:18 3 Acc: 100.0
for volume level

Rasti et al. [3]

Multi-Scale
Convolutional

Neural Network
Ensemble

Softmax

Dataset 1
862 DME, 969 AMD

2311 normal
Dataset 2
856 DME
711 AMD

1707 normal

5-fold cross
validation 3

AUC: 99.80
Rec: 99.36
F1:99.34

for Dataset 1
AUC: 99.9
Rec: 97.78

F1:97.71 for
Dataset2

Fang et at.
[41]

Lesion-aware
convolution

neural network
Softmax

500 CNV
500 DME

500 Drusen
500 Normal

10-fold cross
validation 4

Acc: 90.10
Sen: 86.80
Pre: 86.20

He et al. [42]

Label smoothing
generative
adversarial

network

Convolution
neural network

1.
37.455 CNV
11.598 DME
8866 Drusen

26.565 Normal
1.581 CNV
4.592 DME

1.563 Drusen
1.168 Normal

Leave-p-out cross-
validation

1. 4
2. 4

1. Pre: 87.25
Sen: 87.21
Spe: 95.09
F1: 87.11

2. Pre: 68.36
Sen: 66.68
Spe: 86.73
F1: 67.14

Seeböck et al.
[43]

Unsupervised
deep learning Random forest

268 AMD (early
AMD, late AMD)

115 control

218 AMD
65 control for

training
50 AMD

50 control for
testing

3 Acc: 81.40

Alqudah [44]
Automated

convolutional
neural network

Softmax

250 CNV
250 DME

250 Drusen
250 Normal
250 AMD

95.331 training
40.856 validation

1250 testing
5 Acc: 97.10
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Table 5. Cont.

Study Method Classifier Dataset Split Ratio Number of Class The Results (%)

Huang et al.
[45]

Layer guided
convolutional

neural
network

Convolutional
neural

network

1.
37.455 CNV
11.598 DME
8866 Drusen

26.565 Normal
2.

1.581 CNV
4.592 DME

1.563 Drusen
1.168 Normal

100:1 1. 4
2. 4

1. Acc: 88.40
2. Acc: 89.90

Fang et al.
[46]

Iterative fusion
convolutional

neural network

Convolutional
neural

network

37.455 CNV
11.598 DME
8866 Drusen

26.565 Normal

10-fold cross
validation 4 Acc: 87.30

Saraiva et al.
[47]

Convolutional
neural

network

Convolutional
neural

network

5.313 CNV
7.491 DME

1.773 Drusen
2.319 Normal

100:1 4 Acc: 94.35

Our method
Convolutional

neural networks,
iterative ReliefF

Support vector
machine

2750 CNV
2750 DME

2750 Drusen
2750 Normal

10,000 train and
1000 test

(10:1)
4

Acc: 97.30
Pre: 97.32
F1: 97.30

Rec: 97.30
CK: 96.40

MCC: 96.41

686 AMD
1101 DME

1407 Healthy

10-fold
cross-validation 3

Acc: 100
Pre: 100
F1: 100

Rec: 100
CK: 100

MCC: 100

Table 5 shows that the proposed framework achieved the highest retinal disorder
classification performance using both OCT image datasets. We used a maximum number of
images and yet achieved optimal performance for both datasets. The model used transfer
learning models; hence, the time burden is reasonable.

The benefits of the proposed framework are given below.

• A cognitive transfer learning-based image classification framework is presented.
• An intelligent feature generator is described using 18 pre-trained CNNs and novel

multilevel and multiple pooling-based compression methods. Moreover, this feature
generator is designed as a learning model. Therefore, it has the best feature vector
selection ability.

• The proposed framework is a simple and parametric classification model. It can be
extended using more feature extractors, other classifiers, and feature selectors.

• A general computer vision framework is presented with a ten-fold cross-validation
strategy. Hence, our developed model is accurate and robust.

• This framework is an extendable framework. By using other effective methods, new-
generation image classification methods can be proposed.

• This framework is a fast-learning model since the used CNNs are used in the feedfor-
ward mode to extract the features.

• Two OCT image datasets are employed to verify general image classification capability.

6. Conclusions

This study has proposed a retinal disorder detection framework using transfer learn-
ing, in addition to multilevel multiple pooling decomposition, IRF, and tuned SVM with
Bayesian optimization. The main aim of the proposed framework is to select the best
pre-trained CNNs to solve the classification problem. We used two public OCT image
datasets to evaluate the accuracy and robustness of our developed model. In the proposed
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framework, DarkNet53, MobileNetV2, DarkNet19, Efficient-Net b0, and DenseNet201
CNNs are selected as the top five deep feature generators for DB1. The selected top five
CNNs for DB2 are DarkNet19, MobileNetV2, ResNet101, DarkNet53, and EfficientNet b0.
The generated features from these networks are merged, and the best feature vector (the
most valuable features) is selected using IRF. We obtained an accuracy of 97.40% and 100%
with DB1 and DB2 datasets, respectively. Our proposed framework can potentially be used
to detect early stages of retinal disorders. By adopting this framework, screening for retinal
disorder in an appropriate patient cohort can be conducted more effectively and enable
early treatment. Ultimately, we hope that with this work, irreversible vision loss can be
prevented by early diagnosis and prompt medical intervention. This framework can select
the most suitable CNNs based on the context of the problem, and new generation CNNs
can be included in this framework as part of future work.
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