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Abstract: Measures of signal complexity, such as the Hurst exponent, the fractal dimension, and the
Spectrum of Lyapunov exponents, are used in time series analysis to give estimates on persistency,
anti-persistency, fluctuations and predictability of the data under study. They have proven beneficial
when doing time series prediction using machine and deep learning and tell what features may be
relevant for predicting time-series and establishing complexity features. Further, the performance
of machine learning approaches can be improved, taking into account the complexity of the data
under study, e.g., adapting the employed algorithm to the inherent long-term memory of the data. In
this article, we provide a review of complexity and entropy measures in combination with machine
learning approaches. We give a comprehensive review of relevant publications, suggesting the use of
fractal or complexity-measure concepts to improve existing machine or deep learning approaches.
Additionally, we evaluate applications of these concepts and examine if they can be helpful in
predicting and analyzing time series using machine and deep learning. Finally, we give a list of a total
of six ways to combine machine learning and measures of signal complexity as found in the literature.

Keywords: hurst exponent; chaos; Lyapunov exponents; neural networks; time series prediction;
deep learning; machine learning; LSTM; R/S analysis; regression analysis; time series data

1. Introduction

The rise of artificial intelligence resulted in increased use of machine and deep learning
for analysis and predictions based on historical data instead of employing mechanistic
expert models. The outcomes of these predictions are encouraging, e.g., in solid-state
physics, first-principle calculations can be sped up [1], or solar radiation can be predicted
using machine learning methods [2]. In biology, machine learning can be applied, e.g., to
genomics, proteomics, and evolution [3]. In medicine, researchers used machine learning to
improve diagnosis using collected information from the past [4]. In finance, the applications
range from risk management or the construction of portfolios to designing and pricing
securities [5]. In agriculture, machine learning can be used to predict yields and give
estimates on the nitrogen status [6].

However, while these approaches provide promising results in some research areas,
the results are inferior in some others, depending on the available data and the system’s
complexity. Though it can not be generalized what sort of data is necessary to perform
machine learning successfully, the two main reasons, assuming one has optimized the
algorithm for the regarded task, for machine learning to fail are:

(i) Lack of data, meaning that the overall amount of data is not enough to train a model
properly.

(ii) Lack of good data, meaning that despite there is a sufficient amount of data available,
the inherent information is not enough to achieve good results.

One way to improve machine learning approaches suffering from these problems
is by studying complex systems, i.e., chaos theory. The reason for this is that real-life
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systems are highly complex and non-linear systems. Therefore, complexity analysis and
ideas from chaos theory should be considered when analyzing or predicting real-life
systems. Therefore, data-driven analysis and prediction methods can be improved, taking
into account the complexity and non-linear behavior of the system under study. e.g.,
in the case of a general lack of data one can employ interpolation techniques such as
fractal interpolation [7] , or stochastic interpolation approaches [8], to increase the overall
amount of data. The advantage of these interpolation techniques, in contrast to, e.g., linear
or polynomial interpolation, is that the interpolated data can be tailored to match the
complexity of the original data.

The study of complex systems had its peak in the 20th century, and many techniques
have been developed to characterize and analyze chaotic systems, i.e., complexity mea-
sures. Furthermore, chaos theory has a widespread spectrum of applications ranging from
medicine [9], finance [10] to physics [11], to name a few applications. Though chaos theory
is not that popular among computer scientists, there is significant potential for future ap-
plications. For example, data-driven analysis/prediction approaches in agriculture could
greatly benefit from considering the complexity of historical data. In agricultural systems,
turbulence and complex non-linear behavior can be observed for many phenomenons
affecting the overall system [12], such as weather [13], irrigation [14] or environmental
pollution[15].

Though there are numerous other applications of measures of signal complexity,
only a few publications exist which combine artificial intelligence and measures of signal
complexity for time series analysis. When referring to complexity measures or measures of
signal complexity, we mean all sorts of entropy, information, order-, disorder-measures
one can perform on time series data. This article is a survey of those applications.

For this purpose, we searched google scholar for combinations of words synonymous
with machine and deep learning applications. Those words, together with words syn-
onymous for the study of complex systems, yielded the list of publications reviewed in
Section 3. The result is a list of 18 publications that combine machine learning and com-
plexity measures for real-life time series analysis in one way or another. E.g., in [16], a
hybrid approach of fuzzy logic, fractal dimension, and a neural network are used to make
predictions of time series. In [17], several indices of emerging economics are examined
using the Hurst exponent and the fractal dimension, thus indicating a long term memory in
the time series data, and afterward are forecast using machine learning methods.

The reason for this relatively low number of 18 combined applications of machine
learning and chaos theory for time series analysis is most likely to be found in the education
of computer scientists. Most modern computer scientists are trained in math and physics,
but the study of complex systems (chaos theory) is, in most cases, not part of the curriculum.
Therefore this survey aims to get computer scientists working with artificial intelligence in
touch with ideas from the study of complex systems to boost their research. Consequently,
we want to find out what combinations have already been successfully implemented in
combination with machine learning, where one approach can benefit from the other, and
how the combined approaches can be categorized. We focus on the discussed complexity
measures and only briefly discuss the corresponding machine learning algorithms.

Finally, we highlight possible contributions of a combined approach:

• One may save computational resources due to a clever feature selection based on a
data’s inherent complexity.

• Machine learning results can be checked not only on their accuracy but also on
the algorithms capability to reconstruct the characteristics of the original data, thus
providing a more profound check for generalization of a trained model.

• Additional complexity-based features can improve the accuracy of the model.
• The complexity of the data under study can be used to alter and improve the archi-

tecture of the employed algorithm, e.g., adapt the number of input nodes of a neural
network to the long-term memory of the data.
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• Complexity measures provide additional arguments for analysis, e.g., why is an
algorithm not capable of long-term predictions on a specific data set.

• Complexity measures provide a tool to identify regions of predictability and/or non-
predictability within a data set. E.g., given financial data, the inherent complexity may
be used to identify volatile non-predictable periods.

• Complexity measures can be used as a filter for predictions to improve machine
learning ensemble approaches [18].

This article is structured as follows:
In Section 2, we explain the employed approach to search and find relevant publica-

tions. Further, we explain how we extracted and concluded the information from all listed
publications. Section 3 gives the list of all publications that were used for this research and
briefly summarizes the approach taken. We provide all complexity measures used in the
featured publications in Section 4 and refer to where they were used. Section 5 lists all
machine learning approaches and links them to the publications and the used complexity
measures. We finally conclude our findings in Section 6 and sort all publications into
six types of approaches for combining machine learning and complexity measures for
time series data. Further, we give some ideas on future combinations and applications
of machine learning and complexity measures. We also added a table summing up our
findings, which can be found in Appendix B.

2. Methodology

For this review we performed an online search on google scholar. We searched for the
following key words:

The following two lists give the range of search strings which we combined to yield
the list of publications from Section 3.

Search strings to indicate machine learning/artificial intelligence:

• Machine Learning
• Artificial Intelligence
• Neural Network
• RNN or Recurrent Neural Network
• LSTM or Long Short Term Memory
• ANN or Artifical Neural Network
• SVM or Support Vector Machines

Search strings to indicate methods from chaos theory:

• Chaos
• Hurst Exponent
• Chaotic
• Fractal
• Fractal Dimension
• Lyapunov Exponent
• Entropy

Further, we added the words time series, forecast, and prediction to target time series
data applications specifically.

Exclusion Criteria

The previously mentioned search strings (or the combined search strings) yielded
many publications which had to be filtered. Thus, we used the following criteria to
guarantee a focused review process. We excluded all publications that:

• Did not specifically deal with time-series data.
This is necessary as most measures of signal complexity, e.g., the Hurst exponent, the
spectrum of Lyapunov exponents, etc., deal with time-series data only.

• Mentioned, but did not employ whether machine learning techniques or ideas from
chaos theory and/or complexity measures. i.e., no application was shown.
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• Deal only with theoretical implications of a combination of the mentioned techniques,
i.e., without an actual application and results.

• Included time series classification tasks, e.g., a time series data was classified as a
certain behavior.

• Aimed to calculate the complexity of a signal using a machine learning or neural
network approach.

• Analyzed only model data or artificial data.
• Included phase space reconstruction approaches, such as methods to find a time

series’s embedding dimension or time delay. (Note that for some complexity measures
it is necessary to find a suitable phase space embedding, thus an embedding dimension
and a suitable time delay. However, as we focus on the complexity measures, we did
not include articles that only did a phase space reconstruction.)

Section 3 shows the remaining results that we chose for this review.
We next analyzed all used complexity measures and machine learning algorithms.

We briefly explain the basic idea, and in terms of the complexity measures, describe how
they are used in combination with machine learning approaches. Here our focus is on
explaining the employed complexity measures and not the machine learning approaches.
Still, we briefly discuss the employed machine learning approaches but refer to the men-
tioned sources for each algorithm for an in-depth treatment of the subject. Thus, we sort
all featured publications by the employed complexity measures, their machine learning
approaches, and lastly, according to their approach on combining complexity measures
and machine learning. Finally, we discuss some future ideas.

3. Relevant Publications

There are several applications of complexity measures to machine learning. Here
we give an overview of applications, results and discuss the applied techniques. For this
reason 18 publications, combining machine learning and chaos theory are listed.

1. Ref [19]: A back-propagation neural network is used to capture the relationship be-
tween technical indicators and of the index in the market under study over time. Using
the neural network, one can achieve better results than conventional ARIMA(Auto-
Regressive Integrated Moving Average) models. R/S analysis is used to identify if
Kuala Lumpur Composite Index (KLCI) is a random process or if it features long-term
memory. A Hurst exponent indicates a long memory effect. Afterward, the time series
is scrambled, and a new Hurst exponent calculated, which is significantly lower. This
supports the thesis for KLCI to have a long-term memory.

2. Ref [16]: This research analyzes U.S./Mexico exchange rates for their predictability
using different methodologies. The time series is clustered into several pieces. For
each piece, the fractal dimension is calculated. Then fuzzy membership functions for
fractal dimension, position, and the geometry of the sub-series are defined. Based
on this, predictions are made using fractal-enhanced fuzzy logic and compared to
neural network predictions. Here neural networks seem to work better on short-term
predictions, but the fuzzy logic approach performs better in the long term.

3. Ref [20]: A layered back-propagation artificial neural network model with feedback
connection was used for the study of the solar wind magnetosphere coupling and
prediction of the geomagnetic Dst index. The local Hölder exponent, α, was used to
analyze local scaling and singularity properties. The multifractality of the observed
fluctuations led to α changing from point to point. The local Hölder exponent was
added to the input layer of the neural network resulting in superior performance
compared to an approach without the local Hölder exponent.

4. Ref [21]: The Nikkei stock prices over 1500 days are analyzed and predicted using
fractal analysis, i.e., Hurst exponent, fractal dimension, and auto-correlation coefficient.
The fractal dimension and the Hurst exponent show that the discussed time series follows
a persistent behavior and can, therefore, be forecast theoretically. The fractal analysis
also showed that data for three days provided the strongest correlation and, therefore,
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declared 3 and 5 input nodes. The results showed that the error is significantly lower
for three input nodes than for five, and the training could be done using fewer training
epochs.

5. Ref [22]: Here, it is stated that time series with a larger Hurst exponent can be predicted
more accurately by back-propagation Neural Networks than those with H values
close to 0.5. The Hurst exponent for all 1024 trading day periods of the Dow-Jones
index from 2 January 1930, to 14 May 2004, is calculated and analyzed. Periods with
large Hurst exponent can be forecast with higher accuracy than those with low accuracy.
The results suggest that the Hurst exponent can be used to guide data selection before
forecasting. Furthermore, the embedding dimension of the time series under study
and the corresponding time delay calculated via minimal mutual information were
used to set the input nodes for the neural networks, i.e., The embedding dimension
defined the number of input nodes, and the time delay defined the separation between
the time steps fed into the neural network. This idea is based on Taken’s theorem for
phase space reconstruction.

6. Ref [23]: Stock market closing prices were predicted using an enhanced evolution-
ary artificial neural network model (EANN).R/S analysis was used to calculate the
Hurst exponent for different scales in the range of [3, 50] for each time series. The
reason for doing this for different sizes of subsets is that one identifies the length of
maximal persistency, i.e., the size of subsets where the averaged Hurst exponent is
maximal. The experiment shows that when finding the scale with the maximal Hurst
exponent, deviations from that scale shift H towards 0.5, meaning that information on
persistency in the time series diminishes when observing other scales. Though those
Hurst-exponent-based models did not outperform the regular EANN models, when con-
sidering trading strategies using the Hurst-exponent-based models, the average returns
are higher than for other models. One interpretation is that the Hurst-based models
capture essential information about upward/downward trends in the time series.

7. Ref [24]: According to the efficient market hypothesis, stock prices follow a random
walk pattern and can not be predicted with high accuracy. In this research, the Dow
Jones Industrial Average is analyzed for its predictability and complexity. Using
the Hurst exponent, one can identify if a time series is a random walk process or
features long-term memory. Here the Hurst exponent is used to identify regions in
a time series that have non-random characteristics, i.e., H 6= 0, 5. In these regions,
predictions are made using artificial neural networks, decision trees, and k-nearest
neighbor approaches. Using these techniques and ensembles, accuracy up to 65% was
achieved. Further, the embedding dimension and the time delay of the data under
study were calculated to alter the architecture of the algorithm, i.e., adapt the input to
the characteristics of the supposed underlying complex system.

8. Ref [25]: Many different chaotic time-series predictions are made using a NARX
(Nonlinear Autoregressive model process with eXogenous input) dynamic recurrent
neural network. The analyzed time series are Chaotic Mackey-Glass time series,
Fractal Weierstrass time series, and BET time series (average of daily closed prices
for nine representatives, most liquid listed companies at the Bucharest Stock Market).
The Hurst exponent with H 6= 0, 5 suggests that all three time-series are predictable.
For the first two, NARX neural networks perform very well, but for the third, despite
having a high Hurst exponent, it worked not as well as for the others. The reason for
this is that the third is the only real-life time series featured in the selection.

9. Ref [26]: The fractal dimension of data sets is used to select features to make predictions
with. Afterward, Support Vector Machines (SVM) are used to make predictions. A
total of 19 features is used to forecast The Shanghai Stock Exchange Composite Index
(SSECI). Using fractal feature selection, this number is reduced to distinguish between
"noise" and relevant data to predict future behavior. The results show that higher
accuracy is achieved when fractal feature selection is applied. Further, fractal feature
selection outperforms five other feature selection methods.
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10. Ref [27]: Different AI methodologies, i.e., random forest, neural networks, and Fuzzy
Inductive Reasoning (FIR), are proposed to perform short-term electric load forecast-
ing (24h). A feature selection process based on Shannon entropy is used to reduce the
number of features fed into the learning algorithms. FIR outperformed the random
forest and neural network approaches.

11. Ref [28]: Several stock indices of developed and emerging markets are examined if
they sport a long-term memory or follow a more random behavior. Rescaled range
analysis is performed to calculate the Hurst exponent and the fractal dimension of those
markets. The fractal analysis shows that those markets show persistence and can,
therefore, theoretically be forecast. Afterward, machine/deep learning methods, i.e.,
adaptive neuro-fuzzy inference system, dynamic evolving neuro-fuzzy inference
system, Jordan neural network, support vector regression, and random forest, are
used to forecast further market development. The results show that these data sets
can effectively be forecast, and random forest performed best in this study.

12. Ref [17]: A framework for forecasting exchange rates is presented. Different exchange
rates are investigated using R/S analysis, the Hurst exponent, and the fractal dimen-
sion of time series, thus showing persistent behavior in the considered time series
data. Afterward, the time series data are decomposed into wavelets and predicted
using Random Forest and a bagging-based decision tree algorithm. The results show
that both approaches performed well for the task at hand.

13. Ref [29]: The scope of this paper is to verify the existence of a relationship between
long-term memory in fractal time series and the accuracy of neural networks to
forecast them. Brazilian financial assets traded at BM&FBovespa, specifically public
companies shares and real estate investment funds, were considered, and their long-
term memory was estimated using R/S analysis and the Hurst exponent. Time lagged
feedforward neural networks with back-propagation supervised learning process
and gradient descent for error minimization were used to predict future prices. The
study shows that one can achieve higher returns when considering time series with
higher Hurst exponent and leaving out anti-persistent time series, i.e., data with a
Hurst exponent H < 0.5.

14. Ref [30]: This research aims to predict stock market data, i.e., seven different recog-
nized indexes, using three different neural network architectures, i.e., a feed-forward
neural network, a cascade forward neural network, and learning vector quantiza-
tion. Further, wavelet entropy and the Hurst exponent of the data under study are
calculated for analysis and as an additional feature to be fed into the algorithms. The
results show that the additional features improved the accuracy of the predictions.

15. Ref [31]: Eight different stock indices were analyzed and predicted using Hurst
exponent , Shannon entropy, and Rényi entropy . Furthermore, the data was augmented
using linear interpolation to generate more data points between actual data points.
The final data set consists of eight stock indices, where for each of the indices, the
features Open, High, Low, Close, Hurst exponent, Shannon entropy, Rényi entropy
were considered. This generated an overall data set with 56 features. Then the whole
dataset was normalized using the min-max normalization method, thus resulting in
a total of 150 features. Predictions were made using Multi-Layer Regression (MLR),
Support Vector Regression (SVR), and Feed Forward Back Propagation models. All
models were tested using a different assemble of Hurst exponent,Rényi entropy, Shannon
entropy components. The results show that the Hurst exponent component is crucial for
making good predictions. The best results were obtained when using Feed Forward
Back Propagation and including all three complexity features, i.e., Hurst exponent,
Rényi entropy, Shannon entropy.

16. Ref [32]: Here, different approaches to predict the direction of US stock prices are
compared with each other. Several algorithms were employed for this task, i.e.,
logistic regression, a multilayer perceptron (MLP), random forest, XGBoost, and a
long short term memory (LSTM) recurrent neural network. Furthermore, effective
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transfer entropy (ETE) is calculated for analysis and as an additional feature to be
fed into the algorithms. The results show that the predictions could be improved
by adding ETE to the input and, second, that LSTM and the MLP perform best for
this task.

17. Ref [7]: A fractal interpolation method is compared to a linear interpolation method
to improve neural network time-series predictions. The fractal interpolation method
uses the Hurst exponent to match the complexities of given sub-intervals of the
time series data under study. Further, the neural network architecture is a Long
Short Term Memory (LSTM) recurrent neural network. Furthermore, all results
and data are analyzed using the Hurst exponent, the fractal dimension, and the
spectrum of Lyapunov exponents. The results show that neural network predictions
can significantly be improved using both linear and fractal interpolation techniques.

18. Ref [33]: The fractal interpolation method from [7] is used on a total of five datasets,
with varying numbers of interpolation points. Further, these five data sets are then
forecast using randomly parameterized ensembles of LSTM neural networks. These
randomly parameterized ensemble predictions are then filtered using different com-
plexity measures: The Hurst exponent, the spectrum of Lyapunov exponents, Fisher’s
information, SVD entropy and Shannon’s entropy. The predictions could be improved
by filtering the ensemble predictions. Further, the predictions outperformed baseline
predictions using LSTM, GRU and RNN neural network approaches with one hid-
den layer. Further, all interpolated data sets are also analyzed using the previously
mentioned complexity measures.

4. Complexity Measures

This section lists all complexity measures used in the discussed publications (Section 3),
gives additional references and mentions how the complexity measures are used in combi-
nation with machine learning.

A table briefly summarizing and comparing the featured complexity measures can be
found in Appendix A.

4.1. The Hurst Exponent

The rescaled range analysis (R/S analysis), as invented by Harold Edwin Hurst [34],
is the procedure of determining the Hurst exponent “H” of time series data. The Hurst
exponent is a measure of the long-term memory of a time series or a process.

As we only outline the main aspects of R/S analysis, we refer to [34,35] for a detailed
discussion of the topic.

For a given a signal [x1, x2, . . . , xn], we find the the average over a period τ (a sub-
interval of the signal 1 ≤ τ ≤ n) as:

〈x〉τ,k =
1
τ

k+τ

∑
j=k

xj , (1)

where 1 ≤ k ≤ n for all elements i in this interval such that k ≤ i ≤ k + τ.
We further find an accumulated departure δx(i, τ, k) over period a period i = 1, 2, . . . , τ is:

δx(i, τ, k) =
i

∑
j=k

(
xj − 〈x〉τ,k

)
(2)

The difference between maximal and minimal values of all xi in the interval [k, k + τ], i.e.,
the range R of this interval τ is:

R(τ, k) = max[δx(i, τ, k)] − min[δx(i, τ, k)] ,

satisfying k ≤ i ≤ k + τ .
(3)
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The standard deviation for each sub interval is given as:

S(τ, k) =

√√√√ 1
τ

k+τ

∑
i=k

[
xi − 〈x〉τ,k

]2
. (4)

Averaging the range and the standard deviation over all possible k yields:

R(τ) =
∑k R(τ, k)

nk

and

S(τ) =
∑k S(τ, k)

nk
,

(5)

where 1 ≤ k ≤ n, k ≤ i ≤ k + τ and nk is the number of different ks. The Hurst exponent H
is then defined using the scaling properties as:

R(τ)
S(τ)

∝ τH , (6)

The asymptotic behavior [34,36], for any independent random process with finite variance
is then given as:

R(τ)
S(τ)

=
( π

2v
τ
) 1

2 , (7)

thus implies H = 1
2 . However, this is only true for completely random processes. For

real-life data, we expect H 6= 1
2 , as real-life processes usually feature long-term correlations.

The value of H varies as 0 < H < 1. A value of H < 0.5 indicates anti-persistency,
i.e., low values follow on high values and vice versa, thus heavily fluctuating, but not
completely random. Values close to 0 indicate very strong anti-persistency. Contrarily, for
values of H > 0.5 we expect persistent behavior and very strong persistency for values
close to 1.

When it comes to combined applications with machine learning and R/S Analysis/the
Hurst exponent, we find the following publications:

Ref [19]: In this research, the Hurst exponent was used to show long term memory in
time series data as an argument for its predictability when using artificial neural networks
for stock market data prediction.

Ref [21]: Here, the Hurst exponent was used to estimate the predictability of stock
market data, and later to tailor the input nodes of a neural network architecture.

Ref [23]: For this study on stock market data predictability, the Hurst exponent was
used to set the input window of an evolutionary neural network architecture.

Ref [22]: Here, it was shown that time-series data with a larger Hurst exponent can
be predicted more accurately using an artificial neural network than data with a Hurst
exponent closer to 0.5.

Ref [24]: In this research, the Hurst exponent was used to identify regions in stock
market data with higher predictability for several different machine learning approaches.

Ref [25]: Here, the Hurst exponent is used as a measure for the predictability of
machine learning approaches.

Ref [17]: The researchers used the Hurst exponent to reject the random walk hypothesis
of stock market data and as a measure for predictability.

Ref [28]: The researchers used the Hurst exponent to reject the random walk hypothesis
of stock market data and as a measure for predictability.

Ref [29]: Here, the Hurst exponent was used to identify time series or regions with
higher predictability to improve forecasts.

Ref [31]: Here, the Hurst exponent is used as an additional feature in the input of the
employed algorithms to improve forecasts.
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Ref [30]: Here, the Hurst exponent is used as an additional feature in the input of the
employed algorithms to improve forecasts.

Ref [7]: Here, the Hurst exponent is used to, first, match a fractal interpolation to a
data set and second, to analyze all data under study.

The Hurst exponent is used in [33] to filter LSTM ensemble predictions and to discuss
all data under study.

4.2. Fractal Dimension of a Time-Series

The fractal dimension of a time series measures the complexity of a signal. The basic
idea is can be understood as the area inhabited by the time series on a two-dimensional
plane, i.e., the time series being placed upon a grid of equal spacing and checking the
number of grid boxes necessary for covering it. Therefore, the fractal dimension is the ratio
of the boxes covering the time series and the overall area of the plot. This process is referred
to as box-counting. It has also been characterized as a measure of the space-filling capacity
of a time series that tells how a fractal scales differently from the space it is embedded in; a
fractal dimension does not have to be an integer. The fractal dimension of a self-affine time
series can have values 1 < D < 2.

Additionally, the fractal dimension is closely related to the Hurst exponent [21,37–39].
Therefore R/S analysis can be employed to calculate the fractal dimension of a time series us-
ing:

D = 2 − H . (8)

This originates from the fact that the long-range dependence (∼H) is closely related to
self-similarity (∼D), and therefore the variability of the process.

Other ways to calculate the fractal dimension are the algorithm by Katz [40]; the
algorithm by Higuchi [41]; and the algorithm by [42].

In [16], the fractal dimension is used as an additional feature for a fuzzy-logic-based
forecasting technique, i.e., the fractal dimension is included when making the rules. Fur-
thermore, a novel approach to calculate the fractal dimension of a geometric object, based
on fuzzy logic is presented.

Ref [21]: This research employs the fractal dimension, alongside the Hurst exponent,
of the time series under study to identify the best number of input nodes for a neural
network. Further, the fractal dimension and the Hurst exponent are used to show that the
time series under study is a non-random process that can in-theory be predicted.

In [26], the fractal dimension is used, together with an ant colony algorithm, as a tool
for feature selection in a stock trend time series prediction task.

In [28], the fractal dimension, alongside the Hurst exponent, is used to indicate
predictive behavior instead of a purely random behavior of the considered stock market
data. Furthermore, Joseph’s effect and Noah’s effect are considered and discussed [43].

Ref [17]: Just as above, the fractal dimension, alongside the Hurst exponent, is used
to show that the considered stock market data can in-theory be predicted. Furthermore,
Joseph’s effect and Noah’s effect are considered and discussed [43].

Ref [7]: The fractal dimension alongside other complexity measures is used to analyze
the data under study and the presented fractal interpolated data and how this relates to a
neural network time series approach.
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4.3. The Local Hölder Exponent

Following [20,44,45]:
Given a signal xi = [x1, x2, . . . , xn], we find the corresponding amplitudes as:

x̂i =
xi√

∑n
i=1 x2

i

such that:
n

∑
i=1

x̂2
i = 1 . (9)

Next, very similar to R/S analysis, find windows or periods as (i− τ, i) and the corre-
sponding signal energies as:

Ei,τ =
i

∑
i−τ

x̂2
i . (10)

Next we find the local Hölder or singularity exponent as:

αi(τ) =
log(Ei,τ)

log(τ)
. (11)

Similar to the Hurst exponent or Fractal dimension, the exponent α quantifies degree of
regularity or irregularity (singularity) in a distribution or a function at a point i for different
possible window lengths τ, i.e., calculated via regression analysis.

Furthermore, for monofractal process, e.g., fractional Brownian motion, alphai will be
constant for all i, where for the case of multi-fractal processes, alpha changes from point to
point, thus also provides a measure for the fractal behavior of time series data.

Ref. [20]: In this research the local Hölder exponent was used, first o analyze the data
under study, and second as an additional input feature to improve predictions.

4.4. Transfer Entropy (TE) and Effective Transfer Entropy (ETE)

Following [32,46,47]:
TE is used to measure the Granger-causal relationship between two processes, thus it

can detect a non-linear Granger-causal relationship and is used in various disciplines, such
as neuroscience and finance.

For two interacting time series X and Y, i.e., a variable Y can affect the future time
point of the variable X. Then, if we consider the time series X to be Markov process of
degree k, the state xi+1 is thus affected by k previous states of the same variable:

p(xn+1| xn, xn−1, . . . , x0 ) = p(xn+1| xn, xn−1, . . . , xn−k+1 ), xi ∈ X. (12)

Here p(A| B ) is a conditional probability of A given B, thus p(A, B)/p(B). Further, the
state xn+1 depends on l previous states of Y, then we define the TE from a variable Y to
a variable X as the average information included in Y excluding the information from
the past state of X to the next state of X. Thus, employing Shannon’s entropy concept
(see Section 4.6), we can define the TE from Y to X, where the state xn+1 is affected by k
previous states of X and l previous states of Y, as:

TE(k,l)
Y→X = ∑

i
p
(

xn+1, x(k)n , y(l)n

)
log2 p

(
xn+1

∣∣∣ x(k)n , y(l)n

)
−∑

i
p
(

xn+1, x(k)n , y(l)n

)
log2 p

(
xn+1

∣∣∣ x(k)n

)

= ∑
i

p
(

xn+1, x(k)n , y(l)n

)
log2

p
(

xn+1

∣∣∣ x(k)n , y(l)n

)
(

xn+1

∣∣∣ x(k)n

) .
(13)

Here the index i refers to i = {xn+1, x(k)n , y(l)n }, whereas x(k)n = (xn, xn−1, . . . , xn−k+1)

and y(l)n = (yn, yn−1, . . . , yn−l+1) and p(A, B) is the joint probability of A and B.
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Setting k = l = 1 to express the weak form of the efficient market hypothesis (when
applied to financial data), i.e., the current price reflects all past information, we find TE as:

TEY→X =∑
i

p(xn+1, xn, yn) log2
p(xn+1| xn, yn )

p(xn+1| xn )

=∑
i

p(xn+1, xn, yn) log2
p(xn+1, xn, yn)p(xn)

p(xn+1, xn)p(xn, yn)

(14)

and again i = {xn+1, xn, yn}.
Summed up, we can interpret TEY→X as the difference between the information

for future values of X obtained from X and Y and the information for future values of X
obtained only from X. Thus, a positive value of TEY→X indicates that Y affects future values
of X; also, the larger the value, the more significant the information flow. Furthermore,
because of its asymmetric properties, we can view TEY→X as the in-flow information from
Y to X, and contrary to that, TEX→Y as the out-flow information from X to Y.

Effective Transfer Entropy

TE measures a statistical dependency between two signals X and Y regardless of
the data type. For TE to be calculated, a large amount of data is necessary. Another
disadvantage is that TE includes noise from sample effects or the non-stationarity of
the data set under study. To solve the noise issue, one can employ Effective Transfer
entropy (ETE) [47]. To calculate ETE, one must first shuffle the elements of each time series
understudy to keep the inherent probability distribution but break any causal relationships
and dependencies. Then one obtains the TE from these randomized time series data, thus
referred to as Randomized Transfer Entropy (RTE). The final step to determine ETE is then
to subtract RTE from the original TE.

ETEY→X = TEY→X − RTEY→X . (15)

Here it is recommended to perform this process, starting with generating randomized time
series data several times and average all obtained ETEs.

In [32], ETE is used to enhance the prediction of the direction of US stocks using a
variety of different algorithms/approaches. Here it is used as an additional feature in the
input of the algorithm.

4.5. Rényi Entropy

Following [48]: Rényi entropy is one of the families of functionals for quantifying
diversity, uncertainty and randomness of a system. The Rényi entropy of order q is defined
for q ≥ 1 (for q→ 1 as a limit) by:

Sq(X) =
1

1− q
logb

m

∑
i

pq
i , (16)

where X is a discrete random variable, pi is the probability of the event {X = xi}, and b is
the base of the logarithm. If the probabilities are all the same then all the Rényi entropies of
the distribution are equal, with Sq(X) = logb m. In any other case, the entropies are weakly
decreasing as a function of q. Higher values of q, approaching infinity, give the Rényi entropy
which is increasingly determined by consideration of only the highest probability events.
Lower values of q, approaching zero, give the Rényi entropy which increasingly weights all
possible events more equally, regardless of their probabilities.

Rényi entropy, and its alterations (different values of q), is one of the families of
functionals to quantify the diversity, uncertainty, or randomness of a given system. Ref [31]
uses Rényi entropy as an additional feature as input for the employed algorithms to
improve predictions.
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Related Complexity Measures

Taking into account the formal framework given above one can then find further
generalizations and/or special cases [48]:

• Hartley entropy or max-entropy:
The Hartley or max-entropy is Rényi for q = 0

• Shannon’s entropy:
Shannon’s entropy is Rényi entropy with q = 1. See Section 4.6.

• Collision entropy:
Rényi entropy with q = 2 is called collision entropy.

• Min-entropy:
In the limit q→ ∞, the Rényi entropy converges to the min-entropy [49].

• Kolomogorov-Sinai entropy:
Another closely related entropy measure is the Kolomogorov-Sinai entropy. Here x(t)
is the trajectory of the dynamic system in an n-dimensional phase space with time
intervals ∆t, t > 0. According to [48] the generalized Kolmogorov-Sinai entropy Kq is
then defined as:

Kq(xi) = − lim
r→0

lim
∆t→0

lim
N→∞

1
N ∆t

1
q− 1

logb

m(r)

∑
i1,i2,...,iN

pq
i1,i2,...,iN

, (17)

where the phase space is divided into n-dimensional hypercubes of side r and xi =
x(t = i∆t). The pi1,i2,...,iN is the joint probability that the trajectory x(t = ∆t) is in the
box i1, x(2∆t) is in the box i2, and x(t = N∆t) is in the box iN .
The Rényi entropy is a special case of the Kolmogorov-Sinai entropy, i.e., for a finite time
interval (N∆t = 1), and for the probability that is not changing with the cell diameter
(m(r) = const., pi1,i2,...,iN=pi ).

4.6. Shannon’s Entropy

Given a signal [x1, x2, . . . , xn] we then find the probability to occur for each value
denoted as P(x1), . . . , P(xn), thus we formulate Shannon’s entropy [50], as:

HShannon = −
n

∑
i=1

P(xi) log2 P(xi) . (18)

giving units as bits, as the base of the logarithm is set to 2. Shannon’s entropy is a measure
for the uncertainty of a (random) process/signal.

For related complexity measures, see Section 4.5.
Ref [27] uses Shannon’s entropy first to analyze the data under study and second as a

tool for feature selection to improve predictions.
Ref [31] uses Shannon’s entropy as an additional feature in the input for the employed

Machine Learning algorithms to improve predictions.
Shannon’s entropy is used in [33] to filter LSTM ensemble predictions and to discuss

all data under study.

4.7. Wavelet Entropy

Following [51–53]: Wavelet analysis introduces an appropriate basis and character-
ization of a signal by a distribution of amplitudes in the bass. Furthermore, one would
construct this basis as an orthogonal basis, which has the advantage that arbitrary functions
can be uniquely decomposed and recomposed, i.e., the decomposition can be inverted.

A family of wavelet packets can be understood as elemental signals obtained from ap-
propriate linear combinations of wavelets, i.e., the wavelets constitute the signal. Wavelets
are locally-oscillating forms of sines and cosines, i.e., they have a good localization on both
frequency and time.
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We can find a wavelet family ψa,b(t), where t is the time, as the set of elementary
functions generated by a mother wavelet ψ(t):

ψa,b(t) = |a|−
1
2 ψ

(
t− b

a

)
. (19)

Here a, b ∈ R and a 6= 0 are the scale/dilation and translation parameters, respectively.
We can then find two cases of wavelet transforms: The continuous wavelet transform

(CWT) and the discrete wavelet transform (DWT). Both act on a signal x(t) ∈ L2(R) (the
space of real square sumable functions).

The CWT of a continuous signal x(t) is defined as the correlation between the function
x(t) and the wavelet family ψa,b(t) for each a and b:

T(a, b) =
1√
a

∫ ∞

−∞
dt x(t)ψ∗

(
t− b

a

)
, (20)

where ψ∗(t) is the complex conjugate of the analyzing wavelet function ψ(t).
The DWT of a continuous signal x(t) ∈ L2(R) is found by first discretizing the wavelet

family:

ψm,n(t) =
1√
am

0
ψ

(
t− nb0am

0
am

0

)
. (21)

Here, contrary to the CWT, we find two integer parameters m, n which control the scale/dilation
and translation, respectively. For the fixed dilation and location step parameters a0 and b0
we further find find the conditions a0 > 1 and b0 > 0. Here a common choice is a0 = 2 and
b0 = 1, which is referred to as dyadic grid scaling. From now on we will use ψm,n with the
dyadic grid scaling as:

ψm,n(t) = 2−
m
2 ψ
(
2−mt− n

)
. (22)

Whereas this constitutes an orthonormal basis of L2(R) of finite energy signals.
Next we assume the signal be given by sampled values, i.e., x(t) = {x1, x2, . . . , xM}.

If we now carry out the decomposition over all resolution levels, i.e., with N = log2(M),
we find the wavelet expansion as:

x(t) =
−1

∑
m=−N

∑
n

Cm(n)ψm,n(t) =
−1

∑
m=−N

rm(t) . (23)

Here we interpret wavelet coefficients Cj(k) as the local residual errors between successive
signal approximations at scales j and j + 1, and we thus call rj(t) the residual signal at scale
j.

As the {ψm,n(t)} are an orthonormal basis for the space L2(R) we find the concept
energy derived the same way as in Fourier theory as:

Em = ‖rm‖2 = ∑
n
|Cm(n)|2 , (24)

with the corresponding energy at each sample time step n:

E(n) =
−1

∑
m=−N

|Cm(n)|2 . (25)

The total energy thus is:

Etot = ∑
m<0

∑
n
|Cm(n)|2 = ∑

m<0
Em . (26)
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We can then find the total wavelet entropy SWT and the corresponding relative wavelet
energy pm as:

SWT
.
= SWT(p) = − ∑

m<0
pm · ln(pm) , where pm =

Em

Etot
. (27)

Wavelet entropy is a measure of the order/disorder of a signal. Thus, it provides informa-
tion about the corresponding dynamics and processes involved. This is because Shannon’s
entropy idea, which for the wavelet entropy is used to analyze the different relative wavelet
energies, gives a measure of the corresponding information of any distribution.

An ordered process can be interpreted as a periodic mono-frequency signal, thus
having a narrow band spectrum. A wavelet representation of such a signal will almost
entirely be resolved in one unique resolution level, i.e., all relative wavelet energies, but one
will be almost zero. The non-zero one is thus the level that includes the representative signal
frequency. For a signal like this, the corresponding wavelet entropy will be almost zero.

On the other hand, a random process would thus generate a very disordered signal.
We expect a signal like this to have wavelet representations from all frequency bands.
Further, one would expect these contributions to be of a similar order, much like the scaling
seen in R/S analysis of a fractional Brownian motion. Thus, wavelet entropy will have its
maximal values for signals like this.

In [30], wavelet entropy is used as an additional feature in the input for the employed
algorithms to improve predictions.

4.8. Lyapunov Exponents of Time Series Data

The spectrum of Lyapunov exponents measures a system’s predictability depending
on given initial conditions. For experimental time-series data, i.e., no different trajectories
but only a single time series data, it still can be interpreted as a measure for predictabil-
ity [54].

A Lyapunov exponent is a measure of exponential divergence, if, for a Lyapunov
exponent λ, λ > 0 and convergence, if λ < 0, respectively. A system embedded in an
m-dimensional phase space has m Lyapunov exponents. A higher value of a Lyapunov
exponent corresponds to lower predictability, i.e., a higher degree of chaos. In general,
a positive Lyapunov exponent indicates chaos [9], thus in most cases, it is enough to
calculate the first Lyapunov exponent, i.e., the first and largest exponent of the whole
spectrum. A system that has more than one positive Lyapunov exponent is referred to as
hyperchaotic [55].

There is a range of algorithms/approaches to calculate the spectrum of Lyapunov
exponents or just the largest Lyapunov exponent from a time series data, the interest reader
thus is referred to [54,56–61]. However, discussing each of these approaches and their
similarities/differences is not within the scope of this article. To get an idea on how to
calculate Lyapunov exponents from time series, we discuss the algorithm by [57], as it is a
practical and very understandable approach to estimate the largest Lyapunov exponent of
a signal.

Given a signal xi = [x1, x2, . . . , xn] we find a reconstructed phase space (We note that
we excluded articles dealing with phase space reconstruction in particular, but, because
we focus on the spectrum of Lyapunov exponents as a measure for signal complexity, we
neglect this discrepancy.):

Xτ
m(i) =

[
xi, xi+τ , . . . , xi+(m−1)∗τ

]
, (28)

with time delay τ and an embedding dimension m. The time delay can be found via
the method of average mutual information from [62] and the False Nearest Neighbours
algorithm [63] can be used to determine the embedding dimension.
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The algorithm from [57] looks for the nearest neighbor of each point on the trajectory,
the corresponding Euclidean distance d(0) between two such neighboring points at instant
0 is defined as:

di(0) = minXτ
m(j)d(Xτ

m(j), Xτ
m(i)) . (29)

Thus, one finds the initial distance from the jth point to its nearest neighbor. Further, this
algorithm is constrained, such that the nearest neighbors have a temporal separation which
is greater than the mean period of the time series. The estimated largest Lyapunov exponent
λ1 then is the mean rate of separation of these nearest neighbors and is obtained from:

dj(i) ≈ Cjeλi(∆t) , (30)

with Cj being the initial separation. Taking the logarithm thus yields:

ln
(
dj(i)

)
= ln

(
Cj
)
+ λ1i(∆t) , (31)

where ∆t is the sampling period of the time series. The corresponding distance dj(i)
describes the distance between the jth pair of nearest neighbors after i discrete time steps.
This can be interpreted as a set of approximately parallel lines, whereas the corresponding
slope is roughly proportinal to the Largest Lyapunov Exponent λ1. The largest LYapunov
exponent is then estimated using a least-squares fit to an averaged line defined as:

y(i) =
1

∆t
〈
ln
(
dj(i)

)〉
. (32)

Here 〈·〉 is the average over all values of j. This averaging allows an accurate evaluation of
λ for short and noisy data.

In [7], the spectrum of Lyapunov exponents is used to analyze all the data under study,
and the corresponding fractal interpolated data sets.

The spectrum of Lyapunov exponents is also used as filters for LSTM ensemble
predictions in [33].

4.9. Fisher’s Information

As a measure of signal complexity, Fisher’s information is the amount of information
extracted from a set of measurements, i.e., the quality of the measurements [64]. Another
interpretation would be to use Fisher’s information to measure the order/disorder of
a system or phenomenon. It is further well suited to investigate non-stationary and
complex signals.

Given a signal [x1, x2, . . . , xn] we can find a discrete version of Fisher’s information.
Here, the first step is to construct embedding vectors:

~y(i) =
[

xi, xi+τ , . . . , xi+(dE−1)∗τ

]
, (33)

with a fixed time delay τ and a corresponding embedding dimension dE. The so constructed
embedding space, as a matrix, is:

Y = [~y(1),~y(2), . . . ,~y(N − (dE − 1)τ)]T . (34)

The next step then is to perform a single value decomposition on this matrix [65]. This
yields a total of M singular values σ. We can then find normalized singular values as:

σ̄i =
σi

∑M
j=1 σj

. (35)

Finally, Fisher’s Information then is:

IFisher =
M−1

∑
i=1

[σ̄i+1 − σ̄i]
2

σ̄i
. (36)
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As given above, Fisher’s information requires two parameters, first the time delay, which
can be found using the calculation of the average mutual information from [62] for the time
delay and for the embedding dimension the False Nearest Neighbours algorithm [63] can
be used (There are more methods to determine a correct phase space embedding, but as a
phase space reconstruction is not the focus of this article we refer to the given ones as they
are the most famous ones.). Thus, constructing a phase space embedding of the signal.

Fisher’s information is used in [33] to filter LSTM ensemble predictions and to discuss
all data under study.

4.10. SVD Entropy

SVD entropy is an entropy measure based on a single value decomposition [65], of a
corresponding embedding matrix, thus similar to Fisher’s information (Section 4.9).

It can be used to assess the predictability of stock market data, as done in [66,67].
To calculate SVD entropy, one constructs an embedding space for a signal [x1, x2, . . . , xn]

with corresponding embedding vectors as [68]:

~y(i) =
[

xi, xi+τ , . . . , xi+(dE−1)∗τ

]
, (37)

with a corresponding embedding dimension dE and time delay τ. The time delay can be
found using the calculation of the average mutual information from [62] and the embedding
dimension can be found by employing the False Nearest Neighbours algorithm [63] (There
are more methods to determine a correct phase space embedding, but as a phase space
reconstruction is not the focus of this article we refer to the given ones as they are the most
famous ones.). Thus, constructing a phase space embedding of the signal, represented by
a matrix:

Y = [~y(1),~y(2), . . . ,~y(N − (dE − 1)τ)]T . (38)

The next step is then to perform a single value decomposition [65], on this matrix to get
M singular values σ1, . . . , σM, i.e., the singular spectrum. A corresponding normalized
spectrum of singular values is then found via:

σ̄i =
σi

∑M
j=1 σj

. (39)

And finally, using the concept of Shannon’s entropy (see Section 4.6) yields SVD entropy as:

HSVD =
M

∑
i=1

σ̄i log2 σ̄i . (40)

SVD entropy is used in [33] to filter LSTM ensemble predictions and to discuss all data
under study.

4.11. Some Honorably Mentions for Measures of Signal Complexity

Furthermore, we want to give a list of other complexity measures, that from the
authors’ point of view, make sense to be combined with machine learning approaches in
one of the discussed ways (see Section 6).

• Generalized Hurst Exponent:
The generalized Hurst exponents method is a tool to study the scaling properties of
the data, and it is a generalization of the approach from Section 4.1. Note that the
generalized Hurst exponent H(q), contrary to the regular Hurst exponent, depends on a
variable q, which means it is associated with the qth order moment of the distribution
of the increments [69].

• Generalized Fractal Dimension:
One can then find a connection between the Rényi entropy (see Section 4.5) and a
generalized fractal dimension Dq. Following [48]:
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Sq(r) = Dq logb r , (41)

where Sq(r) is the Rényi entropy of order q, whereas q ≥ 1 (for q → 1 as a limit). Dq
is the corresponding generalized fractal dimension of order q, b is the base of the
logarithm and r is the size of the cells of the embedding. For the generalized fractal
dimension, we thus compute the probability with which the data points fall into the
i-th cell.

• Approximate Entropy (ApEn):
Approximate entropy was initially developed by Steve M. Pincus to analyze medical
data [70] and afterwards adapted to general biologic network systems [71]. Later it
spread it’s applications into various fields including finance [72] and psychology [73].
The motivation for this is that many approaches to calculate the entropy of a time
series require huge data sets and cannot handle noisy data sets. ApEn assigns a non-
negative number to a time series, where larger values indicate a greater randomness
apparent in the process. From a statistical point of view, ApEn can be seen as an
ensemble parameter of process auto-correlation, i.e., smaller values correspond to
greater positive auto-correlation, larger values indicate greater independence.

• Sample Entropy (SampEn):
Like Approximate entropy, sample entropy is a measure of complexity [72]. The
difference to ApEn is that it does not include self-similar patterns and that it does not
depend on the length of the data set.

• Range Entropy (RangeEn):
The basic idea behind ApEn and SampEn is to calculate the Chebyshev distance
between two state vectors in the reconstructed m-dimensional phase space [74]. How-
ever, this is limited because these formulations do not have upper limits.

5. Machine Learning Methods

In this section, we briefly discuss the used Machine Learning approaches. Note
that, when we refer to machine learning approaches, we mean all sorts of data-based
prediction/regression/classification algorithms that occurred in the listed research, such as
k-nearest neighbors, Random Forest, Artificial Neural Networks, fuzzy Logic approaches,
etc. Further, as there was a significant amount of papers featuring neural network ap-
proaches with varying architectures, we collected all of the neural network approaches
together and again briefly discuss the employed architectures in the neural network context.

5.1. k Nearest Neighbours (kNN)

k nearest neighbours (kNN) [75] is a model-free algorithm for classification and
regression. Like the name says, values or classes are predicted based on the k nearest
neighbors, i.e., which class is dominant within these data points.

In [24], kNN, among other algorithms, is used to predict stock market data. Further,
R/S analysis is used to identify non-random regions within the data.

5.2. Decision Trees

Decision trees are an algorithm for classification and regression that can be understood
as that a tree-like structure to sort all occurring scenarios, thus containing only conditional
control statements [76]. In [24], Decision Trees, among other algorithms, are used to predict
stock market data. Further, R/S analysis is used to identify non-random regions within
the data.

5.3. Random Forest

Random Forest [77], is an ensemble learning method for classification and regression
analysis based on decision trees. The basic idea is to generate an ensemble of decision trees
using bagging and later combine the results. The Idea of Bagging is to train many weak
learners on the same data set and combine the result.
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In [27], Random Forest, among other approaches, is used for electricity load forecasting.
Furthermore, Shannon’s entropy is employed for feature selection.

Random Forest, among other algorithms, is used in [28] in conjunction with R/S
analysis to predict stock market movement.

Two similar Random Forest algorithms are used in [17] to forecast different exchange
rates. Furthermore, R/S analysis and the fractal dimension are used to analyze the data
for predictability.

Random Forest, among other approaches, is used in [32] to predict the direction of US
stocks. Here Effective Transfer entropy (ETE Section 4.4) is used as an additional feature to
improve predictions.

5.4. Tree Based Extreme Gradient Boosting (XGBoost)

EXtreme Gradient Boosting (XGBoost) is a tree based algorithm. The term boosting
refers to combining the results of many weak predictions to a strong one, i.e., an en-
semble of weak classifiers. Here, the selection of weak classifiers has to be optimized.
Further, boosting is generalizable by allowing optimization of an arbitrary differentiable
loss function.

XGboost was first proposed in [78] as part of greedy function approximations. Nowa-
days, the standard decision tree-based ensemble method was developed by [79].

In [32], XGBoost among other approaches was used together with Effective Transfer
Entropy (ETE, see Section 4.4) to predict the direction of US stocks.

5.5. Logistic Regression

Logistic regression is a tool for regression analysis very similar to linear regression,
but instead of a linear function, one employs a sigmoid function [80]. Logistic regression is
useful for binary or multinomial dependent variables.

In [32], a Logistic Regression among other approaches was used together with Effective
Transfer Entropy (ETE, see Section 4.4) to predict the direction of US stocks.

5.6. Support Vector Machines

The basic idea of Support Vector Regression [81,82] is to perform linear regression in
a high-dimensional feature space using the kernel-trick, i.e., employing kernel functions.
Thus, a linear model in the new space can represent a non-linear model in the original
space. Support Vector machines and/or regression was first proposed in [83].

As previously mentioned, we map the input onto a high-dimensional feature space.
Here one uses non-linear mappings to represent non-linear separations in the original
space, i.e., one constructs an optimally separating hyperplane. The data points on each side
of the hyperplane thus have a distance to the hyperplane. The smallest of these distances is
called the margin of separation, and we will refer to the margin of the optimal hyperplane
as q and the corresponding data points are called the support vectors. All other training
examples are irrelevant for defining the class boundaries. SVM thus finds that particular
linear model, i.e., the maximum margin hyperplane.

In [26], support vector machines are used together with a feature selection method
based on the fractal dimension to predict the direction of stock indices on a daily basis.

Several approaches, among them, support vector machines, are used in [28] to predict
stock market movement. Furthermore, R/S analysis is employed to test for market effi-
ciency.

In [31], different forecast methodologies such as SVM are used to predict stock market
behavior. Furthermore, Shannon’s entropy, Rényi entropy, and the Hurst exponent were
used as additional features to improve the algorithm.

5.7. Multi-Linear Regression

Multilinear regression is the generalization of the standard linear regression model
for multiple of dependent and independent variables [84,85]. It can be used to predict, e.g.,
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prices. The basic idea is to find the correlation between two factors, i.e., the dependent
and the independent variables. The corresponding assumption here is that the conditional
mean function is linear.

In [31] mulit-linear regression and other approaches are used to predict stock market
behavior. Furthermore, Shannon’s entropy, Rényi entropy, and the Hurst exponent were
used as additional features to improve the forecasts. Ref [16] uses Multi-linear regression
in addition to neural networks to predict the U.S./Mexico exchange rate. Furthermore, the
fractal dimension of the time series data under study is used to analyze and improve the
fuzzy logic approach.

5.8. Fuzzy Logic Learning Approaches

There exists a variety of fuzzy logic-based prediction methods, such as adaptive neuro-
fuzzy inference systems (ANFIS [86]), Dynamic Evolving Neural-Fuzzy Inference System
(DENFIS [87]), or Fuzzy Inductive Reasoning, (FIR [88]). All of these approaches can be
broken down to the fuzzification of the data under study and learning rules, or train an
algorithm, such as a neural network, based on these fuzzy sets, and then make predictions
with the so learned behavior [89].

The work in [16] builds fuzzy rules based on both the actual time series data and the
corresponding fractal dimension of the observed object to predict the data under study.

In [27], FIR, among other approaches, is used for electricity load forecasting. Further-
more, Shannon’s entropy is employed for feature selection.

Both ANFIS and DENFIS are used in [28] in conjunction with R/S analysis to predict
stock market movement.

5.9. Artificial Neural Networks

One of today’s most common approaches to predict time series are artificial neural
networks (ANNs) [90]. Artificial neural networks (sometimes just neural networks) are
learning algorithms that emerged from the idea of human or animal brains. As such, they
are constituted of connected neurons. Here, the way how they are connected is crucial for
tasks they are employed for. Each neural network consists of an input layer, hidden layers,
and an output layer. For our research, we categorize the mentioned applications into two
types of neural networks. First, feed-forward neural networks, i.e., neural networks that
are connected in a non-cyclic way, and recurrent neural networks, which are connected
cyclically, i.e., the input and output or sub-parts of the network are connected such that the
neurons form loops [91].

Further, the neurons have specific (non-linear) activation functions and are controlled
by adjusting weights for each neuron. Thus, the learning process constitutes of adjusting
and readjusting the weights on each neuron, through, e.g., backpropagation [92].

5.9.1. Feed Forward Artificial Neural Networks

Feedforward neural networks are neural networks that are connected in a non-cyclic
manner. The feed-forward neural network and its prototype, the multi-layer perceptron,
were the first and most simple neural networks. Information propagates in only one
direction, i.e., from input to output nodes.

Several different architectures for feed-forward artificial neural networks with back-
propagation were tested in [19], such as with one hidden layer or two hidden layers, to
predict stock market data. Here the Hurst exponent was used to indicate predictability of
the time series under study, i.e., a long-term memory.

The study in [16] employs a three-layered feed-forward neural network with backprop-
agation to be tested against a combined fuzzy logic and fractal theory approach; further,
the fractal analysis was applied to analyze all-time series that were to be predicted in this
study.

In both [24,27] a standard three-layer feed-forward artificial neural network (one
hidden layer) together with backpropagation was used to predict stock market data. In [24],
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the Hurst exponent was used to identify periods of time series that are easier to predict.
Furthermore, in [27] Shannon’s entropy was used as a tool for feature selection.

Furthermore, in [31] a feed-forward artificial neural network with backpropagation
was used. Again, the researchers employed a standard architecture of a three-layered ANN,
thus one input layer, one output layer, and one hidden layer. Here, combinations of the
Hurst exponent, Shannon entropy, and Rényi entropy were used as additional features to
improve stock market predictions. In [30], again, a three-layered feed-forward artificial
neural network was used to predict long-term trends of stock indices. Here wavelet
entropy and the Hurst exponent were used as additional features for the algorithm to
improve predictions.

Sometimes, or some types of feed-forward neural networks are referred to as Multi-
Layer perceptrons. A multi-layer perceptron [90], refers to simple feed-forward artificial
neural networks. The standard architecture consists of three layers, an input layer, a hidden
layer, and an output layer. In contrast, the hidden and the output layer both consist of
neurons with non-linear activation functions.

In [32], a MLP among other approaches was used together with Effective Transfer
Entropy (ETE, see Section 4.4) to predict the direction of US stocks. In [23], an MLP is used
together with the Hurst exponent to predict stock market data.

As it is very similar, we also discuss the cascade forward neural network in the context
of feed-forward neural networks. The cascade forward neural network [93], has the same
architecture as a feed-forward neural network but has a connection from the input and
every previous layer to the following layers.

In [30], cascade forward neural networks are used together with R/S analysis and
Wavelet entropy to improve forecasting for different time series data.

Another used architecture here is that of time-lagged neural networks. A time-lagged
feed-forward neural network has a sliding time window as input. Thus, the input nodes
(with the corresponding input) are ordered such that the input is a sequence. This architec-
ture was used in [29] in combination with the Hurst exponent. Here, the Hurst exponent
was used to identify time series data for better predictability and financial returns.

Though referred to as a time-delay neural network, which is usually used for speech
recognition, the basic architecture of the neural network used in [21] is that of time-lagged
neural networks. This research combines time-lagged neural networks with fractal analysis,
e.g., Hurst exponent and fractal dimension, to predict stock price data. Here the fractal
analysis improves the neural network architecture, i.e., tailor the input window.

Learning Vector Quantization (LVQ) is a supervised classification algorithm which
can be used for classification and regression [94,95]. It is a precursor of Kohonen’s self-
organizing maps [94], and is thus also inspired by the self-organizing capabilities of neurons
in the visual cortex. It is a two-layered feed-forward neural network that uses a competitive
(winner-take-all) learning strategy. In [30], (LVQ) was used, among other algorithms and
by using the Hurst Exponent and wavelet entropy, to forecast financial time series data.

5.9.2. Recurrent Artificial Neural Networks

Contrary to feed-forward neural networks are recurrent neural networks, where
information can propagate in loops in the network. This architecture was specifically
invented to learn temporal dynamic behavior, whereas speech recognition and time series
prediction [96], are exemplary applications.

In [20], an artificial neural network with feedback connection, i.e., a recurrent neural
network, was used to predict geomagnetic properties. Further, the local Hölder exponent
was used as an additional feature to improve predictions.

In [23], an elmann recurrent neural network was used, among other architectures,
together with the Hurst exponent, to tailor the input windows of the algorithms.

In [25], a recurrent neural network with embedded memory, i.e., a non-linear autore-
gressive model process with exogenous input (NARX), is used to forecast several different
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time-series data. Furthermore, R/S analysis, i.e., the Hurst exponent, is used to indicate
and verify the predictability of the neural network approach.

Ref [28]: A Jordan neural network [97], was used among other approaches to pre-
dict stock market behavior. Furthermore, R/S analysis was employed to test for market
efficiency.

A long short term memory (LSTM [98]) recurrent neural network, among other other
approaches is used in [32] to predict the direction of US stocks. Here Effective Transfer
entropy (ETE Section 4.4) is used as an additional feature to improve predictions.

In [7], a Hurst-exponent-based fractal interpolation is used to increase the data points
of different time series data. These data are then forecast using a long short term memory
(LSTM [98]) recurrent neural network. The fractal interpolation, and the forecasts are ana-
lyzed using a three different complexity measures, i.e., the fractal dimension (Section 4.2),
the Hurst exponent (Section 4.1) and the spectrum of Lyapunov exponents (Section 4.8).

In [33], a Hurst-exponent-based fractal interpolation is used to increase the data points
of different time series data. Then ensemble predictions are produced using randomly
parameterized LSTM neural networks. Furthermore, finally, these predictions are filtered
using five different complexity measures, i.e., the spectrum of Lyapunov exponents, The
Hurst exponent, Shannon’s entropy, Fisher’s information, and SVD entropy. Further,
this article uses a single hidden layer LSTM, gated recurrent unit (GRU [99]) and simple
recurrent neural network as baseline predictions, i.e., to compare the ensemble results to.

6. Summary and Conclusions

This review analyzed the applications of a combination of complexity measures and
machine learning algorithms for time series prediction. We found a total of 18 publications
fitting our criteria (defined in Section 2).

Given the analysis discussed above, we found six types of combinations which we
can sort all listed publications (Section 3) into (A table summing up these findings can be
found in Appendix B):

1. Complexity measures as an additional criterion for analysis: [7,16,17,19–33]
2. Complexity measures to improve the architecture of the employed neural network/

algorithm: [21,23]
3. Complexity measures as additional features for machine learning algorithms: [16,20,30–32]
4. Complexity measures to find regions of increased predictability: [22,24,28,29]
5. Feature Selection using Complexity Measures: [26,27,29]
6. Filtering predictions/ensembles using Complexity Measures: [33]

The authors propose that combined approaches of machine learning and complexity
measures have valuable contributions for both machine learning researchers and engi-
neers as:

A complexity-based feature selection may save resources and improve the overall
performance of the algorithm at hand.

An additional complexity feature can increase the accuracy of the algorithm at hand.
Analyzing the data and the predictions under study using complexity measures,

one can argue for the quality of models based on their ability to recreate the complexity
characteristics of the training data. Thus, the authors propose, complexity measures may
become important for measuring the generalizability of models.

Models with higher accuracy and lower computational cost can be built taking into
account the complexity of the data under study when designing the architecture of the
algorithm, e.g., the neural network architecture.

Neural Network predictions can be sped up by circumventing the problem of finding
the best set of hyper-parameters and instead choosingthe best predictions of different
neural networks based on the complexity of the prediction.

Finding regions of increased predictability can yield higher returns for applications of
machine learning in the finance sector.
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Machine learning ensembles that are designed taking into account the complexity of
the data under study may outperform today’s machine learning ensemble approaches.
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Appendix A. Measures of Signal Complexity: Summary Table

The following table summarizes the assertions, the applicability and the advantages/disadvantages of all discussed
complexity measures from Section 4.

Complexity Measure Applicability Assertion Pros Cons

The Hurst Exponent univariate
time series data

persistency,
anti-persistency,

randomness

- only one parameter, i.e., the Hurst exponent
- Hurst exponent lives within a fixed range,
i.e., H ∈ [0; 1]

- average over all scales, i.e., blind to
multifractal behavior

Fractal Dimension
of a Signal

univariate
time series data

persistency,
anti-persistency,

randomness,
sginal-complexity

- only one parameter, i.e., the fractal dimension
- The fractal dimension of a signal lives within a fixed
range, i.e., dF ∈ [1; 2]
- can be calculated from the Hurst exponent
via dF = 1− H

- average over all scales, i.e., blind to
multifractal behavior
- if calculated from R/S analysis, it states
the same as the Hurst exponent
- many algorithms to choose from

The Local Hölder
Exponent

univariate
time series data

regularity,
irregularity,

varying scaling
behavior

- can identify regions of different scaling behavior,
i.e., multi-fractality

- varies from time step to time step
- overall no comparable classification of time
series data
- yields one Hölder exponent for every time step

(Effective) Transfer
Entropy

multivariate
time series data

information
transfer between
time series data

- can detect non-linear Granger causal relationships
- effective transfer entropy compensates for noise and
non-stationarity

- only applicable between two time series data
- transfer entropy contains noise
- requires a large amount of data

Rényi Entropy univariate
time series data

diversity,
uncertainty,
randomness

- one can choose between weitghing events with
higher or lower probability by adjusting a parameter q

- not recommended for real-valued data
- requires and additional parameter q

Shannon’s Entropy univariate
time series data

diversity,
uncertainty,
randomness

- classical well understood complexity/information
measure

- not recommended for real-valued data

The Spectrum of
Lyapunov Exponents

of time series data

univariate
time series data

predictability,
chaoticity,

- for many applications, it is sufficient to consider the
largest Lyapunov exponent i.e., the first of the spectrum
- the spectrum of Lyapunov exponents can be used to
characterize the underlying dynamics of signals

- yields a spectrum of parameters
- computationally expensive
- only clearly defined for different trajectories
and not for univariate data
- for some algorithms a phase space embedding
of the time series under study is required, i.e.,
the embdding dimension and the time delay

Fisher’s information univariate
time series data

quality of
measurements,
order/disorder

- well suited for non-stationary and complex signals
- yields only parameter, i.e., the information content
of the data under study

- requires two additional parameters, the
embedding dimension and the time delay

SVD Entropy univariate
time series data

predictability,
order/disorder

- well suited for non-stationary and complex signals
- yields only parameter, i.e., the entropy of the data
under study

- requires two additional parameters, the
embedding dimension and the time delay

Wavelet Entropy univariate
time series data

order/disorder,
randomness

- yields only one parameter, i.e., the wavelet entropy
of a signal
- provides information on underlying dynamics

- wavelet transform needs be performed
beforehand
- one has to choose a wavelet representation of
a signal
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Appendix B. Results: Summary Table

The following table summarizes our findings. The entries of the fourth column are sorted using the different
approaches featured in Section 6.

Publication Employed Complexity Measures Employed Machine Learning Algorithms Approach Type

[19] Hurst Exponent Feed Forward Neural Network 1

[16] Fractal Dimension
Feed Forward Neural Network

Fuzzy Logic Approaches
1, 3

[20] Local H"̂older Exponent Recurrent Neural Network 1, 3

[21] Hurst Exponent, Fractal Dimension Time Delayed Neural Network 1, 2

[22] Hurst Exponent Feed Forward Neural Network 1, 4

[23] Hurst Exponent
Feed Forward Neural Network

Recurrent Neural Network
1, 2

[24] Hurst Exponent
Feed Forward Neural Network

k-nearest Neighbours
Decision Tree

1, 4

[25] Hurst exponent
Nonlinear Autoregressive models with eXogenous input

Recurrent Neural Networks
1

[26] Fractal Dimension Support Vector Machines 1,5

[27] Shannon’s entropy
Fuzzy Inductive Reasoning

Random Forest, Feed Forward Neural Network
1, 5

[28] Hurst Exponent, Fractal Dimension

Adaptive Neuro-Fuzzy Inference System
Dynamic Evolving Neuro-Fuzzy Inference System

Recurrent Neural Network, Support Vector Regression
Random Forest

1, 4

[17] Hurst Exponent, Fractal Dimension Random Forest 1

[29] Hurst exponent, Fractal Dimension Time Lagged Feed Forward Neural Network 1, 4, 5

[30] Hurst Exponent, Wavelet Entropy
Feed Forward Neural Network

Cascade Forward Neural Network
Learning Vector Quanitzation

1, 3

[31]
Hurst Exponent
Rényi entropy

Shannon’s entropy

Multi-Linear Regression, Support Vector Regression
Feed Forward Neural Networks

1, 3

[32] Effective Transfer Entropy

Logistic Regression
Feed Forward Neural Network (MLP)

Random Forest, XGBoost
Long Short Term Memory Neural Network

1, 3

[7]
Hurst Exponent

The spectrum of Lyapunov exponents
Fractal Dimension

Long Short Term Memory Recurrent Neural Network 1

[33]

Hurst Exponent
The spectrum of Lyapunov exponents

Fisher’s information
SVD entropy

Shannon’s entropy

Long Short Term Memory Recurrent Neural Network 1, 6
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