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Abstract: Significant progress has been made in generating counterfeit images and videos. Forged
videos generated by deepfaking have been widely spread and have caused severe societal impacts,
which stir up public concern about automatic deepfake detection technology. Recently, many deep-
fake detection methods based on forged features have been proposed. Among the popular forged
features, textural features are widely used. However, most of the current texture-based detection
methods extract textures directly from RGB images, ignoring the mature spectral analysis methods.
Therefore, this research proposes a deepfake detection network fusing RGB features and textural
information extracted by neural networks and signal processing methods, namely, MFF-Net. Specifi-
cally, it consists of four key components: (1) a feature extraction module to further extract textural
and frequency information using the Gabor convolution and residual attention blocks; (2) a texture
enhancement module to zoom into the subtle textural features in shallow layers; (3) an attention
module to force the classifier to focus on the forged part; (4) two instances of feature fusion to firstly
fuse textural features from the shallow RGB branch and feature extraction module and then to fuse
the textural features and semantic information. Moreover, we further introduce a new diversity
loss to force the feature extraction module to learn features of different scales and directions. The
experimental results show that MFF-Net has excellent generalization and has achieved state-of-the-art
performance on various deepfake datasets.

Keywords: deepfake; feature fusion; attention; generative adversarial network

1. Introduction

Artificial intelligence has transformed all aspects of life, including facial recognition,
fast identity authentication, logging into mobile apps, and making payments. However,
the development of deep-learning-driven forged image generation models [1–4] allows
attackers to create realistic facial images, as shown in Figure 1. Most of them cannot be
distinguished by human eyes. A survey by whichfaceisreal.com [5] shows that users
cannot distinguish between real and fake images well. According to this whichfaceis-
real.com survey, although it is generally believed that human eye recognition is better
than random guessing, users only achieve a maximum recognition accuracy of 75%. There
are many mature tools for generating fake images and videos, such as FaceApp [6] and
FaceSwap [7]. Even ordinary users can use tools to generate fake videos without under-
standing generative adversarial networks’ principles and can spread them on the internet
or even make profits.

Extensive and excellent work on deepfake detection has been carried out to deal with
the deepfake challenge [8,10–13]. At present, most advanced detection methods are based
on RGB images. A detection method based on RGB images [10,14] can achieve a higher
accuracy rate on datasets generated by a single generative adversarial network (GAN).
However, this method may be influenced greatly by the structures of generating networks
and dataset diversity. Only images and videos generated by a specific generation method
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can be recognized, and the results of testing on new datasets will be terrible. To address
this problem, researchers have begun to focus on general forged features [15,16], such as
texture and frequency spectra.

Figure 1. Examples of a real face and fake face generated by NeuralTextures. Left: natural face
from FaceForensics++ [8]. Right: fake face synthesized by NeuralTextures [9]. Forged images and
authentic images are indistinguishable to the human eye.

GANs are widely used in deepfake generation technology. A GAN learns the distribu-
tion of real samples and gradually increases the dimension of random low-dimensional
space to generate forged samples. However, due to the limited receptive field of the
generated network, a GAN cannot learn the global textural information, resulting in an
immediate difference between real samples and forged samples. Many methods based
on textural defects have been proposed [17]. However, most of the current texture-based
detection methods extract textures directly from RGB images, ignoring the mature signal
processing methods. In addition, upsampling is widely used in the generators of GANs,
but it causes spectral defects, such as in the grid structure of a spectrum or an abnormal
high-frequency part [15], which is the principle of frequency-based detection methods.
Since a neural network can not directly obtain frequency features from RGB images, most
of the existing studies [18,19] used the discrete Fourier transform to process RGB images
to obtain the spectra. However, frequency-based methods lose semantic information in
extracting frequency domain features. In addition, traditional frequency domain methods,
such as fast Fourier transform and discrete cosine transform, mismatch the translation
invariance and local consistency of natural images. Therefore, a traditional CNN is not
suitable for this method.

In order to make better use of textural and frequency features, Gabor convolution was
designed with reference to the Gabor filter to extract information in different directions and
scales. The Gabor transform is a special case of a short-time-windowed Fourier transform
when the window function is a Gaussian function. Therefore, the Gabor filter can extract
relevant features in different scales and directions in the frequency domain. In addition,
the Gabor function is similar to the function of the human eye, so it is often used in texture
recognition and has achieved good results.

We propose a new feature fusion network for deepfake detection. First, to effectively
use the textural and frequency features extracted from Gabor convolution, we design a
feature extraction module and use the residual module, channel, and spatial attention to
further extract features. Simultaneously, we introduce a new diversity loss to encourage
the feature extraction module to learn features of different scales and directions. Second, to
prevent subtle differences from disappearing in the deep layer, we enhance the textural
features obtained from the shallow layer and then fuse the low-level textural features with
the textural features obtained by the feature extraction module as the global textural feature
representation. Finally, we feed the final feature of the backbone into the attention module
and fuse the output with the global textural feature to obtain the final feature.

To demonstrate the effectiveness of our multi-feature fusion network, we conducted
extensive experiments on a standard benchmark set, which included FaceForensics++ [8],
Celeb-DF [20], and DFD [21]. These show that our method is superior to the binary classifier
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baselines and achieves state-of-the-art performance. In summary, the contributions of this
paper are threefold, as described below:

1. We are the first to design a custom convolution that adaptively learns textural and
frequency features for the deepfake detection task with reference to the signal pro-
cessing method, which brings a novel perspective on the use of textural and fre-
quency features.

2. We propose a new multi-feature fusion network to combine RGB features with textural
and frequency features. We also introduce a new diversity loss to encourage the
feature extraction module to learn features of different scales and directions.

3. Extensive experiments demonstrate that our method outperforms the binary classifi-
cation baselines and achieves state-of-the-art detection performance.

The topic in the first section is the introduction. The following sections are structured
as follows: Section 2 introduces related work, Section 3 introduces background knowledge,
Section 4 introduces the methods we use, Section 5 introduces the experimental results,
and Section 6 is the conclusion.

2. Related Work

Goodfellow [1] proposed a generative adversarial network (GAN) that had a profound
impact on machine learning in 2014, which significantly improved image generation
technology. Forged images and videos generated by GANs are widely disseminated on
the internet. A generative adversarial network consists of two models: a generator and a
classifier. The generator learns the natural data distribution, and the discriminator aims to
estimate the probability of the sample having been forged. This process can be transformed
into a min-max problem: minimizing generator loss and maximizing discriminator loss.
The generator and the discriminator can be regarded as the two sides of a game. The game
mode is as follows: The generator generates images -> the discriminator learns how to
detect fake images -> the generator is improved and generates new samples -> loop until
the generator and the discriminator cannot be improved.

2.1. Deepfake Generation Technology

Initially, generative adversarial networks [22–24] could only generate low-resolution
images. The generation of high-resolution images caused mode collapse, and later GANs
gradually solved this problem. Progan [2] proposed a new training method by learning
from low resolution and then increasing the resolution, finally learning higher-resolution
image generation. Stylegan [3] is an extension of Progan and proposes a new generator
structure. It can increase the resolution and control high-level attributes of generated
images, such as hairstyles, freckles, etc. However, the AdaIN normalization used in
stylegan has droplet artifacts. StyleGAN2 [25] corrects this defect and improves the
image quality. Sngan [26] proposes a spectrum normalization technique to stabilize the
discriminator training process. Mmdgan [27] combines the idea of generating a moment-
matching network and a genetic algorithm.

2.2. Deepfake Detection Technology

The initial deepfake detection research mainly used handmade facial features, such as
eye color [12], 3D head pose [28], and facial movement [29]. Currently, most of the detection
methods use a CNN to extract features for detection. The authors of [30] used specific
artifacts, such as color and shape, in the synthesis process for detection. Detection methods
based on the spatial domain are strongly correlated with the structure of the generation
network and training datasets and lack generalization ability. Recently, methods using
frequency features have been proposed. Durall et al. [18] used DFT to extract frequency
domain information and to average the amplitudes of different frequency bands. The
authors of [19] proposed two frequency domain features, FAD and LFS. The former uses
a learnable filter to adaptively decompose the image in the frequency domain and find
traces of forgery in different frequency band components. The latter extracts local statistical
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frequency information and is sensitive to traces of forgery in details. However, the latest
deepfake method takes into account the frequency domain defects. The authors of [31]
modified the loss function and added a frequency loss term. The authors of [32] performed
a shallow reconstruction of fake images by learning a linear dictionary and aimed to reduce
the artifacts introduced in the process of image synthesis. Therefore, a frequency-based
detection method is not ideal for the newest deepfake dataset. Some studies have also
noticed that there are textural differences in fake images [17]. The receptive field of a GAN
is limited and cannot capture global textural features, so a texture-based detection network
was proposed [33].

In this paper, we first extract and enhance the shallow textural features in RGB images,
and then fuse them with the features obtained by the feature extraction module.

3. Background
3.1. Discrete Cosine Transform

The discrete cosine transform (DCT) is a separable transform, and the transformer core
is a cosine function. The DCT has general orthogonal transform properties, and its basis
vectors can also describe the relevant characteristics of human speech signals and image
signals. DCT conversion is considered to be the best in the conversion of voice signals and
image signals.

The two-dimensional DCT change is defined as follows:

F(u, v) =
2√
MN

c(u)c(v)
M−1

∑
i=1

N−1

∑
j=0

f (i, j)cos[
(i + 0.5)π

M
u]cos[

(j + 0.5)π
N

v] (1)

c(x) =

{
1√
2

x = 0

1 x 6= 0
(2)

In the formula, f (i, j) represents the original signal, F(u, v) is the coefficient after the
DCT transformation, M and N represent the number of points of f (i, j), and c(x) is the
compensation coefficient to transform the DCT matrix into an orthogonal matrix. The effect
of the DCT change is shown in Figure 2.

Figure 2. Examples of DCT changes. Left: the input image. Right: the power spectrum.

3.2. Frequency Domain Defects

Although GAN models have various structures, most GAN models use the same
upsampling modules. Transposed convolution (also known as deconvolution) and nearest-
neighbor interpolation are often used in upsampling modules. The upsampling process is as
follows: Given a low-resolution feature map as input, the horizontal and vertical resolution
are increased by m times. For the convenience of explanation, let m = 2, add a zero
row/column after each row/column of the feature map during the upsampling process,
and then apply the convolution operation to re-assign the zero value. Odena et al. [34]
found that inserting zeros into a low-resolution image can be considered as copying
multiple samples of the original high-frequency spectrum to the generated high-resolution
image spectrum. The resulting artifacts are called “checkerboard artifacts”. The latest
methods often remove or reduce high-frequency components to prevent such defects.
The subsequent convolution kernel uses a low-pass filter, but the low-pass filter cannot
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completely remove the artifacts. If too much high-frequency content is removed, the final
images may become too blurry, making it easy to distinguish them from natural images.

3.3. Gabor Filter

A Gabor filter is a linear filter used for edge extraction. The frequency and direction
expression of the Gabor filter is similar to that of human eyes, which makes it suitable for
textural expression and separation. A two-dimensional Gabor filter is a Gaussian kernel
function modulated by a sinusoidal plane wave in the spatial domain.

The mathematical expression of the two-dimensional Gabor function is given below:
Complex:

g(x, y; λ, θ, ψ, σ, γ) = exp(− x′ + γ2y′2

2σ2 )exp(i(2π
x′

λ
+ ψ)) (3)

Real:

g(x, y; λ, θ, ψ, σ, γ) = exp(− x′ + γ2y′2

2σ2 )cos(2π
x′

λ
+ ψ) (4)

Imaginary:

g(x, y; λ, θ, ψ, σ, γ) = exp(− x′ + γ2y′2

2σ2 )sin(2π
x′

λ
+ ψ) (5)

where
x′ = x cos θ + y sin θ (6)

and
y′ = −x sin θ + y cos θ (7)

The following describes the meaning of each parameter in the formula.

• Wavelength (λ): λ represents the wavelength of the sinusoidal factor. Its value is
specified in pixels and is usually not less than 2.

• Direction (θ): θ represents the orientation of the normal to the parallel stripes of a
Gabor function.

• Phase shift (ψ): ψ is the maximum offset in the process of modulating the signal.
• Aspect ratio (γ): γ is the spatial aspect ratio and specifies the ellipticity of the support

of the Gabor function.
• σ: σ is the sigma/standard deviation of the Gaussian envelope.

For our experiments, we designed a custom Gabor convolution with reference to the
Gabor filter. We used real values of the Gabor function as the Gabor convolution kernel
function. The aspect ratio was set to 1, and the others were learnable parameters.

4. Method
4.1. Overview

In this section, we initially state the motivation for the design and give a brief overview
of our framework. As mentioned previously, to improve the generalization ability of the
model, most current detection methods introduce frequency features or textural features.
These methods generally use the spectrum obtained by the discrete Fourier transform
as frequency features, directly extract features from RGB images, and consider them to
contain textural information. However, the discrete Fourier transform does not match the
translation invariance and local consistency of natural images. Therefore, the convolutional
network can not be used to extract features, which reduces the classification efficiency of
the classification network. In addition, traditional signal processing methods have mature
textural and frequency feature extraction technologies. Thus, we argue that using the
features obtained by a signal processing method as auxiliary input can be more efficient
for collecting textural and frequency features for the deepfake detection task. Meanwhile,
the ReLU activation function, which is commonly adopted by current deepfake detection
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approaches, is replaced with the Swish activation function in our framework. We observed
that using the ReLU activation function in the deep convolutional network would lead to a
large number of negative gradients being set to zero, thus preventing many neurons from
being activated. On the other hand, the slight artifacts caused by forgery methods tend to
be preserved in the textural information of shallow features according to [35]. Therefore,
more shallow features should be focused on and enhanced.

Motivated by these observations, we propose a deepfake detection framework fusing
RGB, textural, and frequency features. In our framework, four key components are inte-
grated into the backbone network: (1) We employ a feature extraction module to extract
textural features and frequency features using a Gabor convolution and residual attention
blocks. (2) We use densely connected dilated convolutional layers and residual attention
blocks as a texture enhancement block, which can zoom into the subtle textural features
in shallow layers. (3) We employ an attention module to generate attention maps. (4) We
combine the textural features obtained by the feature extraction module and the shallow
enhanced texture and then fuse the final textural features and RGB features. The framework
of our method is depicted in Figure 3.

Figure 3. Model architecture: Four components play an essential role in our framework: a feature extraction module to
further extract textural and frequency features using a Gabor convolution and residual attention blocks, an attention module
for generating attention maps, a texture enhancement block for zooming into the subtle textural information in shallow
layers, and two instances of feature fusion for the aggregation of textural, frequency, and semantic features.

4.2. Multi-Feature Fusion Framework

We denote the input face image of the network as I and the backbone network of our
framework as f ; the feature maps extracted from the intermediate stage of t-th layer are
denoted as ft(I) with the size of Ht ×Wt × Ct. Here, Ct is the number of channels, and Ht
and Wt are the height and the width of the feature maps, respectively. The backbone of our
framework is xception [36].

4.2.1. Feature Extraction Module

As described above, given a real/fake face image I as input, we first feed RGB
images to the Gabor convolution to obtain textural and frequency features at different
scales and directions. As shown in Figure 4, the feature extraction module then uses the
residual attention blocks to extract features from the feature maps obtained by the Gabor
convolution. The residual attention block consists of 3 × 3 convolution layers, pooling
layers, channel attention, spatial attention, non-linear activation layers, Swish, and the
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residual connection. The CBAM structure was adopted for the channel attention and spatial
attention [37].

Figure 4. The structure of the feature extraction module. This module is used to extract textural and
frequency features from the feature maps obtained by the Gabor convolution.

4.2.2. Textural Feature Enhancement

The artifacts caused by forgery methods are usually salient in the textural information
of shallow feature maps. Thus, we design a textural feature enhancement block to preserve
more textural information for capturing those artifacts, as shown in Figure 5. We first apply
the dilated convolution Dil to obtain feature maps FLt with different granularities from a
specific layer SLt. Then, we apply adaptive pooling in patches to downsample FLt and
obtain the pooled feature map D. Finally, we use bilinear interpolation BI to restore D to
the same size as DLt. We define the residual at the feature level with reference to [35] to
represent the textural information as follows:

TSLt =
n

∑
i=1

(FLti − BI(Di)) (8)

FLt = Dil( fSLt(I)) (9)

Here, T contains most textural information of fSLt . We then use three residual attention
blocks to enhance T; the output is denoted as F ∈ RHs×Ws×CF , which is defined as an
“enhanced textural feature map”.

Figure 5. The structure of the texture enhancement module. This module is used to zoom into the
subtle textural features in shallow layers.

4.2.3. Attention Module

Given an image I as input, our framework first uses the backbone to generate final
feature maps f f in for I. Then, we apply the attention module to generate multiple attention
maps for f f in. As shown in Figure 6, the attention module is a light-weight module that
consists of a 3 × 3 convolutional layer, a 1 × 1 convolutional layer, two batch normalization
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layers, and two non-linear activation layers (Swish). As described above, the ReLU acti-
vation function in the deep convolutional network will cause neurons to be unable to be
activated. We use the Swish activation function instead of ReLU. The attention module
generates attention maps A with a size of Ht ×Wt. We multiply f f in and A to obtain the
final RGB feature maps R f in.

R f in = f f in × A (10)

Figure 6. The structure of the attention module. This module is used to generate final RGB fea-
ture maps.

4.3. Diversity Loss

As described above, Gabor convolution can obtain textural and frequency feature
maps of different scales and directions. We use the feature extraction module to process
the obtained feature maps. In order to reduce the overlap of the output feature vectors, we
propose a cosine-similarity-based regularization term that penalizes feature vectors of the
same direction and scale for overlapping with each other.

We first separate the channels fd of the output feature maps, and each channel repre-
sents the feature map of a specific direction or scale. Then, the cosine similarity between
the channels is calculated. This allows us to penalize the similarity between the feature
vectors up to a threshold, leading to more diverse representations. The diversity loss is
defined as follows:

Rdiv = ∑
i 6=j

max(0, cos( fdi
, fdj

)− smax) (11)

where smax is a hyperparameter for the maximum similarity allowed. For the objective
function of our framework, we combine this diversity loss with the traditional cross-
entropy loss.

L = λ1 ∗ LCE + λ2 ∗ Rdiv (12)

where LCE is the cross-entropy loss, Rdiv is the diversity loss, λ1, and λ2 is the balancing
weight for these two terms. By default, we set λ1 = λ2 = 1 in our experiments.

5. Experiments

This section mainly describes experiments conducted on deepfake video and image
datasets. Section 5.1 provides the experimental details, including the experimental parame-
ters, datasets, and evaluation criteria. Section 5.2 compares the within-dataset performance
of this method with mainstream methods. Section 5.3 describes the ablation experiment.
Section 5.4 provides an evaluation of the generalization ability. Section 5.5 describes an
experiment on robustness to common image disturbances.

5.1. Experimental Setup
5.1.1. Datasets

The most challenging deepfake datasets were used in our experiments, including Face-
Forensics++ [8], Deepfake Detection (DFD) [21], and Celeb-df v2 [20]. FaceForensics++ is a
forensics dataset consisting of 1000 original video sequences that have been manipulated
with four automated face manipulation methods. The DFD dataset has more than 3000
forged videos from 28 actors with different scenes. The Celeb-DF (v2) dataset contains real
and forged videos, and the video quality is similar to that of videos broadcasted online.
Celeb-DF includes 590 original videos from YouTube, including different ages, races, and
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genders. For deepfake images, we used Sngan [26] to generate fake images and used the
CelebA [38] datasets as real samples.

5.1.2. Evaluation Standard

We took the accuracy and area under the receiver operating characteristic curve (AUC)
as evaluation indicators. The accuracy and AUC are common indicators in deepfake
detection tasks.

5.1.3. Experimental Parameters

The environment used in this article was a Linux system. Keras and TensorFlow were
used for the model implementation and simulations. The GPU on the server was a Tesla
V100, and the memory was 16 GB. The number of epochs was 64, and the batch size was
16. The initial learning rate was 1 × 10−4, and the weight decay was 1 × 10−6.

5.2. Within-Dataset Experiment

This section compares our method with the previous and state-of-the-art forgery
detection methods on the FaceForensics++ [8] dataset. We first evaluated our methods on
different video compression settings, including high quality (HQ (c23)) and low quality (LQ
(c40)). As shown by the results in Table 1, our method achieved state-of-the-art performance
on both settings. It is worth mentioning that our method had a significant improvement
in the low-quality setting. Furthermore, we also evaluated our approach on different face
manipulation methods in FaceForensics++ [8]. The results are shown in Table 2. We trained
and tested our models exactly on low-quality videos for each manipulation method. The
results demonstrate that our method outperformed the state-of-the-art methods on all
manipulation methods.

Table 1. Quantitative comparison on the FaceForensics++ dataset with the high-quality and low-
quality settings. The best performances are marked in bold.

Method
LQ HQ

ACC AUC ACC AUC

Steg.Features [39] 55.98% - 70.97% -
LD-CNN [40] 58.69% - 78.45% -
Constrained Conv [41] 66.84% - 82.97% -
CustomPooling CNN [42] 61.18% - 79.08% -
MesoNet [10] 70.47% - 83.10% -
Face X-ray [11] - 61.60% - 87.40%
Xception [36] 86.86% 89.30% 95.73% 96.30%
Xception-ELA [43] 79.63% 82.90% 93.86% 94.80%
Xception-PAFilters [44] 87.16% 90.20% - -
SPSL [45] 81.57% 82.82% 91.50% 95.32%
F3-net [19] 90.43% 93.30% 97.52% 98.10%
Multi-attentional Detection [35] 88.69% 90.40% 97.60% 99.29%
MFF-net 92.21% 95.58% 98.18% 99.62%

5.3. Ablation Experiment

To demonstrate the benefit of each module, we evaluated the proposed model on
FaceForensics++ [8]. We tested from the backbone and gradually added modules. The
first feature fusion was performed while adding the texture extraction and enhancement
module. The second feature fusion was performed while adding the attention module.
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Table 2. Quantitative results (Acc) on the FaceForensics++ (LQ) dataset with four manipulation
methods, i.e., DeepFakes (DF) [46], Face2Face (F2F) [47], FaceSwap (FS) [7], and NeuralTextures
(NT) [9]. The bold results are the best.

Method DF F2F FS NT

Steg.Features [39] 67.00% 48.00% 49.00% 56%
LD-CNN [40] 75.00% 56.00% 51.00% 62.00%
Constrained Conv [41] 87.00% 82.00% 74.00% 74.00%
CustomPooling CNN [42] 80.00% 62.00% 59.00% 59.00%
MesoNet [10] 90.00% 83.00% 83.00% 75.00%
Xception [36] 96.01% 93.29% 94.71% 79.14%
Slowfast [48] 97.53% 94.93% 95.01% 82.55%
SPSL [45] 93.48% 86.02% 92.26% 76.78%
F3-net(Xception) [19] 97.97% 95.32% 96.53% 83.32%
F3-net(Slowfast) [19] 98.62% 95.84% 97.23% 86.01%
MFF-Net 99.73% 96.38% 98.20% 91.79%

Table 3 shows the experimental results. The experimental results show that each
module of MFF-Net can effectively improve the deepfake detection performance. When
the feature extraction and enhancement module were added for the first time, the detection
effect was greatly improved. This shows that the fusion of textural and frequency features
extracted by the feature extraction and enhancement module and features extracted by the
neural network can improve the detection performance.

Table 3. MFF-Net ablation experiment on FaceForensics++. We verified the effectiveness of the
components by adding modules step by step. The evaluation indicators are the ACC and AUC.

Method
LQ HQ

ACC AUC ACC AUC

backbone(xception) 86.86% 89.30% 95.73% 96.30%
+Feature extraction and enchancement module 91.10% 93.39% 97.60% 98.74%
+Attention module 91.32% 94.23% 97.94% 99.15%
+Diversity loss 92.21% 95.58% 98.18% 99.62%

5.4. Generalization Ability Evaluation

Table 4 shows the benchmark results of our framework on the detection of popular
unseen deepfake datasets. We evaluated the transferability of our method to DeepfakeDe-
tection [21] and Celeb-DF [20], given that it was trained only on FaceForensics++ (HQ).
In the comparative experiment, we compared our method with DPNet [49], SPSL [45],
F3-net [19], and Multi-attentional Detection [35]. The generalization ability of our method
on Celeb-DF was slightly lower than that of SPSL, which was very strong in the cross-
dataset evaluation, but it was higher than those of the other state-of-the-art methods.

Table 4. Generalization ability evaluation on unseen datasets. The evaluation indicator is the AUC.
The bold results are the best.

Method FF++ DFD Celeb-DF

Xception [36] 96.30% 91.27% 65.50%
ProtoPNet [50] 97.95% 84.46% 69.33%
DPNet [49] 99.20% 92.44% 68.20%
SPSL [45] 96.91% - 76.88%
F3-net [19] 98.10% - 65.17%
Multi-attentional Detection [35] 99.80% - 67.44%
MFF-Net 99.73% 92.53% 75.07%
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5.5. Robustness Experiment

This section evaluates the module’s resistance to common image disturbances, includ-
ing blurring, cropping, compression, adding random noise, and their combinations. We
also tested the effect of adversarial training to deal with image disturbances. We retrained
MFF-Net on images generated by Sngan [26] with the combined perturbation added. We
compared our method with those of [17,51]. The authors of [51] proposed Lip Forensics,
a detection approach using high-level semantic irregularities in mouth movements. The
authors of [17] proposed Gram-Net, which leverages global textural representations of
images for robust detection. Both methods show strong robustness to image disturbances.

5.5.1. Experimental Setup

To create a disturbance dataset, we iterated on all images of the original dataset and
applied disturbances with a 50% probability. The created dataset had 50% disturbance data.
During the iteration, the combined disturbances were applied in the following order: blur,
crop, compression, and noise. The various disturbance settings are described as follows:

• Blur: Filtered by a Gaussian filter with a kernel size randomly sampled from (3, 5, 7, 9);
• Cropping: The picture was randomly cropped along the x- and y-axes. The cropping

percentage was sampled from U(5, 20), and the cropped image was resized to the
original resolution;

• Compression(JPEG): JPEG compression was applied, and the remaining quality factor
was sampled from U(8,80);

• Noise: Inner-diameter Gaussian noise was added to the image. The Gaussian distribu-
tion variance was randomly sampled from U(5.0, 20.0).

5.5.2. Experimental Results

The results of the robustness test are shown in Table 5. Our method had better resistance
to compression, cropping, noise, and combined disturbances than the other methods. The
resistance to blur perturbation was slightly poorer than that of LipForensics [51]. The results
also show that adversarial training can effectively improve the robustness, showing the
feasibility of confrontation training.

Table 5. Results of the robustness experiment. The training was to use clean datasets of images generated by Sngan and
CelebA; the testing was to apply five kinds of perturbations to the test set. Training with the perturbation dataset was used
for comparison (the training and testing sets imposed the same disturbances). The evaluation indicator is the AUC. CD:
training on clean datasets; PD: training on perturbed datasets.

Method Train Test Blur Cropping JPEG Noise Combined

Res-Net Sngan vs. CelebA Sngan vs. CelebA 82.87% 94.40% 97.12% 87.37% 88.98%
LipForensics

[51] FF++ FF++ 96.10% 96.21% 95.60% 73.80% -

Gram-Net
[17]

Stylegan vs.
CelebA-HQ

Stylegan vs.
CelebA-HQ 94.20% 97.10% 99.05% 92.47% -

MFF-Net Sngan vs. CelebA (CD) Sngan vs. CelebA 94.64% 99.99% 99.98% 98.80% 98.73%
Sngan vs. CelebA (PD) Sngan vs. CelebA 97.95% 99.23% 99.38% 98.79% 99.74%

6. Conclusions

With this paper, we are the first to combine a signal processing method with a neural
network to fuse the textural and frequency features extracted by Gabor convolution with
the shallow textural information of RGB images. We propose a multi-feature fusion deep-
fake detection framework, MFF-Net. The feature extraction module extracts textural and
frequency features containing different direction and scale information through Gabor con-
volution. The texture enhancement module enhances the textural features from the shallow
layers to capture more subtle artifacts. Then, the features extracted by the backbone are fed
into the attention module to learn discriminative local regions. A diversity loss function is
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introduced to penalize feature vectors of the same direction and scale for overlapping with
each other. A large number of experiments proved that the proposed MFF-Net achieved
state-of-the-art performance in deepfake detection and had good performance in detecting
unknown datasets; it also had good robustness against common image disturbances. In
the future, we intend to introduce an attention mechanism into the feature fusion process
to learn the correlations between different modes.
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