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Abstract: Driven by the need for the compression of weights in neural networks (NNs), which is
especially beneficial for edge devices with a constrained resource, and by the need to utilize the
simplest possible quantization model, in this paper, we study the performance of three-bit post-
training uniform quantization. The goal is to put various choices of the key parameter of the quantizer
in question (support region threshold) in one place and provide a detailed overview of this choice’s
impact on the performance of post-training quantization for the MNIST dataset. Specifically, we
analyze whether it is possible to preserve the accuracy of the two NN models (MLP and CNN) to
a great extent with the very simple three-bit uniform quantizer, regardless of the choice of the key
parameter. Moreover, our goal is to answer the question of whether it is of the utmost importance
in post-training three-bit uniform quantization, as it is in quantization, to determine the optimal
support region threshold value of the quantizer to achieve some predefined accuracy of the quantized
neural network (QNN). The results show that the choice of the support region threshold value of the
three-bit uniform quantizer does not have such a strong impact on the accuracy of the QNNs, which
is not the case with two-bit uniform post-training quantization, when applied in MLP for the same
classification task. Accordingly, one can anticipate that due to this special property, the post-training
quantization model in question can be greatly exploited.

Keywords: image classification; Laplacian source; neural network; uniform quantization

1. Introduction

Neural networks (NNs) have achieved remarkable success in a wide range of real-
world applications. However, their application might be limited or impeded in edge
devices with a constrained resource, such as IoT and mobile devices [1–6]. Although on
such resource-constrained devices, decreased storage and/or computational costs for NNs
are indispensable, the accuracy of NN can be severely degraded if the pathway toward this
decrease is not chosen prudently [2,4,6]. The rapid proliferation of IoTs, as predicted by [7],
additionally highlights the increasing importance of the edge infrastructure and a needful
migration of NNs to the very end devices. A training of NNs on the edge devices presents
the very idea of edge computing, which is, for the edge devices, competitive to the cloud
computing from the aspects of latency, memory footprint and power consumption [1,3,5,6].
In artificial intelligence (AI) algorithms that are running in the cloud, data have to be sent
over the Internet to the cloud, causing latency and thus preventing AI-based real-time
applications, as well as security problems. The main advantage of edge computing lies
in agile, preferably not belated interactions with end devices [1,3]. Edge computing and
cloud computing are not mutually exclusive. On the contrary, edge computing extends the
cloud, making it as close as possible to heterogeneous end devices or end users [1,3].
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An efficient edge computing with highly accurate NNs requires embarking on a
comprehensive rethinking of the NN design and adopting different compression tech-
niques, such as pruning, knowledge distillation and quantization [2,8–21]. Relying on
an abundance of the previous conclusions about quantization for traditional network
solutions [22–32], further improvements in the field of NNs, especially in NNs intended
for edge devices, can be intuitively driven by the prudent application of post-training
quantization. Post-training quantization is especially convenient as there is no need for
retraining NN, while the memory size required for storing the weights of the quantized
neural network (QNN) model can be significantly reduced compared to the baseline NN
model utilizing 32-bit floating-point (FP32) format [6,14,15,19,33].

Numerous recent papers have already confirmed ample opportunities for the NN
parameters compression by means of post-training quantization, moving from single-
precision FP32 to lower-bit presentations, thereby notably reducing the memory costs while
degrading the NN accuracy to some extent [6,14]. In other words, various quantization
methods result in different QNN performances, where, with extremely low-bit quantization
models, it is hard to achieve accuracy comparable with that of FP32 models [2,6]. Namely,
an important challenge in post-training quantization is that it can lead to significant perfor-
mance degradation, especially in ultra-low precision settings. To cope with this, inspired by
the conclusions from classical quantization, numerous papers have addressed the problem
of minimizing the inevitable post-training quantization error (see, for instance, [6,12,15,33]).

The amount of quantization error is directly conditioned by the quantizer param-
eterization and the source of the data being quantized [31]. By determining signal to
quantization noise ratio (SQNR), which formally quantifies how well original data are
quantized, one can improve the quantizer performances by changing its parameters in
a way to maximize SQNR, or equally, to minimize the distortion. Recently, it has been
shown in [34] that the performance of the quantizer alone might not necessarily affect the
accuracy degradation the most. In fact, a lot of the QNN models from the literature, e.g.,
from [10–20], primarily targeted an acceptable or high accuracy of QNN, that is, an accuracy
comparable to one of the initial FP32 NN models. Since the original parameters of NN are
typically stored in FP32 format, we believe that there is a large potential opportunity for
their compression, as long as the quantized parameters of QNN are close to the original
ones. This becomes important when it comes to the large parameter sets of the NN model,
which are preferable to be processed as fast as possible. Hence, low-bit quantization can be
considered as an attractive and powerful technique that provides such a compressed NN,
i.e., QNN, to fit in the edge device with as little loss of performance/accuracy as possible.
However, there is still a large gap between the performance of QNNs and full-precision
NNs. To bridge this gap, extensive research in this field should be performed.

The rest of the paper is structured as follows: First, related previous work is summa-
rized in Section 2, along with our concrete motivation. Then, in Section 3, the design of
the symmetrical three-bit UQ is described, and the closed-form formulas for calculating its
theoretical performance for the assumed Laplacian pdf are derived. In Section 4, a concise
description of the two utilized NN architectures, as well as the MNIST and Fashion-MNIST
datasets, are provided. The procedure of post-training three-bit uniform quantization of
weights is described in Section 5, where, to be as specific as possible, the pseudocode is
also provided. The numerical results of the paper are presented and discussed in Section 6.
Finally, in Section 7, the paper’s goals are summarized, conclusions on our research results
are derived, and directions for future work are provided as well.

2. Related Work and Motivation

In traditional low-bit quantization, a very small number of bits per sample are used
to represent the data being quantized (less than or equal to 3 bit/sample) [31]. Since the
NN compression by means of post-training quantization is gaining momentum, we believe
that substantial progress might be accomplished by the proper utilization of the simple
uniform quantizer model. For that reason, we are interested in analyzing whether such
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a simple three-bit uniform quantizer model can preserve the accuracy of NNs to a great
extent, regardless of the choice of its key parameter (support region threshold).

The uniform fixed-rate scalar quantizer, or briefly, uniform quantizer (UQ), is the
simplest quantizer model, which, for a given bit rate, R is characterized with only one
parameter—the support region threshold. However, its design, or determining the support
region threshold to provide the smallest possible mean-squared error (MSE) distortion, is
not simple for source densities with infinite support [22,25,35,36]. The reason is that expres-
sions for the MSE distortion of UQ for source densities with infinite support are not simple,
so the distortion minimization per support region threshold does not generally provide the
derivation of a closed-form expression for the optimal support region threshold [22,35,36].
Note that the above-mentioned problem is more prominent as R increases since the expres-
sion for the UQ performance assessment obtains more terms, and, accordingly, determining
the optimal support region threshold becomes more complex. As highlighted in [34,35], this
issue has greater importance in uniform quantization than in a nonuniform one. However,
the question that arises in this paper is whether it is of the utmost importance to determine
the optimal support region threshold value to achieve some predefined performance of
post-training three-bit uniform quantization. To the best of the authors’ knowledge, the
analysis of the post-training performance from the perspective of choosing the support
region has not been reported thus far for the three-bit uniform quantization. It is worth
highlighting here that in [34], we have analyzed whether it is possible to apply the simplest
uniform quantization with the bit rate of R = 2 bit/sample for representing the weights
of the trained multi-layer perceptron (MLP) and to significantly preserve the accuracy.
Since, in [34], we showed that the choice of the support region has a large effect on the
QNN accuracy, in this paper, still focusing on low-bit weight presentations, our goal is to
determine whether completely novel insights and conclusions can be derived in the case
where three-bit uniform quantization is utilized for the same classification task.

In [34], we showed that with the two-bit uniform quantizer adjusted for the Laplacian
distribution and utilized in NN post-training, the accuracy of the considered three-layer
fully connected (FC) QNN model is very dependent on the proper choice and the definition
of the support region, as well as on the step size of the quantizer in question. This has
inspired our further research on three-bit uniform quantization with the doubled number
of representation levels. More precisely, with the two-bit UQ used for the compression of
weights from the MLP model, we have managed to significantly preserve the accuracy,
which is degraded by slightly more than 1%, while the weights are compressed 16 times
relative to the FP32 format. However, we showed in [34] that an unsuitable choice of
the support region could significantly degrade the accuracy (more than 3.5%), that is,
the performance of the post-training two-bit uniform quantization for the assumed MLP
model trained on MNIST. Therefore, to keep the quantized weights as close as possible to
the original ones and target at least half-reduced accuracy degradation from that given
in [34], in this paper, we examine whether this goal is achievable with a far simpler and
less stringent choice of the support region threshold value of the three-bit UQ. Since SQNR
is a key quantization indicator, of particular interest is to show how the selection of the key
parameter affects both the SQNR and the accuracy of QNN.

As one can anticipate, assigning one additional bit for weights quantization is impor-
tant for all layers, starting from the first layer (crucial to the following layers since it needs
to represent the initial weights as well as possible) to the last layer that directly computes
the final outputs. Let us highlight that in [34], we derived one interesting conclusion about
the layer-wise adaptation since we noticed that the distributions of weights varied across
different layers of the MLP. In particular, we have noticed that at the third layer of the
MLP, the greatest deviation from the Laplacian distribution exists and that distribution
approaches the uniform-like one, which is therefore convenient for the application of
uniform quantization addressed in this paper.

Besides improvement through a thoughtful quantizer reparameterization, as an added
convenience for NN accuracy preservation, one can anticipate NN reparameterization by
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means of NN layer feature scaling or the so-called normalization of NN, which is utilized
in this paper. Namely, NN normalization methods have already been confirmed to work
well empirically [37], whereby a lot of them implicitly assume that the distributions of
normalized NN parameters, primarily weights, initially have zero mean and unit variance.
Keeping in mind that the weights’ distribution can closely fit some well-known probability
density functions, such as the Laplacian probability density function (pdf) is [2], in this
paper, as in [12,13,34,38–40], we assume the Laplacian-like distribution for experimental
weights’ distribution and the Laplacian pdf for the theoretical distribution of weights to
estimate the performance of the three-bit uniform quantizer (three-bit UQ) in question. Our
motivation to address the simplest UQ also stems from the fact that UQs are not optimal
for nonlinear distributions. Hence, our goal is to investigate the viability of the accuracy of
the QNN in the case of uniformly quantized weights from nonlinear distributions, such
as the Laplacian one. Moreover, to further widen our numerical result analysis compared
to the one from [34], in this paper, we analyze the performance of post-training three-bit
uniform quantization for the convolutional neural network (CNN) applied to the MNIST
dataset classification problem. More details on utilized MLP and CNN are provided in
Section 4.

3. Design of Symmetric Three-Bit Uniform Quantizer for the Purpose of NN
Weights Compression

For symmetrical data distributions, symmetrical quantizers with an even number
of quantization steps are preferable [14,24–29,32,34,35,38,40]. Since it can be expected
that most of the real data is asymmetrical, one could not conjecture that the preferable
quantizer is also asymmetrical. For a better understanding of the quantization process,
which accounts for the real but not necessarily symmetric data, in this section, we describe
the symmetric three-bit uniform quantizer model that is designed for the Laplacian pdf.
In the later sections, we describe its adjustment to the real data, i.e., to the weights of the
pretrained NN. Since low-bit quantization can entail substantially diminishing in terms
of SQNR, we describe the theoretical and experimental scenarios that target three-bit
uniform quantization of pretrained FP32 weights of two NNs (MLP and CNN). As already
mentioned, the weight distribution can closely fit some well-known pdfs, such as Laplacian
pdf is [2]. Accordingly, as in [12,13,34,38–40], we assume the Laplacian-like distribution
for the experimental distribution of weights and the Laplacian pdf for the theoretical
distribution of weights to estimate the performance of our three-bit UQ in question.

Firstly, we invoke the well-known preliminaries about uniform quantization and
an N-level symmetrical uniform quantizer QUQ

N . During the quantization procedure, an
input signal amplitude range is divided into a granular region <g and an overload region
<o, separated by the support region threshold xmax [31]. For a given bit rate of R = 3
bit/sample, with our symmetrical three-bit UQ, <g is partitioned into N = 2R = 8, equally
spaced, nonoverlapped and bounded in width granular cells (see Figure 1). The ith granular
cell of the three-bit UQ is defined as:

<i = {x |x ∈ [−xmax, xmax], QUQ
N (x) = yi = (2i− 1)xmax/8},<i ∩ <j = ∅, i 6= j (1)

while {<i}−1
i=−N/2 and {<i}N/2

i=1 denote the granular cells in the negative and positive in
amplitude regions, which are symmetrical. This symmetry also holds for the overload
quantization cells, that is, for a pair of cells with unlimited widths in the overload region,
<o, defined as:

<0 = {x|x /∈ [−xmax, xmax], QUQ
N (x) = yN/2 = 7/8 xmax, x > 0 ∨QUQ

N (x) = y−N/2, x < 0} (2)

The UQ model implies that the granular cells have equal widths (∆), the output
levels are the midpoints of the corresponding granular cells, and the code book
Y ≡ {y−N/2, . . . y−1, y1, . . . , yN/2} ⊂ R contains N representation levels, denoted by
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yi. In other words, by recalling the quantization procedure, the parameters of the
symmetrical three-bit UQ can be calculated from:

(a) ∆i = ∆ = xmax/4, i ∈ {1, 2, 3, 4},
(b) −x−i = xi, xi = i·∆ = i·xmax/4, i ∈ {0, 1, 2, 3, 4},
(c) −y−i = yi, yi = (xi + xi−1)/2 = (2i − 1)·xmax/8, i ∈ {1, 2, 3, 4}.

The most common reason why it is convenient to deal with the zero-mean symmetric
quantizer is that the codebook and the quantizer main parameter set can be halved since
only the positive or the absolute values of the parameters should be stored. Recalling that
xmax = x4 denotes the support region threshold of the three-bit UQ, one can conclude from
rules (a)–(c) that xmax completely determines the cell width ∆, the cell borders xi, i ∈ {0, 1, 2,
3, 4} and the representation levels (output levels) yi, i ∈ {1, 2, 3, 4} of the three-bit UQ (see
Figure 1). Accordingly, as we have already mentioned, xmax is the key parameter of the
uniform quantizer.

For the given xmax, UQ is also well described by its transfer characteristic. The transfer
characteristic of our symmetric three-bit UQ is given by:

QUQ(x; xmax) =

{ (⌊
4|x|
xmax

⌋
+ 1

2

)
xmax

4 sgn(x), |x| ≤ xmax
7
8 xmax sgn(x), |x| > xmax

(3)

where notation N, indicating the number of quantization levels, is omitted due to the
simplicity reasons. For xmax = xmax[J], it is illustrated on Figure 2 and is denoted by
QUQ(x; xmax[J]), where the notation [J] comes from the name of the author of [31]).
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An important aspect of our interest in the three-bit UQ design that dictates assump-
tions about parameters of the quantizer in question has emerged from the maximal SQNR
or the minimal overall distortion, that is, in the case where xmax has an optimal value.
For a given bit rate of R = 3 bit/sample, the MSE distortion of the three-bit UQ for a
source density with infinite support can be expressed as a sum of the granular and the
overload distortion from the granular and overload regions, respectively [22,24,31,35,36].
To determine the total distortion of our three-bit UQ that is a sum of the granular and the
overload distortion, denoted, respectively, by Dg

UQ and Do
UQ, we begin with the basic

definition of the distortion, given by [31]:

DUQ
g = 2

4

∑
i=1

xi∫
xi−1

(x− yi)
2 p(x)dx (4)

DUQ
o = 2

∞∫
x4

(x− y4)
2 p(x)dx (5)

Let us recall that the cell borders and representation levels are functions of xmax. Accord-
ingly, an inspection of Formulas (4) and (5) reveals that xmax appears not only in the limits
of integrals but also in integrands. Hereof, despite the simplicity of the UQ model, deter-
mining xmax analytically to provide the minimal MSE distortion is still difficult or even
impossible. The value of xmax determined by Jayant [31] is a result of numerical distortion
optimization. Hui had analytically obtained the equation for xmax of the symmetrical
N-level asymptotically optimal UQ that is designed for high bit rates and an input signal
with the Laplacian pdf of zero mean and unit variance [22], which, for N = 2R = 8, gives:

xmax
[H] =

√
2 ln(8) (6)

As we pointed out earlier, we assume the unrestricted Laplacian pdf of zero mean and
variance σ2 = 1 for the input data distribution in the theoretical analysis of our three-bit UQ:

p(x) =
1√
2σ

exp

{
−
√

2x
σ

}
(7)

First, to simplify our derivation, let us define that it holds that x5 = ∞. In other words,
x5 denotes the upper limit of the integral in Equation (5). By introducing x5, the total
distortion of our symmetrical three-bit UQ can be rewritten as:

DUQ = 2
5

∑
i=1

xi∫
xi−1

x2 p(x)dx− 4

 4

∑
i=1

yi

xi∫
xi−1

xp(x)dx + y4

∞∫
x4

xp(x)dx

+ 2

 4

∑
i=1

yi
2

xi∫
xi−1

p(x)dx + y4
2

∞∫
x4

p(x)dx

 (8)

or shortly as:

DUQ = ΥI − 4

(
4

∑
i=1

yiΥII
i + y4ΥII

5

)
+ 2

(
4

∑
i=1

yi
2ΥIII

i + y4
2ΥIII

5

)
(9)

For the assumed pdf given by Equation (7), we further derive:

ΥI = 2
5

∑
i=1

xi∫
xi−1

x2 p(x)dx = σ2 (10)

ΥII
i =

xi∫
xi−1

xp(x)dx =
1
2

[(
xi−1 +

σ√
2

)
exp

{
−
√

2xi−1

σ

}
−
(

xi +
σ√
2

)
exp

{
−
√

2xi
σ

}]
, i = 1, . . . , 5 (11)
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ΥIII
i =

xi∫
xi−1

p(x)dx =
1
2

[
exp

{
−
√

2xi−1

σ

}
− exp

{
−
√

2xi
σ

}]
, i = 1, . . . , 5 (12)

Eventually, by substituting Equations (10)–(12) into Equation (9), we derive:

DUQ = σ2 +
( xmax

8

)2
−
√

2σ
xmax

8

[
1 + 2

3

∑
i=1

exp

{
−i
√

2xmax

4σ

}]
(13)

Similarly, as in numerous papers about quantization (for instance, in [6,9,22–30,32,34–
36,38,40]), we are interested in conducting an analysis for the variance-matched case, where
the designed for and applied to variance of data being quantized match and commonly
amount to 1. Therefore, we further assume σ2 = 1 so that we end up with the following
novel closed-form formula for the distortion of the symmetrical three-bit UQ when the
input has the Laplacian pdf of zero mean and unit variance:

DUQ|σ2=1 = 1 +
( xmax

8

)2
−
√

2
xmax

8

(
1 + 2

3

∑
i=1

exp

{
−i
√

2xmax

4

})
(14)

Let us finally define the theoretical SQNR as:

SQNRUQ
th = 10 log10

(
σ2

DUQ

)
(15)

which will also be calculated for σ2 = 1 and compared with the experimentally determined
SQNRex

UQ.

4. Specification of Two NN Models and Post-Training Prerequisites

After we have defined the quantizer, we can proceed with the design and implementa-
tion of the two NN model architectures for the practical application of our three-bit UQ in
post-training NN quantization. The first chosen NN model architecture is MLP and is fairly
simple, consisting of three fully connected layers (see Figure 3), as our goal is to analyze the
impact of the quantizer design on the MLP model’s accuracy but not to achieve the highest
possible accuracy on the dataset itself. Moreover, our goal is to provide a fair comparison
with the results from [34], where the same architecture was assumed. The second chosen
NN model architecture is CNN, which contains one additional convolutional layer.
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Both NN models have been trained on the MNIST dataset for handwritten digits
recognition, consisting of 60,000 black and white images of handwritten digits from 0 to
9 [41]. In particular, the MNIST dataset consists of 70,000 black and white images of hand-
written digits, with pixel values in the range [0–255]. The dataset is split into 60,000 training
and 10,000 testing sets, while all images have equal dimensions of 28 × 28 pixels [41]. The
images for MLP are being flattened into one-dimensional vectors of 784 (28 × 28) elements
to match the shape accepted by our first NN, while for a proper CNN input, one additional
dimension is being added to represent the channel. The last pre-processing step is nor-
malizing the input into the range [0–1] by dividing every image sample with the highest
possible value for black and white image amplitude of 255.

The MLP model consists of two hidden and one output layer, with three fully con-
nected (dense) layers in total (see Figure 3). Hidden layers consist of 512 nodes, while
the output layer consists of 10 nodes, where every node estimates the probability that
the MLP output is any digit from 0 to 9. Both hidden layers utilize ReLU activation and
dropout regularization, which sets 20% of the outputs of hidden layers to 0 to prevent
overfitting [42]. In the output layer, the SoftMax activation is utilized, which outputs
probabilities that the input belongs to any of 10 possible classes. Training and accuracy
evaluation of our MLP model has been implemented in TensorFlow framework with Keras
API, version 2.5.0 [43].

The CNN model consists of one convolutional layer, followed by ReLU activation,
max pooling and flatten layer, whose output is fed to the previously described MLP with
two hidden FC layers and the output layer. The convolutional layer contains 16 filters with
kernel size set to 3× 3, while the max pooling layer utilizes a pooling window of size 2 × 2.
The output of the pooling layer is further flattened into a one-dimensional vector for feeding
it forward to the FC dense layer. The only difference between the previously described
MLP and the dense layers utilized in CNN is in the dropout percentage, which is in the
case of CNN set to 50%, to further prevent overfitting of the FC layers. Therefore, the CNN
model consists of three hidden layers and the output layer with a total of 1,652,906 trainable
parameters. The training is performed on the MNIST, in the same manner as for the MLP,
with a total of 10 epochs, while the batch size is equal to 128 training samples.

Additional results are also provided in the paper for both specified models, MLP and
CNN, trained on the Fashion-MNIST dataset [44]. Fashion-MNIST is a dataset comprising
of 28× 28 grayscale images of 70,000 fashion products from 10 categories, with 7000 images
per category [44]. The training set has 60,000 images and the test set has 10,000 images.
Fashion-MNIST shares the same image size, data format and the structure of training and
testing splits with the MNIST. It has been highlighted in [45] that although Fashion-MNIST
dataset poses a more challenging classification task compared to MNIST dataset, the usage
of MNIST dataset does not seem to be decreasing. Additionally, it has been pointed out at
the fact that the reason MNIST dataset is still widely utilized comes from its size, allowing
deep learning researchers to quickly check and prototype their algorithms.

For both NNs, training, accuracy analysis, and quantization have been implemented
in the Python programming language [46]. After training NN models, the corresponding
(different) weights are stored as 32-bit floating points, which represents full precision
in the TensorFlow framework. The MLP model achieves the accuracy of 98.1% on the
MNIST validation set and 88.96% on the Fashion-MNIST validation set, obtained after 10
epochs of training. The CNN model achieves a higher accuracy of 98.89% on the MNIST
validation set and 91.53%, obtained on the Fashion-MNIST validation set, also after 10
epochs of training.

The first NN model (MLP) consists of 669,706 parameters, which are all fed to our
three-bit UQ after training. As mentioned, the second NN model (CNN) consists of
1,652,906 parameters, which are also all fed to our three-bit UQ after training in the CNN
case. While compressing the model weights, we reduce the bit rate for every parameter
from 32 to 3 bits per sample. Once we have obtained the quantized representations of the
NN model weights, we can feed them back into the model and assess the QNN model
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performance when the post-training quantization is applied, and each of the NN weights
is represented with only 3 bits. This holds for both NNs addressed in this paper.

In brief, to evaluate the performance of our three-bit UQ in practice, we have con-
ducted an experimental training of two NN models, and we have stored the corresponding
weights represented in FP32 format. As most machine learning frameworks store trained
weights as 32-bit floating-point values, this bit rate is treated as baseline (full) precision.
After the two training processes were complete, we accessed the stored weights, applied
the quantization, and loaded the quantized weights into the corresponding models. As
previously stated, by doing so, we can significantly reduce the amount of storage required
for saving the QNN models. As in any lossy compression task, where the original input
values cannot be restored after the compression/quantization is applied, an irreversible
quantization error is introduced, which can have a negative impact on the accuracy of our
models. However, by representing the weights of MLP and CNN by 3 bits per sample, we
perform compression with a factor larger than 10 times. When performing compression of
that amount, it is crucial to make the best use out of available resources, which in this case
is our available bit rate.

Typically, when performing uniform quantization of nonuniform unrestricted sources,
e.g., the Laplacian source, the choice of the support region width (<g width) is the most sen-
sitive quantizer parameter, which can significantly impact the performance [22–25,30,31,35].
We have already confirmed this premise for the bit rate of 2 bits per sample in [34], where
the support region choice is crucial not only for the performance of the quantizer alone
but also for the QNN model’s accuracy due to only four representation levels being avail-
able. This imposed a question of whether the choice of <g will have an equally strong
impact on SQNR and accuracy for the case of 3 bits per sample available, which will be
discussed in the later sections. Let us highlight that to provide a fair comparison with
the results from [34], in this paper, the identical MLP architecture is assumed, and the
identical weights (stored in FP32 format) are uniformly quantized by using one additional
bit. Essentially, we evaluate and compare the performance of multiple three-bit UQ designs,
where we also highlight a few significant cases of its design to provide a fair comparison
with the results from [34]. By doing so, we aim to determine the influence of the choice
of the key parameter of the three-bit UQ on the performance of both quantizer and QNN
models, whereas, compared to the analysis of the numerical results from [34], the analysis
presented in this paper is much wider. Moreover, unlike [34], where the analysis has been
only performed for MLP and MNIST datasets, in this paper, the analysis is additionally
performed for a CNN model and the MNIST dataset. Eventually, in this paper, results are
also provided for both specified models, MLP and CNN, trained on the Fashion-MNIST
dataset [44].

5. Post-Training Three-Bit Uniform Quantization

As previously mentioned, compression of NNs in various QNN scenarios implies the
reduction in the number of weights representations while targeting the smallest possible
accuracy loss. Some QNNs apply weights quantization in the training phase and provide
the recovery of QNN accuracy to some extent through the retraining phase. In contrast, in
this paper, due to simplicity reasons as well as applicability reasons, especially for resource-
constrained devices, we want to benefit from weights quantization in the post-training
phase and to avoid a retraining phase. With given pre-trained NN models, MLP and
CNN, the main goal that we set to the UQ in question is to compress the original FP32
weights to three-bit representations and to provide accuracy preservation. Moreover, for
both NNs, we examine whether the key parameter of the observed UQ has a strong impact
on accuracy preservation. In the following, we describe the post-training quantization
procedure (see our Algorithm 1), incorporating three sequential operations applied to NN
weights: normalization, quantization, and denormalization.



Entropy 2021, 23, 1699 10 of 28

Algorithm 1 Weights compression by means of post-training quantization using the symmetrical
three-bit UQ

Notation: wj—pretrained weight, wj
N—normalized weight, wj

UQN—uniformly quantized
normalized weight, wj

UQ—uniformly quantized weight
Input: Ŵ = {wj}j=1, 2, . . . , W , weights represented in FP32 format
Output: ŴUQ = {wj

UQ}j = 1, 2, . . . , W , uniformly quantized weights, SQNRUQ
th , SQNRUQ

ex , Accuracy
1: loading initial pretrained weights Ŵ = {wj}j = 1, 2, . . . , W
2: calculating mean(Ŵ) and std(Ŵ)
3: normalization of weights by using (16)
4: forming ŴN = {wj

N}j = 1, 2, . . . , W
5: wmin←minimal value of the normalized weights from ŴN

6: wmax ←maximal value of the normalized weights from ŴN

7: Choosing wsupp//wsupp ←|wmin| or wmax or xmax[J] or xmax[H] or some other given value
8: j← 1
9: while j ≤W do
10: quantization of wj

N by using (17)
11: end while
12: denormalization of quantized weights
13: forming ŴUQ

14: invoking (18) to calculate DUQ
ex

15: calculating SQNRUQ
ex by using (19)

16: calculating SQNRUQ
th by using (15)

17: estimating Accuracy
18: return ŴUQ, SQNRUQ

th , SQNRUQ
ex , Accuracy

The normalization of weights is the first operation, applied to all weights represented
by the one-dimensional vector Ŵ = {wj}j = 1, 2, . . . , W of W elements, where W = 669,706
is the total number of weights we take into the account in the MLP case. Each weight is
normalized, thereby forming the vector ŴN = {wj

N}j=1, 2, . . . , W

wN
j =

wj −mean(Ŵ)

std(Ŵ)
(16)

where mean(Ŵ) and std(Ŵ) are the mean and the standard deviation of values from the
vector Ŵ, respectively. In brief, weights represented in the FP32 format are normalized
to have zero mean and unit variance before feeding them in the quantization process.
Once the weights are normalized, a discrete distribution of normalized weights is formed
with wmin and wmax denoting the minimal and the maximal value of the normalized
weights, where the notation N indicating the normalization procedure is here omitted due
to simplicity reasons.

The second step in our post-training quantization of NN weights is applying three-
bit uniform quantization to the normalized weights. By the quantization procedure, all
normalized weights are divided into two complementary sets: the weights falling in and
the weights falling out of the support region [−wsupp, wsupp]. In quantization, the support
region is typically specified so as to cover a very large number of weights. For a given
wsupp, we perform uniform quantization of the normalized weights by using

wUQN
j = QUQ

wN
j

(
wN

j ; wsupp

)
=


sgn(wN

j )

(⌊
4
∣∣∣wN

j

∣∣∣
wsupp

⌋
+ 1

2

)
wsupp

4 ,
∣∣∣wN

j

∣∣∣ ≤ wsupp

sgn(wN
j ) ·

7wsupp
8 ,

∣∣∣wN
j

∣∣∣ > wsupp

(17)

thereby forming ŴUQN = {wj
UQN}j = 1, 2, . . . , W , whose values can take up to 8 different val-

ues.
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The last step in the post-training procedure is the denormalization of the quantized
weights. Denormalization is performed after quantization so that quantized weights being
denormalized, ŴUQ = {wj

UQ}j=1,2, . . . ,W , could go back to the original range of values and
could be loaded into the QNN model.

Eventually, we can evaluate the performance of the three-bit UQ measured with
distortion or SQNR

DUQ
ex =

1
W
‖Ŵ− ŴUQ‖

2
2 =

1
W

(Ŵ− ŴUQ
)

T
(Ŵ− ŴUQ

) =
1

W

W

∑
j=1

(wj − wUQ
j )

2
(18)

SQNRUQ
ex = 10 log10


1

W

W
∑

j=1
w2

j

DUQ
ex

 (19)

and we can estimate the accuracies of both QNNs (for MLP and CNN), which also reflect
the performance of the post-training three-bit UQ.

6. Numerical Results and Analysis

The performance analysis of our post-training quantization can be broadly observed
in two aspects: the accuracy of the QNN models and the SQNR of the uniform quantizers
implemented to perform the weight compression. Our main goal is to determine and
isolate the impact of the choice of <g on the accuracy of the QNNs. Therefore, for the first
NN model (MLP), we have conducted a detailed analysis of the statics of both the original
and the uniformly quantized weights. For both NN architectures, MLP and CNN, which
are trained on the MNIST dataset, we have determined the accuracies of the QNNs for
various values of the key quantizer parameter for the bit rate of R = 3 bit/sample. As
previously mentioned, the full precision accuracy of our MLP on the MNIST validation
dataset amounts to 98.1%, which is the benchmark accuracy used in the comparisons. The
second point of reference is the accuracy of the QNN presented in [34], where we have
obtained accuracy up to 96.97% with the use of two-bit UQ for the quantization of identical
weights with the identical MLP architecture. Let us highlight that we have shown in [34]
that an unsuitable choice of the support region can significantly degrade the accuracy
(more than 3.5%), that is, the performance of the post-training two-bit uniform quantization
for the assumed MLP model trained on MNIST. The second point of reference will give
us insight into the differences in impact of <g on the QNN accuracy when using 1 bit per
sample more for compression. The intuition is that for a larger bit rate of R = 3 bit/sample,
the influence of the support region of the quantizer will be smaller compared to the case
presented in [34], where only 2 bits have been used to represent the QNN weights. To
confirm this premise, we have designed multiple three-bit UQs with different <g values
and analyzed the accuracy accordingly, which will be presented later in this section.

Firstly, we have conducted multiple training procedures of the specified MLP on the
MNIST dataset to confirm that in various training sequences, the weights converge to the
values that belong to the same range while obtaining similar model accuracy for both MLP
and quantized MLP models. Table 1 shows the statistics of the trained weights and the
performance of our MLP model without and with the application of quantization for four
independent training procedures of the same MLP model on the MNIST dataset. One can
observe that the weights fall into almost the same range of values for each training, with
and without normalization. Additionally, the model achieves similar accuracy throughout
various training procedures with small variations. Finally, the obtained SQNR values (for
the case where the support region threshold is specified by (6)) are very close for different
weight vectors, with dynamics of approximately 0.04 dB. We can conclude that the weight
vector chosen in our analysis (the same weight vector as utilized in [34]) can be considered
a proper representation of any training sequence obtained with the same MLP architecture
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and that the results of post-training quantization are very close to each other for all of the
observed cases.

Table 1. Analysis of the MLP weight’s statistics: amplitude dynamics before and after the normalization to zero mean and
unit variance, the accuracy before and after three-bit UQ quantization (FP32 and UQ) and SQNR.

Weights File Name
min

Weights
FP32

max
Weights

FP32

min Weights
Norm
FP32

max Weights
Norm
FP32

acc.
FP32
(%)

acc.
UQ[H]

(%)

SQNR
UQ[H]

(dB)

mnist_weights_used −0.5185 0.3447 −7.0638 4.8371 98.1 97.66 12.9455
mnist_weights_1 −0.4948 0.3594 −6.6845 5.0123 98.28 98.17 12.9623
mnist_weights_2 −0.5122 0.3533 −6.960 4.948 98.18 97.9 12.9021
mnist_weights_3 −0.5096 0.3624 −6.9375 5.0808 98.3 97.92 12.9204

Once we have established that the chosen weights represent a good specimen for any
training sequence of a given MLP architecture, we can proceed with the QNN accuracy
evaluation. Table 2 presents SQNR of the three-bit UQ and QNN model accuracy, obtained
for multiple choices of <g for the bit rate of R = 3 bit/sample and the specified MLP trained
on MNIST dataset. Along with the experimentally obtained SQNR values (calculated
by using Equations (18) and (19)), we have determined theoretical SQNR by using Equa-
tions (14) and (15), for each <g choice to evaluate differences between the theoretical and
experimental SQNR values. Choices 1 and 2 depend on the statistics of the normalized NN
model weights, specifically on the minimum and maximum weight value (wmin and wmax),
while in Choice 3 and 4, <g is specified with the well-known optimal and asymptotically
optimal values for the assumed bit rates, as given in [22,31]. In addition, Table 3 presents
SQNR and the QNN model’s accuracy obtained with the application of two-bit UQ, where
<g is defined following the same principles as in Table 2 and the identical weights of the
MLP model (trained on MNIST dataset) are quantized [34]. Specifically, Choice 1 of <g in
Table 2 matches Case 1 in Table 3, etc. Table 3 is provided for comparison purposes to help
us make conclusions about the different impacts that the choice of <g has on the SQNR and
QNN model’s accuracy for a specified MLP and different bit rates. It has been highlighted
in [47] that Choice 2, that is, Case 2, is a popular choice for the quantizer design, which, as
one can notice from Table 3, is not the most suitable choice in terms of accuracy and SQNR.
In the following, we first analyze the results obtained for the MLP and the three-bit UQ
presented in Table 2, with a reference to the two-bit uniform quantization model presented
in [34].

Table 2. SQNR and QNN accuracy for MLP trained on the MNIST dataset with the application of different three-bit
UQ designs.

wmin = −7.063787 wmax = 4.8371024
xmax[H] = 2.9408 xmax[J] = 2.9236

Choice 1 <g
[−wmax, wmax]

Choice 2 <g
[wmin, −wmin]

Choice 3 <g
[−xmax[H], xmax[H]]

Choice 4 <g
[−xmax[J], xmax[J]]

SQNRex
UQ(dB) 9.2302 5.9005 12.9455 12.9766

SQNRth
UQ(dB) 8.6901 5.1273 11.4414 11.4419

Accuracy (%) 97.85 97.85 97.66 97.65
Within <g (%) 99.988 100 99.403 99.381

Table 3. SQNR and QNN accuracy for MLP trained on MNIST dataset with the application of different two-bit UQ
designs [34].

wmin = −7.063787 wmax = 4.8371024
xmax[H] = 1.9605 xmax[J] = 2.1748

Case 1 <g
[−wmax, wmax]

Case 2 <g
[wmin, −wmin]

Case 3 <g
[−xmax[H], xmax[H]]

Case 4 <g
[−xmax[J], xmax[J]]

SQNRex
UQ(dB) 2.8821 −1.2402 8.7676 8.7639

SQNRth
UQ(dB) 1.9360 −2.0066 6.9787 7.0707

Accuracy (%) 96.97 94.58 96.34 96.74
Within <g (%) 99.988 100 94.787 96.691
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Choice 1 defines <g of the UQ in the range [−wmax, wmax], meaning that <g is sym-
metrically designed according to the absolute value of the maximum weight sample. In
our case with the MLP, it holds |wmax| = wmax (wmax ≥ 0), so we have simplified our
notation. From Tables 2 and 3, one can notice that with the so-defined <g, 99.988% of the
normalized weight samples are within <g. Choice 2 defines <g in the range [wmin, −wmin],
meaning that our quantizer is symmetrically designed according to the absolute value of
the minimum normalized weight sample, |wmin|. In our case, it holds |wmin| = −wmin
(wmin ≤ 0). <g defined in Choice 2 includes all of the normalized weight samples, meaning
that none of the samples fall into the overload region of the quantizer. From Table 2,
one can notice that although SQNR for Choices 1 and 2 differ to a great extent, the QNN
model’s accuracy is identical. In contrast, one can notice from Table 3 that with two-bit
UQ, the QNN model exhibits significant performance variations in both SQNR and model
accuracy, where both are dominantly determined by the choice of <g. Similar is the case
with Choices 3 and 4, where xmax[H] and xmax[J] take relatively close values. Although
SQNR obtained for Choices 3 and 4, presented in Table 2, and the matching Cases 3 and 4
from Table 3 has stable, close values, this is not the case for the QNN model’s accuracy (see
Table 3).

By analyzing the QNN model accuracies presented in Table 2, we can observe that
the accuracy dynamics, defined as the difference between the highest and lowest obtained
accuracy, amounts to 0.2%. On the other hand, by performing the same analysis for the case
of implementing two-bit UQ, we can calculate that QNN accuracy dynamics amounts to
2.39%. Moreover, by comparing the SQNR values obtained for the three-bit UQ presented
in Table 2 for Choices 2 and 4, we can observe a high dynamic range of SQNR values with
the difference between Choices 2 and 4 amounting to 6.3146 dB, while the difference in the
QNN model’s accuracy for these choices of <g amounts to just 0.2%. This further indicates
that a large difference in SQNR of the three-bit UQ does not necessarily result in a large
difference in the accuracy of the QNN, as had been found for the two-bit UQ in [34]. The
maximum theoretical and experimental SQNR is obtained for Choice 4, where <g is defined
optimally by xmax[J], while the maximum QNN model accuracy is obtained in Choices 1
and 2 (see bolded values). We can conclude that the choice of <g dominantly determines
the QNN model’s accuracy in the case of a very low bit rate of 2 bits per sample, where we
have only four available representation levels. By doubling the number of representation
levels to eight for a bit rate of R = 3 bit/sample, it turns out that the impact of the <g on
QNN model’s accuracy significantly reduces. This statement will be inspected later in this
section by observing the QNN model’s accuracy in a wider range of <g choices for both
MLP and CNN models.

To achieve a high-quality compressed signal, it is of great significance to exploit the
full potential of the available bit rate. To inspect the distribution of the normalized weights
among different representation levels of the three-bit UQ, we have extracted histograms of
normalized weights of individual layers, as well as the joint histogram of all normalized
weights of the MLP (trained on MNIST dataset) before and after compression/quantization
(see Figures 4–7). At first glance, by comparing Choices 1 and 2 with Choices 3 and 4,
one can notice that in the first two choices, we dominantly utilize only four of the eight
available representation levels of UQ, which is especially noticeable on the histogram
presenting all normalized weights of QNN model for Choice 2. This leads us to the
conclusion that in Choices 1 and 2, we utilize unnecessary wide <g, which explains the
lower SQNR values obtained for the first two choices, especially in Choice 2, where <g
ranges [−7.063787, 7.063787]. At the same time, a wider <g positively contributes to the
QNN model’s accuracy, which is higher for the first two observed choices compared to
Choices 3 and 4.
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By observing the histograms of Choices 3 and 4, one can notice that all representation
levels of the three-bit UQ take enough values to be clearly noticeably on the QNN histogram,
implying that during the quantization process, we exploit the full potential of the three-
bit UQ. Moreover, this can be confirmed by comparing the histogram envelope of all
normalized weights before and after quantization. One can notice that in Choices 3 and 4,
the envelope of the histogram of the quantized normalized weights follows the envelope of
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the histogram of all normalized weights before quantization to a great extent. This shows
us that the distribution of the quantized normalized weights follows the distribution of
the normalized weights. Additionally, by analyzing the normalized weights in different
NN model layers, we can see that level 3 has the highest deviation from the Laplacian
distribution, having a distribution that is closer to the uniform one. As the uniform
quantizer is optimal for the uniform distribution, by making a suitable choice of <g,
the benefits of the UQ model can be significantly exploited for this layer. Histograms
offer us another interesting insight that lies in a small asymmetry of the QNN model
normalized weights. This phenomenon is a consequence of the fact that the percentage of
non-negative weights after normalization is 50.79%, meaning that it is higher by 1.58% than
the percentage of negative weight values after normalization. This leads to a righthand
side shift of the samples during quantization, which can be observed in individual and
joint histograms of normalized weights before and after quantization. The asymmetry is
largest at layer 2, where the percentage of positive weight samples after normalization
amounts to 51.3649%, meaning that it is higher by 2.7298% than the percentage of negative
weight values after normalization. As a result, we have the highest level of asymmetry
after quantization at layer 2.

So far, we have confirmed that in all four observed choices of <g, our first QNN model
achieves a stable performance in terms of accuracy, with a deviation of approximately 0.2%.
To further inspect the influence that wsupp has on the QNN model’s accuracy, we have
determined the QNN model’s accuracy for wsupp values in the range from xmax[J] = 2.9236
to |xmin| = 7.063787, with a step size of 0.1 (see Figure 8). The highest obtained accuracy
in the observed range amounts to 97.97%, while the lowest value is 97.65%, that is, the
accuracy dynamics amounts to 0.32%. Therefore, we have once more confirmed that for
a bit rate of R = 3 bit/sample, the impact of the <g choice on the QNN model’s accuracy
significantly reduces compared to the case where the identical weights of MLP, stored
in FP32 format, are uniformly quantized with the bit rate of 2 bit/sample. It should be
mentioned out that accuracy dynamics presented in Figure 8 has been determined in a wide
but carefully chosen range of the observed values of wsupp, which we heuristically specified.
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from xmax[J] = 2.9236 to |xmin| = 7.063787.

In this paper, we also present a range of unfavorable <g choices for MLP, i.e., the first
NN model observed (see Figure 9). If the support region threshold values range from 0.5 to
xmax[J] = 2.9236 and change with a step size of 0.1, the QNN’s accuracy varies from 72.51%
to 97.65%. As this presents very high dynamic values, we can conclude that all four choices
presented in Table 2 have been carefully made according to the nature of our input data.
In addition, it is noticeable that after passing the value of 2.5, the accuracy is persistently
above 97% due to a small impact of different <g choices on the QNN model’s accuracy if
wsupp is chosen from a proper intuitively expected range, that is when it holds wsupp ≥ 2.5.
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Figure 9. The accuracy of the first QNN model (MLP trained on MNIST dataset) for partially
unfavorable choice of the support region threshold.

While the QNN model’s accuracy is the main point of reference observed in the
experiments, the SQNR of the three-bit UQ takes a significant place in our analysis. Similar
to the evaluation of the QNN model’s accuracy dynamics, we can observe the impact that
the choice of <g has on the performance of the three-bit UQ. Table 2 already showed that
for a bit rate of R = 3 bit/sample, SQNR values have much higher dynamics compared
to the QNN model’s accuracy. To inspect the impact of wsupp choice on the SQNR in a
wider range of values, we have calculated the theoretical and experimental SQNR of the
three-bit UQ in the wsupp range of [0.5, 7.063787]. In addition, to compare experimentally
determined values for the two different NN models specified in the paper, MLP and CNN,
in Figure 10, we provide additional experimental results for the CNN model. If we set
wsupp between xmax[J] = 2.9236 and |xmin| = 7.063787 with the step size of 0.1 and calculate
the SQNR in 42 points, the dynamics of the experimentally calculated SQNR for the MLP
is 12.9766 dB − 5.9005 dB = 7.0761 dB, which is considered to be a very large value. For the
values of wsupp in the range between 0.5 and xmax[J] = 2.9236 with the step size of 0.1, the
dynamics of SQNR for the same MLP case is 13.47669 dB − 3.18492 dB = 10.2918 dB. It is
obvious that the choice of wsupp has a large influence on the obtained SQNR of the three-bit
UQ. Slightly smaller but also large dynamics of the experimentally calculated SQNR can be
perceived for the CNN case. In addition, Figure 10 depicts the difference in theoretically and
experimentally obtained SQNR values. One can notice from Figure 10 that the theoretical
SQNR curve decreases after passing the theoretically optimal value of xmax[J] = 2.9236. In
contrast, the experimentally optimal value of wsupp is lower compared to the theoretical
one. This is a consequence of lower amplitude dynamics of real normalized weights (see
Figure 11) used in the experimental analysis compared to the theoretically assumed ones.
The maximum of experimentally obtained SQNR values in the case of MLP amounts to
13.47669 dB for the support region threshold equal to 2.5, while the experimentally obtained
QNN model accuracy for this <g choice is 97.43%, which is not the maximum obtained
accuracy in the experiment. The maximum of experimentally obtained SQNR value in the
CNN case amounts to 13.10203 dB, for the support region threshold equal to 2.6, while
the experimentally obtained QNN model accuracy for this <g choice amount to 98.27%,
which is also not the maximum obtained accuracy in the experiment for the CNN case.
One can notice the higher amplitude dynamics of weights for the CNN case compared to
the MLP case (see Figure 11). For that reason, the maximum of experimentally obtained
SQNR values in the CNN case is shifted right in Figure 10. Moreover, one can notice that
the theoretically determined SQNR curve is below both experimentally determined SQNR
curves. The reason is that in the experimental analysis, the weights originating from the
Laplacian-like distribution being quantized are from the limited set of possible values
[−7.063787, 4.8371024] for the MLP model and from [−8.372064, 6.469376] for the CNN
model. In the theoretical analysis, the quantization of values from an infinite set of values
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from the Laplacian source is assumed causing an increase in the amount of distortion, that
is, the decrease in the theoretical SQNR value. Due to a similar reason (a wider amplitude
dynamics of weights in the CNN case compared to the MLP case), the experimentally
obtained SQNR is lower in the CNN case in comparison to the MLP case.

Entropy 2021, 23, x FOR PEER REVIEW 21 of 29 
 

 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
2

3

4

5

6

7

8

9

10

11

12

13

14

15

th. results 

exp. results CNN  

 

SQ
N
RU

Q
ex
 [d
B]
 an

d S
QN

RU
Q

th
 [d
B]

support region threshold

exp. results MLP

 
Figure 10. Theoretical and experimental SQNR values for a wide range of wsupp values assumed in 
post-training three-bit UQ for MLP and CNN trained on MNIST dataset. 

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

Fr
eq

ue
nc

y 
of

 o
cc

ur
en

ce
 [%

]

w  
(a) 

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8
9
10
11

Fr
eq

ue
nc

y 
of

 o
cc

ur
en

ce
 [%

]

w  
(b) 

Figure 11. Normalized histogram of weights (FP32) for (a) MLP (b) CNN, both trained on MNIST 
dataset. 

When compared to Case 1 of two-bit UQ presented in [34], our three-bit UQ in the 
comparable case (Choice 1 for the MLP model) achieves a higher accuracy on the MNIST 

Figure 10. Theoretical and experimental SQNR values for a wide range of wsupp values assumed in
post-training three-bit UQ for MLP and CNN trained on MNIST dataset.

Entropy 2021, 23, x FOR PEER REVIEW 21 of 29 
 

 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
2

3

4

5

6

7

8

9

10

11

12

13

14

15

th. results 

exp. results CNN  

 

SQ
N
RU

Q
ex
 [d
B]
 an

d S
QN

RU
Q

th
 [d
B]

support region threshold

exp. results MLP

 
Figure 10. Theoretical and experimental SQNR values for a wide range of wsupp values assumed in 
post-training three-bit UQ for MLP and CNN trained on MNIST dataset. 

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

Fr
eq

ue
nc

y 
of

 o
cc

ur
en

ce
 [%

]

w  
(a) 

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
0
1
2
3
4
5
6
7
8
9
10
11

Fr
eq

ue
nc

y 
of

 o
cc

ur
en

ce
 [%

]

w  
(b) 

Figure 11. Normalized histogram of weights (FP32) for (a) MLP (b) CNN, both trained on MNIST 
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When compared to Case 1 of two-bit UQ presented in [34], our three-bit UQ in the
comparable case (Choice 1 for the MLP model) achieves a higher accuracy on the MNIST
validation dataset by a significant 0.88%. Let us anticipate here that the QNN analysis
with UQ should be limited to the cases of bit rate equal to 2 and 3 bits per sample, as it is
expected that further increase in the bit rate will not contribute to the significant increase
in the QNN model’s accuracy. In other words, we have shown that with the observed
three-bit UQ, the accuracy of QNN amounting up to 97.97% can be achieved, meaning that
by applying the described post-training quantization procedure to the MLP model trained
on the MNIST dataset, the accuracy degradation of only 98.1% − 97.97% = 0.13% can be
achieved compared to baseline MLP model stored in FP32 format.

In the following, we analyze the performance of the three-bit UQ in CNN model
compression and the impact of various support region threshold values on both SQNR and
post-training quantization accuracy. The observed cases and methodologies are the same
as previously applied in MLP analysis. In particular, four specific choices of <g have been
observed, and for each choice, we have calculated SQNR and the accuracy of CNN model
when three-bit uniform post-training quantization is applied (see Table 4).

Table 4. SQNR and accuracy—the application of different three-bit UQ designs for CNN and MNIST dataset.

wmin = −8.372064 wmax = 6.469376
xmax[H] = 2.9408 xmax[J] = 2.9236

Choice 1 <g
[−wmax, wmax]

Choice 2 <g
[wmin, −wmin]

Choice 3 <g
[−xmax[H], xmax[H]]

Choice 4 <g
[−xmax[J], xmax[J]]

SQNRex
UQ(dB) 6.5399 4.0532 12.8594 12.8812

SQNRth
UQ(dB) 5.9846 3.4347 11.4414 11.4419

Accuracy (%) 98.38 97.64 98.56 98.56
Within <g (%) 99.9999 100 99.165 99.136

One can notice that the CNN model’s accuracy is relatively stable, especially consid-
ering very high wmin and wmax values, compared to Choices 3 and 4. Moreover, the full
precision of the CNN is expectedly higher when compared to the MLP, achieving accuracy
of 98.89% on the MNIST validation set. Unlike the accuracy, the SQNR performance of the
three-bit UQ differs a lot, which is a result of high absolute wmin and wmax values that are
very far from the optimal value. Nevertheless, as the fluctuation of the accuracy is smaller
than 1%, (98.56% − 97.64% = 0.92%) for such different Choices of <g, this confirms that the
observations made for MLP regarding the influence of <g on the QNN performance are
similar for the case of CNN.

By analyzing the QNN model accuracies presented in Figure 12a for the CNN case, we
can observe that the accuracy dynamics, defined as the difference between the highest and
lowest obtained accuracy in a very wide range of values selected for the support region
threshold (wider than in the MLP case), amounts to 1.3%. On the other hand, by performing
the rough analysis based only on the results from Table 3, for the case of implementing
two-bit UQ, we can calculate that QNN accuracy dynamics is higher and amounts to
2.39%. At first glance, by comparing the values of SQNRex

UQ for MLP and of SQNRex
UQ

for CNN, for all four choices (see Tables 2 and 4), one can notice that they have quite
similar values for Choices 3 and 4. That is, one can notice that it holds SQNRex

UQ(MLP-
Choices 3 and 4) ≈ SQNRex

UQ(CNN—Choices 3 and 4). However, for Choices 1 and 2,
it is expected that SQNRex

UQ (MLP—Choices 1 and 2) > SQNRex
UQ (CNN- Choices 1

and 2) due to the higher amplitude dynamics of weights of the CNN model trained on
the MNIST dataset compared to the one for the MLP model. Further, by analyzing the
percentage of samples belonging to the <g for the CNN and MLP cases, one can notice that
these percentages are quite similar for Choices 1 and 2 (see Tables 2 and 4—within <g (%)
(MLP—Choices 1 and 2) ≈Within <g (%) (CNN- Choices 1 and 2). Moreover, it can be
noticed that within <g (%) (MLP—Choices 3 and 4) > within <g (%) (CNN—Choices 3 and
4). In other words, the percentage of weights within <g (%) for MLP and Choices 3 and 4 is
greater by approximately 0.25%.
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Since we have almost the same accuracies: Accuracy (%) (MLP—Choice 3) ≈ Accu-
racy (%) (MLP—Choice 4) and Accuracy (%) (CNN—Choice 3) ≈ Accuracy (%) (CNN—
Choices 4), one can observe almost the same difference in accuracy of 0.9% in favor of
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CNN for Choices 3 and 4, which has been intuitively expected. In addition, it is also
reasonable to analyze the results shown in Figure 12a for a somewhat narrower range
of <g. More precisely, if we analyze the results up to wmax = 6.469376 (Choice 1 within
<g (%) is 99.9999% of the weights), a somewhat smaller value representing the accuracy
dynamics can be determined. From both analyses conducted for the CNN model, trained
on the MNIST dataset, and quantized by using three-bit UQ, one can conclude that a fairly
stable accuracy can be achieved regardless of the <g choice, which is not the case with the
post-training two-bit uniform quantization reported for the MLP case in [34].

In this paper, results are also provided for both specified NN models, MLP and CNN,
trained on the Fashion-MNIST dataset [44]. Tables 5 and 6 present SQNR and the QNN
model accuracy obtained with the application of different three-bit UQ designs for MLP
and CNN trained on the Fashion-MNIST dataset, where <g is defined following the same
principles as in previous tables.

Table 5. SQNR and accuracy—the application of different three-bit UQ designs for MLP and Fashion-MNIST dataset.

wmin = −9.395458 wmax = 6.533294
xmax[H] = 2.9408 xmax[J] = 2.9236

Choice 1 <g
[−wmax, wmax]

Choice 2 <g
[wmin, −wmin]

Choice 3 <g
[−xmax[H], xmax[H]]

Choice 4 <g
[−xmax[J], xmax[J]]

SQNRex
UQ(dB) 6.665 3.1292 12.3843 12.40141

SQNRth
UQ(dB) 5.8894 2.2619 11.4414 11.4419

Accuracy (%) 87.69 87.12 88.39 88.48
Within <g (%) 99.997 100 99.027 98.999

Table 6. SQNR and accuracy—the application of different three-bit UQ designs for CNN and Fashion-MNIST dataset.

wmin = −12.76407909 wmax = 7.5561204
xmax[H] = 2.9408 xmax[J] = 2.9236

Choice 1 <g
[−wmax, wmax]

Choice 2 <g
[wmin, −wmin]

Choice 3 <g
[−xmax[H], xmax[H]]

Choice 4 <g
[−xmax[J], xmax[J]]

SQNRex
UQ(dB) 4.9069 −0.579776 12.2284 12.2341

SQNRth
UQ(dB) 4.4615 −0.9315 11.4414 11.4419

Accuracy (%) 85.53 84.901 88.02 87.97
Within <g (%) 99.998 100 98.822 98.784

Let us first highlight again that the MLP model achieves an accuracy of 98.1% on the
MNIST validation set and 88.96% on the Fashion-MNIST validation set, where weights
are represented in the FP32 format. Compared to MLP, the CNN model achieves a higher
accuracy of 98.89% on the MNIST validation set, as well as a higher accuracy of 91.53%
obtained on the Fashion-MNIST validation set, with weights also represented in the FP32
format. The highest obtained QNN accuracy for the observed <g ranges in Table 5 amounts
to 88.48% for Choice 4, while the lowest value for Choice 2 is 87.12%. Moreover, the
accuracy dynamics for the results presented in Table 5 amounts to 1.36%. For Choice 4,
we can calculate that the degradation of the accuracy due to the application of the three-
bit UQ amounts to 88.96% −88.48% = 0.48%. In Table 6, the highest obtained accuracy
amounts to 88.02% for Choice 3 (degradation due to the applied three-bit UQ amounts
to 91.53% − 88.02% = 3. 52%), while the lowest value, also for Choice 2, is 84.90%. The
accuracy dynamics for the results presented in Table 6 amounts to 4.12%. It has been
highlighted in [47] that Choice 2 is a popular choice for the quantizer design, which, as
one can notice from Tables 5 and 6, is not the most suitable choice in terms of accuracy
and SQNR, especially when the amplitude dynamics of the weights being quantized is
relatively large.

In order to inspect further the influence of the <g choice on both, the accuracy and
SQNR, for a wide range of wsupp values and for both NN models (MLP and CNN) trained
on Fashion-MNIST dataset, we can analyze results presented in Figure 12b,c. For wsupp
having a relatively wide range of values, the accuracy dynamics presented in Figure 12b,c
amount to 2.5% and 5.5%, for MLP and CNN, respectively. This indicates that in the
case where the specified MLP and CNN are trained on Fashion-MNIST dataset, more
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careful choice of <g should be performed. In addition, results presented in Figure 12b,c
indicate that there is a number of choices for <g that can result in the degradation of
accuracy due to the application of the three-bit UQ up to 1% compared to the case with
the highest identified accuracy. Eventually, we can highlight that the highest accuracies
for the observed Fashion-MNIST dataset and MLP and CNN models are achieved for
wsupp = 3.42 and wsupp = 3.52, respectively. These highest accuracies amount to 88.78%
and 89.54% for MLP and CNN models (for Fashion-MNIST dataset), respectively. In
other words, with the observed three-bit UQ, and with the selection of wsupp = 3.42 and
wsupp = 3.52 for the corresponding cases (MLP and CNN), the accuracy degradation of
88.96% − 88.78% = 0.18% and 91.53%− 89.54%≈ 2% is achieved. We can derive additional
conclusions by analyzing theoretical and experimental SQNR values for MLP and CNN
(both trained on Fashion-MNIST dataset) determined for a wide range of wsupp values
assumed in three-bit post-training uniform quantization (see Figure 13).
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Figure 13. Theoretical and experimental SQNR values for MLP and CNN (both trained on Fashion-
MNIST dataset) and for a wide range of wsupp values assumed in three-bit post-training UQ. 
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From the SQNR aspect, the results presented in Tables 5 and 6 show that, as expected,
the highest values in both cases of interest (MLP and CNN) are achieved for Choice 4. As
already highlighted, the theoretical SQNR curve decreases after passing the theoretically
optimal value of 2.9236. Additionally, as previously concluded for the MLP and CNN
trained on the MNIST dataset, in the observed cases with MLP and CNN trained on the
Fashion-MNIST dataset, this theoretically optimal value of wsupp differs from wsupp = 2.7
and wsupp = 2.8, at which the maximum of the experimentally determined SQNR value of
12.5374 dB and 12.2462 dB are achieved for MLP and CNN case, respectively. Similarly, as
we have explained for the MNIST dataset and MLP and CNN, we can here explain that these
differences are the consequence of lower amplitude dynamics of real normalized weights
(see Figure 14) used in the experimental analysis compared to the theoretically assumed
ones. For wsupp = 2.7, the QNN model’s accuracy for MLP trained on the Fashion-MNIST
dataset amounts to 88.54%, which is not the maximum obtained accuracy in the experiment.
A similar conclusion can be derived for the CNN trained on the Fashion-MNIST dataset,
where for wsupp = 2.8, we have determined that the QNN model’s accuracy is 87.73%.
Therefore, we can conclude that for both NN models (MLP and CNN) and for both datasets
(MNIST and Fashion-MNIST), it is not of utmost importance to determine the optimal
value of the support region threshold, as it is the case in classical quantization, in order to
fit into some predefined range of accuracy degradation that can be considered acceptable.
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Figure 14. Normalized histogram of weights (FP32) for (a) MLP and (b) CNN trained on Fashion-
MNIST. 
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As with the MNIST dataset, in the case of using the Fashion-MNIST dataset, one
can notice the higher amplitude dynamics of weights for the CNN case compared to
the MLP case (see Figure 14). For that reason, the maximum of experimentally obtained
SQNR values in the CNN case is shifted right in Figure 13. Moreover, one can notice
that the theoretically determined SQNR curve is below both experimentally determined
SQNR curves, where the reasons for these differences are similar to those explained for the
MNIST dataset.

In summary, the experimental analysis confirmed that for the case of R = 3 bit/sample,
different choices of <g do not have an equally high impact on the QNN model’s accuracy
as is the case when the bit rate is equal to 2 bits per sample. Moreover, it has been shown
that if the support region threshold takes value from a properly defined wide range, for
both specified NN models, MLP and CNN trained on MNIST dataset, the performance
of QNNs is quite stable for various choices of <g, and the accuracy of QNNs are greatly
preserved in comparison to the corresponding baseline NN models. Eventually, we have
concluded that for both NN models (MLP and CNN) and for both datasets (MNIST and
Fashion-MNIST), it is not of utmost importance to determine the optimal value of the
support region threshold, as it is the case in classical quantization, in order to fit into some
predefined range of accuracy degradation that can be considered acceptable.
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7. Summary and Conclusions

In this paper, we have shown that when three-bit UQ is utilized for post-training
quantization, the accuracies of two NNs (MLP and CNN) that we have pretrained for the
MNIST dataset can be preserved for various choices of the key parameter of the quantizer
in question. The degradation of accuracies has been estimated relative to the ones of
the corresponding baseline NNs with weights represented in FP32 format, which is the
default format used on platforms that utilize GPUs and CPUs. We have also shown that in
post-training three-bit uniform quantization, for both NN models (MLP and CNN) and
for two datasets (MNIST and Fashion-MNIST), it is not of utmost importance, as it is in
classical quantization, to determine the optimal support region threshold value of the UQ to
achieve some predefined accuracy of the QNN. Opposite to the case with two-bit uniform
quantization, where we intuitively anticipated and showed that the choice of the support
region width has a high impact on the accuracy of the QNN model, in this paper, for the
same classification task and the same specified MLP, we have not given such anticipation
in the case of the UQ having only one additional bit. We have actually examined whether
the choice of the support region width of the three-bit UQ has an impact on the accuracy
of the QNN, and we have determined weak dependence of the accuracy on the support
region threshold, especially for the MLP model. Therefore, we have highlighted that an
unsuitable choice of the support region of the two-bit UQ can significantly degrade the
accuracy of QNN, whereas tunning the support region threshold value is far simpler and
less stringent in the case with three-bit UQ. We have shown that by using three-bit UQ to
compress weights of MLP and CNN (trained on MNIST dataset) more than 10 times, we
have managed to significantly preserve the accuracy of the NN model, which is degraded
by 0.13% and 0.10%, respectively. The simplicity of our proposal, along with the high
robustness of accuracy in changing the support region threshold value, indicates that the
post-training quantization model addressed in this paper can be very exploited in a simple
way, which is especially important in edge devices for real-time classification tasks. In
other words, since the addressed low-bit quantization can be considered as an attractive
and powerful compression technique that could enable QNN to fit in the edge device with
accuracy preserved to a high extent, one can expect that the analysis performed in the
paper will also have great practical importance. Eventually, for future work, we plan to
experiment with some other datasets and with very simple quantizer models, as the one
utilized in this paper.
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26. Aleksić, D.; Perić, Z. Analysis and Design of Robust Quasilogarithmic Quantizer for the Purpose of Traffic Optimisation. Inf.

Technol. Control 2018, 47, 615–622. [CrossRef]
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