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Abstract: Active object recognition (AOR) aims at collecting additional information to improve
recognition performance by purposefully adjusting the viewpoint of an agent. How to determine
the next best viewpoint of the agent, i.e., viewpoint planning (VP), is a research focus. Most existing
VP methods perform viewpoint exploration in the discrete viewpoint space, which have to sample
viewpoint space and may bring in significant quantization error. To address this challenge, a
continuous VP approach for AOR based on reinforcement learning is proposed. Specifically, we use
two separate neural networks to model the VP policy as a parameterized Gaussian distribution and
resort the proximal policy optimization framework to learn the policy. Furthermore, an adaptive
entropy regularization based dynamic exploration scheme is presented to automatically adjust the
viewpoint exploration ability in the learning process. To the end, experimental results on the public
dataset GERMS well demonstrate the superiority of our proposed VP method.

Keywords: active object recognition; continuous viewpoint planning; adaptive entropy regularization;
dynamic exploration; proximal policy optimization

1. Introduction

Visual object recognition plays an important role in the fields of computer vision and
robotics. It has been successfully applied into a large number of tasks, e.g., autonomous
driving, manipulation and grasping, monitoring security, transportation surveillance [1], etc.

Most recognition systems exclusively focus on static image recognition, that is, the
systems take a single snapshot as input and generate a category label estimate as output [2].
It is easy to produce recognition errors when the single-view image can not provide enough
information. However, the vision behavior of people is exploratory, probing, and searching
in order to better understand their surroundings. For example, you will go to the front of a
person to confirm when you can not identify him from his back. Thus, if the viewpoint of an
agent (e.g., an automatic mobile robot with a head mounted camera) is allowed to be changed,
more detailed information will be collected to improve the performance of recognition.

The idea described above fits into the realm of active object recognition (AOR) [3–5],
which gathers additional evidence to improve recognition performance by purposefully
adjusting the viewpoint (position and orientation) of an agent. Many classic and latest AOR
approaches are reviewed in [6,7]. The main focus of AOR research is viewpoint planning
(VP) which means how to determine the next best viewpoint of the agent. A good VP
policy can greatly ameliorate the recognition performance. In recent years, reinforcement
learning has attracted growing research attention on viewpoint planning [8–12]. The agent
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is able to learn a good VP policy under the guidance of hand-designed reward functions.
The main algorithms involved in the learning process are dynamic programming [8] and
Q-Learning [9–12]. Both dynamic programming based and Q-Learning based methods
have made a great contribution to AOR. However, these VP methods explore discrete
viewpoint space, which have to sample viewpoint space and may bring in significant
quantization error.

To alleviate this problem, we propose a continuous viewpoint planning approach for
AOR based on reinforcement learning in this work. The approach can effectively explore
the continuous viewpoint space. To be specific, we employ recently presented proximal
policy optimization (PPO) [13] framework to tackle the VP problem. The VP policy is
represented by a Gaussian model that can be monotonically improved by the clipping
mechanism of PPO. In addition, the standard deviation of the Gaussian model implies the
viewpoint exploration ability, which represents the opportunity to try new viewpoints. As
shown in Figure 1, the larger the standard deviation is, the stronger the exploration ability
is. If the standard deviation is fixed in the whole policy learning process (fixed exploration),
two unpleasant results will be produced: (1) the VP policy may stuck in local optimum due
to insufficient exploration when the standard deviation is small; (2) the optimal VP policy
can not be obtained when the standard deviation is large (because the optimal VP policy
is a deterministic policy which is approximately equivalent to a Gaussian model with the
small standard deviation). So, in the field of reinforcement learning, it generally hopes to
have a higher exploration in the early stage of policy learning and gradually reduce it in the
later in order to obtain a better policy [14]. Therefore, we develop a dynamic exploration
scheme to automatically adjust viewpoint exploration in the learning process. The scheme
is implemented by using separate neural networks for the representation of policy mean
and standard deviation and training the mean and standard deviation at the same time.
Moreover, entropy regularization [15] is introduced and improved to an adaptive version
to prevent the exploration from shrinking prematurely. The experimental results on the
public dataset GERMS [12] strongly support the effectiveness of our proposed VP method.

viewpoint

p

1=V

0.2=V

Figure 1. The illustration of viewpoint exploration ability. The exploration ability of the VP policy
with the standard deviation σ “ 1 is stronger than that of the VP policy with the standard deviation
σ “ 0.2. Because there are more possibilities to try new viewpoints when σ “ 1.

The contributions of our work are as follows:

• A novel continuous viewpoint planning method for active object recognition based
on proximal policy optimization is proposed to deal with the problem of quantization
error of discrete viewpoint planning methods;

• An adaptive entropy regularization based dynamic exploration scheme is presented
to automatically adjust viewpoint exploration in the learning process;

• Experiments are carried out on the public dataset GERMS, and the proposed method
obtains rather promising results.

The remainder of the paper is laid out as follows. Section 2 reviews the related research.
Section 3 formulates the problem. Section 4 details our continuous viewpoint planning
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method. Section 5 shows the experiment results and analysis whereas we draw conclusions
in Section 6.

2. Related Work

This section reviews related work about active object recognition and proximal policy
optimization.

Active Object Recognition: Becerra et al. [8] model object detection as a Partially
Observable Markov Decision Process problem, which is solved using Stochastic Dynamic
Programming. In [9], researchers formally define the viewpoint selection as an optimization
problem and use reinforcement learning for viewpoint training without user interaction.
Malmir et al. [12] contribute a image-based AOR publicly dataset named GERMS and pro-
pose a deep Q-learning (DQL) system that learns to actively examine objects by minimizing
overall classification error using standard back-propagation and Q-learning. Similarly,
Liu et al. develop a hierarchical local-receptive-field-based extreme learning machine
architecture to learn the state representation and utilize Q-learning to find the optimal
policy [10]. In [11], researchers treat AOR as a Partially Observable Markov Decision
Process and find corresponding action-values of training data using belief tree search.
All above methods explore discrete viewpoint space, which may miss a few important
object information owing to the quantization error of viewpoint. Therefore, we develop a
continuous VP method for AOR to address this problem. The closest method to ours in
this respect is [16] which resorts trust region policy optimization (TRPO) framework [17]
to tackle the quantization error problem and shows better results on the dataset GERMS
compared to the Q-Learning methods. However, in the TRPO-based AOR method, linear
approximation of the optimization objective and quadratic approximation of the constraint
are used to jointly direct policy update, leading to relatively high computation complexity.
Although the researchers wisely employ extreme learning machine [18] to alleviate this
problem, the learning speed is still unsatisfactory. Different from [16], we adopt a first-
order optimization framework PPO [13] for continuous VP learning. It is computationally
efficient and is able to guarantee monotonic performance improvement of VP policy. In
addition, the VP policy standard deviation in [16] is fixed and small, which makes the
viewpoint exploration insufficient during the learning process, resulting in the policy stuck
in local optimum. However, we develop a dynamic exploration scheme in our work to
automatically adjust the standard deviation in the learning process in order to obtain a
better policy.

Proximal Policy Optimization: PPO has achieved significant successes in enormous
applications. Gangapurwala et al. [19] introduce a guided constrained policy optimization
framework based on PPO which guarantees the behavior of real quadruped robot within
required safety constraints during training process. A centralized coordination scheme of
automated vehicles at an intersection without traffic light using PPO is proposed to solve
low computation efficiency suffered by state-of-the-art methods [20]. In [21], researchers
apply PPO to the task of image captioning to establish a further improvement for the
training phase of reinforcement learning. In [22], researchers propose an integrated metro
service scheduling and train unit deployment with a PPO approach based on the deep
reinforcement learning framework. A variant of PPO algorithm called memory proximal
policy optimization is presented to solve quantum control tasks [23]. In [24], a PPO-based
machine learning algorithm is implemented to decide on the replenishments of a group of
collaborating companies. However, to our best knowledge, PPO has never been resorted
for AOR task. In our work, it is firstly utilized for AOR to learn a continuous VP policy.

3. Problem Statement

In a visual AOR system, an agent will be automatically moved to capture images
from different viewpoints to recognize an object. The current viewpoint is known to the
agent in the recognition system. Specifically, at initial time t “ 0, the viewpoint of agent is
ϕ0 and the captured image is Iϕ0 . According to Iϕ0 , we can predict the label of the object
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to be recognized using a classifier. It is often that the single viewpoint image may be
not sufficient to give a robust recognition result, we should move the agent to capture
more images to improve the recognition performance. This requires us to plan an relative
movement action at (i.e., VP) for the agent to obtain a new viewpoint that is ϕt`1 “ ϕt ` at.
Then, the new image Iϕt`1 captured in the viewpoint ϕt`1 will be used for the recognition
again. The process like this will be repeated until a stop criteria is reached, such as the
maximum of T steps.

An arbitrary action may lead to a worse view where the captured image does not
provide useful information for recognition. Therefore, an effective VP policy is desirable. To
this end, we consider the VP problem as a reinforcement learning one which is formulated
as a six-element tuple ă S, A, r,P , γ, π ą. S denotes the state space where every element
s is generated by the images acquired from different viewpoints of an agent. A is the
continuous action space where every action a is used to move the agent to a new viewpoint.
r : SˆAÑR is a reward function designed to assess the value of one action in a certain
state. P : SˆAˆSÑr0, 1smeans the transition probability to the next state when an action
is selected in the current state. γ P r0, 1s is a discount factor that represents the difference in
importance between future rewards and present rewards. π : SˆAÑr0, 1s is an continuous
VP policy that describes the probability of selecting one action to produce a new viewpoint
in a certain state. In the reinforcement learning setting, the VP problem is transformed to
find the optimal policy π˚, which can move the agent to the best recognition viewpoints.

4. Proposed Method

To obtain the optimal continuous VP policy π˚ for AOR, we employ PPO frame-
work [13] to tackle this problem. Figure 2 shows our AOR pipeline based on PPO.
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Figure 2. The proposed AOR pipeline. The pipeline adopts PPO framework [13] to learn the continuous VP policy πθ that is
denoted by a parameterized Gaussian model. In order to realize dynamic exploration, two separate neural networks are used
for the representation of the policy mean and standard deviation of the Gaussian model and trained concurrently. During
the training process, the policy πθ is improved by collecting some sample trajectories tst, at, rpst, atqu

T
t“0 and optimizing the

PPO objective.

During policy training process, at each time step t, an agent observes the state st P S,
takes an action at P A under current VP policy π (i.e., at„πpat|stq), generates a new state
st`1„Ppst`1|st, atq, and receives a scalar reward rpst, atq. Starting from arbitrary initial
state s0 at time t “ 0, the cumulative discounted reward function is
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ηpπq “ E
at„πpat|stq

st`1„Ppst`1|st ,atq

r

T
ÿ

t“0

γtrpst, atqs, (1)

where Er¨s denotes the expectation operator. T is the maximum number of planning. ηpπq
is used to evaluate different VP polices. A better VP policy corresponds to a higher value
of ηpπq. We assume that VP policy π is parameterized by θ and denote it as πθ . Thus, to
find the optimal continuous VP policy π˚ is to find the optimal parameter θ˚ that can be
solved by

θ˚ “ arg max
θ

ηpπθq. (2)

The recent PPO framework [13] is adopted to address the optimization problem (2)
in an iterative updating way. Let πθold be the old policy, πθ be the new policy after the
policy update, and κpθq be the probability ratio κpθq “ πθpat|stq{πθoldpat|stq. In the PPO
framework, θ˚ in (2) can be achieved by maximizing a clipping surrogate objective (The
detailed derivation process from (2) to (3) can refer to [13,17].):

max
θ

Lpθq “ E
πθold

rminpκpθqAπθold
pst, atq, clippκpθq, 1´ ε, 1` εqAπθold

pst, atqqs, (3)

where ε is a hyper-parameter to control the clipping ratio. Aπθold
pst, atq is advantage

function under the old policy πθold , which is detailed in Section 4.4. In the following, we
will elaborate the representation of state st, continuous VP policy πθ , and reward function
rpst, atq in our PPO-based AOR pipeline and develop a training algorithm to solve the
optimization problem in (3).

4.1. Belief Fusion for State Representation

As shown in Figure 2, the captured image Iϕt is first transformed into a series of
convolutional neural network (CNN) features. We then add a so f tmax layer on the top
of the CNN model to identify the concerned objects. The output of the so f tmax layer is a
vector that means the recognition belief over different objects. We denote the oth element
of the belief vector as Ppo|Iϕtqwhere o “ 1, 2, ..., M is the object label. Like [25], the belief
Ppo|Iϕtq is fused with the accumulated belief Ppo|Iϕ0 , Iϕ1 , ..., Iϕt´1q from previous images
using Naive Bayes:

Ppo|Iϕ0 , Iϕ1 , ..., Iϕtq “ βtPpo|IϕtqPpo|Iϕ0 , Iϕ1 , ..., Iϕt´1q. (4)

The fusion result Ppo|Iϕ0 , Iϕ1 , ..., Iϕtq is the new accumulated belief at time step t. βt is a nor-
malizing coefficient ( βt “ 1{

ř

o Ppo|IϕtqPpo|Iϕ0 , Iϕ1 , ..., Iϕt´1q ) that makes
ř

o Ppo|Iϕ0 , Iϕ1 , ...,
Iϕtq “ 1 hold. In this work, the accumulated belief is used for the representation of the
recognition state (i.e., st “ Ppo|Iϕ0 , Iϕ1 , ..., Iϕtq, o “ 1, 2, ..., M) at each time step. It is worth
noting that the parameters of the classifier (composed of the CNN model and the so f tmax
layer) are pre-trained with the images from different viewpoints of different objects and
invariable during the training process of continuous VP policy.

4.2. Continuous VP Policy Network Combined with Dynamic Exploration

Similar to [16], the continuous VP policy is represented by a parameterized Gaussian
distribution. However, ref. [16] only parameterizes the policy mean µ with a neural
network, that is, πθpa|sq “ N pµθpsq,

ř

q (Viewpoint is composed of orientation and position,
so the planning action a may be a multi-dimensional vector. Therefore, the Gaussian model
may be a multivariate form. It is usually assumed that the variables in a are independent
of each other, so the covariance matrix

ř

is a diagonal matrix, i.e.,
ř

“ diagpσ2
1 , σ2

2 , ..., σ2
d q.

σ is standard deviation and d is the dimension of a.). The standard deviations in the
covariance matrix

ř

are small and invariable in the whole training process. As analyzed in
Section 1, the standard deviation implies the viewpoint exploration ability, the fixed small
standard deviation may make the VP policy stuck in local optimum due to insufficient



Entropy 2021, 23, 1702 6 of 14

exploration. Therefore, an adaptive entropy regularization based dynamic exploration
scheme is developed to automatically adjust the standard deviation in the training process
in order to obtain a better policy. The research process and implementation details of the
scheme are as follows.

Parameterization of the Policy Mean and Standard Deviation: The scheme is first
realized by concurrently parameterizing the policy mean and standard deviations with
two separate neural networks (µθpsq or µps; θq and σθpsq or σps; θq) and training them at
the same time. As shown in Figure 2, µθpsq and σθpsq are two single hidden-layer fully-
connected neural networks which take state as input and output the mean vector and
standard deviation vector. The parameters of them are collectively called θ. Consequently,
the VP policy is recorded as πθpa|sq “ N pµθpsq,

ř

θpsqqwhich is expanded to

πθpa|sq “
d

ź

i“1

1
?

2πσips; θq
exp

´
pai´µips;θqq2

2σips;θq2 . (5)

The ith element of the mean vector and standard deviation vector are represented as µips; θq
and σips; θq, respectively. d is the dimension of action a. During training, the update of
parameter θ under the PPO framework will simultaneously affect the policy mean and
standard deviations, leading to the dynamic exploration.

Entropy Regularization: As stated in Section 1, in reinforcement learning, it generally
hopes to have a higher exploration in the early stage of policy learning and gradually
reduce it in the later in order to obtain a better policy [14]. However, we find the stan-
dard deviations shrink prematurely and adjust in a small range in the training process.
As shown in Figure 3, it is the change of standard deviation in the training process of
GERMS dataset [12] which has a single action dimension (A shrinkage case with two action
dimensions is shown in [14]). It shrinks rapidly to a small value soon after the beginning of
training and always keeps in a small value range (the curve with c “ 0 in Figure 3), which
may also result in the insufficient exploration. To address this problem, we then introduce
entropy regularization [15] to the PPO optimization objective (3) to prevent the exploration
from shrinking prematurely. Therefore, (3) is transformed into:

max
θ

LEntpθq “ E
πθold

rminpκpθqAπθold
pst, atq,

clippκpθq, 1´ ε, 1` εqAπθold
pst, atqq ` cHpπθp¨|stqqs,

(6)

where c is a constant coefficient and Hp¨q is entropy operator (Hpxq “ ´
ş

ppxq log ppxq or
Hpxq “ ´

ř

ppxq log ppxq. The entropy of a multivariate normal distribution is 1
2 log p2πeqd|

ř

|.).
Adaptive Entropy Regularization Coefficient: In our experiment, we find the con-

stant coefficient c in (6) is a hyper-parameter that is difficult to tune. As shown in Figure 3,
when c is less than or equal to 0.03, entropy regularization fails to prevent the premature
decay of exploration; when c is greater than 0.03, the standard deviation increases explo-
sively. Thus, to tackle this problem, we last propose an adaptive entropy regularization
method that can adapt the coefficient to achieve the appropriate exploration ability in the
training process. The coefficient c in (6) is improved to

c “

$

&

%

cdiv, Di σ̄i ă σLiptq
´cdiv, Di σ̄i ą σHiptq,

0, otherwise
(7)

where cdiv is a divergence coefficient such as 0.04, 0.05, 0.1, 0.3, and 0.5 in Figure 3. If
the planning action is multidimensional, then cdiv is a coefficient that makes the standard
deviation of each dimension diverge. σHiptq and σLiptq are the i-dimensional upper and
lower boundaries of the standard deviation you want to maintain in the training. They
are the functions of training time node t. In our work, we model them as stage functions
shown in Figure 4. To be specific, the stage functions in a certain dimension are defined as
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σLptq “ σ0 ´ rmaxpt´ TM, 0q{TWsσ∆

σHptq “ σLptq ` σS.
(8)

TW is the training duration of each stage. According to it, the total training time can be
evenly divided into several stages. σ0 is the initial standard deviation. σ∆ is the increment
of the standard deviation. σS is the boundary range. r¨s is the rounding operator, e.g.,
r1{3s “ 0. maxpt ´ TM, 0q is to increase the training time of the first stage by TM. As
shown in Figure 3, this is because it takes some time to raise the standard deviation to the
boundary value of the first stage at the beginning of training.

0.5c  

0.3c  

0.1c  

0.05c  
Adaptive c

0.04c  

0c  0.03c  

� � � � �

� � �

Figure 3. The changes of exploration ability in the training process of GERMS left arm dataset [12] under different dynamic
exploration schemes. Because the standard deviation is a function of the state, the standard deviation representing the
exploration ability refers to the average of the standard deviation σ̄ corresponding to all states. However, there are
infinite states, so σ̄ can not be calculated. In the training, we use the average of the standard deviation of some sample
states to approximately replace σ̄. We implement three dynamic exploration schemes step by step: (1) the first is the
simultaneous parameterization of policy mean and standard deviation with two separate neural networks (the curve
with c “ 0); (2) the second is to add the constant coefficient entropy regularization on the basis of (1) (the curves with
c “ 0.03, 0.04, 0.05, 0.1, 0.3, or 0.5); (3) the third is that the constant coefficient is improved into an adaptive version on the
basis of (2) (the curve with Adaptive c). After experimental comparison, scheme (3) can meet our dynamic exploration need.
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Figure 4. The diagram of upper and lower boundary functions of standard deviation.
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After experimental verification, the dynamic exploration with adaptive entropy regu-
larization can meet our exploration requirement.

4.3. Reward Setting

Reward function rpst, atq plays an important role in encouraging effective viewpoint
selection. In Section 4.1, the recognition state (st “ Ppo|Iϕ0 , Iϕ1 , ..., Iϕtq, o “ 1, 2, ..., M)
describes a probability distribution over different objects. The flatter the distribution is,
the stronger the recognition ambiguity is. Here, we resort information entropy [26,27] to
quantify the ambiguity. Then the ambiguity in state st is represented as Hpstq. The goal
of AOR is to eliminate this ambiguity to improve recognition performance by viewpoint
planning. A beneficial viewpoint attempt can reduce the current ambiguity. Therefore, we
design the reward function according to the ambiguity in different states after viewpoint
selection. Let ôt`1 be the predicted result and o˚ be the label of the image in the new
viewpoint (Iϕt`1 “ Iϕt ` at). Among them, ôt`1 “ argmaxoPpo|Iϕ0 , Iϕ1 , ..., Iϕt`1q. If the
predicted result ôt`1 is right and the information entropy Hpst`1q is smaller than Hpstq in
state st, it means that the VP action at in state st is useful for recognition. Then the agent
will receive a positive reward. Otherwise, the reward is non positive when the entropy does
not decrease or the prediction is wrong. To sum up, the reward function is formulated as

rpst, atq “

$

&

%

´1, ôt`1 ‰ o˚

0, ôt`1 “ o˚, Hpst`1q ě Hpstq,
1, ôt`1 “ o˚, Hpst`1q ă Hpstq

(9)

where rpst, atq can be denoted as rt for simplicity.

4.4. Training the Policy Network

To solve the optimization problem in (6), we develop a training algorithm to iteratively
update θ in the policy network. The algorithm shown in Algorithm 1 is Actor–Critic style [15].

To replace the expectation operator in (6), we apply Monte Carlo method [28] to deal
with it in an approximate manner. Specifically, we repeat N times to run the old policy
πθold for T time steps to collect a trajectory tst, at, rt, st`1u

T
t“0. With N trajectories, (6) can be

approximated as:

max
θ

L̂Entpθq “
1

NpT` 1q

N
ÿ

i“1

T
ÿ

t“0

rminpκpiqpθqApiqπθold
pst, atq

, clippκpiqpθq, 1´ ε, 1` εqApiqπθold
pst, atqq ` cHpπpiqθ p¨|stqqs.

(10)

The advantage function Aπθold
pst, atq can be estimated using the technology of gener-

alized advantage estimation (GAE) [29]:

Aπθold
pst, atq “ δt ` pγλqδt`1 ` ...` pγλqT´tδT ,

where δt “ rt ` γVπθold
pst`1q ´Vπθold

pstq.
(11)

Vπθold
p¨q is state value function under the old VP policy πθold . It is approximately

represented by a two-layer fully connected network with parameter ω. The network
maps the state st to the function value Vpst; ωq. We update ω to obtain the state value
function corresponding to different VP policies. We use the N trajectories (sampled by
πθold ) again to fit the state value function Vπθold

pst; ωq of the old policy πθold by solving the
optimization problem:

min
ω

L̂pωq “
1

NpT` 1q

N
ÿ

i“1

T
ÿ

t“0

pVpiqTargetpstq ´Vpiqπθold
pst; ωqq2. (12)
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Algorithm 1: Training the continuous VP policy network
Input: Parameters: L, N, T, KA, KC.
Output: Parameter θ.

1 Create a new policy network, an old policy network and a state value network
with parameters θ, θold, and ω, respectively. The new and old policy network has
the same network structure. Initialize the parameters θ, θold, and ω randomly.

2 for episode Ð 1 to L do
3 θold “ θ
4 for i Ð 1 to N do
5 Run policy πθoldpa|sq for T time steps, collecting a trajectory

tst, at, rt, st`1u
T
t“0 where at „ πpat|stq, st`1 „ Ppst`1|st, atq.

6 For each t in every trajectory, estimate advantage function Aπθold
pst, atq

according to (11).
7 for i Ð 1 to KA do
8 Optimize L̂Entpθq in (10) w.r.t. θ with NpT` 1q size or M ď NpT` 1q

minibatch size samples.
9 for i Ð 1 to KC do

10 Optimize L̂pωq in (12) w.r.t. ω with NpT` 1q size or M ď NpT` 1q
minibatch size samples.

11 Adapt the entropy regularization coefficient c in (10) in the light of (7) with the
new policy network πθ and NpT` 1q samples.

12 return θ

VTargetpstq is not involved in the optimization procedure. It is calculated using
VTargetpstq “ rt ` γrt`1 ` ...` γT´t´1rT´1 ` γT´tVπθold

psT ; ωq in advance.
The iterative update process of (10) and (12) is shown in lines 7–10 of Algorithm 1.
Once the optimal parameter θ˚ is obtained, it can be used for the practical AOR task.

In state st, the planned action is at „ N pµθ˚pstq,
ř

θ˚pstqq, and the next best viewpoint is
ϕt`1 “ ϕt ` at.

5. Experiments
5.1. Experimental Setup

Dataset and Metric: The GERMS dataset [12] shown in Figure 5 is collected in the
context of the RUBI project whose intention is to develop a robot that interact with toddlers
in early childhood education. It is composed of 1365 video tracks of give-and-take trials
using 136 different soft toy objects. The tracks are divided according to the arm of the
robot, with roughly half the training and testing tracks being the left arm and the other
half the right arm. Each trial generates a track that records the robot putting the grasped
object in its center of view, rotating it by 180° and then returning it. During the trial, the
robot continuously saves images from its head-mounted camera at 30 frames per second,
as shown in Figure 6. Meanwhile, the joint position and object label are recorded. These
data are stored in a track, a series of which constitutes the dataset. On average, each
track contains 150 images, Table 1 outlines the number of images in the dataset. These
joint positions in each track allow researchers to simulate different VP methods in one
dimensional action space. The performance of different VP methods is evaluated using
recognition accuracy that is the average of the entire test set.
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Figure 5. The GERMS dataset [12]. The objects are soft toys describing various human cell types,
microbes and disease-related organisms.

Table 1. GERMS dataset statistics (mean ± std).

Number of Tracks Images/Track Total Number of Images

Train 816 157 ˘ 12 76,722
Test 549 145 ˘ 19 51,561

Figure 6. The images from different viewpoints in different tracks.

Implementation Details: In this work, we employ the Tensorflow platform [30] to
implement the proposed method. The CNN model used in the pre-trained classifier is VGG-
net provided in [12], which can transform each image in GERMS into a 4096-dimensional
feature vector. The number of neurons in the last so f tmax layer of the pre-trained classifier
is 136. In the policy µθpsq network, the number of neurons and the activation function in
the hidden layer are 1024 and relu; The last layer uses tanh activation function and has
one neuron. In order to match the viewpoint range of GERMS, we multiply the output
of tanh by 512, so that the next relative VP action range is r´450, 450s. In the policy σθpsq
network, the configuration of the hidden layer is consistent with that in µθpsq; The number
of neurons and the activation function in the last layer are 1 and so f tplus. The configuration
of the hidden layer in the state value network Vωpsq is same as that in µθpsq. The reward
discount factor γ is 0.96, and the GAE parameter λ is 0.95. The clipping ration parameter ε
is empirically set as ε “ 0.2 in the light of the original implementation of PPO [13]. The
VP policy converges after 4200 episodes in the training process, therefore, we set L “ 4200.
N and the minibatch size M are all 128. KA and KC are 1 and 10. The maximum step T
for recognition is set as T “ 12. The Adam optimizer [31] is used for the optimization of
the policy network and the state value network. The learning rates of them are 0.0001 and
0.0002. In the dynamic exploration, the parameters cdiv, σ0, TM, TW , σ∆ and σS are 0.3, 106,
3, 3, 14, and 14, respectively.
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5.2. Ablation Study

To investigate the effectiveness of our dynamic exploration scheme, we intend to
conduct the variant experiments with different components ablation. Table 2 shows the
abbreviations and interpretations of different components. In the variant experiments, the
components AERC, ER, and SSDN are gradually removed.

Table 2. Abbreviations and interpretations for different components in our dynamic exploration scheme.

Abbreviation Interpretation

BL Baseline PPO framework [13] with a fixed exploration scheme (i.e., the
standard deviation σ is a constant)

SSDN Separate standard deviation network
ER Entropy regularization (with a fixed coefficient)

AERC Adaptive entropy regularization coefficient

The experimental results are presented in Figure 7, where the recognition accuracy
is a function of the number of planned actions. From Figure 7, we can notice that the
performance degrades heavily after removing the component AERC. The results of the
experiments BL(σ “ 0.1), BL+SSDN, and BL+SSDN+ER(c “ 0.03) are similar. This is
because their exploration ability is all at a low level. Although the experiment BL(σ “ 100)
has a high exploration ability, the VP policy can not converge to the optimal. So its result is
slightly worse. The result of experiment BL+SSDN+ER(c “ 0.3) is the most unsatisfactory,
because its standard deviation increases explosively as shown in Figure 3. This study
validates the effectiveness of our proposed adaptive entropy regularization based dynamic
exploration scheme.

Ours ( BL+SSDN+ER+AERC )

BL+SSDN

BL+SSDN+ER

BL (               )

BL (               )

(                )0.03c  

BL+SSDN+ER (                )0.3c  

0.1V  

100V  

Ours ( BL+SSDN+ER+AERC )

BL+SSDN

BL+SSDN+ER

BL (               )

BL (               )

(                )0.03c  

BL+SSDN+ER (                )0.3c  

0.1V  

100V  

Figure 7. The performance comparison results of ablation experiments.

5.3. Dynamic Exploration Study

In our dynamic exploration scheme, the standard deviation σ is adapted by updating
the VP policy parameters θ during the training. Another natural idea (i.e., independent
linear decaying dynamic exploration, ILDDE) is to adjust σ independently of parameters θ.
The idea is realized as

σptq “
pσL ´ σ0q

TL
t` σ0 pσL ă σ0q, (13)

where σ is a linear decaying function of the training time node t. σ0 and σL are the initial
and final σ values, respectively. TL is the total training time. Therefore, the VP policy can
be represented as πθpa|sq “ N pµθpsq,

ř

ptqq where
ř

ptq “ diagpσ2
1 ptq, σ2

2 ptq, ..., σ2
d ptqq. In

the training, the update of parameters θ only affects the policy mean, the policy standard
deviation is independently adapted by (13). We experiment with this idea and compare it
with our scheme. In the experiment, except that the independent network σθpsq in Figure 2
is removed and replaced with σptq in (13), everything else is exactly the same. From the
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presented results in Figure 8, we can notice that the performance of our scheme is much
better than that of ILDDE. This is because the VP policy corresponding to ILDDE is affected
by two parameters: θ and t. However, t does not participate in the optimization process,
which may make the learned policy worse and worse. However, in our scheme, the policy
mean and standard deviation are only related to θ, and participate in the whole optimization
process.

ILDDE

Ours

ILDDE

Ours

Figure 8. The performance comparison results of continuous VP policies combined with different
dynamic exploration schemes. The parameters σ0, σL, and TL involved in ILDDE are 120, 0.1, and 4200.

5.4. Comparison with the State-of-the-Art Methods

In this subsection, several baselines [10] and state-of-the-art VP approaches [11,12,16]
are employed for experiment comparison with our continuous VP method, which are
showed as follows:

• Random policy [10] plans a random action from the action space t˘ π
64 ,˘ π

32 ,˘ π
16 ,˘π

8 ,˘π
4 u

with uniform probability;
• Sequential policy [10] moves the agent to the next immediate position in the same di-

rection;
• DQL policy [11,12] exploits deep Q-Learning algorithm to learn a discrete VP policy.

The discrete action space is t˘ π
64 ,˘ π

32 ,˘ π
16 ,˘π

8 ,˘π
4 u;

• E-TRPO policy [16] develops a continuous VP method which is implemented by trust
region policy optimization [17] and extreme learning machine [18]. It represents the
VP policy as a Gaussian model and learns the policy with a fixed exploration scheme.

For a fair comparison, the classifiers of different methods are the same in the exper-
iment. The evaluation results of our VP model against other approaches are presented
in Figure 9, from which we have the following observations: (1) Our proposed method
achieve better performance compared with the state-of-the-art methods; (2) The perfor-
mance of active policy is significantly better than that of passive policy. Random policy and
Sequential policy are essentially passive VP policies. They do not actively plan the next
viewpoint according to the information obtained from the previous viewpoints. However,
DQL policy, E-TRPO policy, and the proposed method use the previous information to
plan the next viewpoint, so they are active VP policies; (3) The performance of continuous
VP policy outperforms that of discrete VP policy. DQL policy is a discrete VP policy while
E-TRPO policy and our method are continuous VP policies. The continuous VP policy
explores in the continuous viewpoint space and will not miss some important viewpoints;
(4) Compared with the continuous VP method E-TRPO, our continuous VP model has
better performance. This is mainly because we present an effective dynamic exploration
scheme, which can explore more new viewpoints and find better solutions.
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E-TRPO

Ours

Sequential

DQL

Random

E-TRPO

Ours

Sequential

DQL

Random

Figure 9. Performance comparison between our proposed continuous VP method and several
competing approaches.

6. Conclusions

In this work, we develop a continuous viewpoint planning method for active object
recognition based on reinforcement learning. More specifically, the viewpoint planning
policy is represented as a parameterized Gaussian model and learned using the proximal
policy framework. We also design a dynamic exploration scheme based on adaptive entropy
regularization to automatically adjust the viewpoint exploration ability in the learning
process. Experiments on the public dataset GERMS show the superiority of our method.
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