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Abstract: Detrended Fluctuation Analysis (DFA) has become a standard method to quantify the cor-
relations and scaling properties of real-world complex time series. For a given scale ` of observation,
DFA provides the function F(`), which quantifies the fluctuations of the time series around the local
trend, which is substracted (detrended). If the time series exhibits scaling properties, then F(`) ∼ `α

asymptotically, and the scaling exponent α is typically estimated as the slope of a linear fitting in the
log F(`) vs. log(`) plot. In this way, α measures the strength of the correlations and characterizes the
underlying dynamical system. However, in many cases, and especially in a physiological time series,
the scaling behavior is different at short and long scales, resulting in log F(`) vs. log(`) plots with
two different slopes, α1 at short scales and α2 at large scales of observation. These two exponents
are usually associated with the existence of different mechanisms that work at distinct time scales
acting on the underlying dynamical system. Here, however, and since the power-law behavior of
F(`) is asymptotic, we question the use of α1 to characterize the correlations at short scales. To this
end, we show first that, even for artificial time series with perfect scaling, i.e., with a single exponent
α valid for all scales, DFA provides an α1 value that systematically overestimates the true exponent
α. In addition, second, when artificial time series with two different scaling exponents at short and
large scales are considered, the α1 value provided by DFA not only can severely underestimate or
overestimate the true short-scale exponent, but also depends on the value of the large scale exponent.
This behavior should prevent the use of α1 to describe the scaling properties at short scales: if
DFA is used in two time series with the same scaling behavior at short scales but very different
scaling properties at large scales, very different values of α1 will be obtained, although the short scale
properties are identical. These artifacts may lead to wrong interpretations when analyzing real-world
time series: on the one hand, for time series with truly perfect scaling, the spurious value of α1 could
lead to wrongly thinking that there exists some specific mechanism acting only at short time scales
in the dynamical system. On the other hand, for time series with true different scaling at short and
large scales, the incorrect α1 value would not characterize properly the short scale behavior of the
dynamical system.

Keywords: complex time series; power-law correlations; detrended fluctuation analysis; physiologi-
cal time series

1. Introduction

Since a great diversity of real-world dynamical systems exhibit observable time series
outputs characterized by scaling properties and complex correlations structure, many
techniques have been developed in the last two decades to analyze this kind of time series
and quantify adequately their properties, with Detrended Fluctuation Analysis (DFA) [1]
being one of the most widely used, although other methods derived from fractal properties,
complexity, and information theory are also common, such as Poincaré plots, fractal
dimension, Hurst exponent (very related to DFA), different entropic techniques (Shannon,
conditional, approximate, sample and multiscale entropies), and symbolic dynamics (see [2]
for a recent review).
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For a given scale ` of observation of the analyzed time series, DFA partitions the time
series into windows of size `, and quantifies the fluctuations of the time series within
each window around the local trend. After averaging in all the windows of size `, DFA
provides the fluctuation function F(`) which measures the average local fluctuations as a
function of the observation scale (`). In time series with perfect scaling and fractal power-
law correlations, one finds asymptotically F(`) ∼ `α. The scaling exponent α is typically
obtained as the slope of a linear fit of log(F(`)) vs. log(`). The exponent α quantifies the
strength of the power-law correlations and characterizes the underlying dynamical system.

However, in many cases and especially when analyzing physiological time series asso-
ciated with cardiac dynamics, the log(F(`)) vs. log(`) curve exhibits two different slopes
(correlation behaviors) at short and large scales of observation. In this case, very often, two
scaling exponents are obtained by fitting the log(F(`)) vs. log(`) at short (α1) and large
(α2) scales [3–5], which quantify the short-term and long-term correlations, respectively.
These two different scaling exponents are usually associated with the existence of different
control mechanisms in the dynamical system which act at distinct time scales, so that α1
characterizes the control mechanism responsible for the short-time scales behavior, and,
similarly, α2 is linked to the mechanism acting at long-time scales. The calculation of these
two exponents has become a standard technique, when studying heart-rate variability [2,6],
although it is also very common to distinguish between short-term and long-term scaling
exponents in many other scientific fields. Some examples can be: the analysis of electroen-
cephalograms for patients with Alzheimer’s disease [7], the behavior of glucose levels for
patients with diabetes mellitus [8], the radon levels in soil associated with earthquakes [9],
the stock market activity [10], the behavior of seismic signals [11]. or the properties of the
trajectory of the center of pressure in the human postural control system [12].

In this work, we show that the use of α1 to characterize the correlations and scaling
properties of dynamical systems at short time scales may lead to incorrect results. In
particular, we show that, when analyzing artificial time series with perfect scaling, α1
systematically fails to detect the correct scaling at short scales. By using the Fourier Filtering
Method algorithm (FFM), we are able to create synthetic time series with perfect scaling,
i.e., characterized by a single scaling exponent α at all scales of observation. For these
time series, F(`) should behave as a perfect power-law at all scales (including short scales),
F(`) ∼ `α. In this case, the log(F(`)) vs. log(`) plot should be a straight line with slope
α, and therefore we should also obtain for short scales that α1 = α. However, we observe
that, independently of the α value used to generate the FFM time series, the log(F(`)) vs.
log(`) plot always exhibits a downwards curvature at short scales that has been reported
previously [13] in time series with perfect scaling and some ad-hoc corrections to DFA were
proposed, which has been attributed to overfitting in the detrended procedure [14]. The
same effect is known to happen in the multifractal generalization of DFA [15]. However,
we want to analyze systematically here how this phenomenon affects the determination
of α1, since the curvature appears precisely in the range of scales where α1 is typically
obtained, and the majority of authors do not consider the ad-hoc corrections proposed
in [13]. The curvature produces a systematic overestimation of α1, which is in all cases
larger than the correct exponent α, α1 > α.

We show that this overestimation is not due to effects produced by the finite time
series length, but an intrinsic limitation of DFA, which only recovers the true scaling
exponent α at larger scales of observation. In addition, the overestimation depends on
the range of scales used to obtain α1, which varies considerably for different authors. The
overestimation also depends on the value of the true scaling exponent of the time series.

In addition, we also analyze the behavior of α1 when studying time series with
a scaling crossover separating two regions of true perfect scaling at both sides of the
crossover, i.e., at short and large scales of observation. We create such time series by using
a modified version of the Fourier Filtering Method, in which we can use as input the true
values of α1 and α2 as well as the scale at which the crossover is located. In this case, F(`)
should exhibit two perfect linear behaviors in a log-log plot, with two different slopes for
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short and large scales and a transition between the two regimes around the scale of the
crossover. As before, α1 is estimated as the slope of the linear fit of log(F(`)) vs. log(`)
for short scales, and should coincide with the corresponding short-scale exponent used in
the generation of the time series. However, we find that the estimated α1 value does not
coincide with the true scaling exponent used to model the short scale behavior, which can
be severely underestimated or overestimated. In this case, the estimated α1 value depends
not only on the fitting range used to obtain it and of the real α1 value but, even worse, on
the α2 value, i.e., time series generated with the same true α1 value and different true α2
values, provides different estimations of α1, although the short-term scaling properties are
identical in all cases.

Therefore, the results we present here, obtained both for time series with perfect
scaling and with scaling crossovers, suggest that, when analyzing real-world complex time
series, the spurious value of the estimated α1 result could lead to incorrect interpretations
of the short time behavior of the underlying dynamical system.

This paper is organized as follows: In Section 2, we introduce the connection of
the autocorrelation function and Detrended Fluctuation Analysis, as well as how these
two techniques should behave when applied to power-law correlated time series with
perfect scaling. In addition, we also introduce how these time series can be generated by
the Fourier Filtering Method. In Section 3, we introduce the question of the behavior of
DFA at short scales, and how the short-term scaling exponent is usually determined. In
Section 4, we present a systematic analysis of the behavior of DFA at short scales, and of the
corresponding α1 exponent, when applied to time series with perfect scaling characterized
by a single exponent. In this case, we show the overestimation effect described above, and
systematically quantify it as a function of the true scaling exponent, and of the fitting range
considered to estimate it. In Section 5, we introduce the generation of time series with two
different perfect scaling behaviors for short and large scales, i.e., with known true values of
α1 and α2, and study systematically the behavior of the estimated α1 as a function of the
fitting range used to obtain it, and also as a function of the true α1 value and of the true α2
value. Finally, in Section 6, we present our conclusions.

2. Detrended Fluctuation Analysis and Autocorrelation Function in Time Series with
Power–Law Correlations

In principle, the natural way of studying the correlations present in a time series for a
given lag (r) is the determination of the autocorrelation function, C(r). For a stationary time
series {xi} (i = 1, 2, . . ., N), the corresponding autocorrelation function can be calculated as

C(r) =
〈xixi+r〉 − 〈xi〉2
〈x2

i 〉 − 〈xi〉2
(1)

where 〈. . .〉 denotes average over the whole time series. Without loss of generality, in the
following, we assume that 〈xi〉 = 0. When the time series {xi} is long-range power-law
correlated, such as, for example, in fractional Gaussian noise (fGn), then its autocorrelation
function C(r) behaves as a power law of the lag r [16]:

C(r) ' H(2H − 1)
r2−2H ∼ sign(1− γ)

rγ
(2)

where H is the well-known Hurst exponent [17] with values in the range H ∈ (0, 1), and
then the autocorrelation exponent γ given by γ = 2− 2H, must be in the range γ ∈ (0, 2).
For H > 0.5 (γ < 1), the correlations are positive, while, for H < 0.5 (γ > 1), the time
series is anticorrelated. Note that, for the special case H = 0.5 (γ = 1), the autocorrelation
function vanishes, and the time series is uncorrelated (white noise behavior).

Similar power-law behavior for C(r) as that in (2) is obtained for time series generated
using the Fourier Filtering Method (FFM) algorithm [18,19]. In this technique, a power
spectrum of the type S( f ) ∼ 1/ f β is imposed by creating a signal {X f } in the frequency
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f domain such that Re(X f ) = f−β/2 cos(ϕ f ) and Im(X f ) = f−β/2 sin(ϕ f ), where ϕ f is a
random phase in the interval [0, 2π). The time series {xi} obtained by Fourier transforming
back {X f } presents by construction a power spectrum S( f ) ∼ 1/ f β. According to the
Wiener–Khinchin theorem, the autocorrelation function of the final time series {xi} is
C(r) ∼ 1/r1−β, and therefore the relation between the three exponents H, β and γ is [20]:

H = 1− γ

2
=

β + 1
2

(3)

FFM has become the standard method to create a controlled power-law correlated
time series, and it is used in many contexts for that purpose [21–26]

However, in many real-world time series, the autocorrelation function is not conve-
nient to determine the exponent γ (or H), since C(r) is noisy and very sensitive to the time
series size N [16,27], and it is only properly estimated for large N, very often not available
in real experiments. This is the reason motivating the use of indirect methods to quantify
correlations and scaling, such as Detrended Fluctuation Analysis (DFA), which is one of
the most widely used.

Detrended Fluctuation Analysis was designed [1] to estimate the scaling properties of a
given time series even in the presence of non-stationarities. DFA has been intensively tested
and characterized by applying it to signals with different properties (trends, nonlinear
filters, etc.) [28,29] and, since then, DFA has become one of the most standard methods used
to analyze complex time series in many scientific fields. DFA works as follows: (i) Calculate
the ’accumulated walk’ Yj of the analyzed time series xi of length N, such that

Yj =
j

∑
i=1

xi.

(ii) Divide the walk Yj into boxes of equal length ` (the scale of observation). (iii) Within
each box of length `, calculate a linear fit of Yj to determine the linear trend within that
box. The Y coordinate of the fitted line in each box is denoted by Y`,j. (iv) The walk Yj is
detrended by subtracting the local trend Y`,j in each box of length `. (v) For a given box
size `, the root mean-square (r.m.s.) fluctuation function F(`) for the detrended walk is
calculated as:

F(`) =
√
〈(Yj −Y`,j)2〉 (4)

where, as usual, 〈. . .〉means averaging over the whole time series. (vi) The above computa-
tion is repeated for a broad range of scales (box sizes `) in order to provide a relationship
between F(`) and the scale `. Scaling is present when

F(`) ∼ `α (5)

According to this last equation, when applying DFA to analyze real-world experi-
mental data, the scaling exponent α is typically determined as the slope of a linear fit of
log(F(`)) vs. log(`).

For stationary power-law correlated signals, α ∈ (0, 1). The case α = 0.5 corresponds
to the absence of correlations (white noise), while α > 0.5 indicates positive power-law
correlations and α < 0.5 corresponds to power-law anticorrelated time series. In this
context, the DFA exponent α and the Hurst exponent H have the same value, H = α.
In addition, DFA can be also applied to non-stationary long-range correlated signals of
fractional Brownian motion type, and, in this case, 1 < α < 2. For example, for the standard
Brownian motion, α = 3/2.

In this work, we focus on stationary power-law correlated signals (0 < α < 1), where
both the autocorrelation function and DFA can be applied. Note that, when the analyzed
time series {xi} is stationary, an analytical relation between the autocorrelation function
C(r) and the DFA fluctuation function F(`) can be established. According to the derivation
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by Höll and Kantz [30], also obtained in a different manner by Talkner and Weber [31], for
a time series with variance σ2, we can write:

F2(`) = σ2

[
(W(`) +

`−1

∑
r=1

L(`, r)C(r)

]
(6)

with

W(`) =
`2 − 4

15`
(7)

and

L(`, r) =
1

15(`4 − `2)

[
(3r5 + (−20`2 + 5)r3 + 30(`3 − `)r2 + (−15`4 + 35`2 − 8)r + 2`5 − 10`3 + 8`

]
(8)

We want to remark that Equation (6) is an exact result, independently of the spe-
cific behavior of C(r) (positive, negative, power-law behaved or not, etc.). Therefore,
Equation (6), which uses as input the values of C(r), provides an alternative way to the use
of the standard DFA algorithm (4) to calculate the fluctuation function F(`) for stationary
time series. In the results presented in the next sections, when considering stationary time
series, we have applied both techniques and have obtained identical results. In the case of
non-stationary time series, we have used the standard DFA algorithm (4).

3. Detrended Fluctuation Analysis at Short Scales

As we stated in the Introduction, many real-world time series analyzed using DFA
present a different scaling behavior at short and large scales ` of observation, i.e., the
function F(`) does not present a constant slope in the log(F(`)) vs. log(`) plot, but two
different slopes at short and large scales. This change is usually attributed to the existence of
two different mechanisms acting at different temporal scales which regulate the dynamics
of the experimental system. For this reason, it is very common to characterize the analyzed
time series, and the underlying dynamical system, by calculating two different scaling
exponents, α1 and α2, obtained by a linear fitting of the log(F) vs. log(`) at the two ends
of the range of scales. In particular, α1 corresponds to the exponent obtained at short
scales, and therefore α1 characterizes the short-term correlations. Many works, especially
in physiology and more specifically in studies of heart rate variability, try to connect the α1
values with a diversity of healthy/pathological conditions. The range of scales considered
for the α1 fitting depends on different authors: 3 ≤ ` ≤ 10 [32,33], 3 ≤ ` ≤ 11 [34,35],
4 ≤ ` ≤ 11 [36,37], 4 ≤ ` ≤ 12 [38,39] or even larger values (10 ≤ ` ≤ 30) [40]. More
recently [41], it has been shown that the values of α1 evaluated in the interval 4 ≤ ` ≤ 16
seem to be a good biomarker of fatigue during extreme exercise.

Despite its usefulness in extracting information from physiological time series, we
show here that, due to the intrinsic behavior of F(`) at short scales, α1 has typically
nothing to do with the actual scaling of the time series, i.e., we question the utility of α1 to
characterize the short-term correlations in the way it is used in all the previous references,
not its discriminating capacity in the classification of physiological time series.

In the next two sections, we systematically analyze the behavior of the estimated α1
in time series with a single scaling exponent (Section 4), and in time series with a scaling
crossover and therefore two different scaling exponents at short and large scales.

4. Behavior of α1 in Time Series with Perfect Scaling

In this section, we show that, even for time series with perfect scaling behavior
(i.e., with pure power-law fractal correlations), α1 does not provide an appropriate value
characterizing such correlations. Here, we use the fitting range ` ∈ [3, 12] for obtaining the
results presented in this section, as a kind of consensus among the different ranges used
in the bibliography described above. For completeness, some other values for the fitting
range that are used in the bibliography will be also considered later.
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We consider artificial time series generated using the Fourier Filtering Method de-
scribed in Section 2. Due to the relation between the different scaling exponents (3) and
as H = α for stationary power-law correlated time series, when we choose an input value
αin and we create a time series with a perfect power-law behavior for the power spectrum,
S( f ) ∼ 1/ f 2αin−1 (perfect scaling), we should obtain a perfect power-law behavior for the
DFA fluctuation function F(`) at all scales, F(`) ∼ `αin . However, we see below that this is
not the case. In order to introduce the systematic errors when obtaining α1, in Figures 1–3,
we only present the results obtained for stationary time series of fractional Gaussian noise
type, i.e., with a true scaling exponent in the range 0 < αin < 1. The behavior of α1 for time
series of fractional Brownian motion type with 1 < αin < 2 exhibit similar properties, and
it is not shown in Figures 1–3 but will be included in Figure 4, where we show the final
results for the systematic overestimation of α1.
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log10 `

0
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g 1

0
〈F

(`
)〉

(a)

N = 218
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N = 29
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−0.3

−0.1

Figure 1. (a) The DFA average fluctuation function 〈F(`)〉 obtained for FFM time series of length
N = 218 with different scaling exponents αin ∈ (0, 1). The average is obtained by generating 104 time
series for each αin value. In the inset, we show a zoom of the region of short scales corresponding
to the shaded rectangle, to better appreciate the curvature of the 〈F(`)〉 functions in this region;
(b) 〈F(`)〉 obtained for three different αin values and for different time series length N. For any pair
αin and N, we generate 104 FFM time series to obtain the average 〈F(`)〉. In both panels, the shaded
rectangle corresponds to the range of scales usually considered to estimate the short-term scaling
exponent α1.

In Figure 1a, we represent [42] the average behavior of the F(`) function (〈F(`)〉) for
time series generated using the FFM algorithm with different αin values. For each αin value,
we generate 104 time series of length N = 218 data points, calculate the F(`) function for
each one for scales ` in the range [3, N/10], and average the 104 F(`) functions to obtain
〈F(`)〉. We first observe how the behavior of 〈F(`)〉 is correct for large scales, where all
the curves in Figure 1a exhibit a slope in the log-log plot identical to the corresponding
αin value.

However, if we observe the curves in Figure 1a, all of them present some degree
of curvature at small scales, where the local slope deviates clearly from the correct αin
value, which is only observed when the scale ` of observation increases. We remark that
this curvature observed in the small ` region is not caused by a different behavior of the
correlations at this scale, since all the time series considered have been generated to have a
perfect power-law power spectrum, and therefore with the same scaling exponent at all
scales. Indeed, the shaded area in Figure 1a corresponds to the range ` = [3, 12]. i.e., the
usual range where the scaling exponent α1 is obtained, and covers precisely the region
where the curvature of the log(〈F(`)〉) vs. log(`) plots is more evident.
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Figure 2. (a) Average local scaling exponent 〈αlocal(`)〉 for the same set of time series used in Figure 1a
with N = 218. For each αin value, we generate 104 time series, obtain for each one the curve αlocal(`)

using Equation (9) and average the 104 curves. (b) the same as in part (a), but for the time series used
in Figure 1b for different N. In this case, we generate 104 time series to obtain the average 〈αlocal(`)〉
for each pair αin and N. The shaded area in both panels corresponds to the typical range of scales
used to obtain α1.
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Figure 3. Probability densities p(α1) obtained for time series of different lengths N for three different
values of αin, 0.1 in (a), 0.5 in (b), and 0.9 in (c). For each pair N, αin, we generate 104 FFM time series
and obtain the corresponding 104 α1 values, from where p(α1) is determined. In all panels, we also
include as a vertical dashed line the true scaling exponent αin used to generate the corresponding
FFM time series.



Entropy 2022, 24, 61 8 of 17
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Figure 4. Behavior of 〈α1〉 as a function of the true scaling exponent αin for FFM power-law corre-
lated stationary (a) and non-stationary (b) time series, using respectively values of αin in the range
0 < αin < 1 (a) and 1 < αin < 2 (b). In (c), we show the deviation ∆αin as a function of αin in
the whole range 0 < αin < 2. In addition to the α1 fitting interval [3, 12] that we have used in
previous figures, we also show the results for other fitting ranges for α1, which are typically used in
the bibliography.

We also note that this curvature effect is not due to finite size effects. To show that this
is the case, in Figure 1b, we choose as examples three different values of αin (although the
results are general), and consider different time series length N. For each N, we generate
104 FFM time series to obtain the corresponding 〈F(`)〉 functions. We observe that, for the
three αin values, the curves corresponding to different N overlap perfectly in the range
[3, N/10], where DFA is calculated, and therefore the curvature observed at small scales is
independent of the time series length N. This leads us to conclude that the curvature is a
side effect of the DFA technique itself, which presents such curvature at small scales and
only recovers the correct αin value in the large scale region.

This curvature effect can be better appreciated if we define the local scaling exponent
αlocal(`) as the local slope of the log(F(`)) vs. log(`) curve:

αlocal(`) ≡
d log(F(`))

d log `
(9)

For time series with perfect scaling, such as the ones generated with the FFM algorithm,
we should obtain αlocal(`) = αin. However, due to the curvature of the F(`) function, there
is a clear deviation of αlocal(`) with respect to the correct value αin at short scales. This
effect is shown in Figure 2a, where we plot the behavior of αlocal(`) for different αin values.
All the curves have been obtained by generating 104 time series of length N = 218 for any
value of αin, obtaining for each one the corresponding function αlocal(`) using Equation (9),
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and averaging the results to get 〈αlocal(`)〉. Again, the range of scales usually considered to
determine α1 is shown as a shaded rectangle.

According to the results shown in Figure 2a, we can conclude that DFA provides
the correct scaling exponent αin asymptotically : only for large or moderately large scales
does the local slope αlocal(`) reach the true αin value, which is shown in all cases with a
horizontal dashed line. However, at short scales, the local exponent αlocal(`) presents a
large deviation with respect to the asymptotic value, specifically a clear overestimation
since always αlocal(`) > αin. This deviation is larger for smaller αin values, especially for
the anticorrelated cases αin < 0.5, but it is notorious in all cases. We remark that the scales
where the deviation of αlocal(`) with respect to the correct scaling exponent αin is larger
coincides with the shaded area, i.e., the range of scales used to determine α1.

Similarly to what we did in Figure 1, we proceed to show that the overestimation
observed in αlocal(`) at short scales with respect to αin is not due to size effects: in Figure 2b,
we show similar curves to the ones shown in Figure 2a, but obtained for a wide range
of time series length N. We choose as examples the same three αin values considered in
Figure 1b. For each combination of αin and N, we generate 104 time series, determine
for each one the corresponding αlocal(`) function in the range ` ∈ [3, N/10], and obtain
the average of the 104 curves. We observe that all the curves corresponding to the same
αin value overlap perfectly on top of each other independently of N. Although shown
only for three αin values, the behavior is completely general. Therefore, we can conclude
that the deviation is not due to effects produced by the time series length N, but an
intrinsic property of DFA, which systematically leads to a clear overestimation of αlocal(`)
at short scales.

Since the short-term scaling exponent α1 is commonly estimated by the slope of a
linear fitting of log(F(`)) vs. log(`) in the range ` ∈ [3, 12], we observe from the results of
Figures 1 and 2 that, even for time series with perfect scaling, α1 will provide a spurious
result not characterizing the correlations at those scales. Note that αlocal(`) > αin for
` ∈ [3, 12], and therefore α1, which is a kind of average of αlocal(`) in the fitting interval,
will be also overestimated and will not properly represent the correlation properties at
these scales.

Indeed, we can determine statistically the behavior of α1 for time series with perfect
scaling. For that purpose, we choose different values of αin, and for each one we consider
a wide range of time series length N. For each combination of αin and N, we generate
a 104 time series with perfect scaling characterized by αin using the FFM algorithm. For
each individual time series, we calculate the DFA fluctuation function F(`) and obtain
the corresponding α1 value by fitting log(F(`)) vs. log(`) for ` ∈ [3, 12]. Therefore, we
finally have 104 individual α1 values for each pair αin and N, from where we can obtain
numerically the corresponding probability density p(α1). In Figure 3, we show the results
for the probability densities obtained for αin = 0.1 (panel a), 0.5 (panel b), and 0.9 (panel c).
In each panel, we show the normalized probability densities for a wide range of time series
length N values. In addition, we also show in each panel with a vertical dashed line the
corresponding αin value, which truly characterizes the scaling and the correlations of the
time series at all scales.

The behavior of p(α1) is quite similar in the three panels shown in Figure 3. Each
individual density p(α1) exhibits a Gaussian-like shape with the peak centered at the corre-
sponding mean value 〈α1〉. Interestingly, and since for a given αin all the p(α1) densities
are centered in the same value independently of the time series length N, the expected
〈α1〉 value depends only on the corresponding αin, but not on N. This property could have
been anticipated by observing the overlapping of the curves shown in Figures 1b and 2b
for different N values. The effect of the time series length N is only reflected in the width
of p(α1), which is larger for small N values, and decreases noticeably as N increases.

We observe in Figure 3 that the exponent α1 is systematically overestimated, and
this effect can lead to spurious misinterpretations of the behavior of the analyzed time
series, and therefore of the underlying dynamical system. For example, in Figure 3a, we
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analyze FFM time series fully characterized by αin = 0.1. This value indicates very strong
power-law anticorrelations. However, the expected value 〈α1〉 is close to 0.5, corresponding
to the absence of correlations (white noise behavior). In Figure 3b, we consider precisely
αin = 0.5, and therefore the corresponding FFM time series are completely uncorrelated
(white noises). However, we obtain in this case 〈α1〉 ' 0.7 that would be interpreted
as corresponding to positive and quite strong power-law correlations at short scales. In
Figure 3c, we use αin = 0.9, so that the corresponding FFM time series are very strongly
positively correlated. In this case, we obtain 〈α1〉 slightly larger than 1 that would be
interpreted as corresponding to a non-stationary time series, for which α > 1, although the
FFM time series are stationary.

These overestimations of α1 could strongly affect the interpretation and implications
of the results obtained with physiological time series. For example, Rogers et al. [41] show
that the α1 value obtained from heart rate time series drops to 0.5 when runner’s fatigue
increases. If we do not take into account these overestimations, we can conclude that
fatigue makes the heart rate be random at short scales, whereas, in reality, the heart rate
becomes highly anticorrelated at short scales.

These examples are useful to illustrate how α1 systematically overestimates the true
scaling exponent αin, and also that the overestimation depends on αin value. By repeat-
ing the same calculations presented in Figure 3 but for many αin values in the interval
αin ∈ (0, 2) (i.e., for stationary and non-stationary cases), we can obtain the dependence of
the expected value 〈α1〉 on αin, and quantify the overestimation ∆αin defined as:

∆αin ≡ 〈α1〉 − αin (10)

The results for 〈α1〉 as a function of αin are shown in Figure 4, where for clarity we have
separated the results corresponding to stationary time series with 0 < αin < 1 (panel a),
and to non-stationary time series with 1 < αin < 2 (panel b). In addition, we also include
the dependence of ∆αin on αin in panel c.

We observe how ∆αin is larger for a stationary power-law strongly anticorrelated time
series αin close to 0) and decreases as the true scaling exponent αin increases, reaching a
minimum value around αin ' 1. After the minimum value, ∆αin increases again in the non-
stationary region and reaches a maximum at around αin ' 1.8 Although of variable extent,
the overestimation always exists, and, as we have seen with the examples of Figure 3,
this can lead to misinterpretations if the exponent α1 is considered to truly represent the
short-term correlations of the analyzed time series.

We also include in Figure 4 the behavior of 〈α1〉 and ∆αin as a function of αin for other
values of the range of scales used to obtain α1 (typically used in the bibliography), in
addition to the case ` ∈ [3, 12], we have used in previous figures. We see that 〈α1〉 and
∆αin depend also on the fitting interval considered, which is different for different authors,
adding another degree of arbitrariness to the already difficult interpretation of the α1 value.

5. Behavior of α1 for Time Series with Scaling Crossovers

We consider in this section time series truly characterized by different short and long-
term scaling exponents α1 and α2, and therefore with a scaling crossover at intermediate
scales. These time series can be generated by using a modified version [43] of the Fourier
Filtering Method described in Section 2. Essentially, the numerical procedure is identical to
the standard FFM algorithm, but the power spectrum S( f ), instead of as a single power-law,
is modeled as:

S( f ) ∼


1

f 2α2−1 if f ≤ fc

f 2(α1−α2)
c

f 2α1−1 if f > fc

(11)

This equation corresponds to two different power-law behaviors of S( f ) controlled by
the exponents α1 (high frequencies) and α2 (low frequencies), with a crossover at frequency
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fc. As an example, in Figure 5, we show the power spectrum of time series generated
with this technique by using the numerical value α2 = 1 and different values of α1. The
crossover frequency fc is indicated with a vertical dashed line, and we have used fc = 1/16
in the figure.

10−6

10−5

10−4

10−3

10−2

10−1

100

10−3 10−2 10−1

α2 = 1

fc

S
(f
)

frequency (f )

α1 = 0.1
α1 = 0.5
α1 = 1.0
α1 = 1.5
α1 = 1.9

Figure 5. Examples of power spectra S( f ) corresponding to Equation (11) with different DFA scaling
exponents α1 at short scales (high frequencies) and α2 at large scales (low frequencies). The crossover
occurs at frequency fc, so that the scale of the crossover in the time domain is `c = 1/ fc. We have
used a single numerical value α2 = 1, and several values for α1. In addition, we have considered
fc = 1/16.

According to the definition of S( f ) in Equation (11) and of the relation between the
exponents of S( f ) and DFA, when the corresponding signal in the frequency domain is
Fourier-transformed back into time domain to obtain the time series {xi}, the short scale
behavior is truly characterized by a DFA exponent α1 and the large scale behavior, by a
DFA exponent α2. The scale of the crossover, `c, is given by `c = 1/ fc.

We note that this modified version of FFM has three input parameters, the scale of
the crossover `c = 1/ fc and the scaling exponents α1 and α2 that truly characterize the
behavior of the final time series by construction. Since these exponents are inputs of the
algorithm, from now on, we term them α1,in and α2,in, respectively.

In order to illustrate how DFA behaves when applied to time series with scaling
crossovers generated by the modified FFM algorithm proposed in (11), in Figure 6, we
show the average DFA fluctuation function 〈F(`)〉 obtained for such kind of time series. In
particular, we have considered in Figure 6 a scaling crossover at `c = 16 shown as a vertical
dashed line in both panels. In panel a, we fix α1,in = 0.1, and each curve corresponds to
α2,in values in the range 0.1, 0.2, 0.3, . . ., 1.9. Figure 6b shows a similar case as in Figure 6a,
but using a fixed value of α1,in = 1.5. In both panels, for each different α2,in, we have
generated 104 time series of length N = 218 to obtain the corresponding average curve
〈F(`)〉. In all cases, we observe a change of slope in the log〈F(`)〉 vs. log(`) plot between
short and large scales (as it should be).

However, we want to investigate if the local scaling exponent in the short scale region
for this kind of time series is able to recover the correct α1,in value. For that purpose, and
for the same time series used to produce Figure 6, we show in Figure 7 the average local
scaling exponent 〈αlocal(`)〉 as a function of log10(`). The scaling crossover at `c = 16 is
shown in both panels as a vertical dashed line. In panel a, we consider the case α1,in = 0.1,
while in panel b α1,in = 1.5. The different curves in both panels correspond to α2,in =
0.1, 0.2, 0.3, . . ., 1.9, and the average 〈αlocal(`)〉 is obtained by generating 104 time series with
N = 218 for each α2,in value. In both panels, we indicate with a horizontal segment in the
short scale region the true α1,in value used to generate the time series. In panel a, we observe
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how all the 〈αlocal(`)〉 curves all well above the correct α1,in = 0.1 value. In this case, any
fitting interval chosen in the short scale range will provide a drastic overestimation of α1,in,
although the specific estimation α1 value depends also on α2,in. In panel b, we observe
that some curves lie above the true α1,in value (approximately for α2,in > α1,in) while other
curves lie below the true α1,in value (approximately for α2,in < α1,in). In the former case,
the estimation α1 will overestimate the correct α1,in value, while, in the latter, α1,in will be
underestimated. Either way, α1,in would not be properly determined in any case, and the
particular estimated α1 value would depend on the true α2,in, despite the fact that α1,in is
identical in all cases.
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−1

0

1

2

3
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(a)
α1,in = 0.1

0.5 1 1.5 2 2.5 3 3.5 4

(b)
α1,in = 1.5
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g
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(ℓ
)⟩

log10 ℓ log10 ℓ

Figure 6. The DFA average fluctuation function 〈F(`)〉 obtained for FFM time series of length N = 218

with a scaling crossover at `c = 16, marked in both panels with a vertical dashed line. In (a), we fix
α1,in = 0.1, and the different curves corresponds to α2,in = 0.1, 0.2, 0.3, . . ., 1.9. In (b), we represent the
same as in (a) but we fix α1,in = 1.5. In both panels, for any α2,in value, we generate 104 time series to
obtain the average 〈F(`)〉.

The examples shown in Figures 6 and 7 indicate the practical impossibility of properly
estimating the true α1,in for time series with scaling crossovers. Similarly to what we did in
Section 3, we now proceed to analyze the behavior of the estimated short scale exponent
〈α1〉 for these time series. The results for 〈α1〉 as a function of the true α1,in are shown
in Figure 8. We consider α1,in values in the range α1,in ∈ (0, 2) to include stationary and
non-stationary time series. Each panel corresponds to the use of a different fitting range to
obtain α1, typically used in the bibliography. Within each panel, we present five different
curves since we have considered five distinct values of α2,in to check its possible influence
on 〈α1〉, which we know to exist according to Figure 7. For each combination of α1,in and
α2,in, we use the modified FFM algorithm in Equation (11) to generate 104 time series with
N = 214 with the crossover scale at `c = 16. The α1 value for each individual time series is
obtained by a fitting in the corresponding fitting range, and the resulting 104 values of α1
are averaged to get 〈α1〉. In panels a–c, we consider fitting ranges for obtaining α1 below
the crossover scale `c, while in panels d and e, the upper limit of the fitting interval is above
`c. Note that, in a real-world time series with two different scaling behaviors at short and
large scales, the true scale of the crossover is not exactly known a priori, so that situations
such as the ones shown in panels d and e are realistic. In all cases, the dashed line in the
diagonal of all panels corresponds to the line 〈α1〉 = α1,in, i.e., the expected behavior of
〈α1〉 in case of being correctly estimated.
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Figure 7. Average local scaling exponent 〈αlocal(`)〉 for the same set of time series with N = 218 and
with scaling crossover used in Figure 6. In (a), we fix α1,in = 0.1, and the different curves corresponds
to α2,in = 0.1, 0.2, 0.3, . . ., 1.9. (b) shows the same as (a), but fixing α1,in = 1.5. The scaling crossover
at `c = 16 is marked with a vertical dashed line. The true short-scale exponent α1,in is shown in each
panel as a horizontal segment in the short-scale region. In both panels, for each value of α2,in, we
have generated 104 time series to obtain the average 〈αlocal(`)〉.
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Figure 8. Behavior of the estimated 〈α1〉 as a function of the true short-term scaling exponent α1,in for
different long-term scaling exponent α2,in values. For each combination of α1,in and α2,in, we generate
104 time series using the modified FFM algorithm with a crossover scale `c = 16, from where we
obtain the average 〈α1〉. In each panel, we show the results for a different fitting range: [3, 11] in
panel (a), [4, 12] in panel (b), [4, 16] in panel (c), [4, 20] in panel (d) and [6, 30] in panel (e). The top
panels correspond to fitting ranges below `c, while, in the bottom panels, the upper limit of the fitting
range is larger than `c. In all cases, the dotted line in the diagonal corresponds to the perfect result
〈α1〉 = α1,in.
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Similarly, in Figure 9, we show the results for ∆α1,in obtained from the data presented
in Figure 8. In this case, the deviation of 〈α1〉 with respect to the true short-scale value is
defined as:

∆α1,in ≡ 〈α1〉 − α1,in (12)

We apply directly this last expression to the results shown in Figure 8 to obtain Figure 9.
In all panels of this latter figure, the horizontal dotted line at ∆α1,in = 0 corresponds to the
perfect estimation of the true α1,in.
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Figure 9. Deviation ∆α1,in (Equation (12)) as a function of the true scaling exponent α1,in. All the
curves have been obtained from the data shown in Figure 6, so that each panel shows the results for
a different fitting range: [3, 11] in panel (a), [4, 12] in panel (b), [4, 16] in panel (c), [4, 20] in panel (d)
and [6, 30] in panel (e). In all panels, the horizontal dotted line at ∆α1,in = 0 corresponds to a perfect
estimation of α1,in.

The results shown in Figures 8 and 9 have profound implications: First, 〈α1〉 practically
never estimates properly the true α1,in value, as we suspected from the results of Figure 7.
In this case, 〈α1〉may overestimate (∆α1,in > 0) or underestimate (∆α1,in < 0), very often
severely, the correct α1,in. In general, for any fitting interval, we find that the overestimation
happens for small α1,in, and the underestimation for large α1,in values. In between these
two extrema, and since 〈α1〉 and ∆α1,in are smooth functions of α1,in, there is an accidental
single value of α1,in correctly estimated where the curves change from the over- to the
underestimation region. However, this value is not robust since it depends on the fitting
interval and the α2,in value considered.

The deviation ∆α1,in depends obviously on the true α1,in value, but also on the fitting
interval considered (see Figure 9), which is always quite arbitrary since the scaling of
the crossover is not exactly known in real-world time series. We note that |∆α1,in| can
have large values (i.e., strong under or overestimation of the true α1,in) even when the
fitting interval lies completely below the true crossover scale (Figures 8a–c and 9a–c), and
may worsen if the upper limit of the fitting interval is larger than the crossover scale
(Figures 8d,e and 9d,e).

However, in addition to these effects that preclude a correct estimation of the true α1,in,
there is another factor shown in Figures 8 and 9 which questions severely the use of DFA at
short scales, and that we already discussed partially when presenting Figure 7. We note
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that, for a fixed value of α1,in, the corresponding estimated value 〈α1〉 (and therefore the
deviation ∆α1,in) depends also on the value of the true large-scale exponent α2,in. This effect
implies a serious methodological problem: let us imagine two time series with exactly the
same α1,in value (the same scaling behavior at short scales), but very different α2,in values.
According to our results in Figure 8, if DFA is applied as usual at short scales to estimate
the corresponding α1 value in these time series, the two estimated α1 values would be very
different too, although the short-term scaling properties are identical in both time series,
since they have the same true α1,in. This case corresponds to imagining a vertical line for a
fixed α1,in value at any of the panels of Figure 8. The line will cross the different curves at
different 〈α1〉 values, which would be the estimated values provided by DFA, although, in
all cases, the short-term scaling is the same. This effect corresponds exactly to the examples
shown in Figure 7: while in all cases α1,in = 0.1 (panel a) or α1,in = 1.5 (panel b), a fitting in
the short scale region (a kind of average of the corresponding 〈αlocal(`)〉) would provide
different estimated α1 values depending on α2,in.

Similarly, the opposite situation is also possible: for two time series with different
α1,in values, one can estimate the same α1 value applying DFA at short scales if the two
time series have a different large-scale exponent α2,in. This case corresponds to imagining a
horizontal line at any fixed 〈α1〉 value in any of the panels of Figure 8. The line will cross
the curves at very different true α1,in values, so that the time series truly have very different
scaling properties at short scales but will be considered to have the same α1 value if DFA
is used.

6. Discussion and Conclusions

In the last two decades, Detrended Fluctuation analysis has become a widely-used
standard method to characterize the correlations and scaling properties of real-world
complex time series. Within this context, many authors, especially in the field of physiology
in the analysis of cardiac signals, study the scaling properties of the experimental time
series by applying separately DFA at short and large scales of observation, therefore
characterizing the time series by two exponents, α1 and α2, corresponding to short and
large scales, respectively. If both exponents are different, and this happens very often, the
difference is attributed to the existence of different mechanisms controlling the underlying
dynamical system which act at different time scales, short and long range.

Here, we have shown that, when considering time series with perfect scaling, and
therefore with a single exponent for all the scales of observation, DFA estimates correctly
the real scaling exponent for large or moderately large scales of observation. However, if we
calculate for these time series the exponent α1 in the range of short scales, we have observed
a systematic deviation of α1 with respect to the correct and unique scaling exponent, which
is in many cases largely overestimated by α1. This deviation depends not only on the value
of the real scaling exponent, but also on the range of scales used to obtain α1. We have
shown that this overestimation is not due to size effects of the time series, and therefore
that it is an intrinsic property of DFA (artifact) at short scales.

In addition, when time series with a scaling crossover and two different scaling
exponents at short and large scales are considered, the α1 value estimated by DFA can
overestimate or underestimate (in many cases for a great amount) the correct short-scale
exponent. The deviation of the estimated α1 with respect to the true exponent depends
on the value of the true exponent itself, and of the fitting range considered (which varies
among different authors) even if fitting ranges well below the scale of the crossover are
considered. Even more importantly, the estimated value of α1 also depends on the value
of the long-term scaling exponent, so that time series with identical short scale properties
and different long scale properties will have different estimations of α1. This effect can also
appear in the reverse way: we can find time series with the same estimated α1 values but
with very different real short-term scaling properties if the long-term exponent is different.

We note that the results found in this work are of general applicability: note that the
behavior of DFA at short scales we observe is due to the intrinsic mathematical properties
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of DFA, which only works properly asymptotically. i.e., for large scales. In the short scale
region, the function F(`) never behaves as a power-law, neither for signals with perfect
scaling at all scales nor for signals with scaling crossovers, and this result is independent of
the type of time series considered. Therefore, trying to fit F(`) to a power-law in the short
scale region always produces spurious results.

For all these reasons, the estimated value of α1 does not characterize properly the
scaling properties and correlations at short scales, so that one has to be very careful when
interpreting the meaning of α1 obtained for real-world experimental time series. On the
one hand, if the experimental data truly exhibit perfect scaling with a single exponent, α1
will have a different value and could wrongly lead to the conclusion that there exists some
specific mechanism acting on the dynamical system at short scales. On the other hand, for
time series with two truly different scaling exponents produced by the characteristics of the
dynamical system, the obtained α1 value will be also affected by the systematic deviation
at short scales and will not coincide with the true short-scale exponent. In this latter case,
the obtained α1 value will not characterize properly the real control mechanism acting at
short scales on the dynamical system.
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