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Abstract: The log messages generated in the system reflect the state of the system at all times.
The realization of autonomous detection of abnormalities in log messages can help operators find
abnormalities in time and provide a basis for analyzing the causes of abnormalities. First, this
paper proposes a log sequence anomaly detection method based on contrastive adversarial training
and dual feature extraction. This method uses BERT (Bidirectional Encoder Representations from
Transformers) and VAE (Variational Auto-Encoder) to extract the semantic features and statistical
features of the log sequence, respectively, and the dual features are combined to perform anomaly
detection on the log sequence, with a novel contrastive adversarial training method also used to
train the model. In addition, this paper introduces the method of obtaining statistical features of log
sequence and the method of combining semantic features with statistical features. Furthermore, the
specific process of contrastive adversarial training is described. Finally, an experimental comparison
is carried out, and the experimental results show that the method in this paper is better than the
contrasted log sequence anomaly detection method.

Keywords: adversarial training; contrastive learning; statistical features; VAE; BERT

1. Introduction

Log messages have become an essential resource for the reliability and continuity
of many software systems, especially large-scale distributed systems. It truly reflects the
operating status of the software system, and is of great significance to the monitoring,
management and troubleshooting of the system. Therefore, log-based anomaly detection
has become an important means to ensure system reliability and service quality, and its
purpose is to find abnormal behavior of the system [1]. At present, due to the scale and com-
plexity of modern software systems, the volume of logs has reached an unprecedented level.
Therefore, for anomaly detection based on log sequences, traditional manual detection
methods become impractical. With the development of artificial intelligence technology,
some artificial intelligence applications, such as intelligent operation and maintenance [2–5]
and intelligent transportation [6], have become hot research topics. In recent years, some
log sequence anomaly detection methods [2–5] have improved a lot of efficiency compared
with manual detection, but they cannot fully extract the information contained in the log
text, nor can they fully analyze and utilize the extracted information, which affects the
accuracy of anomaly detection. In contrast, the use of deep learning methods can better
learn the relationship between logs in the log sequence [7–13], and then achieve more
accurate log anomaly detection, but they are not sufficiently robust in practice. To detect
anomalies, almost all existing approaches require the construction of a detection model
using the known log events (i.e., the templates of log messages) and log sequences (i.e.,
series of log events that record specific execution flows) extracted from the training data.
They fail to work with previously unseen log events and log sequences. However, our
empirical study has found that real-world log data is unstable, meaning that new but
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similar log events and log sequences often appear [14]. In order to be able to deal with log
events that have never been seen before, people have proposed the use of natural language
processing to convert the log template into a semantic vector, and then the use of a deep
model to learn the deep relationship contained in the semantics [14–17]. Then, a robust log
anomaly detection that can deal with unknown log events is realized, but the consideration
of semantic features increases the difficulty of training deep models. Abnormal logs are usu-
ally hidden in a large number of normal logs, which affects the model’s semantic learning
of abnormal log sequences. Therefore, it is necessary to further standardize the semantic
space of positive and negative samples, and the current log anomaly detection only relying
on semantic features to deal with robustness problems is not enough, and there is a lack of a
training method specifically for robustness. In addition, the current deep learning methods
only focus on the log semantic features of the log sequence [18–20], and do not utilize the
statistical information contained in the log sequence. The core words in the abnormal log
usually do not appear in the normal log or appear in the normal log with a low probability,
so the statistical features can help anomaly detection proceed more smoothly.

In summary, the current mainstream log anomaly detection methods still have various
problems, which are prominent in the following aspects:

(1) Most log sequence anomaly detection methods do not fully consider the robustness
issues caused by the update of the log message template, and lack specialized training
on the robustness of log sequence anomaly detection.

(2) Most log sequence anomaly detection methods have not conducted more in-depth
research and attention on the semantic features generated by normal and abnormal
log sequences, that is, the distance relationship between the semantic features of
normal and abnormal log sequences in the semantic space is not used to improve the
accuracy of anomaly detection.

(3) Most log sequence anomaly detection methods only use the semantic features of
the log sequence to perform anomaly detection, and do not combine the informa-
tion in the statistical characteristics of the log sequence to improve the accuracy of
anomaly detection.

In response to the above problems, this paper proposes an anomaly detection method
based on contrastive adversarial training and dual feature extraction, and uses the open
source real data sets HDFS and BGL to evaluate the proposed method. The main contribu-
tions of this paper are as follows:

(1) This paper uses the FGM (Fast Gradient Method) [21] algorithm to perturb the em-
bedding layer of the BERT [22] model to generate the perturbed semantic features,
and then narrow the distance between the semantic features generated by the log
sequence before and after the embedding layer is perturbed, so that the model can
still obtain the correct anomaly detection results even when the original log sequence
has some slight changes. This kind of special training for robustness can make the
anomaly detection model obtain good robustness.

(2) Contrastive learning [23] is used to reduce the similarity between the semantic features
of normal and abnormal log sequences, so that the semantic features generated
by normal and abnormal log sequences are farther in the semantic space, and the
difference is greater, thereby improving the accuracy of anomaly detection.

(3) This paper counts the times that each word of the log sequence appears in the normal
and abnormal label and uses a VAE [24] to extract the statistical results to obtain sta-
tistical features [25]. The statistical features and semantic features of the log sequence
are then combined to obtain semantic features enhanced by the statistics features to
train the model, and the enhanced semantic features will contain more information,
thereby improving the accuracy of model anomaly detection.

The rest of this paper is organized as follows. Section 2 introduces the related research
of log anomaly detection, Section 3 summarizes the log anomaly detection method proposed
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in this paper, Section 4 conducts experimental comparison to evaluate the performance of
this paper method, and Section 5 summarizes and prospects.

2. Related Research

In order to be able to find the abnormalities generated by the log messages in the
system in a timely and convenient manner, a log sequence abnormality detection method
that can autonomously and accurately detect the abnormality of the log sequence is urgently
needed. The current mainstream log sequence anomaly detection methods can be roughly
divided into machine learning methods and deep learning methods.

In the machine learning method, Liang et al. used SVM (Support Vector Machines) [5]
to detect anomalies in the log sequence, this method constructs a vector based on the
number of various log levels in the log sequence or sliding window, and SVM is used
to perform supervised training on vectors and label. During anomaly detection, if the
detected log sequence is located above the hyperplane, it will be regarded as an anomaly,
but this method cannot cope with the update of the log message template, so it lacks
robustness. Lou et al. used the IM (Invariant Mining) [2] method to detect anomalies in
the log sequence, which uses a log parser to convert unstructured logs into structured logs.
Then, structured log messages are further grouped into log message groups according to
the relationship between log parameters, and the invariants mined can reveal what the log
messages contain inherent linear characteristics. With these invariants to learn, the newly
generated log can be judged, and the log containing these invariants is the normal log,
otherwise it will be regarded as an abnormality, but this method does not take into account
that the log template update will cause the invariants to be updated accordingly, leading to
errors in the detection results, so it also lacks robustness. Moreover, this method cannot
fully extract the information contained in the log message, which reduces the accuracy
of anomaly detection. Xu et al. used PCA (Principal Component Analysis) [3] to detect
anomalies in the log sequence. This method constructs the state ratio vector and the
message count vector from the extracted information by selecting appropriate variables
and grouping related messages. It then uses the unsupervised method of PCA to mine the
feature vectors, and mark each feature vector as normal or abnormal, but this method lacks
focus only on the text itself, and lacks the analysis and utilization of the semantics of the
text, which affects the accuracy of anomaly detection.

In the deep learning method, Du et al. [7] proposed DeepLog, which uses LSTM
to learn the normal pattern of log sequences, and uses the trained model to find those
log sequences that deviate from the normal trajectory, thereby achieving the purpose of
anomaly detection. However, this method does not have a timely response to the log
template update method, so it also lacks robustness, and the method lacks the analysis
of log sentence-level semantic features, which reduces the accuracy of anomaly detection.
Lu et al. [10] proposed a log sequence anomaly detection method using CNN. The CNN-
based anomaly detection model used in this method can automatically learn the event
relationship in the system log to achieve the purpose of anomaly detection. However, this
method uses logkey2vec to perform log template level vector conversion, and the semantic
information at the word level is ignored, which affects the accuracy of the detection
results. Zhang et al. [14] proposed LogRobust, which uses Bi-LSTM with attention to detect
anomalies in log sequences. This method uses natural language processing to convert
log templates into semantic features, which can ensure that appropriate log template
updates will not cause major changes to the generated semantic features. This, in turn,
increases the robustness of anomaly detection to a certain extent, but this method does
not specifically train the robustness of anomaly detection, nor does it utilize the statistical
features contained in the log sequence, and does not further improve the robustness and
accuracy of anomaly detection. In order to clearly distinguish the work of this paper from
other studies, this paper compares the above method with the method in this paper, as
shown in Table 1.
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Table 1. Method comparison table.

Comparison
Item

Method
Input Value Model or Algorithm Strategy to Deal with Unseen

Logs

SVM [5] event count vector construct a hyperplane unable to deal with unseen logs

IM [2] event count vector

singular value
decomposition,

brute force search
algorithm

unable to deal with unseen logs

PCA [3] event count vector construct normal and
abnormal subspaces unable to deal with unseen logs

DeepLog [7] logkey,
parameter value LSTM unable to deal with unseen logs

CNN [10] logkey CNN unable to deal with unseen logs

LogRobust [14] semantic vector Bi-LSTM with Attention semantic vector conversion,
attention mechanism

CATLog semantic vector,
statistical vector BERT, VAE semantic vector conversion,

contrastive adversarial training

3. Method Overview

A more robust and accurate log sequence anomaly detection method can help oper-
ators more accurately find anomalies in the system. In order to improve the robustness
and accuracy of log sequence anomaly detection, this paper proposes a log sequence
anomaly detection method based on contrastive adversarial training and dual feature
extraction. In this section, the method flow is first summarized, and then the various stages
of log anomaly detection are introduced, including log parsing, feature extraction, and an
overview of the anomaly detection model based on contrastive adversarial training.

3.1. Method Flow

This paper proposes a log sequence anomaly detection method CATLog based on
contrastive adversarial training and dual feature extraction, that is, the statistical and
semantic features of the log sequence are extracted, and the two features are combined
to obtain semantic features enhanced by statistical features to train the model. When the
loss caused by model training tends to be stable, the FGM algorithm is used to perturb
the BERT embedding layer to make the model generate semantic features where, after the
perturbation, contrastive learning is used to increase the similarity between the semantic
features generated by the normal log sequence before and after the embedding layer of BERT
is disturbed. The similarity between the semantic features of all normal and abnormal log
sequences is reduced, so as to improve the robustness and accuracy of anomaly detection.
The overall process of CATLog is shown in Figure 1.

The steps in the training phase of this method are as follows:

(1) First, the Drain algorithm [26] is used in the log parsing stage to convert unstructured
log entries into structured log templates.

(2) Then, the log sequence is obtained according to the session ID or sliding window, and
a set of negative sample log sequences is extracted.

(3) Next, in the feature extraction stage, BERT is used to semantically encode the acquired
log sequence to obtain semantic features. The number of times each word in the log
sequence appears in the normal and abnormal label is counted and entered into the
VAE, outputting the hidden variables to obtain statistical features.

(4) The log sequences in the training set and the corresponding labels are used to super-
vise the training of the anomaly detection model.

(5) When the training loss of the model tends to stabilize, while maintaining the original
supervised training task, contrastive adversarial training is used to continue training
the model. That is, the FGM algorithm is used to perturb the BERT embedding layer
to generate perturbed semantic features. Contrast learning is then used to increase
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the similarity between the semantic features generated by the normal log sequence
when the embedding layer of BERT is not perturbed and perturbed, and the similarity
between the semantic features of normal and abnormal log sequences is reduced.
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The steps in the detection phase of the method in this paper are as follows:

(1) First, the Drain algorithm is used in the log parsing stage to convert unstructured log
entries into structured log templates.

(2) Then, the log sequence is obtained according to the session ID or sliding window.
(3) Next, in the feature extraction stage, BERT is used to semantically encode the acquired

log sequence to obtain semantic features. The number of times each word in the log
sequence appears in the normal and abnormal label is counted and entered into the
VAE, and the hidden variables outputted to obtain statistical features.

(4) The semantic feature is input into the Sigmoid activation function to obtain the
confidence, and the statistical feature and the semantic feature are combined according
to the confidence to obtain the semantic feature enhanced by the statistical feature.

(5) The enhanced semantic features are input into the trained anomaly detection model
and the log sequence is judged on whether it has anomalies according to the output
of the model.

3.2. Log Analysis

The log is unstructured and contains any form of text. The purpose of log analysis is to
extract a set of event templates so that the original log can be structured. More specifically,
the purpose of log analysis is to parse each log message into some specific parameters
(variable part) and event templates (constant part) [27]. This paper uses the HDFS public
data set as an example to illustrate. The information that can be parsed in a log entry in
HDFS is shown in Figure 2.
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This paper uses the Drain algorithm to analyze log entries. The algorithm builds a
parse tree based on the content of the log entry, and uses the information contained in each
layer of the parse tree to determine the log template, thereby converting unstructured log
entries into structured log templates. An example of the log parsing process is shown in
Figure 3. As can be seen from the figure, the paper uses the Drain algorithm to analyze the
unstructured log entries, and obtains the log template (constant part) and other parameters
(variable part). In order to conduct in-depth research on the structured log, the variable
part is deleted from the parsed information (a line with a cross is used in the figure to
indicate deletion) and only the structured log template is output.
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3.3. Feature Extraction
3.3.1. Semantic Features

This paper uses the BERT model to semantically encode the log templates obtained in
the log parsing stage to obtain semantic features. The BERT model is generally composed
of 12 Encoder layers, and each Encoder layer is completely composed of a multi-head self-
attention network and a feedforward neural network. The self-attention network reduces
the distance between any two positions in the sequence to a constant, it solves the problem
of information loss in the traditional RNN due to the sequential calculation process, and has
the ability of parallel calculation, which makes the accuracy of semantic coding higher. Next,
this paper will introduce the self-attention network from the perspective of time efficiency.
Self-attention includes three steps: similarity calculation, softmax calculation and weighted
average. Assuming that n is the length of the sequence and d is the dimension of the word
embedding, the similarity calculation can be regarded as the multiplication of two matrices
of size (n, d) and (d, n) to obtain a matrix of (n, n), thus the time complexity is O

(
n2 ∗ d

)
,

the time complexity of the softmax calculation is O
(
n2), and the weighted average can

be regarded as the multiplication of two matrices of size (n, n) and (n, d) to obtain a
matrix of (n, d), so the time complexity is O

(
n2 ∗ d

)
. Therefore, the time complexity of self-

attention is O
(
n2 ∗ d

)
. A multi-head self-attention with m heads is equivalent to dividing

the dimension d of the word embedding into m parts and then performing self-attention
calculations separately. It is supposed that the dimension of self-attention calculation for
each head is d, where a = d/m. On the whole, multi-head self-attention is equivalent to
doing m times of (n, a) and (a, n) matrix multiplication, so the time complexity is also
O
(
n2 ∗ d

)
. In order to achieve semantic coding from word to sentence to sequence level,

this paper uses a multi-head self-attention network as the embedding layer of the BERT
model, so that the log sequence input into the BERT model will convert each word in each
log template of the log sequence into a word vector in the embedding layer of the BERT.
Then the sentence vector representing the log template is obtained by averaging word
vectors and is input into the BERT model. Attention is used to calculate the weight of each
vector output by the BERT model. By summing the vectors given different weights, the
semantic feature representing the entire log sequence is obtained. The structure of the
BERT model with the multi-head self-attention network as the embedding layer is shown
in Figure 4.
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3.3.2. Statistical Features

In this paper, the statistical results of the number of occurrences of the words in the log
sequence in the normal and abnormal label are input into the VAE model, and the hidden
variables are output to obtain the statistical features. An autoencoder is a neural network
for unsupervised learning that copies inputs to outputs [28], and a variational autoencoder
can be defined as being an autoencoder whose training is regularised to avoid overfitting
and ensure that the latent space has good properties that enable generative process. In
order to facilitate the description, this paper needs to declare some variables used in the
process of statistical feature extraction. For a given word, the word statistical vector that
counts the number of times it appears in the two types of labels is shown in Formula (1).

ζw = [ζnormal , ζabnormal ] (1)

Among them, ζnormal represents the number of times the word w appears in the normal
label, and ζabnormal represents the number of times the word w appears in the abnormal
label. For a given log sequence s = {wi}n

i=1, the log sequence statistical vector that counts
the number of times each word in the sequence appears in the two types of labels is shown
in Formula (2).

ζs = [ζw1 , . . . , ζwn ] (2)

Because log sequence statistical vectors are incompatible with semantic features in both
dimensions and scales, this paper uses VAE to map discrete statistical vectors to a latent
continuous space to obtain a global representation of statistical information, so that it can
be combined with semantic features. The optimization objective function of the variational
autoencoder is shown in Formula (3), which is composed of a reconstruction term to
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optimize the encoder and decoder, and a regularization term to regularize the hidden
space.

max
θ,φ

(
EZ∼qφ(Z|ζ)(logpθ(ζ|Z))− DKL

(
qφ(Z|ζ)

∣∣∣∣pθ(Z)
))

(3)

where ζ is the log sequence statistical vector input to the autoencoder, Z is the hidden
variable, pθ(ζ|Z) is the Gaussian distribution of ζZ generated from the hidden variable
Z, pθ(Z) is the prior distribution of selecting the hidden variable, θ is the parameter of
the decoder, qφ(Z|ζ) is the Gaussian distribution used to approximate pθ(Z|ζ) in the
variational inference process, the mean and covariance are generated by two encoders, and
φ is the parameter of the encoder. Through unsupervised training of the VAE model, the
hidden variable ζZ can be obtained, which will become the global representation of the log
sequence statistical vector. The training of the VAE model is independent of other parts
of the anomaly detection model. The latent variable ζZ is generated in the preprocessing
stage and is combined with semantic features in the subsequent stage to obtain semantic
features enhanced by statistical features. Log anomaly detection can be regarded as a
text classification problem to some extent. Generally speaking, the most direct way to
improve the effect of text classification is mainly to improve the classification model, or to
enhance semantic features through some external or internal information. This paper uses
statistical features to enhance semantic features. Statistical features are easier to obtain than
other external information and are naturally compatible with the corresponding tasks. The
statistical features make the model more certain that the possibility of the input log sequence
contains abnormal information, thereby improving the accuracy of anomaly detection.

3.4. Anomaly Detection Model Based on Contrastive Adversarial Training

This paper uses BERT, VAE and MLP to construct an anomaly detection model. The
model structure is shown in Figure 5 and the contrastive adversarial training algorithm is
shown in Algorithm 1.

Entropy 2022, 24, 69 11 of 21 
 

 

Embedding layer

Multi-head self-attention layer

...

Average pooling layer

BERT  embedding layer

× 12

BERT with Embedding Layer of  Multi-Head Self-attention Network

MLP

Softmax

BERT Encoder Layer

Encoder

Decoder

μ σ
Latent

VAE

Log sequence

Structured log sequence Log sequence statistics vector

Linear layerLinear layer

Sigmoid

Statistical 
features

Semantic 
features

Confidence

Output

 
Figure 5. Anomaly detection model. 

It can be seen from Figure 5 that after extracting the semantic and statistical features 
of the log sequence and inputting them to the fully connected layer for unified dimen-
sions, the semantic features output from the fully connected layer will be input to the 
Sigmoid activation function to obtain confidence. Then, the semantic features and statis-
tical features of the log sequence are combined according to the confidence to obtain the 
semantic feature enhanced by the statistical feature, where the value of the confidence is 
obtained by supervised training according to the log sequence and the corresponding 
label in the training set during the training phase. The calculation method of the combi-
nation ratio of statistical features is shown in Formula (4). 

( ) confidence,if 0.5 confidence 0.5
combine confidence

0,otherwise
η η− ≤ ≤ +

= 


 
(4)

Among them, confidence  is the confidence probability of the output of the Sig-
moid function, and η  is the hyperparameter used to adjust the confidence threshold. 
The calculation method combining statistical features and semantic features is shown in 
Formula (5). 

Enhanced Semantic Semantic StatisticalV V combine(Sigmoid(V )) V= +   (5)

Among them, 
SemanticV  is a semantic feature, 

StatisticalV  is a statistical feature, 
EnhancedV  

is a semantic feature enhanced by the statistical feature, and   represents an ele-
ment-based product. 

The specific process of the model using contrastive adversarial training in this paper 
is shown in Figure 6. It can be seen from the figure that before the training starts, m  
abnormal log sequences are randomly selected from the training set to form a negative 
sample set, and the value range of m  is a positive integer less than the total number of 
negative samples in the training set. At the beginning of training, the log sequences in the 
training set and the corresponding labels are used to supervise the training of the model. 
This is because if the model used contrastive adversarial training at the beginning, it will 

Figure 5. Anomaly detection model.



Entropy 2022, 24, 69 10 of 20

Algorithm 1: Algorithm for contrastive adversarial training

input: Log sequence training set D = {xi , yi}N
i=1;

Negative sample log sequence Xneg =
{

xneg
j

}m

j=1
.

output: Trained anomaly detection model.
1 repeat
2 for all {xi , yi} ∈ D do

3 Update parameter α with − 1
N

N
∑

i=1
(yi · log( fα(xi)) + (1− yi) · log(1− fα(xi))) as the loss function

4 end
5 until Training loss has stabilized;
6 repeat
7 for all {xi , yi} ∈ D do
8 Select all normal log sequences from the current batch to form a positive sample log sequence set
Xpos =

{
xpos

k

}n
k=1

9 Use the FGM algorithm to add a perturbation of ε · g/‖g‖2 to the embedding layer of BERT
10 Input the set of positive and negative sample log sequences into the BERT that the embedding layer is
perturbed to obtain the perturbed semantic vector of the positive and negative sample log sequence{

vpos,adv
k

}n

k=1
and

{
vneg,adv

j

}m

j=1
11 Cancel the disturbance to the BERT embedding layer and input the positive and negative sample log
sequences into the BERT again to obtain the semantic vector of the positive and negative sample log sequence{

vpos
k

}n
k=1 and

{
vneg

j

}m

j=1
12 Update parameter α with formula (6) as the optimization function
13 end
14 until Model converges;
15 return Model with well-trained parameters

The training process of the model is as follows:

(1) The log sequence and the corresponding label in the training set is used to supervise
the training of the anomaly detection model.

(2) When the loss generated during training stabilizes, the FGM algorithm is used to
perturb the embedding layer of the BERT model.

(3) A negative sample set is constructed by randomly selecting abnormal log sequences
from the training set.

(4) The log sequence in the training set and the corresponding label and negative sample
set are input into the model.

(5) All normal log sequences in the log sequence of the current batch are selected input to
the model to form a positive sample set.

(6) The positive and negative sample set are input into the perturbed BERT model of
the embedding layer to obtain the semantic features of the normal and abnormal
log sequences after the perturbation, and then cancel the perturbation to the embed-
ding layer.

(7) The positive and negative sample set and the log sequence of the training set are input
to the undisturbed BERT model of the embedding layer to obtain the semantic features
of the normal and abnormal log sequences and the log sequence of the training set.

(8) While contrastive learning is used to increase the similarity between the semantic
features generated by the normal log sequence when the embedding layer of BERT
is disturbed and undisturbed, as well as to reduce the semantic features between
all normal log sequences and the set of negative sample log sequences, the original
supervised training task is continued to train the model. Steps 4 to 8 are repeated
until the loss of contrast adversarial training stabilizes.

The detection process of the model is as follows:

(1) The log sequence is input to be detected into the trained anomaly detection model.
(2) The fine-tuned BERT model is used to convert the log sequence to be detected after

log parsing into semantic features.
(3) The trained VAE model is used to convert the log sequence statistical vector to be

detected into statistical features.
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(4) The semantic features and statistical features are input to the fully connected layer so
that they become feature vectors of the same dimension.

(5) The semantic features output by the fully connected layer are input into the Sigmoid
function to obtain its confidence, and the semantic features and the statistical features
are combined according to the confidence to obtain the semantic features enhanced
by the statistical features.

(6) The enhanced semantic features are input into the MLP, and the output result of the
model is checked to determine whether there is an abnormality in the log sequence.

It can be seen from Figure 5 that after extracting the semantic and statistical features
of the log sequence and inputting them to the fully connected layer for unified dimensions,
the semantic features output from the fully connected layer will be input to the Sigmoid
activation function to obtain confidence. Then, the semantic features and statistical features
of the log sequence are combined according to the confidence to obtain the semantic
feature enhanced by the statistical feature, where the value of the confidence is obtained
by supervised training according to the log sequence and the corresponding label in the
training set during the training phase. The calculation method of the combination ratio of
statistical features is shown in Formula (4).

combine(con f idence) =
{

con f idence, i f 0.5− η ≤ con f idence ≤ 0.5 + η
0, otherwise

(4)

Among them, con f idence is the confidence probability of the output of the Sigmoid
function, and η is the hyperparameter used to adjust the confidence threshold. The calculation
method combining statistical features and semantic features is shown in Formula (5).

VEnhanced = VSemantic + combine(Sigmoid(VSemantic))�VStatistical (5)

Among them, VSemantic is a semantic feature, VStatistical is a statistical feature, VEnhanced is a
semantic feature enhanced by the statistical feature, and � represents an element-based
product.

The specific process of the model using contrastive adversarial training in this paper is
shown in Figure 6. It can be seen from the figure that before the training starts, m abnormal
log sequences are randomly selected from the training set to form a negative sample set,
and the value range of m is a positive integer less than the total number of negative samples
in the training set. At the beginning of training, the log sequences in the training set and
the corresponding labels are used to supervise the training of the model. This is because if
the model used contrastive adversarial training at the beginning, it will cause too much
noise, making the model difficult to converge. Suppose a batch log sequence training set is
{xi, yi}N

i=1, where N is the size of a batch, xi is the i-th log sequence in the training set, yi is
the corresponding real label, and the training loss function is Formula (6).

LCE = − 1
N

N

∑
i=1

(yi · log( fα(xi)) + (1− yi) · log(1− fα(xi))) (6)

where f is the forward function of the model, α is the model parameter, and fα(xi) is the
prediction result of the model. In the training phase, the loss function is minimized by
adjusting the model parameters. When the training loss of the supervised task of the model
tends to be stable, contrastive adversarial training is started. This paper uses the FGM
algorithm to perturb the embedding layer of the BERT. The idea of the FGM algorithm is to
perturb the trainable parameters in the model according to the gradient generated during
training to achieve the purpose of combating training. The perturbation size imposed by
the FGM algorithm on the trainable parameters is shown in the Formula (7).

radv = ε · g/‖g‖2 (7)
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Among them, ε is a hyperparameter, and ‖g‖2 represents the second norm of the gradient.
The normal log sequence in the current batch is selected to construct a positive sample set,
and after obtaining the semantic features of the disturbed positive and negative sample
set, restore the disturbance of the embedding layer of BERT. Then, while continuing to
maintain the original supervised training task, contrastive learning is used to increase the
similarity between the semantic features generated by the normal log sequence when the
embedding layer of BERT is undisturbed and disturbed, and the similarity between the
semantic features generated by the set of the positive and negative samples is reduced.
Suppose the semantic vector generated by a batch log sequence is {vi}N

i=1, where N is
the size of a batch, and the semantic vector generated by all normal log sequences in a

batch is
{

vpos
i

}n

i=1
, where n is the number of normal log sequences, and vpos

i represents
the vector generated by the i-th normal log sequence, and the semantic vector generated

by the disturbed normal log sequence is
{

vpos,adv
i

}n

i=1
,where vpos,adv

i represents the vector
generated by the i-th normal log sequence after the embedding layer is disturbed. The

semantic vector generated by the negative sample log sequence set is
{

vneg
i

}m

i=1
, where m

is the number of abnormal log sequences in the negative sample log sequence set, and vneg
i

represents the vector generated by the i-th abnormal log sequence, and the semantic vector

generated by the disturbed negative sample log sequence set is
{

vneg,adv
i

}m

i=1
, where vpos,adv

i
represents the vector generated by the i-th abnormal log sequence after the embedding layer
is disturbed. The optimization problem of contrastive learning is defined as Formula (8).

Lcontra = Lorig
contra + Ladv

contra (8)

Lorig
contra = −

1
n

n

∑
i=1

log
esim(vpos

i ,vpos,adv
i )/τ

esim(vpos
i ,vpos,adv

i )/τ + ∑m
j=1 esim(vpos

i ,vneg,adv
j )/τ

(9)

Ladv
contra = −

1
n

n

∑
i=1

log
esim(vpos,adv

i ,vpos
i )/τ

esim(vpos,adv
i ,vpos

i )/τ + ∑m
j=1 esim(vpos,adv

i ,vneg
j )/τ

(10)

Among them, sim is the cosine similarity calculation, τ is the hyperparameter temper-
ature coefficient, and Lorig

contra is the contrastive loss function based on the semantic vector of
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the normal log sequence generated when the embedding layer is not disturbed. Its purpose
is to force the semantic vector of the normal log sequence generated after the embedding
layer is disturbed to be close to the semantic vector of the normal log sequence generated by
the original embedding layer. At the same time, make the semantic vector of the abnormal
log sequence generated after the embedding layer disturbed and the semantic vector of
the normal log sequence generated by the original embedding layer distant. Ladv

contra refers
to the contrastive loss function based on the semantic vector of the normal log sequence
generated after the embedding layer is disturbed. Its purpose is to force the semantic
vector of the normal log sequence generated by the original embedding layer to be close
to the semantic vector of the normal log sequence generated after the embedding layer is
disturbed, and at the same time make the semantic vector of the abnormal log sequence
generated by the original embedding layer and the embedding layer the semantic vector of
the normal log sequence generated after the embedding layer is disturbed is distant. Lcontra

represents the sum of Lorig
contra and Ladv

contra. In the process of contrastive learning, the original
supervised training of the model is also maintained, so the final optimization problem
becomes Formula (11). The formula represents minimizing the sum of the cross-entropy
loss function LCE of the original anomaly detection supervised task and the contrastive loss
function Lcontra used to adjust the similarity between the semantic vector of the normal and
abnormal log sequences by training the trainable parameter α of the model.

min
α

(LCE + Lcontra) (11)

The robustness of log anomaly detection is largely reflected in the ability to more
accurately understand the original semantic features expressed by the log sequence that
has the updated log, thereby reducing the impact on the accuracy of anomaly detection.
This paper uses contrastive learning to reduce the distance between the semantic features
of the log sequence generated before and after the BERT disturbance, so that even if the
input log sequence is subjected to an adversarial attack, the semantic features generated by
it will not be significantly affected, so as to prevent adversarial attacks from leading the
model to incorrectly understand the input log sequence. The robust BERT model trained in
this way can still correctly understand the meaning of the log sequence when facing the
log sequence that has the updated log, thereby improving the robustness of log anomaly
detection.

4. Experimental Evaluation

In this section, the method of this paper is evaluated by studying the following aspects:

(1) The impact of the confidence threshold on the accuracy of anomaly detection.
(2) The effectiveness of the anomaly detection method in this paper.
(3) The robustness of the anomaly detection method in this paper.

4.1. Dataset and Experimental Environment

Dataset: This paper selects the real-world log data sets HDFS and BGL provided by
LogHub [29] for experiments. The HDFS data set is collected by LogHub from the 203
node clusters of the Amazon EC2 platform. It is a common benchmark data for anomaly
detection based on logs [30,31]. It contains a total of 11,175,629 original log messages, and
575061 sessions are assigned corresponding labels to indicate their normal and abnormal
status. The BGL data set was collected by LogHub from the BlueGene/L supercomputer
system of Lawrence Livermore National Laboratory (LLNL) [32] in Livermore, California.
It contains a total of 4,747,963 original log messages, and each log has been marked as an
alarm or non-alarm message. In the next experiment, for all data sets, 5000 normal log
sequences and 5000 abnormal log sequences are selected from top to bottom based on
the timestamp information of the logs. The first 80% are used as training data, and the
remaining 20% are used as test data.
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Experimental environment: The experiments in this paper are all carried out on the
NVIDIA TESLA V100 32G GPU server. The Python 3.7 environment is used to build the
model based on Pytorch, the Adam optimizer [33] is used to train the anomaly detection
model, and the cross-entropy function is used as the loss function during training.

4.2. Baseline Methods and Indicators Evaluation

Baseline methods: This paper chooses SVM, DeepLog and LogRoust methods as the
baseline method for comparison experiments.

Evaluation indicators: Anomaly detection is a binary classification problem. This
paper uses widely used indicators, namely accuracy, recall, and F1-score to evaluate the
accuracy of anomaly detection in this paper and various benchmark methods.

Accuracy: the percentage of log sequences that are truly abnormal in all log sequences
judged to be abnormal by the model, as shown in Formula (12).

Precision =
TP

TP + FP
(12)

Recall: the percentage of all abnormal log sequences correctly identified as abnormal
log sequences by the model, as shown in Formula (13).

Recall =
TP

TP + FN
(13)

F1 score: the harmonic average of precision rate and recall, as shown in Formula (14).

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
(14)

Among them, TP is the number of abnormal log sequences correctly detected by the
model. FP is the number of abnormal normal log sequences that the model incorrectly
identified. FN is the number of abnormal log sequences that not detected by the model.

4.3. Experimental Parameter Settings

For the HDFS data set, the log sequence is obtained according to Block_id, and the
label corresponding to the Block_id is used to determine whether the log sequence is
abnormal. For the BGL data set, the log sequence is obtained by a sliding window with a
size of 20. If there is an abnormal log in the log sequence, the entire log sequence is judged
to be abnormal. For those methods that cannot cope with the updated log, this paper
will correspond those new logs to a unified new dimension or new template to solve the
situation that cannot cope with the log update, so as to facilitate the robustness comparison
between methods. The size of the hyperparameter in the FGM algorithm is set to 1. The
size of the negative sample log sequence collection is set to 32. The size of the temperature
hyperparameter used to calculate the contrastive loss function is set to 0.05.

4.4. Test of the Influence of the Confidence Threshold on the Accuracy of Anomaly Detection

This paper conducts experiments on the hyperparameter η that controls the size of
the confidence threshold to find its optimal value for the anomaly detection method in
this paper. Specifically, when η is equal to 0, the semantic feature will discard all statistical
features, and when η is equal to 0.5, the semantic feature will accept all statistical features.
This paper uses five-fold cross validation to determine the hyperparameter η. Specifically,
this paper divides the data set into five parts, and takes turns using four of them as training
data and one as test data for experimentation. Each test will get the corresponding accuracy
rate. The average of the accuracy of the 5 results is used as the final result of the accuracy
of the algorithm. The experimental results of cross validation on HDFS and BGL datasets
are shown in Tables 2 and 3. It can be seen from the table that the value of η is different for
different data sets. For the HDFS data set, when η is equal to 0.3, the anomaly detection
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accuracy rate is the highest, and for the BGL data set, when η is 0.2, the anomaly detection
accuracy rate is the highest. For subsequent experiments, this paper will use η equal to 0.3
and 0.2 on the HDFS and BGL datasets to conduct experiments.

Table 2. The impact of the size of η on the accuracy of anomaly detection (HDFS dataset).

Round
η Value Size

0 0.1 0.2 0.3 0.4 0.5

First round 0.985

0.985

0.985

0.985

0.986

0.986

0.988

0.988

0.987

0.987

0.987

0.987

Second round 0.984 0.986 0.987 0.989 0.988 0.987

Third round 0.984 0.986 0.987 0.988 0.987 0.988

Fourth round 0.986 0.985 0.986 0.987 0.987 0.987

Fifth round 0.985 0.985 0.985 0.988 0.987 0.988

Table 3. The impact of the size of η on the accuracy of anomaly detection (BGL dataset).

Round
η Value Size

0 0.1 0.2 0.3 0.4 0.5

First round 0.988

0.987

0.989

0.988

0.990

0.991

0.989

0.990

0.987

0.988

0.987

0.989

Second round 0.987 0.988 0.991 0.990 0.989 0.988

Third round 0.987 0.987 0.992 0.990 0.989 0.990

Fourth round 0.987 0.988 0.990 0.989 0.988 0.990

Fifth round 0.988 0.988 0.990 0.991 0.988 0.989

4.5. Test of Effectiveness

In order to prove the effectiveness of the CATLog proposed in this paper for anomaly
detection, we compare the CATLog with a CATLog that has not undergone contrastive
adversarial training and dual feature extraction and other baseline methods. The SVM
anomaly detection method converts the log sequence into a count vector by counting the oc-
currence frequency of various log levels in the log sequence, and then realizes the abnormal
detection of the log sequence by dividing the count vector. DeepLog uses LSTM to learn
the normal trajectory generated by the log in the log sequence to find those log sequences
that deviate from the normal trajectory, and then realize anomaly detection. LogRobust
uses natural language processing methods to convert log templates into semantic vectors
and uses a Bi-LSTM with an attention mechanism to perform supervised training on log
sequences to achieve anomaly detection. Figure 7 (ace is the HDFS data set, bdf is the BGL
data set) shows the comparison results of CATLog with CATLog that has not undergone
contrastive adversarial training and dual feature extraction and other baseline methods on
HDFS and BGL data sets.

It can be seen from the figure that the various anomaly detection indicators of the
CATLog method proposed in this paper are higher than other baseline methods, and by
comparing with the CATLog that has not undergone contrastive adversarial training and
dual feature extraction, it can be seen that the CATLog that has undergone contrastive
adversarial training and dual feature extraction has higher anomaly detection accuracy.
The effectiveness of this method in anomaly detection has been confirmed.
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In order to illustrate the effectiveness of the method in this paper more specifically,
we conduct a “Friedman test”. Specifically, first, this paper compares the CATLog with
the other three baseline methods on the HDFS and BGL data sets, and then sorts them on
each data set according to the F1-score and assigns ordinal values (1, 2, . . . ). As shown
in Table 4, the last row is the average ordinal values. Then, the “Friedman test” is used to
judge whether the performance of these models is the same. Let ri be the average ordinal

values of i-th models. And we assume a variable rχ2 = k−1
k ·

12N
k2−1

k
∑

i=1
(ri − k+1

2 )2, where

k = 5 is the number of models, N = 2 is the number of datasets. And we obtain the
rχ2 = 7.7, when k and N are large, rχ2 obey distribution χ2 distribution. Then we use

the variable rF =
(N−1)r

χ2

N(k−1)−r
χ2

, which follows the F distribution with degrees of freedom
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(k − 1) and (k − 1)(N − 1). Then we obtain the rF = 25.7, by referring to the table of
common critical values for F test, when significance level α = 0.05, rF > 6.388. Therefore,
the assumption that all models have the same performance is rejected, there are obvious
differences between algorithm performance.

Table 4. The ordinal values of different models.

Datasets SVM DeepLog LogRobust CATLog(unCAT)CATLog

HDFS 5 4 3 2 1

BGL 5 4 2.5 2.5 1

The average ordinal values 5 4 2.75 2.25 1

4.6. Test of Robustness

With the upgrade of the system or service, some log template updates will occur to
the log messages generated in the system. The irregular update of the log template will
affect the accuracy of anomaly detection. Therefore, the robustness that can cope with the
log template update becomes particularly important. In order to compare the robustness of
CATLog with other baseline methods, this paper makes certain modifications to the original
HDFS data set according to some log update rules. According to the related research on
system log updates, it is found that the log update rules can be roughly divided into
addition, deletion, and Synonymous substitution of log templates. The specific situation of
the log update is shown in Figure 8.
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Figure 8. Update of log template.

After a certain percentage of the original HDFS data set is updated, anomaly detection
is performed again, and the comparison result of the F1 score is shown in Figure 9. As can
be seen from the figure, when the update injection reaches 5%, the F1 scores of DeepLog
begin to drop significantly. When the update injection reaches 10%, the F1 score of SVM and
LogRobust also begins to drop significantly. Although the F1 score of the CATLog that has
not undergone contrastive adversarial training and dual feature extraction is slightly higher
than SVM and LogRobust, it is also lower than the CATLog that has undergone contrastive
adversarial training and dual feature extraction. It can be concluded that the CATLog
proposed in this paper has better robustness than the CATLog that has not undergone
contrastive adversarial training and dual feature extraction and other baseline methods.
The robustness of this method in anomaly detection has been confirmed.



Entropy 2022, 24, 69 18 of 20

Entropy 2022, 24, 69 19 of 21 
 

 

Receiving block <*> src: <*> dest: <*>

Receiving block <*> src: <*> dest: <*> size

Receiving block <*> src: <*> dest: <*>

Receiving block <*> from: <*> dest: <*>

Synonym substitution

Delete word

Add word

 
Figure 8. Update of log template. 

After a certain percentage of the original HDFS data set is updated, anomaly detec-
tion is performed again, and the comparison result of the F1 score is shown in Figure 9. 
As can be seen from the figure, when the update injection reaches 5%, the F1 scores of 
DeepLog begin to drop significantly. When the update injection reaches 10%, the F1 score 
of SVM and LogRobust also begins to drop significantly. Although the F1 score of the 
CATLog that has not undergone contrastive adversarial training and dual feature ex-
traction is slightly higher than SVM and LogRobust, it is also lower than the CATLog that 
has undergone contrastive adversarial training and dual feature extraction. It can be 
concluded that the CATLog proposed in this paper has better robustness than the CAT-
Log that has not undergone contrastive adversarial training and dual feature extraction 
and other baseline methods. The robustness of this method in anomaly detection has 
been confirmed. 

 
Figure 9. Comparison of robustness. 

5. Conclusions 
This paper proposes a log sequence anomaly detection method CATLog based on 

contrastive adversarial training and dual feature extraction. The CATLog extracts the 
semantic features and statistical features in the log template. The core words in the ab-
normal log usually do not appear in the normal log, or appear in the normal log with a 
low probability, so the statistical features can help anomaly detection proceed more 
smoothly. CATLog uses contrastive learning to reduce the similarity between normal and 

Figure 9. Comparison of robustness.

5. Conclusions

This paper proposes a log sequence anomaly detection method CATLog based on
contrastive adversarial training and dual feature extraction. The CATLog extracts the
semantic features and statistical features in the log template. The core words in the abnormal
log usually do not appear in the normal log, or appear in the normal log with a low
probability, so the statistical features can help anomaly detection proceed more smoothly.
CATLog uses contrastive learning to reduce the similarity between normal and abnormal
log sequences, so that the model can better distinguish between normal and abnormal
sequences. This can be well proven in the actual training process. This paper found that the
classification loss of the CATLog is lower than that of the CATLog that has not undergone
contrastive adversarial training when the accuracy of CATLog is trained to be the same
as the CATLog that has not undergone contrastive adversarial training. CATLog uses
contrastive adversarial training to conduct special training on the robustness of log anomaly
detection, so that log entries can still guarantee the accuracy of anomaly detection after a
certain update or some noise interference. This paper conducts comparative experiments
on the real-world data set and the data set with updated part of the log template to evaluate
the effectiveness and robustness of the anomaly detection method in this paper. The results
show that this method is better than other methods. This paper analyzes the failure cases
during the experiment and finds that the samples that fail to identify abnormalities are
mostly caused by the scarcity of the samples during model training. In the future, this
paper plans to collect more data sets to evaluate this method and solves the problem of a
decrease in the accuracy of anomaly detection caused by the scarcity of samples.
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