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Abstract: Singing voice detection or vocal detection is a classification task that determines whether
there is a singing voice in a given audio segment. This process is a crucial preprocessing step that
can be used to improve the performance of other tasks such as automatic lyrics alignment, singing
melody transcription, singing voice separation, vocal melody extraction, and many more. This paper
presents a survey on the techniques of singing voice detection with a deep focus on state-of-the-art
algorithms such as convolutional LSTM and GRU-RNN. It illustrates a comparison between existing
methods for singing voice detection, mainly based on the Jamendo and RWC datasets. Long-term
recurrent convolutional networks have reached impressive results on public datasets. The main
goal of the present paper is to investigate both classical and state-of-the-art approaches to singing
voice detection.

Keywords: singing voice detection; vocal detection; music information retrieval; hidden Markov
models; support vector machines; Mel-frequency cepstrum coefficients; perceptual linear prediction;
short-time Fourier transform; deep learning models; datasets

1. Introduction

The singing voice is an essential component of music, serving as a communication
channel for lyrics and rich emotions. A high level of expressiveness of human singing
is even considered ideal for the instrument player to aspire toward. The human vocal
apparatus generates sound by moving air forced by the diaphragm through the vocal folds,
causing them to vibrate. Modulating airflow through the vibrating vocal folds produces
a wealth of different timbres. Timbre is independent of the perceived pitch of a tone. It
allows us to distinguish between vowels and consonants in words and the distinct sound
qualities of various musical instruments.

Since human voice detection in music tracks is the basis for many advanced appli-
cations, it has been studied for several years. In the field of music information retrieval,
singing voice detection (SVD) is the preprocessing step that can be used to improve the
performance of other tasks such as automatic lyrics alignment [1–3], singing melody
transcription [4,5], singing voice separation [6–8], vocal melody extraction [9], lyric tran-
scription [10,11], singer identification [12], etc.

To the best of our knowledge, no recent review article has been written on the singing
voice detection problem. As a result, in this paper, we would like to fill this gap, and we
investigate the classical approaches of SVD systems [13] which focus on the acoustic
similarity between singing voice and speech, using cepstral coefficients [13] and linear
predictive coding [14]. In addition, we review the existing SVD systems with the use of
machine learning classifiers such as random forests, artificial neural networks, and support
vector machines combined with a large set of audio descriptors (e.g., spectral flatness)
as well as special features such as fluctograms [15]. Lastly, we review the state-of-the-
art techniques using deep neural networks, which the SVD systems can apply to learn
features using a recurrent neural network (RNN) [16] and convolutional neural network
(CNN) [17]. Lately, new types of neural network structures have been widely applied to
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solve many difficult tasks [18]. There is a difference between a human singing voice and
regular speech (speaking voice), mainly in intonation manipulation. Yasunori et al. [19]
proposed two models to differentiate between a singing voice and a speaking voice based
on Mel-frequency cepstrum coefficients (MFCCs). A singing voice utilizes vocal cord
muscle tension to regulate the pitch and duration. Its average intensity is thus beyond that
of speech, its dynamic vary is more significant, and its tone is usually totally different from
that of speech [20].

In order to locate vocal segments, researchers usually extract one or more types of
features from the audio signals and then use the classifier to detect them [18]. There are
various types of attributes, but MFCCs and the spectrum obtained with short-time Fourier
transform (STFT) were the most commonly used features for the SVD task. The features
and statistical classification methods used in speech recognition have some limitations in
detecting singing voices. Deep learning, with its powerful feature representation as well
as time and space modeling capabilities, has recently begun to be used in singing voice
detection [21].

To detect the singing voice in music tracks, researchers usually split the speech signal
into three portions: voiced (a strong sound in which the vocal cords vibrate), unvoiced,
and silent parts. There are several voiced and unvoiced regions in speech. If the system’s
input excitation is a nearly periodic impulse sequence, the corresponding speech appears
visually nearly periodic and is referred to as voiced speech. While the excitation is random
noise-like, the resulting speech signal is random noise-like as well, with no periodic nature,
and is referred to as unvoiced speech. The classification of speech signals as voiced or
unvoiced provides a preliminary acoustic segmentation for speech processing applications
such as speech synthesis, speech enhancement, and speech recognition [22].

This paper is organized as follows: Section 2 is focused on feature extraction, and
Section 3 presents the most used datasets for SVD. Section 4 gives the outline of the existing,
classical methods for SVD. Section 5 describes the state-of-the-art methods for SVD, and the
paper is concluded in Section 6.

2. Feature Extraction

Singing voice detection is a crucial task that can be used to improve other tasks such
as automatic lyrics alignment, singing melody transcription, vocal melody extraction, lyric
transcription, singer identification, etc. To analyze music presence in a recorded audio
signal, a representation that roughly corresponds to how people perceive sound through
their auditory system has to be created. At a fundamental level, such audio representations
aid in determining when events occur in time [23].

In order to locate vocal segments, researchers usually extract one or more types of
features from the audio signals and then use a classifier to detect these audio features.
The feature extraction stage is therefore critical for the subsequent classification process.
Using a feature set (combining multiple features) usually results in better performance.
Audio features provide the description of the sound that helps capture different aspects of
sounds and build intelligent audio systems.

Audio features can be applied to feature extraction linked to audio effects [24], data
classification [25], similarity measures [26], data mining [23], and feature-based synthe-
sis [27], etc. Audio features can be categorized into three levels of abstraction: low-level
such as spectral centroid, spectral flux, energy, zero-crossing rate; mid-level such as MFCCs;
and high-level audio features such as lyrics, melody, and rhythm [28].

Short-Time Fourier Transform Spectrum

The Fourier transform is a mathematical formula for decomposing a signal into its
individual frequencies and amplitudes. To put it another way, it converts the signal from
the time domain to the frequency domain to create a spectrum. Perhaps short-time Fourier
transform (STFT) spectrum is the most common time-frequency representation and has
been widely used in various domains other than music processing. The STFT is also used
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to represent other audio features such as Mel-frequency cepstral coefficients (MFCCs) and
chroma features [23].

Mel-spectrogram

The Mel-scale is a perceptual scale of pitches. A spectrogram is a visual image of
a signal’s frequency spectrum as it changes over time. A spectrogram is obtained by
applying STFT on overlapping windowed segments of the signal. This spectrogram is a
graphical way of representing STFT data. Mel-spectrogram is often used when applying
deep learning approaches because it is more efficient than STFT spectrum [29].

Temporal Features

Temporal features describe a music signal’s relatively long-term dynamics over
time [30]. They are basically time-domain features, such as amplitude envelope, the energy
of the signal, root mean square energy, zero-crossing rate (ZCR), etc., which are easy to
extract. ZCR counts how many times the signal changes sign from negative to positive
or vice versa in a specified time frame (in seconds). In the process of speech recognition
and music information retrieval, ZCR is an essential feature in voice/noise classification.
Speech can be unvoiced, and voiced fricatives (speech) have higher ZCR.

Spectral features

Spectral features, such as band energy ratio, spectral centroid, bandwidth, spectral
roll-off, Mel-frequency cepstral coefficients (MFCC), perceptive linear prediction (PLP),
linear prediction cepstral coefficients (LPCCs) [31], etc., are frequency domain features
that are derived by converting the time domain into the frequency domain using the
Fourier transform. The spectral features can be used to determine the rhythm, notes, pitch,
and melody. Spectral centroid calculated as the weighted average of the frequencies in
the signal is determined by a Fourier transformation with their magnitudes as weights.
The spectral centroid is used to calculate a sound’s brightness, and it is an important factor
in describing musical timbre.

MFCCs are widely used in SVD [32] and were first introduced by Davis and Mermel-
stein in 1980 [33]. Kim et al. [34] compared MFCC and audio spectrum projection features,
and they mentioned that MFCCs were better for feature extraction. The use of MFCCs
has proven to be a powerful tool in music and voice recognition, and sound recognition in
general. The MFCCs are calculated as follows:

C(x(T)) = F−1[log(F[x(t)])] (1)

where x(t) is the time-domain signal. Figure 1 shows the steps to compute MFCC features.
Calculation of the MFCC includes the following steps:

1. Division of the speech signals into frames, usually by applying a windowing function
at fixed intervals [35];

2. Computing the coefficients of the discrete Fourier transform on each segment of
windowed signal to convert the time domain into the frequency domain;

3. Taking the logarithm of the amplitude spectrum;
4. Smoothing the spectrum and emphasizing perceptually meaningful frequencies [35];
5. Taking the discrete cosine transform (DCT) of the list of mel log powers;
6. Generating cepstrum.
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Figure 1. Calculation steps for MFCC features [35].

3. Datasets

This section outlines the most commonly used datasets to perform the SVD task. Most
scientific papers related to the SVD task use small designed datasets such as Jamendo
Corpus, RWC Popular Music, MedleyDB, MIR-1k, and iKala. This is due to the fact that it
is better to have good quality reference datasets in order to achieve high accuracy in SVD
tasks [36].

Table 1 describes the most commonly used datasets in the singing voice detection task
and the related papers used for each dataset. Jamendo Corpus and RWC Popular Music
datasets are the most popular for SVD.

Table 1. Public datasets relevant to singing voice detection.

Name Number of Tracks Size Related Papers

Jamendo Corpus 93 443 mins [16,17,21,37–41]
MedleyDB 122 437 mins [21,42]
MIR-1k 1000 113 mins [21,43]
RWC Popular Music 100 407 mins [17,21,37,40–42,44,45]
iKala 352 176 mins [21,42,46,47]

Jamendo Corpus is a public dataset consisting of 93 copyright-free songs. It was
introduced by Mathieu Ramona et al. in [48]. It has vocal activation annotations. Moreover,
for each song, the segments are annotated as “voice” or “no voice”. The audio files in
Jamendo are stereo. The dataset is divided into a training set containing 61 files, a validation
set of 16 files and a test set of 16 files.

RWC Popular Music is a public dataset consisting of 100 pop songs with vocal acti-
vation and instrument annotations. It was introduced by Mauch et al. in [49]. It contains
80 Japanese songs and 20 English songs. The audio files in RWC are stereo and have a
sampling frequency of 44.1 kHz and 16 bits per sample.

MedleyDB is a multitrack dataset containing 122 tracks. It was introduced by Bit-
tner et al. in [50]. It does not provide annotations for vocal or nonvocal segments, but it
includes instrument activations, genre, and melody annotations. The audio format is WAV
and has a sampling frequency of 44.1 kHz with 16 bits per sample.

MIR-1k (Multimedia Information Retrieval lab) consists of 1000 songs with vocal
activation and pitch contours annotations. MIR-1k was introduced by Chao-Ling Hsu et al.
in [51]. For each song, the segments are annotated as “voice” and “no voice”. The sampling
rate is 16 kHz, and for all the 1000 clips, the clip duration is 4–13 s.

iKala dataset contains 352 30-seconds clips of Chinese popular songs. It was intro-
duced by Chan et al. [52]. This dataset includes nonvocal regions and has a sampling
frequency of 44.1 kHz.
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4. Traditional Methods

The singing voice detection task was first proposed by Berenzweig and Ellis in [13].
The authors focused on the problem of recognizing singing segments in popular music as
a valuable and tractable method of music content analysis, and they used the statistical
features and the hidden Markov model as a classifier. They were able to derive various
statistics and models using Posterior Probability Features obtained from the acoustic
classifier of a general-purpose speech recognizer. This approach enabled them to train an
effective SVD system that was around 80% accurate at the frame level.

Namunu et al. [53] presented an approach for detecting singing voice boundaries
derived from acoustical polyphonic music signals. They called this approach twice-iterated
composite Fourier transform (TICFT). First, the music signal was divided into frames
based on quarter notes. The harmonic structure of each frame was then measured using
TICFT. Finally, the vocal and instrumental frames were classified using music domain
knowledge. They mentioned that this method is less complex and more accurate than
statistical learning methods. In terms of vocal boundary detection, they achieved over 80%
frame-level accuracy.

Vembu et al. [54] presented a technique to identify vocal parts in music samples.
They designed a classifier to perform a vocal–nonvocal segmentation task. They trained a
neural network using several features: MFFCs, perceptual linear prediction (PLP), and log
frequency power coefficients (LFPC), achieving the accuracy of 84.87% for the singing voice
segmentation task. In [55], Lukashevich et al. used the autoregressive moving average
model as a postprocessor reaching the accuracy of 82.5%.

In [32], Rocamora and Herrera used various existing statistical descriptors and studied
the accuracy of estimating vocal segments in music audio. They compare MFCCs, PLPs,
LFPCs, and the harmonic coefficient (HC). The most appropriate feature was MFCC,
and the best-performing classifier was the support vector machine. They also considered
spectral features commonly used for instrument classification, such as centroid, roll-off,
flux, skewness, kurtosis, and flatness. They reached the classification accuracy of 78.5% on
the Jamendo dataset. In [15], Dittmar et al. suggested combining MFCCs with fluctogram
variation and vocal variation. The authors used the random forest as a classifier and
obtained the F-measure at the level of 87%.

In [7], Li and Wang used a singing voice detection step before separating the vocals
from the instrumental accompaniment. The authors used several features (MFCCs, linear
prediction coefficients—LPC, PLP, and the 4-Hz harmonic coefficient) and fed to a hidden
Markov model (HMM) combined with the Viterbi algorithm [56]. Their 10-fold crossvalida-
tion setup was based on only five rock and five country songs semiautomatically annotated
from a karaoke CD. For training, several versions of each song with varying levels of
signal-to-noise ratio (SNR) were generated, which was a type of data augmentation that
has grown in popularity in recent years. The authors reported the accuracy of 80%, 85%,
90%, and 92%, respectively, for –5, 0, 5, and 10 dB SNR.

Hsu et al. [51] proposed a singing voice separation system to identify and separate the
unvoiced parts from the music accompaniment. The first stage of the system was singing
voice detection. To decode music signals into the three groups—accompaniment, unvoiced,
and voiced—the authors used hidden Markov models (HMMs). Then, they used Gaussian
mixture models (GMMs) as states in a fully connected HMM and the Viterbi algorithm.
In another work, Hsu et al. [43] used SVD for pitch estimation and vocal separation. They
trained two GMMs to model vocal and nonvocal classes. The Viterbi algorithm was then
used to decode the GMMs as states in a fully connected, continuous HMM.

In [48], Ramona et al. used several features such as MFCCs, ZCR, and sharpness.
After a silent detection stage, these features were fed into a support vector machine as
a classifier. On the output of the predicted sequence, the authors proposed a temporal
smoothing strategy considering the temporal structure of the annotated segments. Instru-
mental portions less than 0.5 seconds in length were also smoothed out. On the publicly
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accessible Jamendo dataset, they reported accuracy of 82.2%, as well as precise information
on training and test set split.

In [38], Regnier et al. extracted sinusoidal partitions from musical audio signals and
analyzed frequency modulation (vibrato) and amplitude modulation (tremolo) of each
partition. They reached the accuracy of 76.8% by applying thresholds for vibrato and
tremolo. A more advanced approach involving numerous characteristics and a GMM as a
classifier result in a 77.4% for the F-measure.

Lehner et al. [39] proposed a real-time-capable and straightforward method to detect
the presence of a human voice in audio signals. They used only MFCCs for feature
representation and random forest as a classifier. They achieved an accuracy of 82.3% after
the final optimization of the classifier parameters.

5. Deep Learning Techniques

In this section, we discuss the techniques used by researchers in the singing voice
detection task with the help of deep learning techniques. Neural networks are widely used
for solving this problem, and one of the recurrent neural network types, namely, the long
short-term memory network, has been widely used by many researchers in SVD.

5.1. Convolutional Neural Networks

Convolutional neural networks (CNNs) are similar to traditional artificial neural
networks (ANNs) in that they are made up of neurons that optimize themselves through
learning. Each neuron continues to receive input and perform an operation (such as a scalar
product followed by a nonlinear function), which is the foundation of many ANNs [57].

Schlüter et al. [17] introduced a model for singing voice detection using CNN. They
used three-by-three 2D convolution layers. The model is capable of learning invariance
by data augmentation. In the training phase, the authors applied data augmentation,
such as time stretching and pitch shifting, on the audio representation. They developed
several augmentation methods that can be efficiently used to work on spectrograms or
Mel-spectrograms. Two of the augmentation techniques are data independent, while four
are audio data specific, and one is specific to binary sequence labeling.

You et al. [18] applied the CNN model for singing voice detection with MFCC fea-
tures, fast Fourier transform (FFT) features, raw pulse-code modulation (PCM) samples,
and long short-term memory. They called it CNN for MFCC feature (MCNN), CNN for
spectrogram (SCNN), end-to-end CNN for raw PCM samples (ECNN), and convolutional
LSTM (CLSTM). MCNN, SCNN, CLSTM, and ECNN were trained and tested using the
Jamendo Corpus dataset and achieved the accuracy of 88.2%, 91.8%, 77.1%, and 90.4%,
respectively. SCNN achieved the best accuracy after ten trials on the Jamendo dataset.

Huang et al. [58] proposed various structures of CNN for SVD. The input features were
MFCC, discrete Fourier transform (DFT) coefficients, and raw PCM samples. The authors
found out that DFT coefficients achieved higher detection accuracy (up to 92%) evaluated
on all epochs over the average of 10 trials which is higher than MFCC and raw PCM.

In [59], Wenming Gui et al. have significantly improved CNN presented in [29] by
adding batch normalization, changing the activation function to Leaky ReLU, and analyzing
attention distribution of the feature maps. The numerical results were achieved on Jamendo
Corpus, RWC Popular Music, and MIR-1k datasets.

Krause et al. in [60] analyzed the generalization capabilities and robustness of two
models in a different scenario. They used opera recordings as a dataset. The studies were
performed for one standard classifier—random forest—and one based on deep learning
technique—CNN [15]. The quantitative results have shown that CNN outcomes are slightly
better than those obtained with the random forest classifier.
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5.2. Recurrent Neural Networks

A recurrent neural network (RNN) is a computational neural network with feedback
connections. RNNs can deal with time-series signals such as audio and video effectively
and flexibly [61]. In a simple RNN, the hidden state at a time t is computed as follows:

ht = f (Wihit + Whhht−1 + bh) (2)

zt = f (Whzht + bz) (3)

where f is an activation function; ht ∈ R is the hidden state with N hidden units; Wih
represents weight matrices of connections between input and hidden layers; it is the input
at time t; b denotes the bias vector; zt is an output vector; and Whh represents weight
matrices of connections between hidden and hidden layers.

RNNs are used to process sequential data in such a way that each data point can be
understood in a context. RNNs have demonstrated success in tasks such as text gener-
ation [62] and speech recognition [63]. They can be used to model nonlinear sequential
relationships, but it is hard to train a simple RNN due to vanishing gradient and exploding
problems, and the problem of long-term dependencies.

Hughes et al. [64] proposed a recurrent neural network model for voice activity
detection. The model is multilayered, where the nodes compute quadratic polynomials,
and all proposed model parameters are optimized together. The authors have shown
that the proposed model can outperform larger GMM-based systems on voice activity
detection tasks.

5.3. Long Short-Term Memory

Long Short-Term Memory (LSTM) is a special kind of RNN that can learn long-term
dependencies. Moreover, it is designed to avoid the long-term dependency problem.
Remembering information for extended periods is practically LSTM’s default behavior [65].

As presented in Figure 2, each LSTM block includes a memory cell. The input and
forget gates monitor the content of the network while it is performing classification at each
time level. The input of the block to which it belongs can be stored in the cell for as long as
it is required. LSTM cell can be described as follows:

• Forget gate: ft = σ(W f .[ht−1, xt] + b f )

• Input gate: it = σ(Wi.[ht−1, xt] + bi)

C̃t = tanh(Wc.[ht−1, xt] + bC)

• Cell state: Ct = ft ∗ Ct1 + it ∗ C̃t
• Output gate: it = σ(Wo.[ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)

where “.” is the element-wise product, it represents the input gate, ft represents the forget
gate, ot represents the output gate, σ represents the sigmoid function, wx is the weight for
the respective gate (x), ht−1 is the output for the previous LSTM block at (t− 1) timestamp,
xt is an input at current timestamp, and bx are biases for the respective gates (x).

A typical LSTM cell has three gates: a forget gate, an input gate, and an output gate.
The forget gate of the LSTM cell determines how much of the previous data should be
forgotten. The input gate determines how much information is written to the internal cell
state. The output gate determines the next hidden state to be generated from the current
internal cell state. LSTM units have a single memory cell that allows them to store data for
an indefinite period. This memory cell’s read, write, and delete operations are handled by
gates that function similarly to standard units.

Not only are the hidden units connected to the input units (or, in the case of consecutive
hidden layers, to the units of the preceding hidden layer), but each unit is also connected
to itself, i.e., the previous time step. The RNN has access to past information via these
recurrent connections to model temporal context.
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Using LSTM-RNN seems to be one of the best choices for singing voice detection.
Eyben et al. [66] presented a data-driven method to voice activity detection trained on
RASTA-PLP as front-end features based on long short-term memory-recurrent neural
network (LSTM-RNN). The results show that LSTM-RNN outperforms all other methods
in statistical benchmarks.

Lehner et al. [37] used LSTM-RNN for singing voice detection. They applied a uni-
directional RNN with one hidden layer and 55 LSTMs to sort out frames into vocal and
nonvocal. The input was based on several audio features in the feature representation that
included 30 MFCCs. The authors achieved state-of-the-art performance on Jamendo and
RWC datasets.

5.4. Bidirectional LSTMs

Bidirectional RNN (BRNN) are simply two separate RNNs joined together. The idea
behind BRNN is to divide the state neurons of a regular RNN into two parts: one for the
positive time direction (forward states) and one for the negative time direction (backward
states). RNNs can only use a past temporal context. When the entire sequence of input
features is available, it can also be possible to take advantage of the future context. This can
be accomplished with a bidirectional RNN (BRNN). When it comes to learning long-term
dependencies, LSTM-RNNs have proved to be superior to regular RNNs [67].

Leglaive et al. [16] combined deep BRNNs and LSTM to form deep BLSTM-RNNs
and make use of a long-range past and future temporal context in order to classify each
input vector. Figure 3 illustrates the system used for this experiment. A system has
two-stage harmonic-percussion source separation (HPSS) [68] for the classifier input to
extract signals specific to the singing voice. Mel-spectrograms of the obtained harmonic
and percussive components are combined as an input for the classifier for each frame.
The output predictions for each input frame are produced by several recurrent layers
followed by a shared densely connected layer. This classifier can use the inherent sequential
aspect of short-term feature extraction in a piece of music to decide on the presence/absence
of a singing voice in the past and future temporal context. The authors compared BLSTM
with a support vector machine for singing voice segmentation and achieved the accuracy
of 91.5% for BLSTM on the Jamendo dataset outperforming other approaches.
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Figure 3. The overview of the BLSTM architecture used for SVD in [16].

5.5. GRU-RNN

Cho et al. suggested a gated recurrent unit (GRU) [69] to allow each recurrent unit to
capture dependencies across time scales adaptively. The GRU, like the LSTM, has gating
units that modulate the flow of information within the unit but without the need for
separate memory cells. There are a few differences between GRU and LSTM. GRU reveals
its entire content without any monitoring, while LSTM manages the memory content’s
exposure—in other words, GRU has a more straightforward structure than LSTM. Another
distinction is the addition of new memory content to the system. The update gate is used
to monitor information flow in GRU, while the forget gate is used independently in LSTM.

Chen et al. [41] proposed a system (Figure 4) based on GRU-RNN. The preprocessing
step used Deep U-Net convolutional networks for singing voice separation. Then, the au-
thors extracted features and fed them to the classifier. The extracted features were MFCC,
Mel-filter bank, LPCC, and chroma features. They showed a unidirectional RNN with a
hidden layer of 60 GRU units. The classifier’s output is either 1 or 0, with 1 indicating
singing and 0 indicating nonsinging. The authors set the block duration as 120 and 720 ms
with the temporal smoothing postprocessing step. The authors applied this system for
Jamendo and RWC Popular Music datasets. The results are shown in Tables 2 and 3 for the
GRU-RNN (2) with a block duration of 120 ms and GRU-RNN (3) with a block duration
of 720 ms.

5.6. ConvLSTM or LRCN

Convolutional LSTM (ConvLSTM) networks or long short-term recurrent convolu-
tional networks (LRCNs) have a wide range of applications, including video classification,
image captioning, image classification, activity recognition, image labeling, video caption-
ing, singing voice detection, etc. LRCNs can capture both features of CNNs and RNNs by
combining them from spatial and temporal features. The LRCN was first proposed in [70].
ConvLSTM is a type of RNN for a spatiotemporal prediction that employs convolutional
structures in both input-to-state and state-to-state transitions.
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Figure 4. The overview of the GRU-RNN architecture used in [41].

Table 2. Comparison of existing singing voice detection methods on the Jamendo Corpus dataset.

Year Evaluation Measures (in [%])
Method Author Published Accuracy Precision Recall F-Measure

SVM Ramona [48] 2008 82.2 - - 84.3
GMM Regnier et al. [38] 2009 - - - 77
Random forest Lehner et al. [39] 2013 84.8 - - 84.6
Feature Engineering Lehner et al. [71] 2014 88.2 88 86.2 87.1
LSTM-RNN (1) Lehner et al. [37] 2015 91.5 89.8 90.6 90.2
LSTM-RNN (2) Zhang et al. [21] 2020 89.5 89.5 89.6 88.8
CNN (1) Schlüter et al. [17] 2015 92.3 - 90.3 -
CNN (2) Zhang et al. [21] 2020 90.4 90.6 90.4 90.3
CNN (3) Gui et al. [59] 2021 88.9 91.4 89.9 90.6
Bi-LSTMs Leglaive et al. [16] 2015 91.5 89.5 92.6 91
Bootstrapping procedure Dittmar et al. [15] 2015 88.2 - - 87
GRU-RNN (1) Zhang et al. [21] 2020 91 90.8 91.2 91.4
GRU-RNN (2) Chen et al. [41] 2019 88.2 85.39 92.78 88.93
GRU-RNN (3) Chen et al. [41] 2019 90.8 98.2 93.3 91.2
LRCN Zhang et al. [21] 2020 91.6 92.6 93.4 93
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Table 3. Comparison of existing singing voice detection methods on the RWC Popular Music dataset.

Year Evaluation Measures(in [%])
Method Author Published Accuracy Precision Recall F-Measure

SVM-HMM Mauch [45] 2011 87.2 88.7 92.1 90.4
Random forest Lehner et al. [39] 2013 86.8 87.9 90.6 89.2
Feature Engineering Lehner et al. [71] 2014 87.5 87.5 92.6 90
LSTM-RNN (1) Lehner et al. [37] 2015 92.3 93.8 93.4 93.6
LSTM-RNN (2) X. Zhang et al. [21] 2020 93.7 94.1 93.3 92.8
CNN (1) Schlüter et al. [16] 2015 92.7 - 93.5 -
CNN (2) X. Zhang et al. [21] 2020 94 93.6 94 94.2
CNN (3) Gui et al. [59] 2021 88.9 90.7 97.0 93.7
GRU-RNN (1) X. Zhang et al. [21] 2020 95.2 95.1 95.3 95.3
GRU-RNN (2) Chen et al. [41] 2019 92.1 92.7 95.4 94
GRU-RNN (3) Chen et al. [41] 2019 95.3 96.1 96.9 96.5
LRCN X. Zhang et al. [21] 2020 97 97.1 96.8 96.3

You et al. [18] proposed a convolutional LSTM for singing voice detection. The au-
thors mentioned that CLSTM (convolutional LSTM) might theoretically outperform the
typical LSTM network with spectrogram inputs because it uses numerous two-dimensional
planes as inputs. Figure 5 illustrates the CLSTM network that uses three subplanes as the
input sequence.

Figure 5. Convolutional LSTM used in [18] (used under the terms and conditions of the Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/) (accessed on
10 November 2021)).

Zhang et al. [21] proposed LRCN to extract the crucial features that represent the
audio content in the frequency domain and characterize the vocal background in the time
domain for vocal detection. As presented in Figure 6, the network for detecting singing
voices has an input layer that is the same size as the combined acoustic feature vector,
three hidden layers, and an output layer with a single sigmoid unit. The network has been
trained as a classifier to output vocal scores in a value space of 0 and 1 for each frame-
block, where 1 represents a singing voice and 0 represents no singing part of the song.
The LSTM layer in LRCN learns the temporal relationship from the features encoded by
the convolutional layer. By contrast, the convolutional layer spatially adopts the combined
audio features for deep feature extraction. In [21], the proposed system’s architecture
employs singing voice separation as a preprocessing technique for obtaining vocal signals.
It is then accompanied by a standard classification method, in which the authors applied
machine learning techniques (the LRCN) to successive frames of input vocal signals with
a collection of audio features. The authors proposed the LRCN model on five different
datasets (RWC, Jamendo, MIR-1K, iKala, and MedleyDB), which were mentioned before
in Section 3. On the Jamendo dataset, they reached the accuracy of 92% and 0.93 for the

http://creativecommons.org/licenses/by/4.0/
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f1-score; on the RWC dataset—the accuracy of 97% and 0.96 for the f1-score; on MIR-1K
dataset—the accuracy of 94% and 0.89 for the f1-score; on the iKala dataset—the accuracy
of 99% and 0.99 for the f1-score; and on the MedleyDB—the accuracy of 81% and 0.79 for
the f1-score. They also compared the proposed LRCN model with the existing methods for
singing voice detection on the Jamendo Corpus dataset and RWC Popular Music datasets.
The results show that LRCN exhibited a state-of-the-art performance.

Figure 6. The topology of L RCN used in [21] (used under the terms and conditions of the Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/) (accessed on
10 November 2021)).

Figure 7 illustrates the structure of the LRCN layer. The key equations of LRCN are
as follows:

• Input gate: i(t) = σ(Wi · [Conv(X(t)), H(t− 1), C(t− 1)] + bi)
• forget gate: f (t) = σ(W f · [Conv(X(t)), H(t− 1) + C(t− 1)] + b f )

• LRCN Cell: C(t) = f (t) ∗ C(t− 1) + i(t) · tanh(Wc · [Conv(X(t)), H(t− 1)] + bc)
• Output gate: ot = σ(Wo · [Conv(X(t)), H(t− 1), C(t)] + b0)
• Hidden state: H(t) = o(t) · tanh(C(t))

where “.” is the element-wise product, conv is the convolution operator, it represents input
gate, σ represents sigmoid function, wx is the weight matrix for the respective gate (x), ht−1
is the output for the previous LSTM block at (t− 1) timestamp, xt is an input at current
timestamp, and bx are biases for the respective gates (x).

http://creativecommons.org/licenses/by/4.0/
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Figure 7. Inner structure of LRCN layer used in [21] (used under the terms and conditions of the
Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
(accessed on 10 November 2021)).

Tables 2 and 3 summarize the existing SVD methods applied on the Jamendo Corpus
and RWC Popular Music, respectively. Accuracy is the proportion of correctly classified
frames. The recall is the estimated proportion of frames labeled as voiced in the ground
truth. Precision is the percentage of frames that are effectively voiced in the ground truth
that is measured as voiced by the algorithm. F-measure (also called F1-score) combines
the precision and recall of the model and is used to measure the accuracy of the model
on a dataset. The number of false-negative (FN), true-negative (TN), false-positive (FP),
and true-positive (TP) results accumulated across all songs in the testing set was calculated
by comparing model predictions to ground-truth labels. The four evaluation metrics can be
represented as follows:

Recall =
TP

TP + FN
, (4)

Precision =
TP

TP + FP
, (5)

Accuracy =
TP + TN

total f rames
, (6)

F1 = 2 ∗ precision ∗ recall
precision + recall

. (7)

The comparison of the SVD methods in Tables 2 and 3 shows that LRCN and GRU
achieved the best results in terms of accuracy, precision, recall, and F-measure.

6. Conclusions and Discussion

This paper presents a survey on existing singing voice detection methods. Many
possible features can be used for SVD. The long-term recurrent convolutional network
achieved state-of-the-art results on both Jamendo Corpus and RWC Popular Music datasets.
GRU has a more straightforward structure and higher computational efficiency than LSTM;
therefore, GRU achieved better accuracy in the singing voice detection task. We can notice
that, by using any algorithm on the Jamendo and RWC, the accuracy on the RWC dataset is
always higher than on the Jamendo.

http://creativecommons.org/licenses/by/4.0/
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RNNs are good at processing sequence data and making predictions, but they have
short-term memory problems. LSTMs and GRUs were developed as a way to reduce
short-term memory by using gate mechanisms. Gates are basically neural networks that
govern data flow through the sequence chain.

We believe that future works in this field will be focused on the development of
bidirectional LSTM, ConvLSTM, and GRU-RNN on DALI [36], Jamendo, and RWC datasets.
Researchers will likely turn to knowledge distillation and attention-based mechanisms due
to their growing popularity [59,72].

To the best of our knowledge, no recent review article has been written on the singing
voice detection problem. As a result, we hope that this research paper can be significant for
future research in that it gives a deep understanding of the models and techniques used
in SVD.
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