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Abstract: Latent variable models (LVMs) for neural population spikes have revealed informative
low-dimensional dynamics about the neural data and have become powerful tools for analyzing and
interpreting neural activity. However, these approaches are unable to determine the neurophysio-
logical meaning of the inferred latent dynamics. On the other hand, emerging evidence suggests
that dynamic functional connectivities (DFC) may be responsible for neural activity patterns un-
derlying cognition or behavior. We are interested in studying how DFC are associated with the
low-dimensional structure of neural activities. Most existing LVMs are based on a point process and
fail to model evolving relationships. In this work, we introduce a dynamic graph as the latent vari-
able and develop a Variational Dynamic Graph Latent Variable Model (VDGLVM), a representation
learning model based on the variational information bottleneck framework. VDGLVM utilizes a
graph generative model and a graph neural network to capture dynamic communication between
nodes that one has no access to from the observed data. The proposed computational model provides
guaranteed behavior-decoding performance and improves LVMs by associating the inferred latent
dynamics with probable DFC.

Keywords: neural latent variable models; dynamic functional connectivities; variational information
bottleneck; dynamic graphs

1. Introduction

Recent progress in invasive recording technologies, such as high-density micro-
electrode arrays [1–3] and optical fibers [4], allows access to large-scale neural popula-
tion activities with the precision of single neurons. While these data are usually high-
dimensional [5,6], the literature has shown that dimensionality-reduction approaches and
generative models can faithfully explain population spike activities [7] and infer single-trial
neural firing rates [8] with stable low-dimensional latent dynamics. At present, with rapid
developments in machine learning and deep learning, the community has proposed sev-
eral latent variable models (LVMs) with better efficiency and performance to extract the
low-dimensional structure [9–11]. They bring novel insights into neuroscience [12,13] and
facilitate the development of brain–computer interfaces [14].

However, existing LVMs consider the latent dynamics as abstract trajectories in the
vector space without neurophysiological meaning. We are interested in how the coordi-
nation of different brain functions produces such low-dimensional trajectories. In other
words, can we specify the exact meaning for each dimension of the trajectories based on
neurophysiology? This question may help with understanding how cognitive or behavioral
processes emerge. Recently, advances in network neuroscience [15,16] suggest that dynamic
functional connectivities (DFC) may be a more accurate representation of functional brain
networks [17–20]. This refers to dynamic relationships between distributed signals. DFC
may be the mechanism for the coordination of activity between different neural networks
to accomplish a complex task. Hence, it may also be a proper explanation for the latent
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dynamics discovered by LVMs. Nevertheless, while LVMs assume that latent dynamics
follow a point process, DFC involve modeling dynamic relationships between variables.
The community needs a more general framework to associate LVMs with DFC.

In this work, we improve LVMs and bridge LVMs and DFC by drawing on recent
progress in graph representation learning and graph generative models [21], proposing a
Variational Dynamic Graph Latent Variable Model (VDGLVM). We first generalize LVMs
with the variational information bottleneck [22] framework to enable the design of non-
Euclidean latent variables. We then leverage a dynamic graph as the latent variable to model
population spiking and behavior simultaneously. The inferred evolution of relationships
between nodes in the inferred dynamic graph can be associated with DFC implicitly. Thus,
our model improves LVMs via specifying a probable explanation for the latent dynamics
based on DFC. We evaluate our framework with real-world neural data. The results show
that our method can not only decode behaviors with high performance but also identify
simple yet interpretable representations that are informative of the task.

2. Background and Related Work

In this section, we describe the notations used in the present work, and we provide
some background and related work on latent variable models, dynamic functional connec-
tivity, and graph neural networks.

2.1. Latent Variable Models (LVMs)

We consider recorded spike count data from N neurons at T time steps, which results
in an observation matrix X ∈ NN×T , with elements xi,t denoting the spike count of neuron
i ∈ {1, . . . , N} at time t ∈ {1, . . . , T}, and the corresponding behavior Y ∈ RB×T , with B
as the dimension of the behavior. The literature assumes that the spikes are generated
from an inhomogeneous Poisson process based on an underlying non-negative value
firing rate. Most LVMs try to find a lower-dimensional trajectory Z ∈ RL×T with L 6 N,
which explains the observed neural data. In this paper, we focus on dynamical models
for behavior decoding. Usually, this is accomplished within the auto-encoder framework.
Different choices of the encoder and the decoder may result in different LVMs, including
the Gaussian Process (GP) [23–27], linear dynamical system (LDS) [28,29], multi-layer
perceptrons (MLP) [30,31], recurrent neural networks (RNN) [8,26], etc. Moreover, since
most LVMs are generative models, some approaches extract complex latent structures by
carefully designing constraints on the latent space. For example, pi-VAE explicitly uses
brain states as labels and models them with the latent variable in a supervised manner [31]
and Swap-VAE leverages self-supervised learning techniques to decompose the latent
space [30].

In this work, we consider the dynamic communications of nodes as the underlying
dynamics. While existing LVMs only use a point process without exact neurophysiological
meanings, our model introduces DFC to explain the latent dynamics. A slight yet significant
difference between the proposed model and LVMs mentioned above is that we train
our model to decode behavior in a supervised manner. This fits more closely with the
information-based framework described below.

2.2. Dynamic Functional Connectivities (DFC)

Recently, the focus of the systems neuroscience community tends to shift from the anal-
ysis of the static correlation between signals to the study of dynamic relationships between
different brain functions evolving with time [32]. The communications are often referred to
as dynamic functional connectivities (DFC). To capture undirectional statistical dependen-
cies between different neural signals, a common approach is investigating the correlations
based on sliding windows [33–36]. To model directional dependencies, the most frequently
used method is to estimate Granger causality [37–39]. Since DFC can be conveniently
described using a dynamic graph, some works on optimizing the dynamic graph structure
based on graph measures or designed constraints have been developed [40–42]. These
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approaches have been applied on modeling DFC based on functional magnetic resonance
imaging (fMRI) [36], electroencephalograms [43,44], and neurons [42].

For these methods of studying DFC, the nodes are directly defined in the data, and the
challenge accurately estimates the correlations or edges based on the data. However,
to associate LVMs with DFC, the nodes and node information for determining the edges
are not available. To bridge this gap and reveal a probable neurophysiological meaning to
improve LVMs, the present work extends LVMs and explores a computational model to
infer a dynamic graph that can be associated with DFC.

2.3. Graph Neural Networks (GNNs)

A graph G = (V, E) is defined by its node set V = {v1, v2, . . . , v|V|} and edge set
E ⊆ V × V. The numbers of nodes and edges are denoted by |V| and |E|, respectively.
The structure of the graph can be described by an adjacency matrix, A ∈ {0, 1}|V|×|V|. We
also have d-dimensional features for each node in the graph, denoted as Xg ∈ R|V|×d.

GNNs are representation learning neural networks for graph-structured data [21,45,46].
They have achieved remarkable success in different areas, such as molecular graph gen-
eration [47], brain connectome analysis [48], etc. GNNs leverage a message-passing [49]
procedure to obtain a representation for each node vi. It first aggregates features of its neigh-
bor nodes Ni to obtain a message mi for vi, with a multi-set function AGGREGATE as:

mi = AGGREGATE
({

hj, vj ∈ Ni
})

, (1)

where hj is the intermediate representation of node vj. Second, GNNs update the represen-
tation for each node vi with the message via a function COMBINE as:

hi = COMBINE(hi, mi). (2)

GNNs repeat these two steps to iteratively aggregate neighbor information to obtain better
node representations. For graph-level representation learning, GNNs use an additional
multi-set function READOUT on the node embeddings to have a graph representation
vector hg:

hg = READOUT(hk, vk ∈ V). (3)

In this work, we define DFC as the latent variable instead of constructing edges
on nodes predefined on the data. Thus, we leverage graph generative models to infer a
dynamic graph as the latent variable. We also use GNNs to map the dynamic relationships
between nodes and behavior.

3. Methodology

In this section, we introduce VDGLVM. We start by introducing the learning objectives
of LVMs based on the variational information bottleneck framework to understand LVMs
at a higher level. Within the framework, we build a generative model to utilize a dynamic
graph as the latent variable. VDGLVM inherits the expressiveness of deep neural networks
and attempts to interpret neural latent dynamics by LVMs based on DFC.

3.1. Variational Information Bottleneck (VIB)

The information-theoretical framework explains deep neural networks as an infor-
mation bottleneck [50]. A network is optimized to find the representation mapping that
maintains the maximum mutual information between the input and output [51]. The litera-
ture has shown that deep neural networks that constrain information from the input to an
intermediate representation tend to be more robust [22].

For LVMs, we find the latent point process Z by maximizing the mutual information
between the latent variable Z and the behavior variable Y, restricting the mutual informa-
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tion between the spikes variable X and the latent variable Z with a constant Ic, resulting in
a constrained optimization problem:

max MI(Z; Y)

s.t. MI(X; Z) 6 Ic,
(4)

where the exact form of MI(Z; Y) is:

MI(Z; Y) = Ep(Z,Y)

[
log

p(Z|Y)
p(Z)

]
= Ep(Z,Y)

[
log

p(Y|Z)
p(Y)

]
.

(5)

We can be further formulate the objective by introducing a Lagrange multiplier β > 0 as:

min −MI(Z, Y) + βMI(X, Z). (6)

This suggests that we can tune β to find a suitable bottleneck for deep neural networks to
restrict the mutual information between X and Z. However, the direct optimization of the
above objective function is intractable since mutual information is notoriously difficult to
compute when we only have access to samples but not the exact distributions.

VIB [22] solves this by maximizing a lower bound of MI(Z, Y) and minimizing an
upper bound of MI(X, Z) simultaneously. The key is to use a variational distribution
q(Y|Z) to approximate the intractable conditional distribution p(Y|Z). This approximation
indicates that KL(p(Y|Z)||q(Y|Z)) > 0, where KL(·||·) is the Kullback–Leibler divergence.
Therefore, we have:

MI(Z; Y) = Ep(Z,Y)

[
log

p(Y|Z)
p(Y)

]
> Ep(Z,Y)

[
log

q(Y|Z)
p(Y)

]
= Ep(Z,Y)[log q(Y|Z)] + H(Y),

(7)

where H(Y) is the differential entropy of the output variable Y. We neglect this term in
optimization since it is irrelevant to the model once given the data. This bound is tight when
q(Y|Z) = p(Y|Z). Based on the graphical model of the information bottleneck principle,
we have a lower bound of MI(Z; Y) as:

MI(Z; Y) >
∫

X

∫
Y

∫
Z

p(X, Y)p(Z|X) log q(Y|Z)dXdYdZ. (8)

Similarly, an upper bound of MI(X; Z) is:

MI(X; Z) 6 Ep(X)[KL(p(Z|X)||q(Z))], (9)

where q(Z) is a variational approximation of the latent distribution p(Z). The bound is
tight when q(Z) = p(Z). Using the following empirical data distribution,

p(X, Y) =
1

Ns

Ns

∑
n=1

δX(i)(X(i))δY(i)(Y(i)), (10)

where Ns is the number of samples and δ(·) is the Dirac delta function, we have the objective
for LVMs based on VIB when the latent variable is a point process:

min
1

Ns

Ns

∑
n=1

[
−
∫

Z
p(Z|X(i)) log q(Y(i)|Z)dZ + βKL(p(Z|X(i))||q(Z))

]
, (11)
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where p(Z|X) is the encoder and q(Y|Z) is the decoder. The first term is the likelihood of
output Y, given latent variable Z, inferred from input X. In this work, Y is the behaviors
of the subject, and thus, we formulate this term based on a Gaussian distribution. The
second term is regarded as a regularization term for the latent variable Z, given the prior
distribution q(Z).

3.2. Dynamic Graphs as Dynamic Functional Connectivities

Most LVMs study neural activities in a particular region based on the behavior, while
the behavior may be completed as a complex cognitive process involving communications
between different brain regions. However, for LVMs, nodes and edges for defining a graph
are not available on the data, and thus, one needs to infer them, given the data. This can be
formulated as inferring the dynamic relationships between variables that are not defined in
the observed data. Meanwhile, graphs are suitable to model dependencies. Recent progress
on graph-based deep learning significantly promotes graph modeling both in performance
and efficiency. We then wonder whether a graph is feasible as the latent variable of LVMs,
such that it corresponds to DFC and provides a probable explanation for the latent dynamics
based on graph generative models.

To simplify, we assume that the dynamic relationships faithfully capture the evolving
nature of the observations. The present work aims to capture pair-wise dependencies
between variables and emphasize the dynamic relationships in generating neural activities
and behaviors. Thus, we do not consider node dynamics, but assume that the dynamic
relationships already summarize all necessary information about the data. The nodes only
serve as labels for the variables we are interested in.

Let Gt = (V, Et) be a dynamic graph, described by its dynamic adjacency matrix At
and static node features Xg, and let G = {G1, . . . , GT} be a graph process. Our objective is
to replace the point process Z with a graph process G within the VIB framework. However,
it is intractable to directly solve the problem due to the discrete nature of graphs. We start
by assuming that the graph is a Gilbert random graph [52], such that every possible edge
of a graph is conditionally independent of each other. Let eij ∼ Bernoulli(θij) be the binary
variable indicating whether the edge (i, j) exists, where θij is the probability that edge (i, j)
occurs in a graph G. Based on the theory of Gilbert random graphs, the distribution of
random graph variable G can be factorized as:

p(G) = ∏
(i,j)∈E

p(eij). (12)

We relax the edge weights from binary variables to continuous variables in the range
(0, 1), such that we can optimize the objective based on gradient descent efficiently. Specifically,
we give a weight êij to every edge (i, j) to reformulate G as a smoothed-graph variable Ĝ.
The edge weights can be summarized in a modified adjacency matrix Â ∈ [0, 1]n×n. Therefore,
with a smoothed-graph process Ĝ = {Ĝ1, . . . , ĜT}, the objective function becomes:

min
1

Ns

Ns

∑
n=1

[
−
∫

Ĝ
p(Ĝ|X(i)) log q(Y(i)|Ĝ)dĜ + βKL(p(Ĝ|X(i))||q(Ĝ))

]
, (13)

where p(Ĝ|X(i)) is a sequential graph generative model serving as the encoder, and q(Y(i)|Ĝ)
is a sequential graph neural network serving as the decoder.

3.3. VDGLVM

In the VIB framework, we propose the use of dynamic graphs as the latent variable to
study the relationship dynamics between static variables with VDGLVM. The architecture
of VDGLVM is shown in Figure 1. The network is comprised of 4 layers. The encoder
p(Ĝ|X(i)) includes the encoding block, extracting features from neural population spikes,
and the graph generative model, generating graphs. The decoder q(Y(i)|Ĝ) includes the



Entropy 2022, 24, 152 6 of 15

graph neural network, which performs graph-level representation learning, and the output
layer, which maps graph embeddings to output behavior.

population spikes

𝒙𝑡𝒙𝑡−1 𝒙𝑡+1 𝒙𝑡+2

hidden states

𝒙𝑡

𝒉𝑡

Gaussian variables

𝑽𝑡

dynamic graphs
𝐺𝑡or 𝑨𝑡

static variables

𝑿g

graph embeddings

𝒓𝑡

decoded behavior

𝒚𝑡

MLPs

RNN

Pair-wise distance

Encoder Decoder

GNN

MLP

Figure 1. Illustration of VDGLVM using graphs to model the dynamic relationships between static
variables. The left side is the encoder, consisting of a dynamical model extracting features from
spikes data and a graph generative network building graphs for every time step. The right side is
the decoder, including a GNN computing embeddings for graphs and a MLP projector mapping
embeddings to behaviors.

3.3.1. Encoder

We instantiate p(Ĝ|X(i)) based on dynamical models. To capture nonlinear, non-
Markovian, long short-term time-dependent dynamics, we utilize the RNN to extract
features. At each time step t, RNN reads the spikes observation xt and updates its hidden
state ht ∈ RH by:

ht+1 = RNNθ(xt, ht), (14)

where RNNθ is a deterministic non-linear transition function parameterized by θ. In prac-
tice, the vanilla RNN may suffer from gradient issues; it becomes hard to train and leads
to performance degeneration. Thus, normally, RNNθ is implemented via long short-term
memory (LSTM) or a gated recurrent unit (GRU). It models the dynamic graph Ĝt by
parameterizing a factorization of the joint sequence probability distribution as a product of
conditional probabilities, such that:

p(Ĝ1, . . . , ĜT) =
T

∏
t=1

p(Ĝt|Ĝ<t)

p(Ĝt|Ĝ<t) = p(Ĝt|ht),

(15)

where we instantiate pφ(Ĝt|ht) as a graph generative model parameterized by φ, which
maps the RNN hidden state ht to a probability distribution of the graph variable Ĝt, which
can be factorized as:

p(Ĝt) =
n

∏
i=1

n

∏
j=1

p(êijt). (16)
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To compute egde weights, we first use n MLPs to generate n Gaussian latent variables
vit ∈ Rd, summarized in Vt ∈ Rn×d, from the RNN hidden state, as:

p(vit |ht) = N
(

µvit
, σ2

vit

)
[
µvit

, σ2
vit

]
= MLPi(ht),

(17)

where, in practice, we share the parameters of MLPi, except for the last layer. We apply the
reparameterization trick to optimize the objective function with gradient-based methods.
Specifically, we sample ε from a standard normal distribution, and then we generate vi t via:

ε ∼ N (0, I)

vit = µvit
+ ε� σvit

.
(18)

To perform link prediction, we compute the edge weights êijt based on pair-wise distance
defined by cosine similarity:

p(Ĝt|Vt) =
n

∏
i=1

n

∏
j=1

p(êijt |vit , vjt)

êijt = σ

(
log wijt − log (1− wijt)

τ

)
wijt =

1
2

(
vit

Tvjt∥∥vit
∥∥× ∥∥vjt

∥∥ + 1

)
,

(19)

where σ(x) = 1/(1 + e−x) is the sigmoid function and τ ∈ (0, 1) is temperature. When
τ → 0, we have:

lim
τ→0

p(êijt |vit , vjt) = 0, i f wijt < 0.5,

lim
τ→0

p(êijt |vit , vjt) = 1, i f wijt > 0.5,
(20)

and p(êijt |vit , vjt) becomes more sensitive when wijt is around 0.5. When τ = 1,
p(êijt |vi t, vjt) = wijt . Our solution differs from previous works, generating edges

such as: p(êijt |vi t, vjt) = σ
(

vi t
Tvjt

)
. Although both procedures use a continuous distribu-

tion to approximate the Bernoulli distribution, the logarithm and the normalization provide
more stable gradients. With a proper temperature τ, the objective function is smoothed

with a well-defined gradient
∂êijt
∂wijt

. This is similar to the binary concrete distribution, but we

do not involve the reparameterization trick and sample from the distribution, and the
formula is slightly different. We provide this scheme as a better alternative to generate
connectivities from a set of vectors.

Moreover, when τ → ∞, the weight êijt tends to be irrelevant to wijt as:

lim
τ→∞

p(êijt |vit , vjt) = 0.5. (21)

This means that, when τ > 1, this computation is similar to the VIB, which controls
information from wijt to êijt given a prior q(êijt) = 0.5. Nevertheless, a focal solution for
Ĝt, such that êijt stays around 0 or 1, may be more informative about the data, since each
functional connectivities may distribute more separately. Hence, here, we study τ ∈ (0, 1).

3.3.2. Decoder

We design q(Y(i)|Ĝ) as a combination of a sequential graph-level GNN pω0(rt|Ĝt)
parameterized by ω0, and a multi-layer neural network MLPω1 parameterized by ω1, where
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rt ∈ Rd is the graph-embedding vector for Ĝt. We implement pω0(rt|Ĝt) based on a 1-layer
Graph Isomorphism Network (GIN) [53]:

Xg
′ = MLPη

((
Ât + (1 + γ)I

)
Xg
)

rt = sum(Xg
′),

(22)

where MLPη is a multi-layer neural network parameterized by η, γ is a hyperparameter,
Xg ∈ Rn×d is the matrix for n d-dimensional static variables defined by the delta function,
Ât is the dynamic adjacency matrix, and sum is a summation across nodes serving as the
READOUT function. Without a loss of generality, we treat static variables Xg as learnable
parameters, optimized jointly with the model.

Finally, we map the graph-level representation to the output behaviors via a multi-
layer neural network MLPω:

yt = MLPω(rt). (23)

We do not utilize time information in the decoder explicitly. Instead, we decode output
behaviors yt from graphs Ĝt for every time step t separately, since the time-dependent
dynamics are already extracted by RNNθ .

3.4. Differences from Existing Work

In this subsection, we briefly discuss the differences between our work and existing
dynamic graph-learning methods based on optimization.

It is of great interest to learn the underlying graph structure of observed multivariate
time series data. Chepuri et al. [54] propose a general learning scheme for noisy signals
with a prior smoothness. Specifically, this learning approach finds denoised signals and a
K-sparse graph structure from the data via optimizing:

arg min
X̂,Â

‖X̂− X‖2
+ γtr(X̂TL(Â)X̂)

s.t. ∑
i,j

êij = K,
(24)

where X ∈ RN×T is the noisy data, X̂ is the denoised signals, L(Â) is the graph Laplacian
matrix given the structure Â, and γ and K are hyperparameters. To generalize this learning
procedure to dynamic graphs learning to study DFC, Jiang et al. [42] find the solution
based on:

arg min
{x̂t},Ât

T

∑
t=1

[
‖x̂t − xt‖2 + γ1tr(x̂T

t L(Ât)x̂t)
]
+ γ2

T−1

∑
t=1

∥∥Ât − Ât+1
∥∥

1

s.t. ∑
i,j

êijt = K,
(25)

where xt ∈ RN is the noisy signals on time step t, and the additional constraint serves as
temporal smoothness. One should notice two important differences between the optimiza-
tion approaches and VDGLVM, namely, the modeling goal and the learning framework.

First, we define the graph structure on Gaussian latent variables Vt ∈ Rn×d inferred
from the observed data xt, rather than on the data directly. The interest of the present
work is not learning correlations of the observed signals, but finding probable dynamic
communications between unseen latent variables underlying the observed data to interpret
latent dynamics by LVMs. Since variables for DFC are less than the dimension of the data
(n < N), we find the variables via a sequential VAE and perform link prediction on the
variables to infer a graph from the data. This is why we introduce a dynamic graph as the
latent variable and approximate the intractable posterior distribution with graph generative
models. This is the most predominant difference.
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Second, the learning framework is different. The optimization approach attempts
to find the graph structure and eliminate additive Gaussian noise directly. To find the
solution, the optimization framework requires varying forms of prior assumptions to
constrain the solution space of the optimization problem. Consequently, it relies heavily
on the formulation of the regularization terms, reflecting simplified prior knowledge of
graph signals. Moreover, as indicated in Jiang et al. [42], computational complexity may
be increased considerably with a more accurate modeling analysis. On the other hand,
deep generative models can learn sophisticated mappings to find a more informative graph
structure for its expressiveness and efficiency in a data-driven manner.

Nevertheless, the graph construction procedures are both based on the smoothness
prior to the variables. tr(X̂TL(Â)X̂) is the Dirichlet energy of a graph, given the structure
Â, which encourages similar graph signals to be connected. It describes the distance
between two signals as eij‖xi − xj‖2, which is essentially consistent with our link-prediction
scheme based on cosine similarity in Equation (19). Furthermore, the temporal smoothness
priors are fundamentally consistent as well. While the optimization approach applies the
assumption on the temporal graph property directly, VDGLVM merges the assumption in
the RNN with an appropriate regularization on the parameters.

4. Experimental Setup

The validity and usefulness of our model depend on its performance when decoding
behavior from neural spikes, and on whether the inferred representations preserve task-
relevant structures. In this section, we first describe the datasets we use in the experiments.
Then, we compare VDGLVM’s performance in decoding behaviors against other typical
methods to demonstrate its feasibility. We further analyze qualitatively the representations
that VDGLVM learned. Finally, we show the effects of two important hyperparameters
on VDGLVM.

4.1. Dataset Description

We used two real-world neural datasets from the Neural Latents Benchmark [55] to
demonstrate the interpretability of VDGLVM. All datasets are publicly available.

The primary dataset we conducted experiments on is Area2_Bump [56]. The data were
recorded as a macaque was performing a center–out reaching task. Area2_Bump includes
hand kinematics as behaviors and corresponding neural population spikes of neurons from
area 2 of the somatosensory cortex.

We also used MC_Maze [57], and its scaled versions, MC_Maze_L, MC_Maze_M,
and MC_Maze_S, as the secondary datasets to compare model performance on differ-
ent datasets. The datasets consist of neural population spikes and the associated hand
kinematics when a monkey made reaches with an instructed delay to visually presented
targets while avoiding the boundaries of a virtual maze. The neurons were from the
primary motor and dorsal premotor cortices, which directly involve motor control.

We used the recorded hand position as target behaviors and built models to map the
neural spikes to the behaviors. We binned the ensemble spike activities into 20-ms bins.

4.2. Model Configurations

We used two unidirectional GRU layers as the feature extractor. The space of the
features was 128-dimensional. We applied dropout with p = 0.5 and layer normalization to
avoid over-fitting. MLPs were implemented with two hidden layers. To further accelerate
model training, we used ELU as the nonlinear activation function. In our model, we used
three nodes for the graph, resulting in three dynamic edges. The static node features were in
128-dimensional space. We set the temperature τ = 0.03 and VIB regularization multiplier
β = 1× 10−4 as defaults. The model was trained in a single Nvidia Titan RTX GPU for
256 epochs. We used the Adam optimizer with a learning rate of 0.001 to optimize the
parameters. In our experiments, we split the dataset into 75% as the training set and 25%
as the test set.
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5. Results
5.1. Performance of Decoding Kinematics

We first wondered whether VDGLVM decodes behavior from neural spikes with
a promised performance. We measured the performance by computing R2 between the
decoded behavior and normalized ground-truth behavior. To validate the expressiveness
of VDGLVM, we assessed our model on different datasets and compared it against classic
LVMs, including spike smoothing, GPFA, and SLDS. Since our model is based on nonlinear
dynamical models and deep neural networks, it should significantly outperform these
baselines. We also included a GRU-based RNN to compare, which is the backbone of
VDGLVM without graphs and VIB. We trained these models in a supervised manner.
The results are summarized in Table 1 (best results presented in bold font).

Table 1. Comparison of different model performances with R2.

Model Area2_Bump MC_Maze MC_Maze_L MC_Maze_M MC_Maze_S

Smoothing 0.595 0.642 0.597 0.546 0.481
GPFA 0.613 0.669 0.598 0.571 0.533
SLDS 0.762 0.812 0.792 0.772 0.667
RNN 0.901 0.896 0.862 0.794 0.710

VDGLVM 0.927 0.912 0.898 0.818 0.794

Spike smoothing, GPFA, and SLDS are essentially linear dynamical models. GPFA
gives better results than spike smoothing because it accounts for the spikes across neurons
and time in a probabilistic framework simultaneously. While both spike smoothing and
GPFA benefit from the smoothness, SLDS uses a switching mechanism to approximate
nonlinear dynamics with disparate linear dynamics and, thus, better models complex
neural dynamics. RNN can capture more complex dynamics of nonlinear systems. Thus,
we have the following observation from the table: in general, both RNN and VDGLVM
outperform the methods based on linear models significantly. Another implicit advantage
of RNN and VDGLVM is that they are end-to-end data-driven models, which are convenient
to learn.

Furthermore, VDGLVM consistently achieves better performance than RNN. The pre-
dominant difference between VDGLVM and RNN is the design of the latent variable. This
result proves the feasibility of utilizing graphs as the latent variable. It also implies that
the introduced graph generative model and graph neural network may induce additional
inductive bias. These modules ultimately improve expressiveness.

Deep neural networks tend to overfit. The results on MC_Maze and its scaled versions
illustrate that both RNN and VDGLVM suffer from performance degeneration when
samples are insufficient. However, VDGLVM is relatively alleviated, even though the
model has extra trainable parameters for tackling graphs. Owing to the VIB framework,
VDGLVM is less affected by noise and, thus, provides better generalization capability.

5.2. Latent Structure for Behavior Decoding

We are interested in the latent structure learned by VDGLVM. We include a three-
dimensional latent space learned by RNN to compare, which represents existing LVMs
based on a point process. Since we do not apply additional assumptions about the trajec-
tories, the latent dynamics learned by VDGLVM should be similar to that by RNN. We
visualize the dynamics after training VDGLVM and RNN on the Area2_Bump dataset with
active trials in Figure 2.
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Figure 2. Inferred edge weights dynamics and behavior reconstructions by VDGLVM and inferred
dynamics by RNN after training, where we use RNN to represent LVMs based on a point process.
We visualize the edges evolving with time in (a). We combine them and show three-dimensional
trajectories in (b), where each axis corresponds to an edge. We show behavior reconstructions for
VDGLVM in (c), where the ground-truth trajectories are dash lines and decoding ones are solid lines.
The graph with three dynamic edges and three nodes is shown in (d), where blue circles are static
node variables and orange squares are dynamic edges. We show the three-dimensional trajectories
inferred by RNN in (e,f). We show behavior reconstructions for RNN in (g). The equivalent graph
structure of RNN is presented in (h), where orange circles are dynamic nodes.

Deep neural networks learn representations favorable to prediction. Since our main
objective is decoding behavior from neural spikes, the actual dynamic functional connectiv-
ities may be further mapped to the representations favor for predictions. Therefore, as can
be seen in Figure 2b,f, the latent trajectories learned by both VDGLVM and RNN preserve
the task structure (reaching trajectories) in three-dimensional space.

However, the representations by RNN are only a low-dimensional embedding of the
prediction, while the representations by VDGLVM contain a more informative structure.
Looking at Figure 2a, we found that at least one dimension of the latent trajectories stays
around 0 or 1 and provides no information about the dynamics. The results indicate that
the dynamic relationships are local, governed by a subset of relationships. This sparsity
agrees with the results of the constructed graph in previous work studying DFC [20].
The literature has shown that communication efficiency is one of the fundamental attributes
that support neural function. In the language of complex networks, sparser connections
between modules enable efficient inter-module integrations of information. We capture
this by properly parameterizing the edge weights. The property is missed in most LVMs
based on a point process, as shown in Figure 2e. Therefore, the dynamics graph inferred by
our model provides a probable explanation, close to DFC, for latent dynamics by LVMs.

This illustrates that using a dynamic graph as the latent variable does associate latent
dynamics with probable DFC. Meanwhile, as shown in Figure 2h, one may interpret the
point process as a complete graph with node dynamics, where each node corresponds to one
dimension of the trajectories. However, this trivial consideration does not have useful and
practical insight into neural dynamics. On the contrary, as shown in Figure 2d, the graph
by VDGLVM specifies an exact meaning for the dynamics as communications between
nodes. One can conveniently associate the nodes with variables defined in the brain. Thus,
we conclude that VDGLVM provides feasible neurophysiological interpretability to the
inferred latent dynamics by existing LVMs.
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5.3. Hyperparameter Tuning

We empirically analyzed two key hyperparameters by adjusting them and evaluating
the resulting decoding performance.

5.3.1. β in VIB Objective Function

Our model is based on the VIB framework. It restricts the information flow from the
observations X to the latent variable Ĝ to minimize the VIB objective function. Given
a proper β, this encourages the model to focus on information relevant to output Y in
X. Meanwhile, the model learns to drop useless information, such as noise. Therefore,
compared with the vanilla auto-encoder, the VIB-based model improves the generalization
performance. However, an inappropriately large β will be harmful to the model. Since
VIB forces the latent coding towards a given prior, the bottleneck becomes so small that
the information flow is blocked. With extremely large β values, the model learns to trans-
form the distribution of input p(X) to the prior q(Ĝ), which is completely uninformative
for decoding.

The property of β has been extensively studied in the literature. We verified this by
studying the relationship between β and model performance. We present the result in
Figure 3a. We manually adjusted β from typical settings to illustrate its effects on the model
performance revealed by R2. As shown in the figure, when we use β > 0, increasing β
improves the decoding performance against the baseline. The network attains the best when
10−5 > β > 10−4. Nevertheless, with a larger β, more and more discriminative information
about input and output are blocked from input to latent coding. Thus, the model becomes
seriously degenerated.

(a)

(b)

Figure 3. Decoding performance with the changing (a) β and (b) τ. Results are assessed with typical
settings of the hyperparameters across 32 Monte Carlo simulations. The results are shown on the
left side as two box plots, and the means are shown as lines. To present a more clear illustration,
the results are zoomed in and shown on the right side.

5.3.2. τ in Graph Generation

Another hyperparameter significant for the model is the temperature τ. As discussed
above, we only study τ ∈ (0, 1). A small τ makes the sigmoid function steeper; it tends
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to be a step function and, thus, is more sensitive for the input around 0.5. More mathe-
matically, with a smaller τ, the function has a higher Lipschitz constant. Since we directly
involve this term in the propagation process, the Lipschitz constant of the model increases
accordingly. While a smaller τ extracts more stable graph structures, an improperly small
τ may make the model over-confident and, thus, less robust. We studied the association
between τ and model performance. We present the result in Figure 3b. We found that the
model may become unstable when τ < 0.01, as the objective function becomes hard to
optimize. Moreover, necessary dynamics are severely suppressed and thus insufficient to
decode the target behavior. Therefore, the model tends to learn a trivial solution for the
objective function.

6. Conclusions

Latent variable models (LVMs) for modeling neural data fail to determine the exact
meaning of the inferred latent dynamics, while the literature has shown that dynamic
functional connectivities (DFC) may be a possible mechanism of governing cognitive or
perceptual tasks. In the present work, we propose Variational Dynamic Graph Latent
Variable Model (VDGLVM), a representation learning model improving existing LVMs by
interpreting the latent dynamics as DFC. To accomplish this, we design our model based on
the variational information bottleneck and propose the use of a dynamic graph as the latent
variable. Our model provides a probable explanation for latent dynamics captured by
LVMs based on neurophysiology. In addition to the behavior dataset tested in the paper, we
hope that the proposed model has the potential to apply to the analysis of neural activities
in other perceptive and cognitive processes.
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