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Abstract: This study focuses on the full-form model-free adaptive controller (FFMFAC) for SISO
discrete-time nonlinear systems, and proposes enhanced FFMFAC. The proposed technique design
incorporates long short-term memory neural networks (LSTMs) and fuzzy neural networks (FNNs).
To be more precise, LSTMs are utilized to adjust vital parameters of the FFMFAC online. Additionally,
due to the high nonlinear approximation capabilities of FNNs, pseudo gradient (PG) values of the
controller are estimated online. EFFMFAC is characterized by utilizing the measured I/O data
for the online training of all introduced neural networks and does not involve offline training and
specific models of the controlled system. Finally, the rationality and superiority are verified by two
simulations and a supporting ablation analysis. Five individual performance indices are given, and
the experimental findings show that EFFMFAC outperforms all other methods. Especially compared
with the FFMFAC, EFFMFAC reduces the RMSE by 21.69% and 11.21%, respectively, proving it to be
applicable for SISO discrete-time nonlinear systems.

Keywords: SISO discrete-time nonlinear systems; full-form model-free adaptive controller; fuzzy
neural networks; long short-term memory neural networks; three-tank system

1. Introduction

Science and technology advancements have brought significant changes in the in-
dustry in recent decades [1], during which many traditional industries have gradually
increased the control requirements for production systems, and the majority of current in-
dustrial processes are multivariable, nonlinear, strongly coupled and have many operating
conditions [2]. The traditional continuous-time control theory is confronted by significant
challenges. Powered by computer control theory and technical application, the control
of most complex systems can be transformed into the control problems of discrete-time
nonlinear systems [3]. In practice, there are many nonlinearities in many application fields,
such as robots, process control, biomedical engineering and power systems [4]. In the case
of weakly nonlinear systems, the system model can be Taylor expanded near the operating
point, and the linear control theory can be introduced to design the controller [5]. However,
when the system has model uncertainty caused by the dynamic mutation of the controlled
system due to changes in the operating environment, component aging damage or external
interference, it is difficult for traditional linear controllers based on fixed parameters to
obtain satisfactory control performance.

Nowadays, in the industrial production process, a significant amount of online or of-
fline industrial data comprising factual information on nonlinear systems can be generated,
collected and stored [6]. Meanwhile, these data can be analyzed online with the assistance
of advanced hardware and software technology. As a result, the direct management of
controlled system data to control discrete-time nonlinear systems has become a subject
of concern and research. Data-driven control (DDC) [7] is a control method in which
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the controller is designed entirely from the online and offline I/O data of the controlled
system, rather than on precise mathematical models, and thus guarantees the controlled
system’s stability, convergence and robustness under certain assumptions. This method
avoids restrictions associated with model-based control methods by not relying on the
mathematical model of the controlled system when developing the controller and instead
just uses the controlled system’s I/O data to identify and optimize the controlled object.

Since the 1990s, a variety of data-driven control methods have emerged in the control
research direction. Unfalsified control (UC) [8] uses recursive perjury to select the controller
that meets specific performance requirements from the set of candidate controllers as the
current controller. Simultaneous perturbation stochastic approximation (SPSA) [9] designs
a control performance index function with controller parameters as optimized variables,
and uses the system’s I/O data each time to minimize the performance index function
to obtain the optimal controller parameters, thereby realizing the design of the controller.
Virtual reference feedback tuning (VRFT) [10] utilizes the measured data of the controlled
object to convert the controller design problem into a controller parameter identification
problem by employing a virtual reference signal. Iterative learning control (ILC) [11] uses
the system output error and control input signal of the previous cycle to construct the
control input signal of the current cycle to obtain a better control performance than the
previous cycle. Lazy learning (LL) [12] uses historical data to establish a local linear model
of the controlled system online, and then design a controller with the local linear model
at each moment. These DDC methods are now widely employed in practice after years
of research. As a DDC method, MFAC [13] employs the dynamic linearization method
to develop the equivalent dynamic linearization data model [14] of the controlled system
at each sampling time, and then estimates the pseudo partial derivative (PPD) values or
pseudo gradient (PG) values [15] to approximate the dynamics of the controlled system.
According to the type of dynamic linearization data model [7], MFAC methods can be
broadly classified into three types, namely compact-form MFAC (CFMFAC), partial-form
MFAC (PFMFAC) and full-form MFAC (FFMFAC). Compared with ordinary DDC methods,
MFAC has the following advantages: (1) MFAC has a simple structure, a low computational
load, is straightforward to implement, and has strong robustness; (2) external test signals
or a training process are not required for MFAC, as they are necessary for data-driven
methods based on neural networks; (3) under certain practical assumptions, MFAC can
provide the monotonic convergence of the tracking error of the closed-loop system as well
as the stability of bounded input and bounded output, which is a critical property that
differentiates it from other data-driven control approaches [13].

The neural network [16] is a network structure composed of numerous parallel com-
puting artificial neurons connected by algorithms, and high computation performance
can be achieved by connecting basic neurons according to a certain logic. In addition to
approximating nonlinear functions, the neural network is also capable of being adaptable
and self-learning. From the perspective of control, automatic control has been pursuing
stability, rapidity, robustness and adaptability. The main advantages of applying neural
networks to control are [17]: (1) a neural network can be regarded as a specific nonlinear
function capable of approximating any nonlinear system in the absence of model informa-
tion; (2) a neural network is calculated in parallel, with fast calculation speed and high fault
tolerance; (3) A neural network can be used to simulate the dynamic models of unknown
systems; and (4) the neural network can reduce calculation errors through online learning.
Some theoretical results have been derived from research using a combination of DDC
methods and neural networks. Radacm et al. [18] proposed a novel DDC control method
that combines VRFT and AAC for linear ORM tracking, and the control learning scheme
is model-free with respect to the process model. Liu et al. [19] developed an event-based
data-driven model-free adaptive controller design algorithm, and an aperiodic neural
network weight update law is introduced to estimate the controller parameters in this
method; Hao et al. [20] developed a data-driven tracking control method by employing
an improved PID neural network and Cohen–Coon approach for a class nonlinear time-
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varying systems, and the stability of the closed loop system based on the proposed method
is proven via the Lyapunov stability theory. Rodrigo et al. [21] proposed an auto-tune
PID-like controller with neural networks to help the underwater vehicle adaptively switch
driving mode when encountering ocean currents, and experimental results show that the
underwater vehicle can achieve a smaller position tracking error based on the proposed
method. Sun et al. [22] introduced adaptive neural networks (NNs) for control design to
suppress the vibrations of a flexible robotic manipulator. The system is modeled via the
lumped spring-mass approach to improve the accuracy in describing the elastic deflection
of the flexible manipulator.

Individual parameters are critical in FFMFAC, since they influence the stability and
control performance of the controlled system. Normally, these parameters have predefined
fixed values [15]. However, under actual working conditions, as the state of the controlled
system changes, these parameters should be fine-adjusted to ensure control performance.
However, completing the parameters adjustment is a labor-intensive and time-consuming
work, and incorrect values might result in reduced control performance. Therefore, the
online adjustment of these vital parameters is of great practical significance. Up to this
point, only a few theoretical results on the adjustment of MFAC parameters have been
published. Zhu et al. [23] proposed an enhanced MFAC method, which introduces the RBF
neural network to adjust the controller parameters. The stability of the proposed method
is guaranteed by rigorous theoretical analysis. Chen and Lu [24] introduced BP-based
compact-form MFAC which can perform parameters by online adjustment. However, the
authors did not apply the method to an actual test simulation for performance evaluation.
Gao et al. [25] employed the PSO method to iteratively find the optimal parameters of
MFAC to improve the control performance. However, the iterative calculation of opti-
mal values consumes significant computing resources, which is unsuitable for practical
control problems.

In the actual industrial production process, with the rapid increase in industrial
data and the more complex controlled system, the difficulty of employing feedforward
propagation neural networks to perform online parameter adjustment is increasing [26]. It
has been demonstrated in prior study [27] that LSTMs [28] can adjust parameters online in
the compact-form MFAC, and it has a stronger optimization influence on the compact-form
MFAC than the BP neural network. In addition, considering the fact that FFMFAC has the
most parameters to be adjusted among MFAC variants, the amount of calculation required
to adjust these parameters is considerable. As a result, LSTMs are used to adjust FFMFAC
parameters online.

Except in online parameter adjustment, changes in PG values will become complicated
when the controlled system exhibits significant nonlinearity [29]. If only the projection
method of MFAC is utilized to calculate PG values alone, the estimated values may sig-
nificantly deviate from the ideal values, impairing the control performance. As previous
research has found, the PG values of MFAC remain the initial constant values during
part of the time interval in the three-tank system simulation [27]. This demonstrates that
when dealing with control problems with significant time delays, the default PG estimation
projection algorithm in MFAC has a certain probability of triggering the reset mechanism,
resulting in the method failing to capture the nonlinear properties of the controlled system.
Therefore, optimizing the PG estimation method has important research significance and
practical application value. The FNN [30] has a strong function approximation ability as
well as logical reasoning capability, and it can be employed to estimate FFMFAC’s PG
values. Furthermore, the FNN’s topology is simple, ensuring its calculation efficiency.

Given the two challenges inherent in the ordinary FFMFAC method: (1) vital parame-
ters in FFMFAC need to be sensitively and instantaneously adjusted in response to changes
in the controlled system; (2) PG values should be estimated more accurately in the FFDL
method of FFMFAC. An enhanced FFMFAC is proposed to achieve the desired control of
discrete-time nonlinear systems. EFFMFAC is characterized by utilizing the measured I/O
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data of the controlled system for the online training of all introduced neural networks and
does not involve offline training and specific models.

The significant contributions of this paper are as follows:

1. LSTMs are utilized to sensitively and instantaneously adjust vital parameters online.
This employs several gates to process the data flow of the controlled system, and each
gate is capable of capturing the dynamic characteristics of input data, alleviating the
gradient problems in the RNN and improving the tracking performance of EFFMFAC.

2. FNNs are employed to estimate PG values in the FFDL method of FFMFAC, which is
completely dependent on the controlled system’s measured I/O data. The FNN refers
to a local approximation methodology with the inference ability of a fuzzy system,
and its convergence speed is fast. Therefore, it is well suited for nonlinear calculations
to achieve the accurate real-time estimation of PG values.

3. A complete enhanced control method is proposed to achieve the precise control of
the SISO discrete-time nonlinear system, in which the parameters’ online adjustment
module and PG estimation module work together to improve the control performance
through online training. Scientific and thorough simulations were conducted to verify
the rationality and superiority of EFFMFAC.

The following is the outline for this paper: Section 2 is dedicated to problem concep-
tualization. Section 3 describes the architecture and mathematical concepts of EFFMFAC,
including the vital parameters’ online adjustment module and PG estimation module;
Section 4 is the experimental part, in which EFFMFAC is shown to be superior and stable
in all simulations; Section 5 brings this paper to a close and discusses future research plans.

2. Problem Definition

A class of SISO discrete-time nonlinear systems is defined as follows [3]:

y(k + 1) = f
(
y(k), · · · , y

(
k− ny

)
, u(k), · · · , u(k− nu)

)
(1)

where y(k) ∈ R, u(k) ∈ R represent the system’s output and input at time k; ny and nu are
two positive integers; f (· · · ) : Rnu+ny+2 7→ R denotes an unknown nonlinear function.

Define HLy,Lu(k) ∈ RLy+Lu as a vector containing the control input signal in the
input-related sliding time window [k − Lu + 1, k] and all system output signals in the
output-related sliding time window [k− Ly + 1, k], namely:

HLy,Lu(k) = [y(k), · · · , y(k− Ly + 1), u(k), · · · , u(k− Lu + 1)]T (2)

where Ly (0 6 Ly 6 ny) and Lu (0 6 Lu 6 nu) are, respectively, the control output
linearization length and the control input linearization length.

The following two assumptions are provided for the system (1) [3]:

Assumption 1. Unknown nonlinear function f (· · · ) has continuous partial derivatives with
respect to each variable.

Assumption 2. The SISO discrete-time nonlinear system (1) satisfies the generalized Lipschitz con-
dition: for any k1 6= k2, k1, k2 > 0 and HLy,Lu(k1) 6= HLy,Lu(k2), then |y(k1 + 1)− y(k2 + 1)| 6
b
∥∥HLy,Lu(k1)− HLy,Lu(k2)

∥∥ is established, where b is a constant.

Practically speaking, the assumptions made above related to the controlled system (1)
are acceptable. Assumption 1 is a common constraint condition in control system design.
Assumption 2 is a restriction on the upper bound of the system output change rate. From
the energy perspective, the bounded input and output energy changes in the previous
time should produce the bounded output energy changes at the current time. Numerous
existing systems satisfy Assumption 2, such as liquid-level control systems and pressure
control systems.
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Define ∆HLy,Lu(k) = HLy,Lu(k) − HLy,Lu(k − 1); the following theorem proposes a
full-form dynamic linearization (FFDL) method for system (1):

Theorem 1. For system (1) that satisfies Assumption 1 and Assumption 2, given 0 6 Ly 6 ny
and 0 6 Lu 6 nu, when

∥∥∆HLy,Lu(k)
∥∥ 6= 0, there exists a time-varying parameter vector

φ f ,Ly,Lu(k) ∈ RLy+Lu named pseudo gradient (PG) that can transfer the SISO discrete-time
nonlinear system (1) into the following FFDL model:

∆y(k + 1) = φT
f ,Ly,Lu(k)∆HLy,Lu(k) (3)

and for any time k, φ f ,Ly ,Lu
(k) =

[
φ1(k), · · · , φLy(k), φLy+1(k), · · · , φLy+Lu(k)

]T
is bounded.

Proof of Theorem 1. According to SISO discrete-time nonlinear system (1), ∆y(k + 1) can
be calculated as follows:

∆y(k + 1) = f
(
y(k), · · · , y

(
k− ny

)
, u(k), · · · , u(k− nu)

)
− f
(
y(k− 1), · · · , y

(
k− ny − 1

)
, u(k− 1), · · · , u(k− nu − 1)

)
= f

(
y(k), · · · , y

(
k− Ly + 1

)
, y
(
k− Ly

)
, · · · , y

(
k− ny

)
,

u(k), · · · , u(k− Lu + 1), u(k− Lu), · · · , u(k− nu))
− f
(
y(k− 1), · · · , y

(
k− Ly

)
, y
(
k− Ly

)
, · · · , y

(
k− ny

)
,

u(k− 1), · · · , u(k− Lu), u(k− Lu), · · · , u(k− nu))
+ f
(
y(k− 1), · · · , y

(
k− Ly

)
, y
(
k− Ly

)
, · · · , y

(
k− ny

)
,

u(k− 1), · · · , u(k− Lu), u(k− Lu), · · · , u(k− nu))
− f
(
y(k− 1), · · · , y

(
k− Ly

)
, y
(
k− Ly − 1

)
, · · · , y

(
k− ny − 1

)
,

u(k− 1), · · · , u(k− Lu), u(k− Lu − 1), · · · , u(k− nu − 1))

(4)

Define variable ψ(k) as follows:

ψ(k) , f
(
y(k− 1), · · · , y

(
k− Ly

)
, y
(
k− Ly

)
, · · · , y

(
k− ny

)
,

u(k− 1), · · · , u(k− Lu), u(k− Lu), · · · , u(k− nu))

− f
(
y(k− 1), · · · , y

(
k− Ly

)
, y
(
k− Ly − 1

)
, · · · , y

(
k− ny − 1

)
,

u(k− 1), · · · , u(k− Lu), u(k− Lu − 1), · · · , u(k− nu − 1))

(5)

Equation (4) can be expressed as follows using Assumption 1 and the Cauchy Mean
Value Theorem:

∆y(k + 1) =
∂ f ∗

∂y(k)
∆y(k) + · · ·+ ∂ f ∗

∂y
(
k− Ly

)∆y
(
k− Ly + 1

)
+

∂ f ∗

∂u(k)
∆u(k) + · · ·+ ∂ f ∗

∂u(k− Lu)
∆u(k− Lu + 1) + ψ(k)

(6)

where ∂ f ∗/∂y(k − i), 0 6 i 6 Ly − 1 and ∂ f ∗/∂u(k − j), 0 6 j 6 Lu − 1, respectively,
represent the partial derivative of f (· · · ) with respect to the (i + 1)th variable and the
partial derivative of f (· · · ) with respect to the

(
ny + 2 + j

)
th variable at a point between:[

y(k), · · · , y
(
k− Ly + 1

)
, y
(
k− Ly

)
, · · · , y

(
k− ny

)
,

u(k), · · · , u(k− Lu + 1), u(k− Lu), · · · , u(k− nu)]
T (7)

and: [
y(k− 1), · · · , y

(
k− Ly

)
, y
(
k− Ly

)
, · · · , y

(
k− ny

)
,

u(k− 1), · · · , u(k− Lu), u(k− Lu), · · · , u(k− nu)]
T (8)

The following data equation with variable η(k) is considered:

ψ(k) = ηT(k)
[
∆y(k), · · · , ∆y

(
k− Ly + 1

)
, ∆u(k), · · · , ∆u(k− Lu + 1)

]T
= ηT(k)∆HLv ,Lu(k)

(9)
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since
∥∥∥∆HLy ,Lu(k)

∥∥∥ 6= 0 is not equal to 0, Equation (9) has at least one solution η∗(k) and
the variable φ f ,Ly ,Lu

(k) is defined as follows:

φ f ,Ly ,Lu
(k) = η∗(k) +

[
∂ f ∗

∂y(k)
, · · · ,

∂ f ∗

∂y
(
k− Ly

) ,
∂ f ∗

∂u(k)
, · · · ,

∂ f ∗

∂u(k− Lu)

]T

(10)

then Equation (6) can be written as the FFDL model of Equation (3). This completes
the proof.

The FFDL model (3) plays the role of an equivalent dynamic linear representation
of the SISO discrete-time nonlinear system (1), which has a simple incremental form that
fundamentally differs from the traditional models. When designing a control scheme
for a discrete-time nonlinear system, there are two main criteria functions: the one-step
forward prediction error criterion function and the weighted one-step forward prediction
error criterion function. The former is prone to producing an excessively large control
input signal when the error fluctuates significantly, which will affect the identification of
characteristic parameters and cause output oscillations. The latter may reduce the tracking
performance of the controller and produce steady-state tracking errors [31]. In order to
overcome the shortcomings of the above two criterion functions, the following criterion
function is considered [3]:

J(u(k)) = |y∗(k + 1)− y(k + 1)|2 + λ|u(k)− u(k− 1)|2 (11)

where y∗(k + 1) is the desired output signal, and λ > 0 is a weighting factor that restricts
the change in the control input and is commonly used in control system design since
it ensures that the control input signal is smooth. The criterion function (11) contains
two parts, the first term |y∗(k + 1)− y(k + 1)|2 is provided to massively reduce system
error, while the second term λ|u(k) − u(k − 1)|2 is provided to avoid excessive control
input changes and eliminate steady-state tracking errors. These two terms broaden the
application of criterion function (11) to nonlinear control problems. The optimal solution
may be obtained by substituting the FFDL model (3) into the criterion function (11), taking
the derivative of u(k), and setting it equal to zero.

The diagram of FFMFAC is illustrated in Figure 1, with regard to the system (1), and
the specific control scheme of FFMFAC is expressed as follows:

φ̂ f ,Ly,Lu(k) = φ̂ f ,Ly,Lu(k− 1)

+
η∆HLy,Lu(k− 1)

(
y(k)− y(k− 1)− φ̂

T
f ,Ly,Lu(k− 1)∆HLy,Lu(k− 1)

)
µ +

∥∥∆HLy,Lu(k− 1)
∥∥2

(12)

φ̂ f ,Ly,Lu(k) = φ̂ f ,Ly,Lu(1)

i f
∣∣∣φ̂ f ,Ly,Lu(k)

∣∣∣ ≤ ε or
∥∥∆HLy,Lu(k− 1)

∥∥ 6 ε or sign
(
φ̂Ly+1(k)

)
6= sign

(
φ̂Ly+1(1)

) (13)

u(k) =u(k− 1) +
ρLy+1φ̂Ly+1(k)(y∗(k + 1)− y(k))

λ +
∣∣φ̂Ly+1(k)

∣∣2
−

φ̂Ly+1(k)∑
Ly
i=1 ρiφ̂i(k)∆y(k− i + 1)

λ +
∣∣φ̂Ly+1(k)

∣∣2
−

φ̂Ly+1(k)∑
Ly+Lu
i=Ly+2 λφ̂i(k)∆u(k− Ly− i + 1)

λ +
∣∣φ̂Ly+1(k)

∣∣2
(14)
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where η ∈ (0, 2], µ > 0, and ρi ∈ (0, 1], i = 1, 2, · · · , Ly + Lu is the step factor. φ̂ f ,Ly,Lu(1) is
the initial value of φ̂ f ,Ly,Lu(k). The PG reset mechanism (13) is used to improve the ability
of the PG estimation method (12) to track time-varying parameters.

Figure 1. Diagram of FFMFAC.

Unlike traditional model-based control methods, FFMFAC completes the controller
design by utilizing the controlled system’s online input and output data and has nothing to
do with the controlled system’s dynamic model. Since φ̂ f ,Ly,Lu is insensitive to time-varying
parameters, FFMFAC exhibits strong adaptability and robustness. In addition, compared
with the CFDL method and PFDL method, the FFDL method also considers the influence
of the historical I/O changes of the controlled system on the current output changes to
better reflect the dynamic characteristics of the controlled system. Due to the introduction
of more penalty factors ρ1, ρ2, · · · , ρLy+Lu, FFMFAC has stronger design flexibility and
applicability [3].

Parameters ρi and λ have been shown to be significantly important in the design of
FFMFAC by several studies [24,25,27].These studies emphasize the significance of fine-
adjusting these parameters in response to changes in the controlled system, with theoretical
analysis and simulation findings indicating how improper parameter selection can impact
the stability of the controller, resulting in reduced control performance. Furthermore, it
should be stressed that PG values should be precisely estimated in order to realize the
FFMFAC. Apart from that, since PG values are time-varying and the mathematical model
of the controlled system is unavailable, it is a challenge to calculate the precise values of PG.
As a consequence, it is vital to optimize the PG estimate method of FFMFAC to calculate
more accurate calculation values. Motivated by the above, an enhanced FFMFAC design is
proposed to address the aforementioned issues.

3. The Proposed Enhanced FFMFAC Method

Motivated by the above challenges, a neural network-based enhanced FFMFAC was
proposed to sensitively adjust the vital parameters online and accurately estimate PG values.
To be more precise, EFFMFAC introduces LSTMs to complete the parameter adjustment of
λ and ρ1, ρ2, · · · , ρLy+Lu online, and also uses FNNs to realize the PG values estimation of
FFMFAC. All of the deployed neural networks are trained online based on measured data
to improve the control performance of EFFMFAC.

3.1. LSTM-Based Parameters Online Adjustment Module

Jordan [32] first proposed the recurrent neural network in 1986, which can describe
dynamic time behavior. As illustrated in Figure 2, unlike feedforward neural networks that
accept inputs with a more specific structure, RNN cyclically transmits the hidden states in
its own network, so it can accept a wider range of time series inputs:
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Figure 2. Structure of the RNN.

The forward propagation calculation of the RNN is expressed as below:

ht = tanh(uxt + wht−1) (15)

Ot = g(vht) (16)

where xt, ht and Ot, respectively, represent the input, hidden state and output of RNN at
time t, u presents the weight matrix of the input layer to the hidden layer, v presents the
weight matrix of the hidden layer to the output layer and w presents the weight matrix
of the hidden state at time t− 1. tanh() is the activation function, and g(x) is the so f tmax
activation function. However, RNN has the problem of gradient explosion or gradient
vanishing [33] when backpropagating, which affects its wide application in actual scenes.
As an example, consider the weight matrix u to be updated, and the partial derivative
formula of u at time t is shown as follows:

∂Lt

∂u
=

t

∑
k=0

∂Lt

∂Ot

∂Ot

∂ht

(
t

∏
j=k+1

∂hj

∂hj−1

)
∂hk
∂u

=
t

∑
k=0

∂Lt

∂Ot

∂Ot

∂ht

(
t

∏
j=k+1

tanh′ w

)
∂hk
∂u

(17)

where Lt is the loss function. As illustrated in Figure 3, it can be found that the value of
tanh′ is less than 1. When the coefficient w value is between 0 and 1, the value of the term
∏t

j=k+1 tanh′ w will gradually decrease as time t increases until it reaches zero. Conversely,
if coefficient w is very large and tanh′ w is greater than 0, the value of term ∏t

j=k+1 tanh′ w
will tend to infinity as time increases. The above two cases are defined as the gradient
vanishing and gradient exploding in RNN, which limit its practical widespread application:

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1.0

-0.8

-0.6

-0.4

-0.2

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0
tanh

derivative

Figure 3. Curves of the tanh activation function and its derivative.

Hochreiter and Schmidhuber proposed the LSTM [34] in 1997. In contrast to RNN,
it can alleviate the gradient problems with the gate mechanism [35]. The core cause of
the RNN gradient problems is the term ∂ht/∂ht−1 in Equation (17), and the similar term
∂c(k)/∂c(k− 1) in the LSTM backpropagation calculation is expanded as below:

c(k) = f (k)� c(k− 1) + i(k)� c̃(k) (18)
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∂c(k)
∂c(k− 1)

=
∂c(k)
∂ f (k)

∂ f (k)
∂h(k− 1)

∂h(k− 1)
∂c(k− 1)

+
∂c(k)
∂i(k)

∂i(k)
∂h(k− 1)

∂h(k− 1)
∂c(k− 1)

+
∂c(k)
∂c̃(k)

∂c̃(k)
∂h(k− 1)

∂h(k− 1)
∂c(k− 1)

+
∂c(k)

∂c(k− 1)

(19)

where c(k) and c̃(k) are the cell state and the candidate cell state, respectively, f (k) and i(k)
represent the input gate and the forget gate, respectively. Partial derivatives ∂c(k)/∂c(k− 1)
in Equation (19) can be calculated as below:

∂c(k)
∂c(k− 1)

= c(k− 1)σ′(·)w f ∗ o(k− 1) tanh′(c(k− 1))

+ c̃(k)σ′(·)wi ∗ o(k− 1) tanh′(c(k− 1))

+ i(k) tanh′(·)wc ∗ o(k− 1) tanh′(c(k− 1)) + f (k)

(20)

where w f , w f and wc are the weight coefficients and σ is the sigmoid activation function. In
contrast to Equation (17), ∂c(k)/∂c(k− 1) is a polynomial including forget gate f (k) ∈ [0, 1],
whose value range at any time may be distributed between 0 and 1 or greater than 1. As time
step t increases, it is not guaranteed that ∂c(k)/∂c(k− 1) will converge to zero or infinity,
which can avoid gradient vanishing and gradient exploding in RNN. Therefore, LSTMs
are introduced to complete the parameters adjustment work of λ and ρ1, ρ2, · · · , ρLy+Lu
online, and the architecture of the parameters online adjustment module based on LSTMs
is shown in Figure 4.

Figure 4. Architecture of the online parameter adjustment module.

The input to this module contains the system error information as well as gradient
information concerning the parameters to be adjusted, which are expressed below:

xerror =

[
e(k), e(k)− e(k− 1),

k

∑
t=0

e(k)

]

xuλ
=

[
∂u(k− 1)

∂λ
,

∂u(k− 2)
∂λ

,
∂u(k− 3)

∂λ

]
xuρ =

[
∂u(k− 1)

∂ρ1
,

∂u(k− 2)
∂ρ1

,
∂u(k− 3)

∂ρ1
, · · ·

∂u(k− 1)
∂ρl

,
∂u(k− 2)

∂ρl
,

∂u(k− 3)
∂ρl

, · · ·

∂u(k− 1)
∂ρLy+Lu

,
∂u(k− 2)
∂ρLy+Lu

,
∂u(k− 3)
∂ρLy+Lu

]
(21)
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where xerror is the system error set, xuλ
and xuρ represent the gradient information sets. The

input fed to LSTMs is denoted below:

X(k) =
[

xerror, xuλ
, xuρ

]
(22)

LSTMs perform forward propagation calculation, and all calculation formulas are
expressed as follows:

net f i(k) = w f i[X(k), h(k− 1)] + b f i

fi(k) = sigmoid
(

net f i(k)
) (23)

netIi(k) = wIi[X(k), h(k− 1)] + bIi

Ii(k) = sigmoid(netIi(k))
(24)

netc̃i(k) = wci[X(k), h(k− 1)] + bci

c̃i(k) = tanh(netc̄i(k))
(25)

ci(k) = ci(k− 1)� fi(k) + Ii(k)� c̃i(k) (26)

netoi(k) = woi[X(k), h(k− 1)] + boi

oi(k) = sigmoid(netoi(k))
(27)

hi(k) = oi(k)� tanh(ci(k)), i = 1, 2, . . . hidnum (28)

onetl(k) = wmhhi(k) + bmh (29)

outl(k) = σ(onetl(k)) (30)

where outl(k) is the output of the output layer, fi(k) and oi(k) are the output of the forget
gate and output gate, respectively, Ii(k) and c̃i(k) are the components of the input gate
output, hi(k) is the hidden layer output, w f i, wli, wci, woi and wmh are the weight coefficients;
b f i, bli, bci, boi and bmh are the bias coefficients, hidnum is the number of hidden layers.
sigmoid and tanh are both activation functions, and their formulas are expressed as follows:

sigmoid(z) =
1

1 + e−z (31)

tanh(z) =
ez − e−z

ez + e−z (32)

The particular values of all parameters to be adjusted can be determined according to
Equation (30):

λ = outl1(k)
ρl = outl(l+1)(k), l = 1, 2, · · · , Ly + Lu (33)

The control input u(k) can be calculated with the systematic error e(k). Take the
one-step-ahead squared error as the indicator function:

J =
1
2

e(k + 1)2 =
1
2
(y∗(k + 1)− y(k + 1))2 (34)

Weight and bias coefficients are updated by utilizing the chain-based backpropagation
algorithm (BPTT). Only the update calculation of the weight coefficients are given for
brevity’s sake:

w f i(k + 1) =w f i(k)− η
∂J

∂w f i

∂J
∂w f i

=
∂J

∂y(k + 1)
∂y(k + 1)

∂u(k)
∂u(k)

∂outl(k)
∂outl(k)
∂onetl(k)

∂onetl(k)
∂hi(k)

∂hi(k)
∂ci(k)

∂ci(k)
∂ fi(k)

∂ fi(k)
∂net f i(k)

∂net f i(k)
∂w f i

(35)
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wIi(k + 1) =wIi(k)− η
∂J

∂wIi

∂J
∂wIi

=
∂J

∂y(k + 1)
∂y(k + 1)

∂u(k)
∂u(k)

∂outl(k)
∂outl(k)
∂onetl(k)

∂onetl(k)
∂hi(k)

∂hi(k)
∂ci(k)

∂ci(k)
∂Ii(k)

∂Ii(k)
∂netIi(k)

∂netIi(k)
∂wIi

(36)

wci(k + 1) =wci(k)− η
∂J

∂wci

∂J
∂wci

=
∂J

∂y(k + 1)
∂y(k + 1)

∂u(k)
∂u(k)

∂outl(k)
∂outl(k)
∂onetl(k)

∂onetl(k)
∂hi(k)

∂hi(k)
∂ci(k)

∂ci(k)
∂c̃i(k)

∂c̃i(k)
∂netci(k)

∂netc̄i(k)
∂wci

(37)

woi(k + 1) =woi(k)− η
∂J

∂woi

∂J
∂woi

=
∂J

∂y(k + 1)
∂y(k + 1)

∂u(k)
∂u(k)

∂outl(k)
∂outl(k)
∂onetl(k)

∂onetl(k)
∂hi(k)

∂hi(k)
∂oi(k)

∂oi(k)
∂netoi(k)

∂netoi(k)
∂woi

(38)

wmh(k + 1) =wmh(k)− η
∂J

∂wmh

∂J
∂wmh

=
∂J

∂y(k + 1)
∂y(k + 1)

∂u(k)
∂u(k)

∂outl(k)
∂outl(k)
∂onetl(k)

∂onetl(k)
∂wmh

(39)

where η represents the learning rate. The update process of bias coefficients is similar
to that of the weight coefficients. The paramount term in the weight coefficients update
calculation is ∂u(k)/∂outl(k), which is the partial derivative of u(k) with respect to vital
parameters λ and ρl(l = 1, · · · , Ly + Lu), and the formulas are expressed as below:

∂u(k)
∂λ

=−
ρLy+1φ̂Ly+1(k)(y∗(k + 1)− y(k))(

λ +
∣∣φ̂Ly+1(k)

∣∣2)2

+
φ̂Ly+1(k)∑

Ly
i=1 ρiφ̂i(k)∆y(k− i + 1)(

λ +
∣∣φ̂Ly+1(k)

∣∣2)2

+
φ̂Ly+1(k)∑

Ly+Lu
i=Ly+2 ρiφ̂i(k)∆u(k− Ly− i + 1)(

λ +
∣∣φ̂Ly+1(k)

∣∣2)2

(40)

∂u(k)
∂ρl

=



−
φ̂Ly+1(k)∑

Ly
i=1 φ̂i(k)∆y(k− i + 1)(

λ +
∣∣φ̂Ly+1(k)

∣∣2) , l = 1 ≤ l ≤ Ly

φ̂Ly+1(k)(y∗(k + 1)− y(k))(
λ +

∣∣φ̂Ly+1(k)
∣∣2) , l = Ly + 1

−
φ̂Ly+1(k)∑

Ly+Lu
i=Ly+2 φ̂i(k)∆u(k− Ly− i + 1)(

λ +
∣∣φ̂Ly+1(k)

∣∣2) , Ly + 2 ≤ l ≤ Ly + Lu

(41)

3.2. PG Estimation Based on FNNs

An FNN [30] is a form of hybrid intelligence algorithm; it is a multi-layer forward
network that takes the complementarity of neural networks and fuzzy systems into account.
In the structure of FNN, the input and output nodes are used to represent the I/O signals of
the fuzzy system, and the hidden layer nodes are used to represent the membership function
and fuzzy rules. The parallel processing capability greatly improves the inference ability of
the fuzzy system. In addition, the FNN has adaptive learning and nonlinear representation
capabilities [36]. Therefore, FNNs are utilized to estimate PG values in FFMFAC.
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The ’if-then’ fuzzy inference rule of the FNN is presented as follows [37]:

If xi is Ai
1, x2 is Ai

2, · · · , xk is Ai
k then yi = pi

0 + pi
1x1 + · · ·+ pi

kxk (42)

where Ai
j is the fuzzy set of the fuzzy system, pi

j is the fuzzy system parameter and yi
represents the output obtained according to the fuzzy rule. The input part (the if part) is
fuzzy, and the output part (the then part) is certain. This fuzzy inference rule indicates that
the output is a linear combination of the inputs.

The topology of the PG estimation module based on FNNs is shown in Figure 5. The
input vector contains the system’s I/O information:

x(k) = [y(k), . . . , y(k−my), u(k− 1), . . . , u(k−mu)] (43)

where my and mu are two integers. The membership of each input variable xj is calculated
as follows:

µAi
j
= exp

(
−
(

xj − ci
j

)2
/bi

j

)
, j = 1, 2, · · · , num; i = 1, 2, · · · , n (44)

where num is the number of variables in x(k), n is the number of fuzzy subsets, ci
j denotes

the center of membership function and bn is the radius of membership function. Take the
fuzzy calculation of each membership as shown below:

ωi = µA1
j
(x1) ∗ µA2

j
(x2) ∗ · · · ∗ µAnum

j
(xnum) i = 1, 2, · · · , n (45)

Combined with the output part of the fuzzy inference rule (42), the estimated PG value
is calculated as follows:

φ̂(k) =
n

∑
i=1

ωi
(

pi
0 + pi

1x1 + · · ·+ pi
numxnum

)
/

n

∑
i=1

ωi (46)

FNNs can output multiple estimated values when the number of output layers is set
to Ly + Lu and the estimated PG values at time k are:

φ̂ f ,Ly,Lu(k) = [φ̂1(k), · · · , φ̂Ly(k), · · · , φ̂Ly+Lu(k)] (47)

Take Equation (34) as the indicator function, learnable parameters in FNNs are updated
as follows:

pi
j(k + 1) =pi

j(k)− β
∂J

∂pi
j(k)

+ α∆pi
j(k)

∂J
∂pi

j(k)
=

∂J
∂e(k + 1)

∂e(k + 1)
∂y(k + 1)

∂y(k + 1)
∂u(k)

∂u(k)
∂φ̂l(k)

∂φ̂l(k)
∂pi

j(k)

(48)

ci
j(k + 1) =ci

j(k)− β
∂J

∂ci
j(k)

+ α∆ci
j(k)

∂J
∂ci

j(k)
=

∂J
∂e(k + 1)

∂e(k + 1)
∂y(k + 1)

∂y(k + 1)
∂u(k)

∂u(k)
∂φ̂l(k)

∂φ̂l(k)
∂ωi(k)

∂ωi(k)
∂µAi

j
(k)

∂µAi
j
(k)

∂ci
j(k)

(49)

bi
j(k + 1) =bi

j(k)− β
∂J

∂bi
j(k)

+ α∆bi
j(k)

∂J
∂bi

j(k)
=

∂J
∂e(k + 1)

∂e(k + 1)
∂y(k + 1)

∂y(k + 1)
∂u(k)

∂u(k)
∂φ̂l(k)

∂φ̂l(k)
∂ωi(k)

∂ωi(k)
∂µAi

j
(k)

∂µAi
j
(k)

∂bi
j(k)

(50)
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where β and α are denoted as the learning rate and inertia coefficient, respectively. The
partial derivatives of u(k) with respect to φ̂l(k) are expressed as below:

∂u(k)
∂φ̂l(k)

=



−
φ̂Ly+1(k)∑

Ly
i=1 ρi(k)∆y(k− i + 1)(

λ +
∣∣φ̂Ly+1(k)

∣∣2) , l = 1 ≤ l ≤ Ly

(λ− φ̂Ly+1(k)2)(ρLy+1(y∗(k + 1)− y(k)−∑
Ly
i=1 ρi(k)φ̂l(k)∆y(k− i + 1))

(λ + φ̂Ly+1(k)2)2

−
(λ− φ̂Ly+1(k)2)∑

Ly+Lu
i=Ly+2 ρiφ̂l(k)∆u(k− Ly− i + 1))

(λ + φ̂Ly+1(k)2)2 , l = Ly + 1

−
φ̂Ly+1(k)∑

Ly+Lu
i=Ly+2 ρi∆u(k− Ly− i + 1)(
λ +

∣∣φ̂Ly+1(k)
∣∣2) , Ly + 2 ≤ l ≤ Ly + Lu

(51)
It is worth mentioning that the FNN’s membership function is typically a Gaussian

radial basis function with attenuation on both sides and is radially symmetric. It has a
significant mapping influence on the input when the selected center is quite close to the
query point. As a result, the FNN provides the advantages of a fast convergence and a lower
likelihood of falling into the local optimum, making it ideal for real-time PG estimation.

Figure 5. Structure of the PG estimation module.

3.3. Control Scheme of EFFMFAC

This study set out to adjust several vital parameters λ and ρ1, ρ2, · · · , ρLy+Lu of the
FFMFAC online and accurately estimate values in the PG vector, an enhanced FFMFAC
is proposed. The general framework is illustrated in Figure 6. The left sub-figure is the
general architecture of the proposed algorithm. The upper and lower sub-figures on the
right represent the online parameter adjustment module and the PG estimation module.
With the current time set to time k, EFFMFAC utilizes the current and past I/O information
vector of the controlled system as FNNs input and they complete the online estimation of
PG values online. The LSTM then takes the set containing the system error information
and gradient information as input to perform the online adjustment of vital parameters in
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FFMFAC. Finally, based on PG estimated values and adjusted parameters, the input signal
u(k) and the output y(k + 1) are obtained:

Figure 6. Structure diagram of EFFMFAC.

In general, the control scheme of EFFMFAC is established as below:

• Step1. PG values estimation based on FNNs:

φ̂(k) =
n

∑
i=1

ωi
(

pi
0 + pi

1x1 + · · ·+ pi
numxnum

)
/

n

∑
i=1

ωi (52)

φ̂ f ,Ly,Lu(k) = [φ̂1(k), · · · , φ̂Ly(k), · · · , φ̂Ly+Lu(k)] (53)

• Step2. Vital parameters’ online adjustment based on LSTMs:

outl(k) = σ(wouth(xlstm(k)) + blstm) (54)

λ = outl1(k)
ρl = outl(l+1)(k), l = 1, 2, · · · , Ly + Lu (55)

• Step3. Control scheme of the enhanced FFMFAC:

u(k) =u(k− 1) +
ρLy+1φ̂Ly+1(k)(y∗(k + 1)− y(k))

λ +
∣∣φ̂Ly+1(k)

∣∣2
−

φ̂Ly+1(k)∑
Ly
i=1 ρiφ̂i(k)∆y(k− i + 1)

λ +
∣∣φ̂Ly+1(k)

∣∣2
−

φ̂Ly+1(k)∑
Ly+Lu
i=Ly+2 λφ̂i(k)∆u(k− Ly− i + 1)

λ +
∣∣φ̂Ly+1(k)

∣∣2
(56)

HLy,Lu(k) = [y(k), · · · , y(k− Ly + 1), u(k), · · · , u(k− Lu + 1)]T (57)

y(k + 1) = y(k) + φT
f ,Ly,Lu(k)∆HLy,Lu(k) (58)

• Step4. Weight coefficients update calculation:

w f nn(k + 1) = w f nn(k)− β
∂J

∂w f nn(k)
+ α∆w f nn(k) (59)

wlstm(k + 1) = wlstm(k)− η
∂J

∂wlstm
(60)

where w f nn and wlstm refer to all weight coefficients to be trained in FNNs and LSTMs,
and the specific update formulas of all weight coefficients—omitted here for the sake of
brevity—can be found in Sections 3.1 and 3.2.
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4. Simulation and Experimental Results

In the experimental part, a single-input–single-output (SISO) discrete nonlinear sys-
tem simulation and a three-tank system simulation were carried out to demonstrate the
effectiveness and applicability of EFFMFAC. All tested methods involved in these two
simulations are FFMFAC [38], PSO-based FFMFAC [25], BP-based FFMFAC [24], RBF-
based FFMFAC [23] and the proposed FFMFAC, which are denoted by the following
abbreviations for the sake of brevity: FFMFAC, FFMFAC-PSO, FFMFAC-BP, FFMFAC-RBF
and EFFMFAC.

It should be noted that the tracking curves of FFMFAC in two simulations are nearly
identical to the corresponding tracking curves in the cited reference [38], which can be used
as a benchmark to demonstrate the superiority of EFFMFAC.

4.1. SISO Discrete Nonlinear System Simulation

The SISO discrete nonlinear system is expressed as [38]:

y(k + 1) =
2.5y(k)y(k− 1)

1 + y2(k) + y2(k− 1)
+ 1.2u(k) + 0.09u(k)u(k− 1) + 1.6u(k− 2)

+ 0.7 sin(0.5(y(k) + y(k− 1))) cos(0.5(y(k) + y(k− 1)))
(61)

The system desired output is expressed as

y∗(k + 1) = 5 sin(kπ/50) + 2 cos(kπ/20) (62)

The initial parameters of EFFMFAC are set as listed in Table 1. The control output
linearization constant Ly is 1, and the control input linearization constant Lu is 2, implying
that there are three PG values to estimate and four parameters (λ, ρ1, ρ2 and ρ3) to adjust
online at each time step. The initial parameter selection in FFMFAC in this simulation is
consistent with that in the cited reference [38]. The parameters in the neural networks are
determined by the grid search method [39] to ensure that EFFMFAC can achieve the best
control performance.

Table 1. Initialization in two simulations.

SISO Discrete Nonlinear System Simulation Three-Tank System Simulation

Initialization Parameter Value Initialization Parameter Value

y(k), k = 1, 2, 3 0 y(k), k = 1, 2, 3 0
u(k), k = 1, 2, 3 0 u(k), k = 1, 2, · · · , 43 0

Ly 1 Ly 1
Lu 2 Lu 2
µ 1 µ 1
ε 10−5 ε 10−5

φ̂ f ,Ly,Lu(1) [1 0 0] φ̂ f ,Ly,Lu(1) [1 0 0]
λ 0.5 λ 15

ρl , l = 1, 2, · · · , Ly + Lu 0.5 ρl , l = 1, 2, · · · , Ly + Lu 0.05
FNN layers number 5-10-3 FNN layers number 7-20-3
LSTM layers number 15-30-4 LSTM layers number 15-35-4

β 0.5 β 0.2
α 0.02 α 0.01
η 0.05 η 0.02

• Tracking performance of all methods

Figure 7 illustrates the tracking performance of all algorithms including EFFMFAC.
To clearly illustrate the dynamic properties of tracking curves, the time axis is divided in
half and presented separately to better compare the tracking performances of different
methods. In terms of overall tracking performance, all tracking curves first fluctuate to
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varied degrees before progressively stabilizing. Among these methods, EFFMFAC performs
best. Specifically, the tracking curve of EFFMFAC has relatively tiny fluctuations in the first
30 s, and it can track the target curve well after 30 s, and its degree of fit to the target curve
y∗ is the best.
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Figure 7. Tracking curves of all methods.

FFMFAC-PSO performs better than EFFMFAC in the first 30 s, but its subsequent
tracking error is much bigger than that of EFFMFAC. The primary reason for this is
because in the early stages, the PSO method’s powerful search capability can identify
more appropriate parameters, resulting in a higher initial tracking performance for the
FFMFAC-PSO. However, as the tracking curve stabilizes, the nonlinear approximation
capacity of PSO is not as good as that of neural networks, which leads to a decline in its
tracking performance.

The tracking performance of FFMFAC-BP and FFMFAC-RBF similarly have a worse
tracking performance than EFFMFAC, particularly during the first 40 s, and their tracking
curves have pronounced fluctuations, and the degree of fitting to the target curve after that
is not as good as EFFMFAC. Especially for FFMFAC-RBF, its curve fluctuations in the two
time periods of [0,35] and [145,165] are the largest.

• Ablation analysis

To demonstrate the efficiency of the online adjustment module for important pa-
rameters and the module for estimating PG values, an ablation analysis of the proposed
EFFMFAC is performed, and two temporary methods are introduced as comparison meth-
ods. EFFMFAC-W/O-LSTM is a variant of EFFMFAC without the parameters adjustment
module, and EFFMFAC-W/O-FNN is a variant of EFFMFAC without the PG estimation
module. Together with the original FFMFAC, the tracking curves of these four methods are
illustrated in Figure 8.

As illustrated in Figure 8, the tracking performance of FFMFAC is the worst, and its
tracking curve fluctuates the most in the first 40 s. EFFMFAC-W/O-LSTM and EFFMFAC-
W/O-FNN achieve better tracking performance than FFMFAC, as mainly reflected in
the minor fluctuations in the tracking curve at the beginning. The difference in tracking
performance illustrates the effectiveness of the online parameter adjustment module and PG
values estimation module in the EFFMFAC. Compared with EFFMFAC-W/O-LSTM and
EFFMFAC-W/O-FNN, EFFMFAC has an improvement in tracking performance, and its
tracking curve fits the target curve best, which proves the correctness of FNNs and LSTMs,
implying that the joining of two modules can result in improved control performance.
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Figure 8. Tracking curves of EFFMFAC and its variants.

• Vital parameters’ online adjustment results

The online adjustment results of parameters λ and ρ1, ρ2, ρ3 are shown in Figure 9.
As illustrated in these four sub-figures, the EFFMFAC can sensitively adjust these vital
parameters in real time. In addition, the adjusted parameter values are in the same order
of magnitude as the default parameter values, and the difference between the values is
small, ensuring the validity of parameters’ online adjustment. In conjunction with the
tracking curves in Figure 8, sensitive online parameter adjustment can improve the tracking
performance, proving the necessity of the online parameter adjustment and the superiority
of LSTM. Furthermore, the value curves of parameters λ and ρ1, ρ2, ρ3 exhibit similarity,
which can be explained with the theoretical analysis combined with this simulation. As
presented in the control scheme (14), which can be converted as below:

∆u(k) =
ρLy+1φ̂Ly+1(k)(y∗(k + 1)− y(k))

λ +
∣∣φ̂Ly+1(k)

∣∣2
−

φ̂Ly+1(k)∑
Ly
i=1 ρiφ̂i(k)∆y(k− i + 1)

λ +
∣∣φ̂Ly+1(k)

∣∣2
−

φ̂Ly+1(k)∑
Ly+Lu
i=Ly+2 λφ̂i(k)∆u(k− Ly− i + 1)

λ +
∣∣φ̂Ly+1(k)

∣∣2
=

ρ2

λ +
∣∣φ̂2(k)

∣∣2 φ̂2(k)(y∗(k + 1)− y(k))

− ρ1

λ +
∣∣φ̂2(k)

∣∣2 φ̂2(k)φ̂1(k)∆y(k)

− ρ3

λ +
∣∣φ̂2(k)

∣∣2 φ̂2(k)φ̂3(k)∆u(k− 3)

(63)

where λ and ρ1, ρ2, ρ3 are used to guarantee the smoothness of input u(k). Since the PG
value φ̂i(k) does not significantly change, parameters λ and ρ1, ρ2, ρ3 are required to play a
vital role in keeping the term ρiφ2(k)/

(
λ + |φ2(k)|2

)
, i = 1, 2, 3 from excessively changing.

As a result, the value curves of λ and ρi have comparable tendencies.
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Figure 9. The value curves of the adjustment of parameters λ and ρ.

• PG estimation results

Figure 10 shows the PG estimated value curves of FFMFAC and EFFMFAC. Three PG
estimated value curves of FFMFAC fluctuate wildly, whereas the three PG estimated value
curves of EFFMFAC are much flatter, indicating that the dynamics of FFMFAC’s PG are
so complicated that its projection estimation algorithm is unable to accurately estimate its
actual value. In conjunction with Figure 8, EFFMFAC achieves better tracking performance
than FFMFAC, reflecting the validity of the PG estimation module and the superiority
of FNNs.
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Figure 10. PG estimated value curves.

• Parameter sensitivity analysis

The parameter sensitivity analysis of EFFMFAC is performed in this simulation under
the univariate setting. As shown in Figure 11, the left sub-figure depicts the sensitivity
analysis of FNNs’ hidden layers number. Different numbers can influence the RMSE result,
and an ideal control performance can be achieved when the number of hidden layers is
approximately 10. The right sub-figure shows the sensitivity analysis of the LSTM hidden
layers number. Similarly, different numbers affect the control performance and the lowest
RMSE result is obtained when the number is approximately 30. The above parameter
sensitivity analysis supports the rationality of the initialization work in Table 1.
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Figure 11. Parameter sensitivity analysis of the introduced neural networks’ hidden layers number.

To briefly summarize, in this simulation, all of the figures illustrated above indicate
that the proposed algorithm can accurately estimate PG values and sensitively adjust vital
parameters λ, ρ1, ρ2 and ρ3 online. By comparing with other cited methods and variants
of EFFMFAC, it can be found that EFFMFAC achieves the best control performance. The
rationality of the two modules’ PG estimation module and parameter adjustment module,
as well as the superiority of introduced neural networks have been demonstrated.

4.2. Three-Tank System Simulation

The three-tank system [40] is a typical nonlinear and time-delayed system. As illus-
trated in Figure 12, this system is comprised of three identical cylindrical tanks, which are
connected to each other through cylindrical pipes. The output Y (cm) is the liquid level of
Tank3, while the control input U is the flow opening (%) into the tank.

Figure 12. Structure diagram of the three-tank system.

In the simple three-tank system, the transfer function of the output Y and control input
U is determined as follows:

G(s) =
Y(s)
U(s)

=
Ke−τs

(T1s + 1)(T2s + 1)(T3s + 1)
(64)

where K is the system gain, τ is the delay factor and T1, T2 and T3 are time constants. In
this simulation, the values of the aforementioned parameters are as follows:

[K τ T1 T2 T3] =


[4.5 24 8 8 8] k < 400
[5 24 8 8 8] 400 ≤ k < 800
[5 40 6 6 6] 800 ≤ k < 1000

(65)
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With the transfer function (64) and selected parameters (65), the three-tank system can
be determined:

y(k + 1) =



2.6475y(k)− 2.3364y(k− 1) + 0.6873y(k− 2)
+0.001334u(k− 24) + 0.00486u(k− 25) + 0.001106u(k− 26), k < 400

2.6475y(k)− 2.3364y(k− 1) + 0.6873y(k− 2)
+0.001482u(k− 24) + 0.0054u(k− 25) + 0.001229u(k− 26), 400 ≤ k < 800

2.5394y(k)− 2.1496y(k− 1) + 0.6065y(k− 2)
+0.003406u(k− 40) + 0.01203u(k− 41) + 0.0026u(k− 42), 800 ≤ k < 1000

(66)

The desired value of the system output is as follows:

y∗(k) = 10 (67)

The initial parameters in this simulation are set as listed in Table 1. The control output
linearization constant Ly is 1, and the control input linearization constant Lu is 2, implying
that there are three PG values to estimate and four parameters (λ, ρ1, ρ2 and ρ3) to adjust
online at each time step. Similarly to the first simulation, the initial parameter selection in
FFMFAC in this simulation is consistent with that in the cited reference [40].

• Tracking performance of all methods

Figure 13 compares the proposed EFFMFAC with other cited methods. In terms
of overall tracking performance, EFFMFAC outperforms all others, rapidly and steadily
tracking the target curve. From 0 to 400 s, although the increasing time of EFFMFAC is
longer than that of FFMFAC-PSO and FFMFAC-BP, the fluctuation of EFFMFAC is the
smallest and it is the first to reach a steady state, while the other three algorithms have
not yet stabilized. From 400 to 800 s, the tracking curves of EFFMFAC and FFMFAC-RBF
are very close, and both track the target curve stably after 600 s, whilst the remaining two
methods stabilize after 680 s. In the last 200 s, the tracking curves of the four methods
are relatively close, and the tracking error of EFFMFAC is slightly smaller than that of the
other three. Figure 13 depicts the EFFMFAC’s superiority in terms of tracking performance,
implying the effectiveness of incorporated neural networks.
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Figure 13. Tracking curves of cited methods and EFFMFAC.

• Ablation analysis

Aiming to prove the validity of vital parameters’ online adjustment and PG values es-
timation in this simulation, ablation analysis was carried out. Similarly to the SISO discrete
nonlinear system simulation, two temporary EFFMFAC-W/O-LSTM and EFFMFAC were
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introduced as comparison methods. The tracking curves for these four methods, together
with the original FFMFAC, are displayed in Figure 14.

As illustrated in Figure 14, the tracking performance of FFMFAC is inferior to that of
other methods. Compared with the other three tested algorithms, has the most considerable
fluctuations and is unable to maintain consistent tracking of the target curve over time.
EFFMFAC-W/O-LSTM and EFFMFAC-W/O-FNN both outperform FFMFAC in terms of
tracking performance, demonstrating the efficiency of the EFFMFAC’s online parameter
adjustment and PG value estimation modules. It should be noted that the tracking perfor-
mance of EFFMFAC-W/O-LSTM is not as good as that of EFFMFAC-W/O-FNN. Compared
with EFFMFAC-W/O-LSTM and EFFMFAC-W/O-FNN, EFFMFAC has improved tracking
performance, and its tracking curve has the shortest rise time and is the fastest to reach a
steady-state, demonstrating the reasonableness of optimizing FFMFAC by cooperating the
two modules based on neural networks.
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Figure 14. Tracking curves of EFFMFAC and its variants.

• Vital parameters’ online adjustment results

The results of the online adjustment of parameters λ and ρ1, ρ2, ρ3 are shown in
Figure 15. As illustrated in these four sub-figures, the EFFMFAC can sensitively adjust
these vital parameters in real-time. In addition, the adjusted parameter values are in the
same order of magnitude as the default parameter values, and the difference between the
values is small, ensuring the validity of online parameters adjustment.
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Figure 15. Parameter adjustment value curves of λ and ρ.
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• PG estimation results

Figure 16 shows the PG estimated value curves of FFMFAC and EFFMFAC. The
fluctuations of these two methods’ PG value curves are relatively small, and their PG
estimated values are also very close. The only thing to note is that the default projection
estimation method in FFMFAC triggered the reset mechanism at the 789 s, while the FNN-
based PG estimation algorithm can always perform estimation calculations, which shows
the effectiveness of FNNs. Compared with Figure 14, the similarity of the PG value curves
of these two PG estimation methods can explain that the optimization performance of PG
estimation based on FNNs is not as good as parameter adjustment.
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Figure 16. PG estimated value curves.

• Parameter sensitivity analysis

The parameter sensitivity analysis of EFFMFAC is performed in a three-water tank sim-
ulation under the univariate setting. As shown in Figure 17, the left sub-figure demonstrates
the sensitivity analysis of FNNs’ hidden layers number. It can be found that insufficient
hidden layers may lead to a decrease in the control performance, and an ideal control
performance can be achieved when the number of hidden layers is approximately 20. The
right sub-figure shows the sensitivity analysis of the LSTM hidden layers number. Similarly,
different numbers influence the RMSE result, and the best RMSE result is obtained when
the number is approximately 35. The above parameter sensitivity analysis supports the
rationality of the initialization work in Table 1.

5 10 15 20 25 30

Hidden layer number of FNN

2.55

2.60

2.65

2.70

2.75

2.80

2.85

2.90

2.95

R
M

S
E

15 20 25 30 35 40

Hidden layer number of LSTM

2.580

2.585

2.590

2.595

2.600

2.605

2.610

2.615

2.620

2.625

2.630

R
M

S
E

Figure 17. Parameter sensitivity analysis of introduced neural networks hidden layers number.
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In general, the EFFMFAC outperforms all other tested methods in this three-tank
system simulation. All of the figures illustrated above can prove that both the FNN-
based PG estimation module and the LSTM-based online parameter adjustment module
can optimize FFMFAC, implying the effectiveness of all introduced neural networks. In
addition, the optimization performance of PG estimation is not as good as parameter
adjustment work, showing that the parameter adjustment has a more significant impact on
the control performance in this simulation.

4.3. Simulation Results and Analysis

Five individual metrics are provided to more completely evaluate EFFMFAC’s control
performance, namely the root mean square error (RMSE), the integral absolute error (IAE),
the integral absolute variation of the control signal (IAVU), the maximum overshoot (MO)
and the imprecise control ratio (ICR). These five indices are expressed in (68)–(72) below:

RMSE =

√√√√ 1
N

N

∑
k=1

e(k)2 (68)

IAE =
∫ t

0
|ei(t)|dt (69)

IAVU =
∫ t

0

∣∣∣∣du(t)
dt

∣∣∣∣dt (70)

MO = max((y(1)− y∗(1)), · · · , (y(N)− y∗(N))) (71)

ICR(ξ) = 1
N ∑N

k=1 IC(k, ξ)

IC(k, ξ) =

{
0 when|y(k)− y∗(k)| < ξ
1 when|y(k)− y∗(k)| ≥ ξ

(72)

The first two indices RMSE and IAE are introduced to evaluate tracking the accuracy
of the method, the IAVU is used to evaluate the stability of the control input, the MO is
used to evaluate the tracking instability and the ICR is introduced to calculate the time
proportion of imprecise control.

4.3.1. Analysis of SISO Discrete Nonlinear System Simulation Results

According to the experimental results listed in Table 2, FFMFAC performs poorly on
a variety of indices. FFMFAC-PSO, FFMFAC-BP and FFMFAC-RBF introduce different
optimization methods to optimize FFMFAC. From the evaluation results in Table 2, it
is obvious that the tracking performance of the above three methods has improved to
varying degrees.

Table 2. Experimental results of SISO discrete nonlinear system simulation.

RMSE IAE IAVU MO ICR (0.1) AVG Time
(ms)

FFMFAC 0.862 135.315 83.088 2.825 0.920 0.51
FFMFAC-PSO 0.784 122.162 47.595 1.821 0.915 80.78
FFMFAC-BP 0.816 126.389 70.768 2.425 0.905 1.06
FFMFAC-RBF 0.812 127.986 92.192 1.726 0.915 0.67
EFFMFAC-
W/O-FNN 0.779 120.998 67.304 2.224 0.890 3.68

EFFMFAC-
W/O-LSTM 0.734 113.860 54.939 1.694 0.905 0.64

EFFMFAC 0.675 103.613 52.915 1.623 0.890 3.92

Regarding the FFMFAC-BP and EFFMFAC-W/O-FNN, both methods perform the
online parameter adjustment of the FFMFAC. EFFMFAC-W/O-FNN has better simulation
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results in all indices than FFMFAC-BP, and the five indicators are reduced by 4.53%, 4.26%,
4.35%, 8.28% and 1.65%, respectively, which reflects the effectiveness of the gate mechanism
of LSTMs. In addition, for FFMFAC-RBF and EFFMFAC-W/O-LSTM, both methods
perform the PG estimation of the FFMFAC. Similarly, EFFMFAC-W/O-LSTM performs
better than FFMFAC-RBF, and the five indicators are reduced by 9.61%, 11.03%, 40.41%,
1.85% and 1.09%, respectively. Given that FNNs possesses both the local approximation
capability of RBF neural networks and the ability to reason adaptively, this explains why
FNNs outperform RBF neural networks in PG estimation.

From the simulation results of the EFFMFAC, it can be found that EFFMFAC achieves
the best results in various indices. Compared with FFMFAC, it has reduced by 21.69%,
23.43%, 36.31%, 42.55% and 3.26% in most indices, reflecting the superiority of tracking per-
formance. In addition, EFFMFAC also occupies an advantage in all indices compared to its
variants EFFMFAC-W/O-FNN and EFFMFAC-W/O-LSTM, which shows the effectiveness
of introduced modules.

4.3.2. Analysis of Three-Tank System Simulation Results

According to the experimental results listed in Table 3, the gap between the indicators
of all algorithms is relatively small. FFMFAC has the worst performance on RMSE, IAE
and ICR, while FFMFAC-PSO has the worst performance on IAVU and MO. Compared
with FFMFAC, the tracking performance of FFMFAC-BP has improved in all indicators
except MO, and FFMFAC-RBF has achieved better results in all indices.

Table 3. Experimental results of three-tank system simulation.

RMSE IAE IAVU MO ICR(0.1) AVG Time
(ms)

FFMFAC 2.899 1280.841 16.455 1.088 0.750 0.16
FFMFAC-PSO 2.689 1204.468 19.717 2.147 0.747 41.29
FFMFAC-BP 2.644 1076.396 15.171 1.182 0.671 0.23
FFMFAC-RBF 2.821 1186.620 14.642 1.017 0.629 0.29
EFFMFAC-
W/O-FNN 2.592 1058.998 14.368 1.022 0.547 1.04

EFFMFAC-
W/O-LSTM 2.809 1181.162 14.469 1.016 0.594 0.32

EFFMFAC 2.580 998.860 14.123 1.015 0.538 3.26

Regarding FFMFAC-BP and EFFMFAC-W/O-FNN, EFFMFAC-W/O-FNN has better
simulation results than FFMFAC-BP in all indices, and the five indicators are reduced by
1.96%, 1.67%, 6.62%, 13.38% and 18.47%, respectively, which reflects that LSTMs perform
better than BP neural networks in parameter adjustment. In addition, for the FFMFAC-RBF
and EFFMFAC-W/O-LSTM, EFFMFAC-W/O-LSTM performs better than FFMFAC-RBF
and the five indicators are reduced by 4.25%, 0.42%, 1.18%, 0.98% and 5.56%, respectively,
proving the superiority of FNNs. It is worth noting that the difference between the optimiza-
tion performance of the FNN-based PG estimation module and LSTMs-based parameter
adjustment module on FFMFAC is noticeable, and EFFMFAC-W/O-FNN has reduced by
7.73%, 10.34%, 0.70% and 7.91% in most indices except MO compared to EFFMFAC-W/O-
LSTM. It shows that in this simulation, the optimization performance of the parameter
adjustment module is better than that of the PG estimation module, and similar results are
also reflected in FFMFAC-BP and FFMFAC-RBF.

From the experimental results of EFFMFAC, it can be found that EFFMFAC achieves
the best results in various indices. Compared with FFMFAC, it has reduced by 11.21%,
22.02%, 14.17%, 6.71% and 28.27% in all indices, reflecting the superiority of its tracking per-
formance. Additionally, EFFMFAC also occupies an advantage in all indices compared to its
variants EFFMFAC-W/O-FNN and EFFMFAC-W/O-LSTM, which shows the effectiveness
of introduced modules.
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Notably, Tables 2 and 3 provide the average calculation time for each method at each
time step. Although the calculation time of our proposed EFFMFAC is longer than that of
other algorithms except FFMFAC-PSO, the EFFMFAC’s average running time is quite fast in
comparison to the 1000 ms sampling period, which enables the desired real-time tracking.

Generally speaking, some cited methods only outperform FFMFAC in a few indices,
implying that the optimization performance is insufficient and demonstrating the signifi-
cance of introducing multiple indices to evaluate the control performance of each method.
Furthermore, the optimization effects of the introduced neural networks are demonstrated
via ablation analysis. As a result, EFFMFAC significantly improves all indices, demonstrat-
ing the rationality of algorithm design.

5. Conclusions

In this study with the objective of performing the sensitive online adjustment of FFM-
FAC parameters as well as improving the accuracy of PG estimation, this paper proposes
the EFFMFAC for a class of SISO discrete-time nonlinear systems. The significance and
novelty of this study lies in the use of LSTMs to sensitively adjust vital parameters λ and
ρ1, ρ2, · · · , ρLy+Lu online and introducing FNNs to complete PG estimation work in real
time, thus dramatically improving the control performance of FFMFAC. In the experi-
mental part, SISO discrete nonlinear system simulation and three-tank system simulation
were carried out to verify the validity and superiority of EFFMFAC, and five evaluation
indices were provided to evaluate EFFMFAC. The experimental results demonstrated that
EFFMFAC achieves the best tracking performance and achieves the best results across
all evaluation indices. Previous theoretical results did not include this joint optimization
method. EFFMFAC will be applied to MIMO nonlinear systems such as a continuous stir-
ring reactor, distillation tower and vapor compression refrigeration system in subsequent
research work to verify its effectiveness.

A major limitation of EFFMFAC lies in the initialization work. Certain neural net-
works have many initial parameters and need to be adjusted in advance, as inappropriate
parameters will affect the tracking performance of the algorithm. Furthermore, although
EFFMFAC has better tracking performance than the FFMFAC, it still has potential for
optimization. As shown in Figure 8, the tracking error is not reduced in some time periods.
A reasonable explanation is that the system output at the next time step may also be related
to the system output tracking error in the sliding window. As a result, the optimization
of the full-form dynamic linearization method will be part of future research, and the
optimized full-form dynamic linearization model does not only consider the changes in the
previous input and output of the controlled system but also considers the changes in the
output tracking error within a time sliding window [38], which can better represent the
controlled system’s complicated dynamic properties.

In the actual complex manufacturing process such as the oil refining production
process, chemical production process, etc., the actual output of the system needs to be
measured. During the measurement process, disturbance signals will be generated due
to the influence of the external environment or sensors, and the measurement noise of
the data is an unavoidable issue. EFFMFAC in this paper can be regarded as a pure data-
driven control method, as it has not been evaluated in a real-world industrial scene with
issues such as the measurement noise and control saturation. To deal with disturbance
factors, denoising approaches such as the wavelet threshold denoising method [41] will be
implemented into the FFMFAC in future research. Investigating these aspects in the real
manufacturing process is critical for practical engineering.
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