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Abstract: In recent years, the pedestrian detection technology of a single 2D image has been dramati-
cally improved. When the scene becomes very crowded, the detection performance will deteriorate
seriously and cannot meet the requirements of autonomous driving perception. With the introduction
of the multi-view method, the task of pedestrian detection in crowded or fuzzy scenes has been
significantly improved and has become a widely used method in autonomous driving. In this paper,
we construct a double-branch feature fusion structure, the first branch adopts a lightweight structure,
the second branch further extracts features and gets the feature map obtained from each layer. At the
same time, the receptive field is enlarged by expanding convolution. To improve the speed of the
model, the keypoint is used instead of the entire object for regression without an NMS post-processing
operation. Meanwhile, the whole model can be learned from end to end. Even in the presence of
many people, the method can still perform better on accuracy and speed. In the standard of Wildtrack
and MultiviewX dataset, the accuracy and running speed both perform better than the state-of-the-art
model, which has great practical significance in the autonomous driving field.

Keywords: autonomous driving; multiview; pedestrian detection; convolution fusion; keypoints

1. Introduction

Whether for ADAS or autonomous driving, pedestrian detection has traditionally been
an unavoidable problem. In the process of vehicle operation, if we can accurately detect the
position of each pedestrian, it will greatly guarantee the safety of the autonomous driving
field. Therefore, pedestrian detection has become a hot topic in autonomous driving over
the past 20 years. The mobility of pedestrians makes them less predictable than vehicles. In
the task of pedestrian detection, occlusion has traditionally been the focus of attention. For
example, it is difficult to predict the location of all pedestrians under the intersection, since
the pedestrians may be blocked by vehicles or other pedestrians. Occlusion is a thorny
problem in pedestrian detection, which requires higher accuracy and speed. In the past
two years, many people have proposed their solutions on pedestrian detection problems.
Existing pedestrian detector algorithms have achieved satisfactory results on standard
non-occluded pedestrians, but their performance on heavily occluded pedestrians is far
from satisfactory.

To solve the occlusion problem of pedestrian detection, Zhang proposed a two-stage
detection framework of Faster R-CNN [1]. Xie used the pedestrian topological structure to
solve the pedestrian occlusion problem [2]. These methods perform better than traditional
detection models in occluded pedestrian detection. However, they can never break through
the limitation of single-camera detection. When the occlusion range is large, the above
methods also produce the phenomenon of missing object or false detection. To perform
better, the single-camera detection model often contains a lot of redundant calculations,
which is defective for salving occlusion problems. There is still much room for improvement
in pedestrian detection.
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For reasonable control or use, we use the information obtained by multiple cameras in
time according to some criteria to obtain the consistent interpretation of the detected target.
Because a single camera cannot meet the demand of target detection, if the data collected
by different cameras are processed independently, the workload of data processing will
increase dramatically. The connection between cameras will be cut off, resulting in the
waste of data resources. Therefore, data fusion of multi-camera data is needed to get more
reliable conclusions. However, there is no unified standard for the level of data fusion,
which is generally divided into data fusion, feature fusion, and result fusion. Among
multi-view aggregation, the first proposed method is to fuse the detection results of each
camera to obtain the consistent interpretation and description of the target. However, this
fusion method is the most inaccurate due to data compression, so it has not been used since
it was proposed. The anchor box fusion method proposed later has been greatly improved
compared with that before. Nevertheless, the prediction result is not very accurate due to
the deformation of the anchor during the fusion, so feature fusion is used later. Feature
fusion is used to extract representative features to obtain feature vectors and then fuse these
feature vectors without losing important information, which is conductive to real-time
processing.

At this point, we turn our attention to the multi-view approach. In theory, the multi-
camera detection method can solve the occlusion problem almost perfectly. Multi-view
detection contains information of multiple positions, and different cameras provide the tar-
get information of each view. Classic models of various perspectives, such as MVCNN [3]
and VMVCNN [4], mainly extract features from images of 3D objects from different per-
spectives and then classify and recognize objects according to the integrated global features.
In this way, the model can obtain high-level global features and details. The above method
involves the 3D reconstruction method, which uses 3D reconstruction to aggregate infor-
mation from multiple perspectives. However, the reconstruction process takes a lot of time,
and how to use the data from multiple perspectives without taking too much time becomes
a significant concern. RCNN and clustering presented a new multi-view and multi-target
tracking method, which represented object trajectories as combinatorial hierarchies and
probabilistic constraints that characterize the geometry, appearance, and motion of the
trajectories [5]. DeepMCD used an architecture that combines multiple instances of it on a
small multi-camera dataset [6]. However, none of them well in accuracy. MVDet found that
combining a large convolution kernel and the convolution layer with a large receiving field
can have a better effect on time and accuracy [7]. However, there is still plenty of room for
improvement in accuracy and speed.

As for the analysis above, this paper adopts multi-view target detection to solve the
occlusion problem between pedestrians. It adopts the CNN model and large convolution
kernel spatial aggregation method and uses feature projection and channel cascade to
gather multi-camera information. To better fit the data features, we proposed a double-
branch feature fusion model. We replace positive sampling points with keypoints [8], and
adopt the Anchor free mechanism to avoid unnecessary accuracy loss caused by anchor
frame deformation during multi-camera perspective transformation. In the model, the
mid-point of bbox is used to represent the keypoint, which not only solves the occlusion
problem but also makes some contributions to the speed of detection.

In addition, we also conduct a series of experiments to prove our conclusion. On the
one hand, we explore the respective effect of different factors in the network structure,
including the multi-scale convolution fusion and the center points structure. On the other
hand, we test the influence from the different datasets. According to the results on the
Wildtrack, our final model improved by 1.8% on MODA, 0.5% on MODP, and 0.349 s faster
on the test set. According to the results on the MultiviewX, our model improves by 5.6%
and 3.8% respectively on MODA and MODP and 0.196 s faster on the test set.

In conclusion, our main contributions are:

(1) A double-branch feature fusion structure is proposed further to extract features for
better performance of the model;
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(2) The proposed method of center points makes the model detection more flexible and
does not need to be limited by the anchor frame mechanism. The method adopts with
the multi-scale fusion module, which gives better results when combined;

(3) The model runs faster on the basis of improved model performance, which is more in
line with the urgent needs of pedestrian detection.

2. Realted Work

With the rapid advancements in deep learning, a plethora of work has been published
on pedestrian detection. Such models include region proposal networks such as Faster-
RCNN [9], single-shot detectors such as SSD [10] and YOLO [11], as well as pose-estimation
models like DeeperCut [12] and OpenPose [13]. Tang proposed a set of methods using
gait characteristics to detect pedestrians, and these methods performed well in pedestrian
detection [14]. However, it cannot be maintained in the case of occlusion, so some people
provide new ideas for the occlusion problem.

As for the pedestrian detection, the occlusion problem is mainly solved by single-view
detection. At present, the entry point of the single-view detection method includes dividing
the target candidate box into different parts, and then integrating the features. For example,
the bi-box [15] method enables the network to output the visible part of the target candidate
box, and guide the network to have more discriminating power to the pedestrian target
under occlusion in the learning process. Perspective of loss makes the target candidate
box more discriminant in order to stay away from each other. Repulsion loss [16], for
example, works by setting the loss function forecasting responsible for the distance of the
frame of objects, and, together with the surroundings, is not the actual target box (the
box that contains natural objects and predict boxes) of space used to improve the model
performance. Yang proposed a partially sensing multi-scale fully convolutional network to
solve these occlusion and large-scale problems [17]. The most responsive part is selected by
voting, and partially visible pedestrian instances can obtain a high detection confidence
value, making it unlikely to miss detection. However, the above methods are in a single
view, even if the model has a good performance in the case of no serious occlusion problems,
it still cannot meet the requirements of autonomous driving for pedestrian detection. In the
actual scene, it cannot guarantee that pedestrians are always slightly occluded.

In recent years, multiple perspectives are used to obtain information about the sur-
rounding environment. Similarly, multi-camera targets detection is used to solve the
problem of pedestrian occlusion. Chen used a laser point cloud and RGB images as the
input to predict the fusion frame of the directional three-dimensional bounding box [18].
Sparse Dd point cloud data is encoded with compact multi-view. Ku used a virtual multi-
view synthesis method to generate a set of virtual views for each detected pedestrian [19].
These views are used to create accurate position estimates during training and reasoning.
The methods mentioned above are valid on occlusion through multi-view information,
but the fusion of laser point clouds and the generation of virtual multi-view took too
long. The data collected by real multi-cameras is used to detect pedestrians [7], and the
aggregation of multi-perspective information is completed by feature projection. There is
still room for improvement in Recall rate and speed. The common point of these methods
is that the target of each view is matched in horizontal space, and this matching process is
the process of multi-view information fusion. Since the matching operation of the above
method occupies a large amount of memory and time resources, its actual use has many
limitations.

To aggregate the results obtained from multi-view detection, the multi-view occupancy
estimation method is adopted. POM-CNN uses multi-view Bhutan, the Probabilistic
Occupancy Map [20], which operates the Bayesian formula to calculate the probability
of the existence of objects on the plane. However, the computation speed is plodding
and cannot run in real-time. Peng combined a separate Bayesian network to construct an
occupancy diagram based on ground position and geometric constraints [21]. Ge used
the maximum posterior estimation to find the best-fit occupancy diagram for the image
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observation [22]. Deep-Occlusion uses the mean-field to infer the complete factorization
distribution Q, which approximates a posterior P, to produce a probabilistic occupancy
diagram [23]. However, the result of the generated probability occupancy diagram is not
intuitive, and it must be processed first to make use of the information of the occupancy
diagram.

In our work, we focus on the processing feature and use keypoints to improve the
speed and accuracy of the model. A top view and the pedestrian occupancy rate are used
to estimate the occupancy diagram to make the result more intuitive.

3. Methods

In this work, we focus on the occluded pedestrian detection problem in a multiview
scenario. The method aggregation uses results from each camera through projection from
the double-branch model structure. Our model takes multiple RGB images as inputs,
and outputs the pedestrian occupancy map estimation. In the following sections, we
will introduce the model structure (Section 3.1), multi-scale convolution fusion network
(Section 3.2), and the center points (Section 3.3).

3.1. Model Structure

On the basis of maintaining the speed of the original model, our model adopts a
double-branch structure to optimize the MODA of ResNet-18 (Figure 1). We apply an
anchor-free multiview aggregation that alleviates the influence from inaccurate anchor
boxes in the previous work. We propose a double-branch model as the backbone and use
the center point instead of anchors to verify the accuracy of our model. In each view, we
detect pedestrians with a shared weight single view detector. Finally, through perspective
transformation, the concatenate features after the projection are transferred to the same
coordinate system to get a bird’s eye view (BEV).

Figure 1. Description of the model structure.

First, given input images of three channels from the N cameras, the proposed network
uses a double-branch feature fusion structure to extract feature maps for each input image.
The CNN feature extractor shares weight among N inputs. Next, we run single view detec-
tion by detecting the center points. We take an anchor-free approach, and use the center
point to regress some characteristic of target boxes. The multiview aggregation approach
uses perspective transformation to project N feature maps according to corresponding
camera calibrations 1-N. Then, we concatenate the N projected feature maps and use a
convolution to get the result.

The model processes the images of each camera and extracts features through two-
layer convolution, respectively, after the double-branch feature fusion network. One layer



Entropy 2022, 24, 165 5 of 15

of convolution gets the center point of regression, the other layer gets the information in the
corresponding aerial view of the target. We calculate and add the two results, respectively,
to obtain the final loss for reverse propagation, and the final aerial view is obtained after
the training.

Our model needs some information, such as camera internal and external parameters
and through two convolution extract feature. It then transforms the feature map to a
planform. We then compete the object regression loss and the planform location loss to fine
tune the final results. The entire process of multiview pedestrian detection is summarized
in Algorithm 1.

Algorithm 1 Multi-view pedestrian detection

Input: image1...imageN , Camera internal and external parameters;
Parameter C represents the function of extracting features;
Parameters L1, L2, and L represent the loss of center points;
occupancy map loss and total loss;

Output: res is constant of images from different perspectives
1: initial i = 0;
2: Wc1

i represents the convolution of 1*1;
3: Wc2

i represents the convolution of 3*3;
4: repeat
5: compute the f eature1 : f 1 = Wc1

i (imagei);
6: compute the ans : f 1 = Wc2

i ( f 1);
7: add ans to prediction;
8: compute the f eature2 : f 2 = Wc1

i (imagei);
9: compute the ans : f 1 = Wc2

i ( f 2);
10: ans = warpPerspective( f 1);
11: add ans to res;
12: until (i >= N)
13: L1 = smoothl1(prediction, label);
14: compute the perspective loss L2 = gussainl(res, label);
15: compute the total loss L = L1 + L2;

3.2. Double Branch Convolution Fusion Network

In this part, the feature fusion method is adopted to preserve the shallow information
of the model. According to the existing conclusion, a 3 × 3 convolution has the best result
for feature extraction, so we use a 3 × 3 size convolution kernel to extract the features.
Previous experiments proved that the convolution of 1 × 1 size had limited performance
improvement for the model, so we only used it to adjust the number of channels and
eliminate the aliasing of different features fusion.

This part of the pseudocode is shown in Algorithm 2. i indicates the serial number of
the camera. C2, C3, C4, and C5 indicate the four bottlenecks of ResNet. xic and F (xi, Wi)
denote the feature map and result of the cth bottleneck in the ith camera. We merge the
feature map of the last bottleneck through a 3× 3 convolution layer and a 1× 1 convolution
layer and the feature map of the current bottleneck, then concatenate the merged result of
each layer as the final outputs.

As shown in Figure 2, the double-branch structure is used in this model, and the
data is passed into the corresponding branches. We take the ResNet network as the first
branch. However, some low-level semantic information also needs to be preserved. The
second branch of the model consists of a 3 × 3 convolution layer and a 1 × 1 convolution
layer, which are merged after adaptive averaging pooling and the RELU layer. Because
ResNet has four bottlenecks, each bottleneck catches different information. The fusion layer
includes the present bottleneck, a 3 × 3 convolution layer, a 1 × 1 convolution layer, and
the last bottleneck. We then concatenate the result with each fusion layer.



Entropy 2022, 24, 165 6 of 15

Algorithm 2 Double branch feature fusion process

Input: The data of image1...imageN
Output: A point that represents the center of the target

1: initial i = 0;
2: F (xi, Wi) is the residual part, usually consisting of two or three convolution operations;
3: W ′i represents the convolution of 1*1;
4: W ′′i represents the convolution of 3*3;
5: repeat
6: for C in [C2, C3, C4, C5] do
7: xic = xi(c−1) +F

(
xi(c−1), Wi(c−1)

)
8: x′i = W ′′i xi;
9: x′i = W ′i x′i ;

10: add x′i to ans;
11: end for;
12: for C in [C2, C3, C4, C5] do
13: res = res.concat(ansc);
14: end for;
15: res = res.concat(x) ;
16: res = W ′i res ;
17: until (i >= N)

The structure of the double-branch can better extract features and make the model
achieve better performance. Because the front layer often carries more data information,
the model adds a fusion structure and then makes it fuse with the feature map before
the last layer of the network. Because the output feature map of the branch structure has
different channel numbers from the feature map obtained at the last layer, we adjust the
channel numbers by an additional 1 × 1 convolution. Dilated convolution is adopted here.
Dilated convolution can increase the sensing field of the convolution kernel while keeping
the number of parameters unchanged, which also improves the performance of the model.

Figure 2. Double-branch convolution fusion structure.

The structure of the double-branch can better extract features and make the model
have better performance. Then, the global information is embedded by simply using
the channel statistics generated s ∈ RC by the global average pool. Specifically, the cth
element of s is computed by contracting the feature by the spatial dimension H ×W with
the following equation.

Sc =
1

H ×W

H

∑
i=1

W

∑
j=1

xc(i, j) (1)

After that, they are added together with the following equation.
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F =
(

d[b,c,h,w] + m[b,c,h,w]

)
/2 (2)

where D is the feature graph output from branch 1, and m is the feature graph output from
branch 2, and b, c, h, and w represent their batch, channel, height, and weight. The high-
level semantic information is usually saved after ResNet downsampling, but the model
cannot learn perfectly if low-order features are not saved. To save as much data information,
the double-branch structure proposed by us loses relatively less data information. The
model adds a 3 × 3 convolution layer behind each ResNet layer to extract features and
store them, ensuring that the whole network can retain as much original information and
maximize the role of data information. Because the number of channels of the output
feature graph is different from that of the feature graph obtained at the last layer of the
model, the feature graph output by the double-branch structure needs to go through an
additional 1 × 1 convolution adjustment channel. The module can be naturally extended
to aggregate multi-scale features without the help of FPN.

3.3. Center Points

The midpoint of the target is taken as the keypoint. In the Heatmap, the point is taken
as the center of the circle, and the radius is R (R = 4). The value is filled with the Gaussian
kernel function. Because there is only one category to be detected and the model converges
quickly, no more iterations are needed to optimize the model. There is no need to add
additional penalty terms to balance difficult samples and positive and negative examples.
The keypoint detection process is shown in Algorithm 3. p denotes the center point of the
target. Yxyc indicates the Gaussian function.

Algorithm 3 Key point detection process

Input: The data of image1...imageN
Output: Gaussian heatmap with predicted points based on the original image

1: initial i = 0;
2: W ′i represents the convolution of 1*1;
3: x1, y1, x2, y2 corresponds to the left, up, right, down of the target;
4: r be the downsampling parameter 4
5: Filling calculated value with Gaussian function Yxyc
6: repeat
7: for j ∈ len(objects) do
8: p =

(
x1+x2

2 , y1+y2
2

)
;

9: Mark image Y ∈ [0, 1]
W
R ×

H
R×C;

10: Yxyc = exp
(
− (x− p̃x)

2+(y− p̃y)
2

2σ2
p

)
;

11: end for;
12: Y = W ′i Y ;
13: until (i >= N)

Because the inaccurate anchor box affects the feature mapping projection method,
ground plane feature maps constructed via anchor-free feature perspective transformation
are more accurate. In this paper, the target is presented through the center point, and
some attributes of the target are regressed at the center point. The target detection problem
becomes a standard critical point estimation problem. We pass the image into the fully
convolutional network to obtain a thermal map. The peak point of the thermal map is the
center point. The location of the peak point of each feature map predicts the width and
height information of the target. Each target has only one positive anchor, and no NMS or
grouping is used. The center points always contain more global information than other
points, the position is easier for the model to fit. Therefore, the center point is adopted as
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the ground truth. The prediction results of the model are shown in Figure 3. The left is the
RGB image, and the right is the results obtained by the model training.

(a) (b)

Figure 3. Central heat map results for pedestrian detection. (a) RGB image; (b) predict object center
heatmap.

Transforming a three-dimensional object or object in a spatial coordinate system into
a two-dimensional image is called projection transformation. The size of the perspective
projection of a three-dimensional object is inversely proportional to the distance from
the body to the viewpoint (projection center). Compared with parallel projection, the
perspective projection has a greater sense of depth and looks more realistic. We only need
to know the specific position of the target in the top view, and the loss can be minimized by
using the external parameters of the camera. The model extracts the features by convolution
and then uses the feature map to perform the perspective transformation operation. The
conversion between the 3D position (x, y, z) and the 2D image pixel coordinate (u, v) is
done by a point-by-point transformation.

s

 v
u
1

 = Pθ,1

 x
y
1

 (3)

Pθ,1

 x
y
1

 =

 θ11 θ12 θ13 θ13
θ21 θ21 θ21 θ24
θ31 θ32 θ33 θ34

 x
y
1

 (4)

where s is a real scale factor, Pθ,1 is a 3 × 4 angle transformation matrix. [R|t] is a 3 × 4
joint rotation-translation matrix, which is the matrix of the external parameters, where R
denotes the rotation and t denotes the translation.

The formula for obtaining the midpoint is as follows.

pk =

(
xk

1 + xk
2

2
,

yk
1 + yl

2
2

)
(5)

Our keypoints effectively use the internal features of objects and perceive the internal
information of objects, reducing a large number of FP. The Anchor mechanism is completely
abandoned, and the IOU between the preselection box and the real box is not needed to
consume additional resources. There is no need to generate a series of position coordinates
for coordinate regression and classification prediction, which reduces the processing time
of generating anchor encoding and decoding. It helps the model to locate the target quickly
and the model calculation is simple. We do not need to enlarge the resolution of the image,
so the running time of the model can be reduced.

Model regression stage adopted the function of L1 smooth. The formula is shown
below.

smoothL1(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise

(6)
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As in Figure 4, center points in the bounding box are used as the ground truth, and
the center feature map is obtained after feature extraction. The orange dots represent a
specific ground plane location and its corresponding pixel in different views. The green
bounding boxes refer to anchor boxes whose center (human center point) is at that ground
plane location.

(a) (b) (c)

Figure 4. Feature projection process diagram. (a) Input: N RGB views; (b) feature maps; (c) projected
feature maps.

4. Experiments

For comparison purposes, we downsample the 1080 × 1920 RGB images to Hi = 720,
Wi = 1280 and remove the last two layers (global average pooling; classification output)
in ResNet-18 like MVDet. We use dilated convolution to replace the normal convolution.
This results in a 8 × downsample from the 720 × 1280 input. The double-branch structure
uses the 3 × 3 convolution to extract the feature and uses 1 × 1 convolution to change
channel numbers. We use the center point to indicate the target to calculate. We use an SGD
optimizer with a momentum of 0.5, L2-normalization of 5 × 10−4. We use the one-cycle
learning rate scheduler with the max learning rate set to 0.1, and train for 30 epochs with
the batch size set to 1. We finish all the experiments on one RTX-2080ti GPU and one RTX
Titan GPU.

4.1. Datasets

The Wildtrack dataset uses joint visual information from multiple simultaneous cam-
eras to improve detection performance. It was captured by seven static cameras in a public
open area, where a large number of standing and walking pedestrians were gathered.
Together with the camera frames, this dataset provides an accurate joint (extrinsic and
intrinsic) calibration, as well as 400 annotated frames from 7 series, detected at a rate
of 2 frames per second. This produced over 40,000 bounding frames, delineating each
person present in the field of interest, with over 300 people in total. On average, there were
20 people on each edge Wildtrack dataset, and each location in the scene was covered by
3.74 cameras.

The MultiviewX dataset is a new synthetic dataset for multi-view pedestrian detection.
The MultiviewX dataset covers a slightly smaller area of 16 meters by 25 m. The dataset
quantifies the ground plane like a 640 × 1000 grid. There are six cameras in the MultiviewX
dataset with overlapping fields of view, each outputting images at 1080 × 1920 resolution.
Four hundred frames are annotated in MultiviewX at two frames/second (the same as
Wildtrack). On average, there were 4.41 cameras at the exact location, with approximately
40 people per frame, twice as many as in the Wildtrack dataset. A comparison of the
two datasets is shown in Table 1.
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Table 1. Comparison of Wildtrack and MultiviewX.

Dataset Camera Number Resolution Area Crowdedness

Wildtrack 7 1080× 1920 12× 36 m2 20 person/frame
MultiviewX 6 1080× 1920 16× 25 m2 40 person/frame

Evaluation metrics: Following [24]. We used 90% of the dataset for training and the
remaining 10% for testing, using Precision, Recall, MODA, and MODP [25] as the evaluation
metrics. MODP (Multiple Object Detection Precision) evaluates the localization accuracy,
while MODA (Multiple Object Detection Accuracy) can account for false positives and
false negatives. Because MODA takes into account both false positives and false negatives,
MODA is the main evaluation metric.

As described before, G(t)
i denotes the ith ground truth object in frame t. D(t)

i denotes

the detected object for G(t)
i .

OverlapRatio =

Nt
mapped

∑
i=1

∣∣∣G(t)
i ∩ D(t)

i

∣∣∣∣∣∣G(t)
i ∪ D(t)

i

∣∣∣ (7)

We can calculate the multiple object detection precision for each frame t. The mapped
Nt is the number of mapped sets of objects in the coordinate system t:

MODP(t) =
( Overlap Ratio )

Nt
mapped

(8)

Consider that in each frame t, mt indicates a missing number, fpt indicates the number
of false alarms, cm and c f is a function of the cost of missed and false alarm penalties, NG

t is
the number of Ground Truths in frame t. We can calculate MODA:

MODA(t) = 1−
cm(mt) + c f ( fPt)

NG
t

(9)

4.2. Comparison with Different Methods

As shown in Table 2, we can compare multiview aggregation and the backbone in
different methods.

Table 2. Multiview aggregation and backbone in different methods.

Method Multiview Aggregation Backbone

RCNN andd clustering detection results The new DCNN
DeepMCD anchor box features GoogLeNet

Deep-Occlusion anchor box features VGG
MVDet feature maps ResNet-18

Ours feature maps ResNet-18+feature fusion

The new DCNN consists of five convolutional layers, two max-pooling layers, three
fully-connected layers, and a final 1000-dimensional output. The last two layers are
discarded and replaced by random initializations.

We compare the performance of our model with different multiview pedestrian de-
tection methods. It can be seen that the performance of the proposed method has been
steadily improved in both Wildtrack and MultiviewX datasets. The single-target Precision
and Recall rates usually appear very high in these models. Therefore, MODA and MODP
are taken as the primary evaluation metrics, and the final results are shown in Table 3. On
the Wildtrack dataset, our model achieves 90.0% MODA, a +1.8% increase over previous
state-of-the-art models. On the MultiviewX dataset, MVDet achieves 89.5% MODA, a
+5.6% increase over our implementation of MVDet. Our model also achieves the highest
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MODP and recall on both datasets, but falls slightly behind MVDet interms of precision on
the Wildtrack dataset.

Table 3. Performance comparison with different methods for the Wildtrack dataset.

Method MODA/% MODP/% Precision/% Recall/%

RCNN and clustering 11.3 18.4 68 43
DeepMCD 67.8 64.2 85 82

Deep-Occlusion 74.1 53.8 95 80
MVDet 88.2 75.7 94.7 93.6

Ours 90.0 76.2 94.5 94.7

Spatial aggregation with CRF and mean field inference brings forward increases of
+6.3% and +5.2% on the two datasets, going from Deep MCD to Deep-Occlusion. Large
kernel convolutions brings forward a +14.1% MODA increase on Wildtrack dataset, and
a +8.7% performance increase on the MultiviewX dataset, going from Deep-Occlusion
to MVDet. The double-branch structure and center points detection brings forward a
+1.8% MODA increase on the Wildtrack dataset, and a +5.6% performance increase on the
MultiviewX dataset, going from MVDet to our model.

It can be seen from Tables 3 and 4 that only the precision of the model does not improve
on the Wildtrack dataset, while other evaluation matrices all reach the highest on different
datasets. Since MultiviewX is a simulation dataset and the features are easy to capture, the
accuracy is improved to a more noticeable level. All evaluation matrics on this dataset have
reached the highest level at present.

Table 4. Performance comparison with different methods for the MultiviewX dataset.

Method MODA/% MODP/% Precision/% Recall/%

RCNN and clustering 18.7 46.4 63.5 43.9
DeepMCD 70.0 73.0 85.7 83.3

Deep-Occlusion 75.2 54.7 97.8 80.2
MVDet 83.9 79.6 89.5 85.9

Ours 89.5 83.4 98.1 91.3

4.3. Ablation Experiments

A double-branch multi-layer convolution integration module is proposed in this paper.
We use the expansion convolution to expand the receptive field, which supports exponential
expansion of the receiving field without reducing the resolution. The method extracts and
utilizes the features based on double-branch multi-layer convolution integration module
and predicts based on the keypoint. We conducted a comparative test on the two parts, and
the results are shown in Tables 5 and 6.

Table 5. Results of the ablation experiment for the Wildtrack dataset.

Method MODA/% MODP/% Precision/% Recall/%

MVDet 88.2 75.7 94.7 93.6
Keypoints 88.7 75.3 95.2 94.5

Feature fusion 88.2 75.3 95.8 94.1
Ours 90.0 76.2 94.5 94.1
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Table 6. Results of the ablation experiment for the MultiviewX dataset.

Method MODA/% MODP/% Precision/% Recall/%

MVDet 83.9 79.6 89.5 85.9
Keypoints 84.7 80.7 97.8 86.6

Feature fusion 88.8 82.7 98.6 90.1
Ours 89.5 83.4 98.1 91.3

As seen from Tables 5 and 6, our method of using center points instead of positive
sampling points is more competitive than MVDet, which used a head-foot point for pre-
diction. Our method maximized the use of global information and only used one point to
indicate each target, which greatly improves the model speed. Even though the proposed
keypoints detection method does not have a significant improvement effect, we could
further extract features based on the double-branch features fusion to make the model show
better results in MODA, MODP, and Recall. Because the keypoints are more convenient for
various calculations for the model, they show better performance when combined with the
double-branch multi-layer convolution fusion module.

The changing trend of MODA and MODP of the proposed model and the current
state-of-the-art model is compared in Figures 5 and 6. It can be seen from the results that
our model always performs better in Wildtrack and MultiviewX datasets.

(a) (b)

Figure 5. Comparison with state-of-the-art model in Wildtrack datasets. (a) Wildtrack MODA;
(b) Wildtrack MODP.

(a) (b)

Figure 6. Comparison with state-of-the-art model in MultiviewX datasets. (a) MultiviewX MODA;
(b) MultiviewX MODP.

Figure 7 shows the final results of our model. The bottom part of Figure 7 is the
Ground Truth corresponding to a scene in the two datasets, and the small box represents
the Ground Truth corresponding to the model detection results. Each point represents the
position of a target in the corresponding top view. It can be seen that the results obtained by
the model are consistent with the label, and there are almost no missed pedestrian targets.
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(a) (b)

Figure 7. Prediction and results under different datasets. (a) MultiviewX; (b) Wildtrack.

4.4. Contribution of Speed

Real-time is very important in the multi-perspective pedestrian detection task. Key-
points detection completely abandons the anchor mechanism, which has no need for
consuming extra resources to calculate the IOU. It generates a series of position coordinates
for coordinate regression and classification prediction and reduces the time to generate
anchor and conduct encoding and decoding processing. There is no time-consuming post-
processing process for the center point to help the model locate the target position quickly.
The model calculation steps are simple, and we do not need to enlarge the resolution of
the image when processing. The detection method of keypoints and double-branch feature
fusion module can achieve each other, presenting the effect of 1 + 1 > 2. Each dataset has N
cameras, the images from N angles are treated as a group, The FPS indicate several groups
per second. The comparison of running times on Wildtrack and MultiviewX are shown in
Table 7.

Table 7. Running time of the models on different test sets.

FPS Wildtrack/s MultiviewX/s

MVDet 3.42 4.09
Ours 3.58 4.30

The double-branch structure takes a certain amount of time due to feature extraction.
However, the detection method of key points can make the model run faster. It can be
seen from Table 5 that the speed of our model in the Wildtrack and MultiviewX datasets is
accelerated to varying degrees.

5. Conclusions

In this paper, our base detection model introduces a double-branch feature fusion
structure based on the lightweight network to further refine the extraction of features.
We use center points to replace the positive sampling points and make the model more
flexible. The idea reduces the number of parameters, speeding up the model, and avoids
the negative impact of the anchor frame mechanism on the model. The keypoints detection
is adapted to the double-branch feature fusion model. A multi-view aggregation approach
with feature projection allows the generated bird’s eye view to aggregate multi-camera
pedestrian information. Our model achieves MODA of 90.0% on the Wildtrack dataset,
which is higher than the previous state-of-the-art by 1.8%. Very competitive results are
also performed on the MultiviewX simulation dataset, which is higher than the previous
state-of-the-art by 5.6%.
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