
 
 

 

 
Entropy 2022, 24, 240. https://doi.org/10.3390/e24020240 www.mdpi.com/journal/entropy 

Hypothesis 

On the Nature of Functional Differentiation: The Role of  
Self-Organization with Constraints 
Ichiro Tsuda 1,2*, Hiroshi Watanabe 2, Hiromichi Tsukada 2 and Yutaka Yamaguti 3 

1 Chubu University Academy of Emerging Sciences, Chubu University, Kasugai 487-8501, Aichi, Japan 
2 Center for Mathematical Science and Artificial Intelligence, Chubu University, Kasugai 487-8501, Aichi, 

Japan; hwata@isc.chubu.ac.jp (H.W.); tsukada@isc.chubu.ac.jp (H.T.) 
3 Faculty of Information Engineering, Fukuoka Institute of Technology, Fukuoka 811-0295, Japan;  

y-yamaguchi@fit.ac.jp 
* Correspondence: tsuda@isc.chubu.ac.jp 

Abstract: The focus of this article is the self-organization of neural systems under constraints. In 
2016, we proposed a theory for self-organization with constraints to clarify the neural mechanism 
of functional differentiation. As a typical application of the theory, we developed evolutionary res-
ervoir computers that exhibit functional differentiation of neurons. Regarding the self-organized 
structure of neural systems, Warren McCulloch described the neural networks of the brain as being 
“heterarchical”, rather than hierarchical, in structure. Unlike the fixed boundary conditions in con-
ventional self-organization theory, where stationary phenomena are the target for study, the neural 
networks of the brain change their functional structure via synaptic learning and neural differenti-
ation to exhibit specific functions, thereby adapting to nonstationary environmental changes. Thus, 
the neural network structure is altered dynamically among possible network structures. We refer to 
such changes as a dynamic heterarchy. Through the dynamic changes of the network structure un-
der constraints, such as physical, chemical, and informational factors, which act on the whole sys-
tem, neural systems realize functional differentiation or functional parcellation. Based on the com-
putation results of our model for functional differentiation, we propose hypotheses on the neuronal 
mechanism of functional differentiation. Finally, using the Kolmogorov–Arnold–Sprecher superpo-
sition theorem, which can be realized by a layered deep neural network, we propose a possible 
scenario of functional (including cell) differentiation. 

Keywords: self-organization with constraints; functional differentiation; hierarchy; heterarchy; 
nonstationarity; variational principle; superposition theorem 
 

1. Introduction 
The purpose of this study is to create a mathematical framework of functional differ-

entiation using numerical analyses and a superposition theorem. In this paper, we pro-
pose hypotheses concerning the neural mechanism of functional (including cell) differen-
tiation. According to the research based on the framework of self-organization with con-
straints [1], we developed a constrained self-organization theory and applied it to the in-
teracting systems with complex environments, which were realized by new artificial in-
telligence, such as evolutionary reservoir computers (ERC) [2] and evolutionary dynam-
ical systems (EDS) [3]. With certain constraints, ERC and EDS revealed the emergence of 
the network function via an optimized evolutionary process, which was associated with 
the self-organization of neuronal components (i.e., elements), thus leading to the realiza-
tion of functional differentiation. The evolved structure of neural networks is discussed 
in relation to “heterarchical networks,” as proposed by Warren McCulloch, as the typical 
network structure of the brain [4]. In Section 2, we briefly review the conventional theory 
of self-organization and self-organization with constraints. In Section 3, we describe the 
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heterarchical structures in comparison with hierarchical structures and uniform struc-
tures. In Section 4, we demonstrate that ERC and EDS yield heterarchical structures that 
change dynamically in the process of performing given tasks, thus suggesting that the 
brain is characterized as a “dynamic heterarchy.” In Section 5, based on the computation 
results of ERC and EDS, and the Kolmogorov–Arnold–Sprecher (KAS) superposition the-
orem, we propose a possible scenario for the functional differentiation of neurons or neu-
ral assemblies. Section 6 is a summary and outlook. 

2. The Difference between Self-Organization and Self-Organization with Constraints 
As discussed previously [1], scientific (not philosophical) studies of self-organization 

started in accordance with the cybernetics movement, in which the theory of self-organi-
zation developed in the construction of control theory [5]. Thereafter, in physics and 
chemistry, Haken and Prigogine et al. developed the concept of self-organization and for-
mulated it as the emergence of macroscopic spatiotemporal patterns in far-from-equilib-
rium systems under stationary conditions. In fact, Prigogine et al. formulated self-organi-
zation phenomena observed particularly in chemical reactions and hydrodynamic systems, 
in terms of the variational principle of entropy production minimum [6]. As energy dissi-
pation is a prerequisite in far-from-equilibrium systems, the concept of entropy flow as-
sociated with energy dissipation was introduced. In this respect, entropy production is 
defined as the sum of the change in the internal entropy of the system and the outflow of 
entropy from the system to the environment. Haken extended equilibrium phase transi-
tions to far-from-equilibrium systems, introducing the slaving principle [7]. Moreover, 
Haken extended the Ginzburg–Landau formula to far-from-equilibrium and multicom-
ponent systems. Although many modes appear in each critical point of transition, a few 
modes enslave other modes, which implies the appearance of order parameters from ran-
domly interacting modes, including external noise. 

Self-organizing phenomena are characterized by the appearance of macroscopic-or-
dered motion via cooperative and/or competitive interactions between the microscopic 
components of the system, namely atomic- or molecular-level interactions. The theory was 
successful in describing the phenomena observed in stationary and far-from-equilibrium 
states, for example, of target patterns, spiral patterns, propagating waves, and periodic 
and chaotic oscillations in many chemical and physical systems, such as chemical reaction 
systems, hydrodynamic systems, optical systems, and geophysics (see, e.g., [6,7]). 

Another aspect of self-organization was highlighted in typical communication prob-
lems, as the brain activity in each communicating person may change according to indi-
vidual intention factors and environmental factors, such as the purpose of the communi-
cation (see, e.g., [8–11]). This aspect can be formulated within a framework of functional 
differentiation [1], in which the functional elements (or components or subsystems) are 
produced by a certain constraint that acts on the whole system, based on the fact that 
neuronal functional differentiation occurs not only via genetic factors, but also via dy-
namic interactions between the brain and the environment [12–15]. Pattee [16] treated con-
straints by discriminating them from dynamics. He argued that a constraint is imposed 
via a rate-independent process, which is irreducible to dynamics; thus, it can control the 
system dynamics, which act as a rate-dependent process. We introduced a similar idea 
about constraints using a variational principle but treated the system dynamics that inter-
acted with the environment as another constraint. 

3. Dynamic Heterarchy 
As discussed above, the brain is a self-organizing system with both internal and ex-

ternal constraints, thus yielding the dynamically nonstationary activity of neural net-
works. What type of self-organizing system is the brain? From the aspect of the variation 
of individual preferences, McCulloch considered an inconsistency in preference: people 
may prefer A to B, B to C, and C to A, which cannot be described by simple hierarchical 
values. However, this can be represented using a complex network. In fact, the brain 
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solves such an inconsistency using the neural network. Furthermore, the brain solves an-
other inconsistency, i.e., a circular causality: event A is caused by event B, B is caused by 
C, and C is caused by A. As a system that can handle these circular relations, McCulloch 
suggested the concept of heterarchy. Heterarchy is constructed by a top-down hierarchi-
cally connected system with additional bottom-up connections, in which a connection is 
defined as a sense of value and/or meaning, but not necessarily at a hardware level. 

Considering McCulloch’s idea of heterarchy in the brain, Cumming emphasized the 
importance of this concept in wider fields, including social, economic, and ecological sys-
tems, and classified the systems into four types [17]: independent (nonrelational), uni-
form, hierarchical, and heterarchical systems (see Figure 1). 

  
(a) (b) 

  
(c) (d) 

Figure 1. Four types of systems (see also Figure 2 in [17]): (a) independent; (b) uniform; (c) hierar-
chical; and (d) heterarchical. 

The neural networks in the brain change dynamically through learning mechanisms 
based on synaptic plasticity, depending on internal and external constraints. Because neu-
rons in a higher-layered network of feedforward neural networks represent a higher func-
tion, it looks like a hierarchical system. Considering semantic factors, such as the values 
discussed by McCulloch, a hierarchical system demands the condition that there should 
be a semantic action from higher layers to lower layers of the network, which can be real-
ized by sequential feedback connections from a higher to a lower layer. The hierarchical 
system of this sense can be observed in deep neural networks, following deep learning 
with the back-propagation algorithm. Another hypothesis proposes that hierarchically or-
ganized modular networks are evolved under the constraint of minimization of connec-
tion costs [18]. In contrast, actual brain networks typically consist of feedforward net-
works with feedback connections from a higher layer to multiple lower layers, whereby a 
simple hierarchy of function seems to be difficult to organize (see, e.g., [12] and [15]). In 
particular, the recurrent connections that occur in the brain could render the network ar-
chitecture heterarchical, as stated by McCulloch. However, neuroscientists have distin-
guished between forward (ascending) and backward (descending) connections that have 
distinct anatomical and physiological properties, which may lead to distinct cognitive 
properties. This distinction has been used to integrate brain areas into a traditional con-
cept of hierarchy [19,20], even in a dynamic phase [21]. However, a sufficient number of 
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violations of a hierarchical designation exist: a small-world network, for example, which 
is actually observed in the cortex, makes it difficult to render the organization of brain 
areas as hierarchical in a traditional sense [22]. 

Therefore, casting the idea of a “heterarchical” organization in the brain will be val-
uable for future studies of “hierarchical” organization. Furthermore, the neural systems 
develop continually, caused by changes in the network structure via synaptic plasticity, 
dynamic interactions between neurons and glial cells, and interactions with the environ-
ment. These environmental interactions are nonstationary, because of the indeterminacy 
of the environment. 

4. Heterarchy in the Model of Functional Differentiation 
The developmental process of the brain occurs not in stationary states but in nonsta-

tionary states in far-from-equilibrium systems, typically yielding functional differentia-
tion. Here, stationary states are defined as an unchanged probability distribution, and far-
from-equilibrium systems are open systems, in which the states cannot reach the equilib-
rium states but could reach steady (unchanged in time), periodic, and chaotic states (see, 
e.g., [6,7]). Furthermore, nonstationary dynamics is also responsible for functional parcel-
lation via functional connectivity, which changes according to the tasks and purposes [23]. 
Stationary states can be realized by fixed boundary conditions or initial conditions, 
whereas for the realization of nonstationary states, these conditions are not fixed, and a 
variational constraint that acts on the whole system is adopted. Therefore, in the latter 
case, the aim of the research is to identify an appropriate boundary and/or initial condition 
among various conditions to accomplish the given purposes. In fact, we studied develop-
mental networks, including an ERC [2] and an EDS [3], and observed the network reali-
zation of functional differentiation and functional parcellation. Here, we demonstrate the 
appearance of the heterarchical structures of the networks in their developmental process. 

We studied the evolution of a network of elementary dynamical systems and/or neu-
ronal units, motivated by the following questions: 1. How did neuronal cells evolve and 
what are their roles in biological systems? 2. What is the relationship between the heter-
archical network structures established in biological evolution and functional differentia-
tion? 

4.1. Heterarchy in EDS 
We considered a network system of cells with functions that are not determined in 

advance, such as stem cells. The state of each cell, which is the network element, can be 
modeled by dynamical systems, i.e., (𝜙ఒ௧, Ω), where Ω is a phase space and 𝜙ఒ௧ is a pa-
rameter (λ)-dependent group action acting on each point in the phase space. This is called 
a dynamical rule, because it describes state transitions, or flow, because it integrates vector 
fields. In general, each dynamical system is designated by multiple parameters. Here, we 
assume that the states of different cells are assigned by different values of the parameter 
set. Given a constraint, for example, the maximum transmission of information, we intro-
duced a genetic algorithm that changes a set of parameters to accomplish the constraint, 
thereby changing dynamical systems adaptively. As an elementary dynamical system in 
the network, we chose the following discrete-time dynamical system, where 𝑡  is a 
nonnegative integer: 𝑥௞(𝑡 + 1) = 𝑎ଵ tanh൫𝑎ଶ(𝑥௞(𝑡) − 𝑎ଷ)൯ − 𝑎ସ tanh൫𝑎ହ(𝑥௞(𝑡) − 𝑎଺)൯ + 𝑏௞ (1) 

For 𝑁-coupled dynamical systems, a set of parameters GA = (𝑎ଵ, ⋯ , 𝑎଺, 𝑏ଵ, ⋯ , 𝑏ே ) was 
considered a gene for the genetic algorithm. In the product space of the phase space and 
the parameter space, the overall dynamical systems can be represented by a coupled-dy-
namical system in various coupling manners, in which each dynamical rule was described 
by Equation (1), which produces monotone functions and unimodal and bimodal func-
tions. 
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When introducing the maximum transmission of mutual information measured be-
tween a given external signal and each elementary dynamical system in the network, we 
found that each elementary dynamical system is differentiated to express an excitable 
spiking state, a passively susceptible state, and an oscillatory state, depending on the cou-
pling strength of the network [3] (see Figure 2). This suggests that spiking neurons, oscil-
latory neurons, and glial active or passive responses were differentiated to satisfy the con-
dition of interacting-cell systems that maximizes the transmission of external information. 
The overall system behaviors were weakly chaotic states, thereby allowing the accelera-
tion of information transmission (see [24] and [25]). Complex structures via tripartite syn-
apses between neurons and astrocytes were not explicitly found in the present computa-
tional model, because the model was organized to yield dynamical systems and their be-
haviors under the fixed network structure. Because tripartite synapses induce neuronal 
spiking and oscillations via calcium propagation [26], such a complex structure will be a 
target for the study within the framework of a certain optimization. 

 
Figure 2. Schematic drawing of three typical differentiated states: (a) a passive state expressing a 
glial passive susceptible state, (b) an excitable state expressing a spiking neuron, and (c) an oscilla-
tory state expressing an oscillatory neuron or glial oscillation (see [3] for numerical results of activ-
ity). 

From this informational aspect of the network values in McCulloch’s sense, we in-
vestigated the change in the network structure (see Figure 3). For the first time, we con-
structed a randomly connected neural network that consisted of the elementary units de-
scribed by Equation (1). We defined a layer of the network, according to the closeness to 
the unit 0, where closeness is defined as the least number of steps along the connected 
paths from unit 0 (Figure 3a). We applied the genetic algorithm to the connection strength 
under the fixed network topology (Figure 3b). In Figure 3b–d, the red (blue) directional 
lines indicate excitatory (inhibitory) connections, with the shades of color indicating the 
connection strength. In Figure 3c,d, we demonstrate the effect of information transmission 
after erasing the feedback connections: in Figure 3c, all feedback connections from higher 
to lower layers were erased, and in Figure 3d, only the feedback connection from unit 7 to 
unit 3 was erased. In the former case, the mutual information between unit 3 and the input 
decayed faster than that observed in the latter case. In contrast, in the latter case, infor-
mation was preserved qualitatively, although the information quantity decreased slightly. 
It is noted that the mutual information between unit 3 and the input in the case without 
all feedback connections (Figure 3c) was larger than that in the case with a few feedback 
connections (Figure 3d). This is because information quantity can be supplied via feedfor-
ward connections rather than feedback connections. 

In conclusion, the results of these numerical analyses imply that the input infor-
mation can be preserved by the feedback connections and that the reduction of infor-
mation quantity depends on the valance between feedforward and feedback connections. 
This is an important characteristic of heterarchical networks. In this model, the temporal 
change in mutual information conveys the values of input patterns. These numerical anal-
yses suggest that a heterarchical structure is relevant for the effective preservation of the 
quality (values) of input information within the network system. 
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(d) 

Figure 3. Numerical evidence of the emergence of a heterarchical structure in the evolved network 
of dynamical systems. (a) Randomly chosen network topology. Layers are defined by the closeness 
of units to the receiver unit, 0. In (b)–(d), the red (blue) directional lines indicate excitatory (inhibi-
tory) connections, with the shades of color indicating the connection strength: the scale shown at a 
lower place of each figure. (b) Evolved network. Evolution was applied to the connection strength, 
preserving network topology. (c) Drastic reduction of information quantity in unit 3 after erasing 
all feedback connections (green curve in the panel on the right: the abscissa denotes time and the 
ordinate denotes mutual information between unit 3 and the input), in relation to the time change 
of information quantity in unit 3 of the original evolved network (a purple curve). (d) Change of 
information quantity in unit 3 after erasing only the feedback connection from unit 7 to unit 3 (green 
curve in the panel on the right). Information quantity was dropped, but qualitative behaviors did 
not change, which implies the preservation of quality (values) of information processing. Here, mu-
tual information was calculated as time-dependent mutual information between two arbitrary units, 
which measures the dynamic change of shared information (see [24] for a detailed technique). 

Based on the abovementioned numerical analyses, we propose a hypothesis for neu-
ronal differentiation. 

Hypothesis 1. In biological evolution, neurons and glial cells evolved as functional elements, the 
coupled system of which is realized by tripartite synapses, and the networks of their functional 
elements can obtain external information and propagate it most effectively inside the system, as the 
coupled system can coordinate the overall chaotic system into synchrony of neuronal firing via the 
calcium waves in astrocytes [26]. The evolved network system includes a heterarchical structure. 
Moreover, the chaotic behaviors of the overall system accelerate the evolutionary development (see 
[24,25]). 

4.2. Heterarchy in ERC 
A reservoir computer (RC) can be considered a model of the cerebral cortex [27–29] 

and the cerebellar cortex [30] because it is constructed by neural networks, including ran-
domly coupled recurrent connections that play a role in the information processing of 
external time series. RCs learn the time series by changing only the synaptic connections 
from internal recurrent networks to output neurons. Therefore, RCs are not appropriate 
for use as a model of the cerebral cortex when they are adapted to changeable recurrent 
connections, such as those of the hippocampal CA3, although this idea of fixed recurrent 
networks is useful for rapid computation in the case without learning [31]. 

Motivated by the presence of synaptic learning in recurrent networks in the cerebral 
cortex, we extended RCs to allow for a changeable network structure, by introducing a 
genetic algorithm to produce ERC [2]. The dynamics of the network consisting of 𝑁 neu-
rons is described by the following equation for each elementary unit 𝑘: 
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𝑥௞(𝑡 + 1) = (1 − 𝛼௞)𝑥௞(𝑡) + 𝛼௞tanh (∑ 𝑤௞௟𝑥௟(𝑡) + 𝑤௞଴ + ∑ 𝑤௞௟(௜௡)𝐼௟(𝑡)) +௟௟𝜎௞(𝑡), 
(2) 

where 𝑥௞(𝑡) is a state of the 𝑘th neuron (unit) at time 𝑡, 𝑤௞௟ are the weights of recurrent 
connections in the internal reservoir network, 𝑤௞௟(௜௡) are weights of connections from an 
input signal 𝐼௞(𝑡), and 𝜎௞(𝑡) is a noise term. The kth output unit is given by 𝑦௞∗(𝑡) = ∑ 𝑤௞௟∗ 𝑥௟(𝑡)௟ , (3) 

where the asterisk indicates the type of input pattern, such as visual or auditory patterns. 
In addition to synaptic learning at the output layer, which is performed by a conven-

tional RC, we introduced a framework for changes of meta-parameters by adopting the 
rewiring of synaptic connections in internal recurrent networks, which can be accom-
plished by an evolutionary (genetic) algorithm, including mutation and crossover. We 
used several spatial and temporal patterns as different inputs in the learning phase. At 
the convergent state of the network, sensory neurons were differentiated for each type of 
sensory input pattern. This was a result of self-organization of the elementary units in the 
network system under constraints, in which the specific function of each elementary unit 
emerges concomitantly with the emergence of the overall network function. The network 
structure was suggestive of an effective network architecture for information processing, 
which actually occurred in biological evolution. In fact, the convergent network structure 
displayed a feedforward network, including feedback connections, which is quite similar 
to the structure observed in the hippocampus [32] and in local (not global) networks in 
the cerebral neocortex [33]. 

Figure 4 illustrates the change in the network structure of the ERC’s internal network, 
which consists of an input and output layer. In Figure 4a, the initial connections between 
both layers and the initial connections inside an input and output layer, which were given 
randomly in both wiring topology and strengths, are shown on the left, whereas the 
evolved connections are shown on the right. The feedforward connections were strength-
ened, and the feedback connections were weakened, which seems to indicate the appear-
ance of a hierarchical structure; however, the number of feedback connections was in-
creased, suggesting the appearance of a heterarchical structure. To clarify the emergence 
of such a structure, we computed the percentage of correct outputs of ERC with 𝑠 times 
the weights of all feedback connections after the convergence of the network evolution of 
ERC, which is shown in Figure 4b. The abscissa indicates the scale factor of the weights, 𝑠, and the ordinate indicates the percentage of correct outputs that represent the accuracy 
of the functional differentiation of spatial (i.e., visual) and temporal (i.e., auditory) neu-
rons, measured in relation to the case of originally evolved network weights. Here, the 
weights of the connections from the neurons in this internal output layer to the output 
neurons were changed again using the same Ridge regression algorithm. The computa-
tion results revealed that the accuracy of the functional differentiation tended to decrease 
when the scale factor of the weights changed from 𝑠 = 1. Furthermore, one can measure 
the energy consumption using a degree of connectivity, such as the number of synaptic 
connections or the overall strength of synaptic connections. 
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(a) 

 
(b) 

Figure 4. Numerical evidence of the heterarchical structure of an ERC. (a) Change in the internal 
network structure, consisting of an input and output layer from an initial random network to an 
evolved network. The network change proceeded with the change of wiring topology and connec-
tion weights, according to the optimization algorithm, such as the minimization of errors (present 
case, see [2] for ERC and [34,35] for predictive coding formulations), minimization of energy cost, 
or maximization of information (see, e.g., [3], [18], [24,25], and [36,37]). The colors of the nodes in-
dicate the degree of information quantity shared with the spatial or temporal output neurons: the 
higher the shared information with spatial (temporal) output neurons, the deeper the reddish (blu-
ish) color of the node. The colors of the edges are as follows: red for feedforward connections; blue 
for feedback connections; green for connections within the input layer; and purple for connections 
within the output layer. The thickness of the lines indicates the magnitude of the connection 
weights. (b) Change in the accuracy of the realization of functional differentiation with the change 
in the scale factor of feedback connections. The red (blue) curve denotes the accuracy of the spatial 
(temporal) neuron. 

Considering these numerical analyses and other works [24,25,34–38], we propose the 
following hypotheses. 

Hypothesis 2. The functional differentiation for neuronal specificity, such as responding to spe-
cific external stimuli, evolved to minimize errors, which suggests the maximization of the trans-
mitted information while reducing energy consumption. 
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The developed ERC showed evolution to a heterarchical structure of the internal neu-
ral network from a random network in RC, which includes a feedforward network accom-
panied by a feedback network. This numerical analysis suggests the evolution of the hip-
pocampus from reptiles to mammals [14]. Because the mammalian hippocampus includes 
a feedforward network from the CA3 to the CA1, accompanied by a feedback network in 
the CA3, it is plausible to think that the formation of episodic memory can be realized by 
this kind of evolution of the heterarchical network structure. 

Hypothesis 3. In the biological evolution of the hippocampus from reptiles to mammals, mammals 
became able to associate different memories successively, because of their heterarchical structure, 
whereas reptiles could perform a single association of memory, because of their random networks. 
Therefore, episodic memory became possible in mammals. 

Hypothesis 4. The neural networks required to yield functional differentiation are evolutionarily 
self-organized to exhibit a heterarchical structure via the appearance of feedback connections within 
an architecture composed of forward connections. 

5. Superposition Theorem, Epigenetic Landscape, and Functional Differentiation 
Functional differentiation in the brain begins during embryogenesis and is com-

pleted during the developmental process and thus depends on both genetic factors and 
environmental factors, whereas functional parcellation is realized via the functional con-
nectivity between neurons or neural assemblies in a task-dependent manner. Here, we 
focus on a supposedly common process that can be described by mathematical functions. 
Figure 5 illustrates the process of cell differentiation from pluripotent stem cells, which 
was schematically drawn using the landscape representation. A similar process can occur 
in functional differentiation. We asked how this differentiation process is represented by 
mathematical functions; to address this question, we referred to the superposition theo-
rem proven by Kolmogorov, Arnold, et al. ([39–41]). We also asked how the change in 
landscape could represent cellular or functional differentiation; to address this question, 
we studied the changes in the network of dynamical systems using the transformation of 
indices, which represent transcription factors, for example. 

5.1. The Kolmogorov–Arnold–Sprecher Superposition Theorem 
The representation of multivariate continuous functions in terms of single-variable 

continuous functions is a challenging problem that has attracted the interest of many re-
searchers, particularly in relation to the solvability of algebraic equations proposed by 
Hilbert (for example, see [42]). Kolmogorov, Arnold, and, later, Sprecher and others 
proved that such a representation was possible. Here, we consider the representation of 
an 𝑛-variable continuous function, 𝑓: [0, 1]௡ → ℝ, in terms of the superposition of the fol-
lowing continuous functions: 𝜓: [0, 2] → [0, 2], which is a (ν, α)-Hölder continuous (in-
ner) function, and 𝜙௝: [0, 2 ఊିଵఊିଶ] → ℝ, indicating 𝑚 + 1 continuous (outer) functions. We 
call a function 𝑔: [𝑎, 𝑏] → [𝑎, 𝑏] (ν, α)-Hölder continuous if and only if there exist ν > 0 
and 0 < α ≤ 1, such that |𝑔(𝑥) − 𝑔(𝑦)| ≤ ν|𝑥 − 𝑦|ఈ for all 𝑥, 𝑦 ∈ [𝑎, 𝑏]. The case of α = 1 
indicates a ν-Lipschitz continuous function. Let 𝑛 ≥ 2, 𝑚 ≥ 2𝑛, and 𝛾 ≥ 𝑚 + 2 be inte-
gers. One can determine real numbers, 𝑐, 𝜆௜(𝑖 = 1, ⋯ 𝑛), ν, and α, in the following way: 𝑐 = ଵఊ(ఊିଵ) , 𝜆ଵ = 1, 𝜆௜ = ∑ 𝛾ି(௜ିଵ)ఉ೙(௟) (2 ≤ 𝑖 ≤ 𝑛)ஶ௟ୀଵ  with 𝛽௡(𝑙) = ଵି௡೗ଵି௡ , and ν =2ିఈ(𝛾 + 3), 𝛼 = logఊ 2. These relations are necessary for the actual construction of the in-
ner and outer functions. 

Theorem 1. (The Kolmogorov–Arnold–Sprecher (KAS) superposition theorem.) 
Using the conditions described above, the following representation was obtained: 
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𝒇(𝒙𝟏, 𝒙𝟐, ⋯ , 𝒙𝒏) =  ෍ 𝝓𝒋(෍ 𝝀𝒊𝝍(𝒙𝒊 + 𝒋𝒄))𝒏
𝒊ୀ𝟏

𝒎
𝒋ୀ𝟎  (4) 

Proof was given in a constructive way that could lead us to the realization of 𝜓(𝑥) 
by continuous but self-similar functions, which are, in particular, the monotonically in-
creasing functions. The inner function 𝜓(𝑥) is independent of 𝑓(𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௡). (refer to 
[42] and [43] for proof). 

Regarding the realization of this theorem by neural networks, Hecht-Nielsen first 
identified its possibility [44]. Funahashi proved the approximate realization of multivari-
ate continuous functions by neural networks by referring to the KAS theorem [45]. Re-
cently, Montanelli and Young proved in a constructive way that deep rectified linear unit 
(ReLU) networks approximate any multivariate continuous functions by using the KAS 
theorem [42], where ReLU networks refer to the networks consisting of the units with a 
rectified linear activation function, as defined by the following equation: 𝑔(𝑧) = max (0, 𝑧), (5) 

where 𝑧 is the summation of the inputs to each neuronal unit and 𝑔 is an activation 
function. 

5.2. Epigenetic Landscape with Indices of Phenotype Yielding Functional Differentiation 
Is there any evidence that dynamical systems are related to the cell differentiation 

from neural stem cells? Imayoshi et al. [46] found that, in the mouse, the dynamic change 
in the activity of three kinds of transcription factors of the bHLH type, namely Ascl1, 
Hes1, and Olig2, contributes to the differentiation of neural stem cells to GABAergic neu-
rons, astrocytes, and oligodendrocytes, respectively. These three proteins display oscilla-
tions in their concentrations with different periods. When these oscillatory states are main-
tained, self-reproduction of neural stem cells is facilitated. In contrast, when the concen-
tration (which implies the expression level) of any of the proteins increases to inhibit the 
others, the corresponding cell differentiation occurs. For example, if the concentration of 
Ascl1 increases and inhibits the other two proteins, then differentiation to astrocytes and 
oligodendrocytes is inhibited and only neurons differentiate. Furthermore, Furusawa and 
Kaneko [47] pursued the dynamical mechanism of cell differentiation and succeeded in 
explaining the dynamics associated with cell differentiation with coupled dynamical sys-
tems and a fluctuation–dissipation theorem of the nonequilibrium type. 

The realization of the theorem by deep neural networks and the facts described above 
led us to formulate the following working hypothesis for the dynamical mechanism of 
functional differentiation. 

Working hypothesis: We assume that dynamical systems provide an underlying mechanism of 
functional differentiation. Then, it is probable that differentiated neuronal characters are repre-
sented by attractors, yielding multistable states in the phase space of the neural network. Here, the 
phase space is a state space representing neural activity. A nondifferentiated state, such as the state 
of (neuronal) stem cells, has no attractor or only a single attractor, the basin of attraction of which 
is globally flat, thus potentially representing “resilience” (see Figure 5). Therefore, functional dif-
ferentiation is considered the dynamical change of basin structure in the phase space. 

To represent this aspect, we used the landscape, which describes the derivatives or 
local differences of vector fields in the phase space. 
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Figure 5. Schematic drawing of the mechanism of functional differentiation: three-dimensional 
landscape representation (see also [47]). The three colored balls represent three types of transcrip-
tion factors that may behave in, for example, oscillatory states of concentration. The change in the 
landscape toward the left-lower part of the figure represents the differentiation of three types of 
neuronal cells that are realized via the mutual inhibition of transcription factors. Differentiation may 
be triggered by the inhibition triggered by one of the other factors. Here, neither the reprogramming 
(i.e., rejuvenation) nor the progenitor cell states shown in Waddington’s epigenetic landscape [48] 
are drawn. 

The landscape with multiple stable states, i.e., multiple attractors, can be described 
by a higher-order continuous function, for example, an 𝑛th order polynomial function. 
However, the higher-order continuous functions are not necessarily differentiable, but 
simply a continuous function of variable 𝑦 with 𝑛 coefficients, 𝑐ଵ, 𝑐ଶ, ⋯ , 𝑐௡. This func-
tion, 𝐷(𝑦; ሼ𝑐ଵ, 𝑐ଶ, ⋯ , 𝑐௡ሽ), can be viewed as an 𝑛-variable continuous function, 𝑓, as is rep-
resented in Equation (6): 𝑓(𝑐ଵ, 𝑐ଶ, ⋯ , 𝑐௡) ≡ 𝐷(𝑦; ሼ𝑐ଵ, 𝑐ଶ, ⋯ , 𝑐௡ሽ). (6) 

In contrast, the landscape with a single attractor can be described by, for example, the 
following equation: 𝑆(𝑦; ሼ𝑏ሽ) = 𝑦௡ + 𝑏𝑦 + 1. (7) 

If this landscape can be viewed as a function of a single parameter 𝒃, one obtains the 
following function, 𝒉: ℎ(𝑏) ≡ 𝑆(𝑦; ሼ𝑏ሽ). (8) 

We interpreted function ℎ(𝑏) to be an activation state of a stem cell, such as a state of a 
transcription factor. 𝑆(𝑦; ሼ𝑏ሽ) was then interpreted to be a landscape of the phenotypic 
state of the stem cell using a transcription factor as an index of phenotype. Similarly, we 
interpreted function 𝑓(𝑐ଵ, 𝑐ଶ, ⋯ , 𝑐௡) to be based on a set of activation states of differenti-
ated cells, such as a combination of transcription factors. Then, 𝐷(𝑦; ሼ𝑐ଵ, 𝑐ଶ, ⋯ , 𝑐௡ሽ) was 
interpreted by a landscape of phenotypic states of differentiated cells using transcription 
factors as indices of phenotype. Based on the assumption described in the working hy-
pothesis, each metastable state is represented by an attractor. 

The application of the KAS theorem to the transformation from the state of a tran-
scription factor in stem cells to a combination of transcription factors in differentiated cells 
allows the single-variable continuous function, 𝜓(𝑐௜), (𝑖 = 1,2, ⋯ , 𝑛), which is an inner 
function of the theorem, to represent any 𝑛-variable continuous function 𝑓(𝑐ଵ, 𝑐ଶ, ⋯ , 𝑐௡) 
via composite functions with outer functions. Here, the theorem provides the transfor-
mation of the cells’ activation factors, such as transcription factors, which may play a role 
in the indices of phenotype. The corresponding cells’ states can be represented by the 
landscapes, 𝐷(𝑦; ሼ𝑐ଵ, 𝑐ଶ, ⋯ , 𝑐௡ሽ) , which change from 𝑆(𝑦; ሼ𝑏ሽ) . Because 𝜓(𝑐௜), (𝑖 =
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1,2, ⋯ , 𝑛) can be viewed as the states of the transcription factors of stem cells, these should 
be independent of those of differentiated cells. This is compatible with the most important 
condition of the theorem. Figure 6 illustrates a single-variable function 𝜓(𝑐௜), (𝑖 =1,2, ⋯ , 𝑛)  for various values of 𝛾 , the number of variables 𝑛 , and the grid size 𝑘 , 
whereby the minimum width, i.e., precision (𝛾ି௞) of drawing the graph of such a func-
tion, was given. When 𝑘 → ∞, the function is self-similar. 

 
(a) 

  
(b) (c) 

Figure 6. Numerical construction of the inner functions of Equation (4), 𝜓(𝑐௜), (𝑖 = 1,2, ⋯ , 𝑛). 𝑘 = 
3. An approximation of a single-variable function with a finite precision is shown, which can be an 
elementary function constituting a given 𝑛-variable function. In the present theory, this type of func-
tion is viewed as the states of transcription factors of stem cells. (a) 𝑛 = 2. Blue, orange, and green 
indicate 𝛾 = 6, 𝛾 = 10, and 𝛾 = 20, respectively; (b) 𝑛 = 2, 𝛾 = 10; (c) 𝑛 = 3, 𝛾 = 10. 

According to these interpretations, we propose the following hypothesis. 

Hypothesis 5. Functional differentiation is a process of selecting the initial conditions of neuronal 
stem cells, retrospectively, from which the development occurs toward an attractor that represents 
a differentiated cell as a target. Those initial conditions, which are certain parts of the basin of 
attraction in the landscape 𝑆(𝑦; ሼ𝑏ሽ), are designated by the continuous functions 𝜓(𝑐௜), (𝑖 =1,2, ⋯ , 𝑛). Another landscape of differentiated cells, 𝐷(𝑦; ሼ𝑐ଵ, 𝑐ଶ, ⋯ , 𝑐௡ሽ), represents the activity 
state of phenotype, i.e., a combination of active proteins, which are designated by the multivariate 
continuous functions 𝑓(𝑐ଵ, 𝑐ଶ, ⋯ , 𝑐௡). 
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The importance of environmental factors has been recognized in cell differentiation, 
such as factors that bring about reprogramming or rejuvenation. Reprogramming pro-
vides feedback information in the differentiation process. Similarly, in the functional dif-
ferentiation of neural systems, the feedback information from environmental factors in 
the developmental process plays an important role in the adjustment of the self-organiza-
tion of elementary units to that of an overall system. Therefore, the present theory pro-
vides a common framework for both cell and functional differentiation. 

6. Summary and Outlook 
In this paper, we proposed a mathematical framework of functional differentiation, 

based on the numerical results of both ERC and EDS and based on the KAS superposition 
theorem. We further proposed four hypotheses in relation to the following fundamental 
questions: (1) How do neuronal cells evolve and what are their roles? (2) What is the rela-
tionship between the heterarchical network structures established in biological evolution 
and functional differentiation? Furthermore, we asked how a change of landscape could 
represent cellular or functional differentiation. Using the working hypothesis, concerning 
the role of dynamical systems in the process of differentiation, we proposed another hy-
pothesis about the epigenetic specification of cellular indices that produces functional dif-
ferentiation. At this stage, these proposals remain advocative. However, further analyses 
according to the present theory of data, such as mRNA sequencing, are expected to clarify 
the relationship between the landscape and transcription factors and to justify an inter-
pretation of functional differentiation in terms of the dynamic landscape. 
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