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Abstract: We analyze structure and dynamics of flight networks of 50 airlines active in the European
airspace in 2017. Our analysis shows that the concentration of the degree of nodes of different flight
networks of airlines is markedly heterogeneous among airlines reflecting heterogeneity of the airline
business models. We obtain an unsupervised classification of airlines by performing a hierarchical
clustering that uses a correlation coefficient computed between the average occurrence profiles
of 4-motifs of airline networks as similarity measure. The hierarchical tree is highly informative
with respect to properties of the different airlines (for example, the number of main hubs, airline
participation to intercontinental flights, regional coverage, nature of commercial, cargo, leisure or
rental airline). The 4-motif patterns are therefore distinctive of each airline and reflect information
about the main determinants of different airlines. This information is different from what can be
found looking at the overlap of directed links.

Keywords: complex networks; network motifs; clustering; air transportation system

1. Introduction

The air transportation system (ATS) is a socio-technical system analyzed as a complex
network for many years [1,2]. The ATS is analyzed at different geographical scales (see,
for example, studies covering the ATSs of China [3], Europe [4] and the U.S. [5]) and at
different resolutions starting from the airport–flight network down to the network of the
reference points used in the definition of flight routes (called navigation points) [6].

In the majority of studies, the ATS is investigated by setting up a flight network where
nodes are airports and flights connecting airports are links. The flight networks have been
investigated by considering them undirected and/or directed networks (in this last case,
the direction of the links originates from the departing airport and ends up in the arrival
airport), unweighted and/or weighted [7]. Several studies have considered the problem
of the resilience of the ATS to failures and attacks [5,8–10]. Other studies have selected a
subset of links (labeled as the “backbone” of the ATS) presenting statistical properties that
are not consistent with a specific null hypothesis [11,12], making the ATS one of the first
systems where statistically validated networks [13] have been investigated.

The ATS is a complex system composed of well-defined subunits. In fact, flights
are operated by different airlines that compete and collaborate among them. Since 2010,
the ATS has been analyzed by distinguishing the role of its subunits (i.e., by analyzing
properties of flight networks of single airlines [5]). Moreover, the presence of different
flight networks observed for different airlines made this system a natural candidate for the
study of so-called multiplex, which are networks where nodes can have multiple kinds of
relations called layers. In fact, the ATS was one of the first socio-technical systems described
as a multiplex, where layers represent flights operated by different airlines [14,15].
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Flight networks have been investigated from different perspectives and at different
scales [16–18], for example, by considering basic network metrics, topology of the degree
distribution, resilience to attack or failures, community detection of large clusters and
computation and analysis of network motifs. Motifs are isomorphic subnetworks of a
specified number of nodes and shape. Motifs were first investigated in studies of social
networks [19]. In these earlier studies, motifs were primarily investigated as triads (i.e., as
subnetworks of three nodes) and put in relation with the properties of the degree sequence.
At the beginning of this century, such structures were also investigated in biological systems
under the name of motifs [20]. By considering isomorphic motifs (i.e., subnetworks where
the identity of the node is not taken into account when considering the shape of the
subnetwork), there are 13 isomorphic for subnetworks with 3 nodes or 3-motifs. This
number soon explodes when the subnetwork includes more nodes. For subnetworks with
4 nodes (or 4-motifs), one counts 199 isomorphic motifs [20].

Network motifs have been investigated in flight networks both in studies comparing
the informativeness of network detection in several types of complex networks [21] and in
studies fully focused on the static and dynamics characteristics of the flight networks [22–25].
In this study, we investigate the temporal evolution of 3-motifs and 4-motifs for the 50 Euro-
pean airlines with the highest number of flights in the European Civil Aviation Conference
(ECAC) airspace in the year 2017. By investigating the number and temporal evolution of
the 3- and 4-motifs, we are able to perform an unsupervised classification of the 50 airlines
indicating that main differences among different airlines are due to their regional specializa-
tion (including the ability to perform intercontinental flights) and to their business model.
We observe that the business model of each airline ranges between the two stylized models
of hub-and-spoke and point-to-point business models [26,27]. In a hub-and-spoke model, one
or more airports act as “hubs”, i.e., as special airports directly connecting all remaining
airports. In a hub-and-spoke structure with a single hub, the network therefore has a star
topology with the hub at the center of the star and all the other airports acting as leaves of
the network. In the point-to-point structure, all the airports are equivalent and the network
degree is characterized by pair interconnections between airports.

The main goal of our investigation is a reliable and effective classification of airlines.
The classification is obtained by an unsupervised methodology that only takes into account
the information about the airline flights. We hypothesize that the business models of each
airline induce specific constraints on its flight network. These constraints are reflected
in the motif occurrence of each airline. Our network analysis shows that European
airlines present a heterogeneous profile distributed between the two boundaries of hub-
and-spoke and point-to-point business models. The heterogeneity is clearly shown by using
a measure of concentration of degree in the degree sequence. Specifically, as a measure
of concentration, we use an adapted version of the Herfindal–Hirshman index [28,29].
For the sake of simplicity, in the remaining text, we will call this index by the more
traditional, although imprecise, name of Herfindal index.The time evolution of motifs
shows that the basic temporal unit of the flight schedule is the week. Differences in the
degree concentration observed during winter and summer schedules are detected, but
their amount is negligible for most airlines. Average values of the motif occurrences may
therefore be a useful proxy of the average behavior of the airlines over a calendar year. By
using average values of the 4-motifs occurrence, we are able to obtain an unsupervised
classification of airlines. The obtained hierarchical clustering is showing that the presence
of a given number of hubs together with the presence or absence of intercontinental flights
characterizes groups of airlines. On the other hand, a hierarchical clustering based on
a similarity measure estimated starting from the co-presence of the two airlines in the
origin–destination flight is providing a poorly informative hierarchical clustering.

The paper is organized as follows. In Section 2, we discuss the data used in our analysis
and the metrics and methods used to characterize flight networks. In Section 3, we present
our results about the heterogeneity of the degree concentration and our results about the
structure and time evolution of 3- and 4-motifs for the different airlines. Average 4-motif
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occurrences are used to perform an unsupervised clustering of the 50 airlines providing an
informative hierarchical cluster. In Section 4, we discuss our results.

2. Data and Methods

We investigate the flight networks of the 50 biggest commercial airlines flying over the
European flight zone. Specifically, we consider all flights that occurred during the period
from 1 January 2017 to 31 December 2017.

A flight network is a network where nodes are airports and links are flights that
occurred in a given time interval. By considering that the flight occurs from a departing
airport to an arrival airport, flight networks can be described as directed weighted networks
(where the weight of a link is the number of flights that occurred from airport i to airport
j in the chosen time interval). In this study, we considered flight networks as directed
networks while we disregard the weights of the links. Networks are computed using daily
and weekly time intervals.

Flight networks and their metrics of each airline are analyzed both in their time
evolution and in their subunits. Specifically, we investigate the daily degree sequence of
each airline for each day. In our analysis, we primarily focus on the concentration of the
highest degree values on a limited set of airports usually described as “hubs”. This is
performed by adapting the Herfindal index, i.e., a well-known measure of concentration,
to the degree sequence. The subunits analysis is carried out by considering all isomorphic
small networks with 3 or 4 nodes. These subnetworks are called motifs in the biological
literature or triads or subnetworks in the social science literature.

We compare similarity between pairs of airlines both by considering the links, i.e.,
flights, they are performing on a specific day or week and by considering the motifs they
present on a specific day or on average over the full year. Similarity between the airlines
is therefore estimated and interpreted by extracting hierarchical trees from the selected
similarity matrix.

2.1. Flight Data

Our dataset comprises all the flights that, even partly, cross the ECAC airspace for the
entire 2017 year. Data were obtained by EUROCONTROL (http://www.eurocontrol.int,
accessed on 4 February 2022), the European public institution that coordinates and plans air
traffic control for all of Europe.

Specifically, we obtained access to the Demand Data Repository (DDR) from which
one can obtain all flights followed by any aircraft in the ECAC airspace. Data about
flights contain several types of information. In the present study, we just focus on the
origin–destination of each flight crossing the ECAC airspace at a given time.

By considering that our focus is on the specific characteristics of airlines, in the present
study, we investigate flights of the major 50 airlines performing flights in the ECAC airspace
in 2017. In our set, we do not consider Air Berlin because this airline ceased operations
on 27 October 2017. Since 2016, Germanwings has been a lease operator for its sister
company Eurowings. In our set, we are not considering Germanwings flights. The selected
airlines have performed 65.7% of the total number of flights of 2017, which corresponds to
approximately 3000 flights per company per month on average. The list of the 50 airlines
is provided in Appendix A. The large majority of airlines are commercial airlines. There
are 24 flag carrier airlines, 14 low cost carrier (LCC) airlines, 6 regional airlines, 2 leisure
airlines, 2 scheduled airlines, 1 cargo airline and 1 rental airline.

2.2. Herfindal Index

The Herfindal index [28] has been introduced in the economic literature in order to
measure the amount of competition among industrial firms. As such, it has also been used
as an indicator of concentration, as large firms usually contribute more to the Herfindal

http://www.eurocontrol.int
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index than smaller ones. In the context of complex networks, the Herfindal index can be
defined as

H =
N

∑
i=1

[
di

2m

]2
(1)

where di is the degree of node i and 2m is twice the number of directed links.

2.3. Motifs Detection

The investigation of subnetworks of fixed size (also called motifs) has a long history.
Originally investigated as triads and put in relation with the properties of the degree
sequence in the investigation of social networks [19], they were then also introduced in
biology where the term “motif” was used for the first time [20].

In network analysis, a motif of size k is a structure of k nodes not necessarily all linked
between each other, as, for example, in Figure 1. Motifs are different from cliques. A clique
is defined in undirected networks, and it is a subgraph such that every two distinct vertices
are adjacent.

For size k = 3, there are 13 isomorphic 3-motifs. In Figure 1, we are showing all of
them together with the classification scheme used in [20]:

Figure 1. Isomorphic 3-motifs and related codes according to the classification given in [20]. The
arrow indicates a flight from origin (tail) to destination (head). Bidirectional flights are indicated with
a double head arrow.

Isomorphic 3-motifs present unidirectional links (as in the case of motifs labeled as 6,
12, 36, 38 and 98), bidirectional links (as in the case of motifs 78 and 238) and both types of
links (as in the case of motifs 14, 46, 74, 102, 108 and 110).

The number of isomorphic 4-motifs is 199 and therefore much larger than 13. As for
the 3-motifs, we use the classification of [20]. For the shape of each 4-motif, one can consult
the motifs dictionary that can be downloaded from the website of Uri Alon laboratory.

Network motif analysis can be performed by computational or analytical approaches.
In our investigation, we considered a computational approach as it allows for the exact
count of network motifs. Computational approaches usually follow a three-step procedure
that can be summarized as follows:

• Search and enumerate occurrences of a topology with fixed size in the observed network;
• Classify topologies by their isomorphic classes;
• Calculate statistical significance for each isomorphic classes comparing occurrences

with those in random ensemble.

In particular, we considered the mfinder [30] software developed by Uri Alon laboratory.
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2.4. Average Linkage Clustering Analysis

We assess the similarity between each pair of the n airline by estimating the correlation
between the average occurrence of each 4-motif of each airline. The average is computed
over the 365 days of the year. To take into account the large interval of values observed for
the different 4-motifs, we use the Spearman correlation coefficient. Therefore, by starting
from the matrix of records obtained by averaging the occurrence of each 4-motif, we
estimate a correlation matrix and we use the correlation ρij as a measure of similarity
between airlines i and j.

From the correlation values, we compute a distance according to the relation dij =√
2(1− ρij). This distance is therefore used to extract a hierarchical tree with the method

of the average linkage.
The average linkage cluster analysis is a hierarchical clustering procedure [31,32]. The

procedure gives as an output a rooted tree or dendrogram. In this procedure, at each step,
when two elements or one element and a cluster or two clusters p and q merge in a wider
single cluster t, the distance dtr between the new cluster t and any cluster r is recursively
determined as the average distance between any element of t and any other element of
cluster r.

3. Results
3.1. Herfindal Index

Our first analysis determines the daily flight network of each investigated airline.
The day is defined as the calendar day at European Central Time. For illustrative pur-
poses, we show the networks of the nine biggest airlines on day 1 September 2017 in
Figure 2. This day has been retrospectively selected as an example of a day with routinely
operational activities.

Figure 2. Airline networks on day 1 September 2017. Each panel refers to one of the nine biggest
airlines. The airline name is indicated on top of the panel.

For each flight network, we extract the degree sequence by considering the network
as a directed network. The average values over the year of the number of nodes N (i.e.,
number of airports where airlines flight), the number of direct links E (i.e., the number
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of distinct origin destination flights), minimum degree, median degree, mean degree,
maximum degree, standard deviation of the degree and Herfindal index are shown in
Table 1. The metrics shown in Table 1 are quite basic and standard with the exception of the
adaptation of the Herfindal index as an indicator of concentration in the degree sequence
observed in one or more of the nodes.

Given the definition of Equation (1), a pure hub-and-spoke setting of flights would imply
a Herfindal index of 0.25 for large values of N. This is what we observe (see Table 1) as
average yearly value for Brussels Airlines (BEL), Aeroflot (AFL), KLM, Iberia Airlines (IBE)
and Finnair (FIN). Networks of these airlines are very close to a pure hub-and-spoke setting.
Other airlines show lower values of the average Herfindal index. The values observed
range from 0.213 for Austrian Airlines to 0.016 for Ryanair, showing a high variability of the
underlying flight network structure. For the sake of compactness, in Table 1, we show only
the yearly average values of the selected indicators. To assess the degree of variability of the
Herfindal index, we show in Figure 3 the daily profile of this index for the top ten airlines
in number of flights. They are Ryanair (RYR), Lufthansa (DLH), Turkish Airlines (THY),
EasyJet (EZY) Air France (AFR), Scandinavian Airlines (SAS), British Airways (BAW), KLM
(KLM), Vueling Airlines (VLG) and Alitalia (AZA). Time dynamics of the Herfindal index
is detectable for several airlines but fluctuations are quite limited and primarily reflect a
weekly or intra-weekly periodicity. Some airlines also show detectable winter–summer
dynamics. Examples are THY, AZA and VLG. Horizontal dashed line is the expected values
of the Herfindal index for networks with only bidirectional links and with K pure hubs
and all the remaining (large) number of leaves only flying to a single hub for K ranging
from one (top dashed line) to five (bottom dashed line). In particular, KLM networks are
compatible with a network structure having a single hub (i.e., Schipol airport), Lufthansa
(DLH) networks are compatible with a two hub network (prominent Lufthansa hubs are
Frankfurt and Munich airports). Vueling (VLG) and Scandinavian Airlines (SAS) have a
pattern compatible with three or more hubs and/or with a prominent section of the flight
network based on point-to-point flight circulation, whereas the Herfindal index of Ryanair
and EasyJet have pretty low values, manifesting the poor relevance of the hub-and-spoke
structure in their flight networks.
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Figure 3. Herfindal index of flight networks (defined as in Equation (1)) as a function of the calendar
day for the top 10 airlines Ryanair (RYR), Lufthansa (DLH), Turkish Airlines (THY), EasyJet (EZY) Air
France (AFR), Scandinavian Airlines (SAS), British Airways (BAW), KLM (KLM), Vueling Airlines
(VLG) and Alitalia (AZA).
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Table 1. Basic metrics of the flight networks of 50 largest airlines by number of flights performed.
The degree of each airport is obtained as the average value of the degree observed for each day of the
year. N is the number of nodes, m is the number of direct links, Min, Median, Mean, Max and Std are
the minimum, median, mean, maximum and standard deviation of the average degree distribution.
The Herfindal index is obtained from the average degree distribution as explained in the main text.
Airlines are ordered according to the value of the Herfindal index.

Airline N 2m Min Median Mean Max Std Herfindal

BEL 65.08 239.65 1.00 2.00 3.68 119.52 14.57 0.253
AFL 63.87 248.19 1.17 2.00 3.89 123.30 15.18 0.251
KLM 143.69 538.27 1.00 2.00 3.75 268.50 22.24 0.251
IBE 60.39 227.55 1.00 2.00 3.77 110.84 14.01 0.243
FIN 78.79 308.37 1.00 2.00 3.92 147.95 16.43 0.234

AUA 82.96 342.75 1.01 2.00 4.13 155.99 16.90 0.213
TAP 76.26 327.58 1.00 2.00 4.30 144.44 16.40 0.202
QTR 67.19 266.83 1.00 2.00 3.97 117.99 14.15 0.201
BTI 36.78 160.37 1.06 2.00 4.37 67.62 10.84 0.192

SWR 78.68 351.81 1.00 2.00 4.47 148.66 16.76 0.190
AUI 54.36 233.90 1.01 2.00 4.29 98.64 13.13 0.189
UAE 63.07 247.10 1.00 2.00 3.92 103.43 12.80 0.183
LOT 66.62 288.13 1.03 2.00 4.32 119.29 14.47 0.182
AFR 156.12 657.34 1.00 2.00 4.21 270.10 21.76 0.176
OAL 26.62 125.88 1.89 2.00 4.72 48.19 9.04 0.174
RAM 79.28 327.75 1.00 2.00 4.13 132.78 14.75 0.172
EIN 52.90 238.28 1.07 2.00 4.48 92.72 12.46 0.164

BAW 162.38 660.51 1.00 2.00 4.07 244.37 20.01 0.155
AEE 50.90 236.93 1.01 2.00 4.59 79.58 11.08 0.141
PGT 89.83 459.42 1.01 2.00 5.10 160.00 17.08 0.138
THY 245.36 1274.18 1.00 2.00 5.18 449.51 29.37 0.135
EZS 42.87 221.23 1.08 2.20 5.15 61.88 11.28 0.133
AZA 77.52 410.59 1.01 2.00 5.29 138.81 16.15 0.132
AEA 50.64 237.18 1.01 2.00 4.69 77.37 10.93 0.126
DLH 175.87 1015.78 1.00 2.27 5.77 289.74 26.45 0.124
SXS 33.31 199.47 1.04 3.58 5.91 46.17 9.71 0.113

ANE 38.43 198.79 1.27 2.17 5.13 54.17 8.82 0.104
TRA 54.48 286.73 1.01 2.07 5.24 75.58 10.87 0.098
UAL 31.36 201.63 1.16 3.47 6.39 47.35 8.79 0.091
LOG 19.34 109.38 1.62 3.33 5.62 19.33 4.90 0.089
BCS 59.85 288.98 1.23 1.86 4.62 60.62 8.46 0.080
NAX 67.06 401.90 1.02 2.21 5.99 87.38 12.48 0.079
HOP 35.22 214.97 1.06 2.18 6.08 40.50 7.84 0.076
DAL 35.56 210.47 1.09 2.73 5.87 36.18 7.61 0.075
SAS 94.26 652.47 1.09 2.62 6.89 110.63 16.92 0.074
AAL 23.42 157.98 1.55 4.86 6.61 22.76 5.69 0.074
CFG 41.51 234.10 1.00 2.20 5.53 44.99 7.83 0.074
TCX 33.97 222.88 1.00 3.56 6.09 33.87 6.82 0.070
VLG 86.65 689.10 1.07 3.60 7.90 153.70 17.31 0.067
EWG 71.22 465.41 1.00 2.48 6.38 73.06 11.45 0.062
EXS 34.71 332.78 1.16 5.87 8.82 35.44 8.22 0.059
VOE 35.79 230.88 1.14 4.21 5.84 21.07 4.78 0.054
IBK 51.23 381.92 1.00 3.32 7.46 43.99 9.31 0.050

TOM 46.92 370.30 1.00 4.55 7.59 40.19 8.45 0.050
BEE 46.38 429.76 1.31 5.35 9.24 43.37 9.74 0.045
WIF 43.98 325.59 1.69 5.57 7.29 25.35 5.85 0.039
EZY 110.22 1714.64 1.08 7.32 15.44 157.97 21.53 0.027
WZZ 100.23 895.02 1.00 5.33 8.87 60.08 11.02 0.026
NJE 90.32 262.93 1.00 1.98 2.88 16.03 2.77 0.022
RYR 172.47 3183.89 1.00 9.64 18.33 206.09 24.72 0.016
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Our analysis can therefore confirm that flight network characteristics are deeply related
to the business organization of each airline with a prominent role played by the choice of
a hub-and-spoke versus a point-to-point structure and with a role played by the number of
hubs characterizing the flight network.

In the next section, we investigate 3-motifs to better characterize similarity and differ-
ences among the flight networks of airlines.

3.2. 3-Motifs

We have computed the number of 3-motifs present on daily flight networks for all
50 airlines. In Figure 4, we show a color code map of the occurrence of the 13 isomorphic
3-motifs for the 9 largest airlines.

The occurrence of each 3-motif presents large variability among the different types of
motifs and is correlated with properties of the flight networks such as number of nodes,
number of links, number of bidirectional links and topology structure of the network. The
most common 3-motif is motif 78. This type of motif is clearly manifesting that a hub-
like structure and bidirectional links are essential ingredients of all flight networks. The
other 3-motif with all bidirectional link, i.e., 3-motif 238, is significantly present in airlines
presenting flight networks with a pronounced point-to-point structure, such as Ryanair,
EasyJet and Vueling, or airlines having more than a single hub, such as Lufthansa, Turkish
and Scandinavian Airlines. The 3-motifs with only unidirectional links are poorly observed
(see average occurrence values of 3-motifs 6, 12, 36, 38 and 98). Some of the 3-motifs with
mixed types of links are significantly present (for example, 3-motifs 14 and 74), while others
are rather poorly expressed (as in the case of 3-motifs 102 and 108).

The profile of occurrence of the 3-motifs in different airlines is certainly informative.
However, the number of 3-motifs is somewhat limited and therefore it is useful to consider
motifs of larger size. In the next section, we investigate the occurrence of 4-motifs.

Figure 4. Color code representation of the base 10 logarithm of the daily occurrence of each isomorphic
3-motif (x-axis) as a function of the time (y-axis). The 3-motifs are indicated with the labels defined
in [20]. A zero occurrence is indicated with a −1 value. Each panel refers to one of the nine biggest
airlines. The airline name is indicated on top of the panel.
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3.3. 4-Motifs
3.3.1. Daily Occurrence of 4-Motifs

We compute the occurrence of all 4-motifs for the daily flight networks of the 50 biggest
airlines. In Figure 5, we show a color code map of the occurrence of the 199 isomorphic
4-motifs for the 9 largest airlines.

The profile of 4-motifs is richer than the one of the 3-motifs. Occurrences of the 4-
motifs span about 5 orders of magnitude. For this reason, in Figure 5, we show the decimal
logarithm to provide a comprehensive overview of the results. Airlines characterized by
the presence of a single hub such as KLM present only a very limited number of 4-motifs
with occurrence different from zero. Airlines with a business model closer to a point-to-point
structure such as Ryanair and EasyJet present a higher number of observed 4-motifs. The
other airlines characterized by a different number of hubs present an intermediate behavior
between the two extremes. In addition to the presence or absence of a given motif at a given
day, Figure 5 also shows a time variation of the occurrence of a given motif. To investigate
the main frequencies associated with this time variation, we compute the periodogram of
the occurrence of a set of 4-motifs. Specifically, we consider the twelve 4-motifs with the
highest occurrence averaged over all considered days. In Figure 6, we show the power
spectrum of the time evolution of the occurrence of the top twelve 4-motifs of Ryanair.
For all 4-motifs, frequency peaks are detected for f = 0.14 day−1 and for its second and
third harmonics. The main frequency f = 0.14 day−1 corresponds to a weekly cycle and the
second and third harmonics correspond to a bi-weekly or three-weekly cycle. Therefore, the
main underlying periodicity is the week periodicity as already observed in the estimation
of the Herfindal index (see periodicity observed in Figure 3).

Figure 5. Color code representation of the base 10 logarithm of the daily occurrence of each isomorphic
4-motif (x-axis) as a function of the time (y-axis). The 4-motifs are ranked according to the labels
defined in [20]. Some of the most populated 4-motifs are indicated in the x-axis. A zero occurrence is
indicated with a −1 value. Each panel refers to one of the nine biggest airlines. The airline name is
indicated on top of the panel.
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Figure 6. Power spectrum of the time evolution of the occurrence of the top 12 4-motifs of Ryanair.
The label of the 4-motif is on top of each panel. Frequency peaks are detected for f = 0.14 and for its
harmonics f = 0.28 and f = 0.43 day−1. The main frequency f = 0.14 day−1 corresponds to a weekly
cycle and the second and third harmonics correspond to a bi-weekly or three-weekly cycle.

Tracking in details of the occurrence for the 199 different 4-motifs is impractical. For
this reason, we first consider the ten 4-motifs with highest occurrence in the nine biggest
airlines. Specifically, we rank these 4-motifs, and the rank is obtained by considering the
daily occurrence of each motif averaged over all days of the year. Labels of these motifs are
listed on Table 2 according to their rank for the 9 biggest airlines.

Table 2. Rank of the 10 top 4-motifs observed for the 9 biggest airlines. The rank is obtained by
considering the daily occurrence of each motif averaged over all days of the year. The shape of these
4-motifs are shown in Figure 7.

Rank RYR DLH THY EZY AFR SAS BAW KLM VLG

1 4382 4382 4382 4382 4382 4382 4382 4382 4382
2 4698 286 286 4698 4374 4374 286 4374 4374
3 4958 4374 4374 4958 286 4958 4374 286 4958
4 4374 4958 282 4374 282 4698 4682 282 286
5 4428 13,278 30 13,278 4370 286 282 4370 4698
6 13,278 282 4370 4428 30 13,278 4698 30 4446
7 286 30 4958 13,260 4698 4370 30 280 13,278
8 406 4698 4698 286 4958 4428 4370 28 282
9 4682 4370 4446 406 4682 4446 4954 2184 4370

10 4446 4446 28 4950 280 4950 4702 14 4950

The link configuration of these 4-motifs is shown in Figure 7. In the figure, we show
on the left 4-motifs composed by unidirectional links, whereas on the right we have motifs
with only bidirectional links. The 4-motifs with both unidirectional and bidirectional
links are shown in the middle of the figure. It is worth noting that 4-motifs with only
unidirectional links (i.e., 4-motifs 14, 28, 280 and 2184) are only observed for KLM in the
top 10. KLM is one of the airlines with an almost pure hub-and-spoke structure and the flight
concurring to this type of motif is, in the majority of the cases, an intercontinental flight.
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All the other airlines have the top 10 4-motifs presenting a high number of bidirectional
links. The 4-motif with the highest occurrence for all the top 9 airlines (and indeed the
top 4-motif for 49 of 50 airlines) is 4-motif 4382. These motifs present three bidirectional
links originating from the same node. As for 3-motif 78, the largest occurrence of this motif
reflects the fact that at least one important airport is used as a hub by the airline generating
the network. The other 4-motifs composed by only bidirectional links (i.e., 4-motifs 4698,
4958, 13260 and 13278) are compatible with a point-to-point structure or with a hub-and-spoke
structure in the presence of at least two hubs. In fact, these 4-motifs are not observed for
KLM and are observed at the highest rank for more oriented point-to-point airlines such as
Ryanair, EasyJet and Vueling. They are also present when more than one hub is present as,
for example, in the case of Lufthansa or Scandinavian Airlines. The ranking of the 4-motifs
can therefore be used to evaluate the similarity of flight airline networks and we investigate
this possibility in the next section.

Figure 7. Shape of the 10 top 4-motifs observed for the 9 largest airlines (see Table 2). The 4-motifs
are labeled according to [20]. Left column groups 4-motifs with only unidirectional links. Right
column groups 4-motifs with only bidirectional links. Center column groups 4-motifs with both
unidirectional and bidirectional links.

3.3.2. Similarity of 4-Motif Profile

We use the information about the 4-motifs occurrence to obtain a categorization of
airlines by using the methodology of Section 2.4. It is worth recalling here that, given
this specific purpose, it is not necessary for us to maintain the information about the
specific airports that is present in a motif. In fact, since we are interested in extracting a
clusterization of airlines by using the structural information about the 4-motifs, only the
isomorphic motifs will be relevant for us.

The result of our analysis is shown in Figure 8.
The hierarchical tree of Figure 8 is highly informative with respect to the clustering

of groups of airlines. One airline markedly distinct from all others is NetJets Transportes
Aéreos, S.A. (NJE). This airline is the only airline of the set providing rental of jets and
therefore observing it distinct from all the others indicates that the observed flights of this
rental company have 4-motifs that are quite distinct from the ones of all other airlines. An
inspection of the hierarchical tree indicates the presence of clusters of airlines presenting a
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certain similarity among them and a degree of dissimilarity from the other airlines. Here,
we wish to comment about some of them. One cluster is the cluster of KLM, Aeroflot
(AFL) and Brussels Airlines (BEL). These three airlines are airlines with a single large
hub as testified by a Herfindal index very close to 0.25 (see Table 1). Another cluster
comprises Delta Air Lines (DAL), American Airlines (AAL) and United Airlines (UAL).
These three airlines are American airlines primarily performing intercontinental flights.
A large cluster is composed by Vueling Airlines (VLG), Volotea (VOE), Norwegian Air
International (IBK), EasyJet (EZY), Ryanair (RYR), Eurowings (EWG), Wizz Air (WZZ),
Norwegian Air Shuttle (NAX) and Scandinavian Airlines (SAS). These are all airlines with
several hubs and/or with a point-to-point business model. Another cluster comprises Royal
Air Maroc (RAM), Pegasus (PGT) and Turkish Airlines (THY). These airlines are primarily
serving Middle East destinations and airlines are headquartered in Middle East countries.
Another distinct cluster comprises Qatar Airways Company Q.C.S.C. (QTR), Austrian
Airlines (AUA), European Air Transport Leipzig (BCS) and Lufthansa (DLH). With the
exception of Qatar Airways, the airlines of this cluster are all based in central Europe. In
fact, Lufthansa and European Air Transport Leipzig are German airlines (Lufthansa is the
second largest commercial airline in Europe and European Air Transport Leipzig is the
largest cargo company in Europe by number of flights) and Austrian Airlines is a subsidiary
of the Lufthansa Group.

Figure 8. Average linkage hierarchical tree obtained by using the relation dij =
√

2(1− ρij) as dis-
tance, where ρij is the Spearman correlation coefficient between the vectors of the average occurrence
of each 4-motif of airlines i and j. The average is computed over the 365 days of the year.

3.4. Airline Networks Overlap

It is worth estimating whether similarity between 4-motif occurrences could just be
due to overlap between the links of the flight network of airlines. We rule out, to a large
extent, this possibility by investigating the degree of overlap between all pairs of airline
networks. Our investigation is conducted by estimating the Jaccard measure J(net1, net2)
between each pair of airline networks net1 and net2. The Jaccard similarity is defined as

J(net1, net2) =
|E1 ∩ E2|
|E1 ∪ E2|

, (2)

where |E1 ∩ E2| is the number of directed links appearing in both flight networks, and
|E1 ∪ E2| is the number of links that appear in at least one of the two networks.
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To take into account weekly variability of flight schedules, we have performed this
analysis by considering the weekly schedule of each airline. The results obtained at the
daily level are showing a degree of similarity of the same order or less. In Figure 9, we show
the average linkage hierarchical tree obtained by using the Jaccard measure as a similarity
measure. The hierarchical tree is poorly informative and only a very limited number of
small clusters can be highlighted. This is in marked contrast with what we have obtained in
the previous section when the similarity measure between airlines was obtained from the
analysis of 4-motifs. The hierarchical tree shown in Figure 9 is representative of hierarchical
trees obtained for all weeks of 2017.

By summarizing, we are the first to use the Herfindal index to characterize each airline
operating in a given period. Moreover, by using the Herfindal index together with 3- and
4-motif analysis, we are able to achieve an unsupervised classification of airlines, clarifying
the main characteristics of each airline.

Figure 9. Average linkage hierarchical tree obtained by using as distance the relation dij =√
2(1− J(neti, netj)) , where J(neti, netj) is the Jaccard measure of the overlap of directed links

observed in weekly flight network i and j. The hierarchical tree is obtained for the 20th week of 2017
(from Monday 15 May to Sunday 21 May).

4. Discussion and Conclusions

In the present study, we have analyzed the structure and dynamics of flight networks
of 50 airlines performing most of the flights that occurred in the European airspace in 2017.
Our analysis of directed flight networks shows that the degree concentration of the different
networks is quite heterogeneous among the different airlines. We have been able to quantify
this heterogeneity by using an adapted version of a classic measure of concentration, i.e.,
the Herfindal index. The Herfindal index provides a simple and reliable estimation of the
closeness of the airline network to the reference models classified as hub-and-spoke and
point-to-point. It can also be informative about the number of main hubs that are present
in a network with a hub-and-spoke structure and multiple hubs. It is worth noting that the
European ATS presents a very heterogeneous set of airline companies. In other words,
business optimization performed at the level of a single airline generates different business
models that eventually coexist in the global system.

The time evolution of the different networks presents a basic time cycle that is a
weekly cycle. This basic timescale is evident both from the analysis of the time evolution
of the Herfindal index and from the analysis of the time evolution of the occurrence of
3-motifs and 4-motifs. The summer–winter cycle primarily detected in the number of
flights occurring daily or weekly does not significantly affect the long-term time evolution
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of the Herfindal index and the occurrence of 3-motifs and 4-motifs. These indicators are
therefore more related to the type of business model followed by the airline than to the
specific origin–destination links or number of flights operated in a given time interval.

In summary, an unsupervised classification based on hierarchical clustering and
obtained by using a correlation coefficient between the occurrence profile of 4-motifs of
airline networks as similarity measure is highly informative with respect to the properties
of the different airlines (for example, the number of main hubs, their participation to
intercontinental flights, their regional coverage, their nature of commercial, cargo, leisure or
rental airline). The 4-motifs are therefore distinctive of the airlines and reflect information
about the main determinants of the different airlines. Information is distinct from that
originating from the overlap of the same directed links.

Such results indicate that a reliable and effective classification of airlines can be ob-
tained by an unsupervised methodology that only takes into account the information about
the airline flights. This is an important result given that, currently, the characterization
of airlines and their business model has become a fundamental part of modern air trans-
portation systems. An appropriate airline categorization is important not only for the
practitioners but because it also influences the passengers’ perception. An indubitable
advantage of our approach is that it is flexible as it may directly reflect any positioning of
an airline within the general landscape of airlines, due to any change in its business model
as reflected within its flight plans.
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Appendix A

The table below contains the list of airlines considered in this work and some infor-
mation about their business model. Such data were obtained from the following links
(accessed on 4 February 2022):

• https://en.wikipedia.org/wiki/List_of_low-cost_airlines;
• https://en.wikipedia.org/wiki/List_of_regional_airlines;
• https://en.wikipedia.org/wiki/List_of_government-owned_airlines;
• https://en.wikipedia.org/wiki/List_of_charter_airlines;
• https://www.eraa.org/membership/our-members;
• Wikipedia pages of airlines.

Table A1. Fifty airlines performing the largest number of flights in the ECAC airspace in 2017.
Airlines are ordered by the total number of flights performed in 2017. The last column gives the
number of flights performed by the airline in 2017.

Airline ICAO Code Type # of Flights

Ryanair RYR LCC 815,878
Lufthansa DLH Flag 561,437

Turkish Airlines THY Flag 555,720
EasyJet EZY LCC 538,533

Air France AFR Flag 369,991
Scandinavian Airlines SAS Flag 330,515

British Airways BAW Flag 304,112
KLM KLM Flag 274,822

https://en.wikipedia.org/wiki/List_of_low-cost_airlines
https://en.wikipedia.org/wiki/List_of_regional_airlines
https://en.wikipedia.org/wiki/List_of_government-owned_airlines
https://en.wikipedia.org/wiki/List_of_charter_airlines
https://www.eraa.org/membership/our-members
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Table A1. Cont.

Airline ICAO Code Type # of Flights

Vueling Airlines VLG LCC 219,839
Alitalia AZA Flag 215,033

Wizz Air WZZ LCC 186,713
Pegasus PGT LCC 179,942

Flybe BEE Regional 169,299
Swiss SWR Flag 156,173

TAP Portugal TAP Flag 148,363
Austrian Airlines AUA Flag 141,305

Norwegian Air Shuttle NAX LCC 138,010
Eurowings EWG LCC 133,738

Finnair FIN Flag 128,253
Wideroe WIF Regional 127,047
Aeroflot AFL Flag 122,480

LOT Polish Airlines LOT Flag 117,962
Iberia Airlines IBE Flag 105,055

Norwegian Air International IBK LCC 104,835
Qatar Airways Company

Q.C.S.C. QTR Flag 99,298

Air Europa AEA Scheduled 92,521
Brussels Airlines BEL Flag 92,279

Emirates UAE Flag 90,894
Royal Air Maroc RAM Flag 90,626

Aer Lingus EIN Flag 87,330
Air Nostrum ANE Regional 82,254

Hop! HOP Regional 79,385
European Air Transport Leipzig BCS Cargo 76,697

TUI Airways TOM Leisure 74,834
Jet2.com EXS LCC 69,338

Transavia Holland TRA LCC 68,758
United Airlines UAL Flag 67,796

Ukraine International AUI Flag 64,963
Delta Air Lines DAL LCC 64,552
Aegean Airlines AEE Flag 59,762
Olympic Air S.A. OAL Regional 58,135
SunExpress TK SXS LCC 55,761

EasyJet Switzerland SA EZS LCC 54,120
Air Baltic BTI Flag 52,722

American Airlines AAL Flag 52,118
Volotea VOE LCC 49,722

NetJets Transportes Aereos, S.A. NJE Rental 49,338
Condor Flugdienst CFG Leisure 46,257

Logonair LOG Regional 45,688
Thomas Cook Airlines Limited TCX Scheduled 45,230
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