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Abstract: Computational textual aesthetics aims at studying observable differences between aesthetic
categories of text. We use Approximate Entropy to measure the (un)predictability in two aesthetic
text categories, i.e., canonical fiction (‘classics’) and non-canonical fiction (with lower prestige). Ap-
proximate Entropy is determined for series derived from sentence-length values and the distribution
of part-of-speech-tags in windows of texts. For comparison, we also include a sample of non-fictional
texts. Moreover, we use Shannon Entropy to estimate degrees of (un)predictability due to frequency
distributions in the entire text. Our results show that the Approximate Entropy values can better
differentiate canonical from non-canonical texts compared with Shannon Entropy, which is not true
for the classification of fictional vs. expository prose. Canonical and non-canonical texts thus differ
in sequential structure, while inter-genre differences are a matter of the overall distribution of local
frequencies. We conclude that canonical fictional texts exhibit a higher degree of (sequential) unpre-
dictability compared with non-canonical texts, corresponding to the popular assumption that they
are more ‘demanding’ and ‘richer’. In using Approximate Entropy, we propose a new method for
text classification in the context of computational textual aesthetics.

Keywords: Approximate Entropy; Shannon Entropy; fictional texts; non-fictional texts; canonical
texts; non-canonical texts; POS-tags; text classification

1. Introduction

Computational textual aesthetics is an emerging field at the interface of literary studies
and linguistics. This field aims at identifying the statistical properties of texts to reflect
categorizations of different types, e.g., authorship [1,2] and genre [3,4]. From the perspective
of empirical aesthetics, properties that can potentially be associated with aesthetic categories
and with perceptual responses during reading are of particular interest, as they can provide
a basis for formulating specific hypotheses for experimental studies. The present study
was inspired by research in (experimental) visual aesthetics, a well-established field with a
tradition reaching back to the 19th century [5,6].

More recently, several computational algorithms have been proposed for the analysis
of statistical properties in visually pleasing images, including visual artworks, in compari-
son to images with less aesthetic appeal. Particular emphasis in the studies on artworks has
been on global image properties that reflect artistic composition [7]. Many of these proper-
ties reflect various aspects of fractality/self-similarity, predictability and variability in the
distribution of pictorial elements across individual images. Such properties are believed
to form a perceptual basis of aesthetic responses and, hence, of judgments concerning the
aesthetic value of an image [8].

The question arises whether texts, like images, are characterized by global properties
correlating with the aesthetic responses to those texts during reading. This question is
motivated by the hypothesis of an analogy between visual processing and reading [9]
on the basis of the assumption of domain-general perceptual and cognitive components
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in linguistic processing [10]. Studying the aesthetic responses to texts directly would
require comprehensive investigations including the observation of reader behaviour during
reading (see for instance [11]). As a first step towards this program, we study the structural
properties of texts grouped into different aesthetic categories. Such studies can form the
basis of experimental investigations at a later stage and provide important cues concerning
the experimental design, e.g., with respect to the stimulus material used and the variables
analysed.

Previous observational research in textual aesthetics has often focused on poetry. While
most of this research is exploratory and there is still work to be done, a number of interesting
observations have been made. For example, Simonton [12] compared the vocabulary of
the more “obscure” and the more popular sonnets of Shakespeare. He found a correlation
between the lexical diversity and the “aesthetic success” of the sonnets. Forsyth [13]
analysed the lexical features, vocabulary richness and the frequency distribution of syntactic
tags in poems. He showed that the more popular poems generally used shorter words,
fewer rare words, more coordinating conjunctions and more personal pronouns. Kao and
Jurafsky [14] studied the style and content of poems written by professional and amateur
poets to identify textual features associated with poetic beauty. Their analysis showed
that more prestigious poets tended to refer more frequently to natural objects. Moreover,
they made less reference to abstract concepts and used more ordinary and common words,
though their vocabulary was richer.

The aesthetics of prose texts has been studied by relying on data from websites or
social networks. Ashok et al. [15] attributed the success of novels to the writing style. They
operationalized ‘success’ as the number of downloads from the Project Gutenberg site,
using the distribution of POS-tags, grammatical rules, constituents and sentiments as basic
measurements. In this way, they managed to classify more successful and less successful
novels of different genres with acceptable accuracy.

Maharjan et al. [16] operationalized the success of a novel in terms of the average
ratings on Goodreads, a social network for book lovers. They used “hand-crafted” textual
features, such as the lexical and syntagmatic properties, sentiments and readability mea-
sures to predict the success of novels. Maharjan et al. [17] approached the classification of
(un)successful novels by modelling the flow of emotion along a book. They showed that
emotional information predicted the success of a text with relatively high accuracy.

While entropy measures have mostly been used to analyse the distributional laws of
linguistics, e.g., concerning word order [18–21] and word length [22–25], or for a compari-
son of languages in terms of ordering preferences and complexity [26–30], there are also
studies that investigated the aesthetic preference and popularity of texts using entropy
metrics.

Febres and Jaffe [31] analysed the entropy and symbolic diversity of literary texts
written by English and Spanish Nobel laureates and non-Nobel laureates. Their analyses
confirmed that there was a correlation between the global statistical properties of texts
and the two categories of authors. Chang et al. [32] analysed Shakespeare’s and Jin Yong’s
works using a metric called “information-based energy”. They showed that the more
popular works had a higher “energy”.

One of the main challenges of textual aesthetics is the question of how we can capture
the global properties of longer prose texts, such as novels. Previous studies have used
Multifractal Detrended Fluctuation Analysis as a way of measuring fractality or long-range
correlations in texts. Drożdż et al. [33] analysed the fractality of sentence-length series in a
corpus of Western fictional texts. Mohseni et al. [9] used a number of textual properties
(sentence length, frequencies of specific POS-tags per sentence, lexical diversity measured
with MTLD and topic probabilities) to generate series. They analysed these series in terms
of variance and long-range correlations.

The numerical results of these methods were used as features in a classification task,
intending to distinguish fiction from non-fiction and, within the fictional category, canonical
vs. non-canonical English texts. The accuracy of classification was relatively high. This
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finding demonstrates the feasibility and usefulness of analysing the global structural
design patterns of text. Of particular interest in this context are features that are amenable
to experimental studies, specifically if they allow for an interpretation in terms of perception
and processing, as has been hypothesized for fractality and long-range correlations [9].

Another important aspect of aesthetic perception is the degree of (ir)regularity in a
text and, related to this, the degree of predictability or surprise in the signal—cf. Zipf’s
principles of ‘unification’ and ’diversification’. Zipf [34] distinguished between the two an-
tagonistic forces of ‘unification’ of the vocabulary, an economy principle from the speaker’s
point of view of minimizing the number of word types used, and ‘diversification’, maxi-
mizing the fit between words and meanings and thus benefiting the listener (see also [35]).
While unification and diversification in this sense are clearly related to predictability and
surprise, at least from the point of view of the specific words used (but not the meanings),
we assume that literary writing is not primarily driven by the principle of unification from
the author’s point of view.

From an aesthetic point of view, a high degree of regularity/predictability is likely to
facilitate processing, with a potentially positive effect on aesthetic perceptions. However,
too much regularity may cause an impression of monotonicity. We therefore expect prose
texts to reflect a trade-off between predictability and surprise. Moreover, we expect different
text categories to assign different weights to two antagonistic design principles: “Keep it
simple” and “Avoid monotonicity”. In other words, we expect different types of balance
between predictability and uncertainty in canonical and non-canonical texts. Trade-offs of
this type have also been observed in music perception [36,37].

In the present study, we are primarily concerned with fictional prose. The main objective
is to identify the global structural properties of texts that we have classified into the categories
of ‘canonical’ vs. ‘non-canonical’. This categorization is intended as an operationalization
of aesthetic preference at a community level. While there is clearly a considerable degree of
variation in individual taste, canonization—a process that involves a range of stakeholders
from various sectors of society, such as literary scholars and publishers—reflects the taste of
an ‘average educated reader’, and it has high prestige [38–40].

Canonical texts were written by skilled, mostly professional writers targeting an
educated audience. Canonical literature is read in school, and educated members of
societies are expected to be familiar with the major canonical works of their culture. In
some countries, literary canons play an important role in the constitution of national
identity (e.g., ‘national poets’, such as William Shakespeare (‘The Bard’) in the UK, Goethe
and Schiller in Germany, Pushkin in Russia, etc.). Non-canonical texts do not have any of
the prestige characteristics of canonical texts.

The central question of this study is whether, or to what extent, canonicity as a
social attribute has structural correlates in the relevant texts. We focus on predictability
and surprise, for the reasons mentioned above. As reading is a learned skill, we expect
canonical texts to lean in the direction of surprise (“Avoid monotonicity”), at the expense
of ease of processing. Non-canonical texts, by contrast, are (supposedly) written by less
skilled writers, and not necessarily for a ‘trained’ audience. In this case, we expect ease
of processing to prevail (“Keep it simple”). Note that we do not expect the relationship
between predictability/surprise and the text categories ‘canonical’ and ‘non-canonical’ to
be consistent. Our hypothesis is more general, in the sense that we expect the two classes to
be associated with different balances between the two design principles of “Keep it simple”
and “Avoid monotonicity”, potentially in different aspects of structural design.

The canonical and non-canonical texts of our corpus belong to the same genre, i.e.,
fictional prose. In order to gauge the degree of register specificity of the observed patterns,
we included texts from a different register as well, i.e., non-fictional (expository) prose
(see Section 2.1). We used two types of observables, the length of sentences and frequency
distributions of part-of-speech (POS) tags. The frequencies of POS-tags were determined
in fixed-size windows of text, which we call ‘boxes’ (see Section 2.2). To measure the
(ir)regularity and predictability in a text, we used two types of entropy measures, Approxi-
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mate Entropy (ApEn) and Shannon Entropy (ShEn) (see Section 2.3). Section 3 presents the
results, which are then discussed in Section 4.

2. Data and Methods
2.1. The JEFP Corpus 2.0

For our computational textual aesthetics studies, we needed a corpus that was tailor-made
for the purpose of the project, the comparison of canonical and non-canonical fiction. While
there are several corpora of literary texts available (e.g., the Standardized Project Gutenberg
Corpus/SPGC [41]), we compiled a corpus of our own with a certain balance across text types
and the time of publication: the Jena Expository and Fictional Prose (JEFP) corpus. This corpus
contains canonical and non-canonical fictional as well as non-fictional texts.

In a previous study [9], we used version 1.0 of this corpus. For the present study, we
extended the corpus and included more texts, primarily in order to achieve a better balance
in terms of the years of publication.

The canonical texts of the JEFP corpus 2.0 are the same as those contained in version
1.0. The corpus comprises 76 canonical literary texts from 30 authors, which were taken
from the Corpus of the Canon of Western Literature (CCWL) [42], which, in turn, relies on
Bloom [43] (The Western Canon: The Books and School of the Ages). As an additional criterion of
canonicity (of authors), we used evidence from Wikipedia sites. We determined the number
of articles for authors in the top 30 language editions of Wikipedia, as an approximate
indication of their international reputation.

In order to obtain a sample of non-canonical fictional texts, we used the websites
www.goodreads.com (accessed on 8 February 2022), feedbooks.com as well as Project
Gutenberg (www.gutenberg.org, accessed on 8 February 2022). The raw texts were all
extracted from the Project Gutenberg site. We selected only long books that comprised
at least 35,000 words, as a critical number of words is required for analysis of the global
properties of text using methods such as Multifractal Detrended Fluctuation Analysis
(MFDFA; see [9]).

At the time of compilation of the corpus (May 2020), none of the books classified
as “non-canonical” by us had a download number higher than 40. By thresholding the
download count, we avoided including non-canonical popular literature. In previous
studies, download counts at the Project Gutenberg site have been used as a surrogate to
gauge the success of books [15,44].

We made sure that the relevant (non-canonical) authors were not listed in the canon
underlying our study, the Canon of Western Literature [43]. Moreover, none of the non-
canonical authors has as many Wikipedia pages as the canonical author with the lowest
number of pages (14). The authors classified as ‘non-canonical’ thus did not have the inter-
national prestige that is characteristic of canonical authors. The sample of non-canonical
texts thus compiled contained 130 texts.

Non-fictional texts were also taken from the Project Gutenberg site. The sample
contained in version 1.0 of the corpus was extended with texts from different genres, such
as architecture, astronomy, geology, geography, philosophy, psychology and sociology. The
extended corpus contained 185 texts of this category. Table 1 provides summary statistics
for the texts of the corpus. The texts with metadata are listed in Supplementary Table S1.

Table 1. Text categories in the Jena Expository and Fictional Prose (JEFP), version 2.0. The table
shows, for each text category, the number of texts and the mean text length, measured in tokens,
± standard deviation.

Category Number of Texts Mean Length (×103)

Canonical 76 199 ± 96
Non-Canonical 130 111 ± 56
Non-Fictional 185 171 ± 178

www.goodreads.com
www.gutenberg.org
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For preprocessing of the texts, we removed the tables of contents and indices as well
as any other material not belonging to the core text from each document. We cleaned up
the texts semi-automatically using regular expressions, e.g., in order to rejoin hyphenated
words and fix broken lines. We used the Stanza package for Python [45], an up-to-date
neural-based text processing toolbox, to sentencize, tokenize and POS-tag all texts.

The three text categories of the JEFP corpus allowed us to carry out intra-genre
comparison, i.e., canonical vs. non-canonical fictional texts, which is the main focus of
our study, as well as inter-genre comparison, i.e., fictional vs. non-fictional texts. The
inter-genre comparison is intended to give us an idea of the degree of genre specificity of
any observed effects (see Section 3).

2.2. Properties Underlying Textual Structure

As reflexes of the structural organization of the texts, we used the length of sentences
and part-of-speech tags (POS-tags) as assigned by the Stanza package for Python [45]. The
distributions of POS-tags reflect grammatical structure as well as register and discourse
modes [46]. For example, pronouns are associated with interactive communication, such as
face-to-face conversation, verbs are typical of narration, and adjectives are characteristic of
description. Regularity or irregularity in the organization of discourse modes can thus be
measured in terms of the sequential distribution of POS-tags in a text.

In our study, we focused on six major parts of speech: nouns, verbs, adjectives, adverbs,
pronouns and prepositions. We only took the top-level categories into account. For example,
the tag ‘Noun’ covers singular as well as plural nouns and common nouns as well as proper
names; different forms of verbs, such as the base forms, past tense forms and gerunds,
are treated as a single class, ‘Verb’; simple, comparative and superlative adjectives are all
subsumed under ‘Adjective’; and so on. We capitalize these general POS-tags in order to
distinguish them from elements of the relevant classes (nouns, verbs, etc.).

We determined the frequencies of POS-tags per fixed-length segments, i.e., windows,
of text. We did not use sentences as the scope of measurement because sentence length
figured as a separate explanatory variable in our study and because we wanted to obtain
measurements that were independent of punctuation practice. We therefore split the texts
into windows of 25 tokens, which is the approximate average sentence length of the corpus
(in fact, 23.3 tokens). It is important to mention, however, that the window size, within
reasonable limits, did not have a noticeable effect on the results. We experimented with
segments of 10 to 50 tokens in steps of 5 tokens but did not observe any major differences.

By windowing, each text is converted into a sequence of small bags of words—‘boxes’,
as we call them—in which POS-tag frequencies are determined regardless of the position
of the individual words. The linear order of the values obtained from the 25-words boxes
was important as it was regarded as a reflex of the structural organization of the texts.

If the linear order of the counts is taken into account, as in the case of Approximate
Entropy, we will speak of a ‘sequence of boxes’; if linear order does not matter, as in the case
of Shannon Entropy, we will speak of a ‘bag of boxes’. Our approach is thus neither a bag-of-
words nor a word-sequence approach. Word-sequence approaches—specifically, function–
word-adjacency networks (WANs)—have been used in authorship attribution [47,48] and
gender classification [48] (for a detailed description of WAN, see [49]).

As we used six parts of speech, we obtained six series based on counts of POS-tags
in boxes. A series XPOS = x(1), x(2), · · · , x(n) for a specific POS-tag thus contains the
frequencies of the relevant tag in subsequent windows of 25 tokens. If L is the text length, the
length of the series n = bL/25c. In the same way, we generated series of integers representing
the length of the sentences in a text. Sentence length was measured as the number of tokens
(including punctuation marks) in a sentence as sentencized by the Stanza package.

2.3. Computation of Unpredictability in Text

Each series generated as described in Section 2.2 is a sequence of events that are not
independent from each other. As was shown in Mohseni et al. [9], they exhibit long-range
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correlations (though the method used to generate the series was slightly different in this
publication). As an operationalization of (ir)regularity and predictability in a text, we
used Approximate Entropy (ApEn), which measures predictability in linearly ordered
random variables. We analysed sequences of POS-tag counts observed in ‘boxes’ in terms
of Approximate Entropy (the ‘sequence-of-bags approach’).

In order to determine to what extent observed degrees of (ir)regularity are a property
of the global (bag-of-boxes) distribution of structural features, rather than their linear
arrangement, we also calculated summary statistics by using standard Shannon Entropy
(ShEn). Associations of entropy values (ShEn and ApEn) with text categories were deter-
mined with a classification task, using a Support Vector Machine (Section 3.2). In what
follows, we briefly describe both entropy measures, starting with Shannon Entropy.

2.3.1. Shannon Entropy

Shannon Entropy (ShEn) is a well-known concept in information theory that measures
uncertainty in a random variable. Given a discrete random variable x and a probability
distribution p(x), the ShEn of x, h(x), is computed as

h(x) = − ∑
x∈Sx

p(x) loge p(x) (1)

where Sx is the set of all possible events. In a system with all possible events being equally
likely to happen, uncertainty and, hence, ShEn, is at a maximum. A major advantage of
ShEn is that it is parameter-free, straightforward and easily interpretable.

We can determine the ShEn for the six POS-series as well as the series of sentence
length measurements and treat them as a global measurements of predictability. Once again,
it should be stressed, however, that ShEn does not capture local patterns of distribution but
is a function of the probability distribution as a whole. We therefore use it in conjunction
with the Approximate Entropy as described in Section 2.3.2.

2.3.2. Approximate Entropy

Approximate Entropy (ApEn) was first proposed by Pincus [50] as a way of measuring
the degrees of regularity in times series. A high value of ApEn means a low degree of
predictability and vice versa.

ApEn is computed according to sub-sequence matches of length m compared with sub-
sequence matches of length m+ 1. The match between sub-sequences of a series is a function
of a distance metric in relation to a predefined threshold value r. Let X = x(1), · · · , x(n)
be a time series, m be the length of a sub-sequence and r be a positive value. ApEn is
computed as follows:

1. Create sub-sequences ym
i = [x(i), · · · , x(i + (m− 1))] for i = 1, · · · , n−m + 1.

2. Using the distance between ym
i and ym

j , defined as dm
i,j = max

k
|ym

i (k)− ym
j (k)|, compute

Cm
i (r) =

1
n−m + 1

n−m+1

∑
j=1

1(r− dm
i,j)

in which 1(.) is the Heaviside function whose value is 1 when its parameter is positive
and otherwise 0.

3. Compute

φm(r) =
1

n−m + 1

n−m+1

∑
i=1

log(Cm
i (r))

4. Finally, calculate ApEn as

ApEn(m, r) = φm(r)− φm+1(r)
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If the series is fixed at some value and is thus fully predictable, ApEn is 0. The value
of ApEn depends on its two parameters, m and r. m is usually set to 2, and the value of r,
which should be related to the standard deviation (SD) of the series, is set to 0.2 × SD (see,
for example, [51–53]). In our experiments, we also applied this parameter setting.

ApEn has been subject to a broad range of research, and its behaviour has been
studied under various types of circumstances. Researchers have proposed extensions of
ApEn, such as Sample Entropy [54], Multi-Scale Entropy [55] and Multivariate Multi-Scale
Entropy [56], which may provide more accurate analyses for certain time series. In order
to compare ApEn with these extensions, we conducted experiments using the NeuroKit2
python package [57], which implements these extensions. We observed that none of these
methods provided a better discrimination power compared to ApEn. Therefore, we only
report the experimental results of ApEn in Section 3.

3. Results

In this section, we first present the results of the statistical analyses (Section 3.1) and
then turn to the results of our classification experiment (Section 3.2). As pointed out
in Section 2.1, the JEFP corpus contains texts from three categories: fiction/canonical,
fiction/non-canonical, and non-fiction. Our main focus is on the difference between
canonical and non-canonical fiction. As we wish to determine to what extent any observed
differences are genre-related, we also included non-fictional texts in our comparison.

3.1. Statistical Analysis of Features

For each text in the corpus and for each text property, ApEn (Table 2) and ShEn
(Table 3) were computed. As some features were not normally distributed (confirmed by
a Kolmogorov–Smirnov test), we used the median values and compared them with the
Mann–Whitney U test. In Tables 2 and 3, each pair of columns shows a comparison of
ApEn and ShEn values for each text category/feature combination. Whenever a value is
significantly higher than the corresponding value for the other text category, the higher
value is shown in bold face. Levels of significance are indicated by the superscripts on the
right value within each pair of columns.

Table 2. Median values of Approximate Entropy (ApEn) for all text properties. ApEn values were
analysed for two tasks: canonical (N = 76) vs. non-canonical (N = 130) texts and fictional (N = 206)
vs. non-fictional (N = 185) texts. The asterisks indicate whether the differences between the two
text categories of a given task are statistically significant (Mann–Whitney U test; ns, not significant;
* p ≤ 0.05; ** p ≤ 0.01; and *** p ≤ 0.001). Values that are significantly higher within a pair of columns
are shown in boldface. 95% confidence intervals for the median (according to [58]) are shown in
parentheses.

Text Property Canonical Non-Canonical Fictional Non-Fictional

Sentence Length 1.86 (1.83, 1.89) 1.87 (1.86, 1.90) ns 1.87 (1.86, 1.88) 1.90 (1.88, 1.92) ns

Noun 1.89 (1.88, 1.91) 1.83 (1.81, 1.84) *** 1.85 (1.84, 1.86) 1.82 (1.81, 1.84) **
Verb 1.75 (1.73, 1.76) 1.70 (1.69, 1.71) *** 1.714 (1.706, 1.723) 1.756 (1.745, 1.764) ***

Adjective 1.50 (1.49, 1.52) 1.45 (1.43, 1.48) *** 1.488 (1.469, 1.494) 1.58 (1.55, 1.60) ***
Adverb 1.51 (1.49, 1.53) 1.48 (1.46, 1.49) ** 1.49 (1.48, 1.50) 1.36 (1.34, 1.39) ***
Pronoun 1.74 (1.71, 1.76) 1.681 (1.675, 1.691) *** 1.695 (1.685, 1.704) 1.31 (1.28, 1.36) ***

Preposition 1.71 (1.70, 1.72) 1.67 (1.66, 1.68) *** 1.678 (1.672, 1.683) 1.691 (1.686, 1.697) ***



Entropy 2022, 24, 278 8 of 16

Table 3. Median values of Shannon Entropy (ShEn) for all text properties. ApEn values were analysed
for two tasks: canonical (N = 76) vs. non-canonical (N = 130) texts and fictional (N = 206) vs. non-
fictional (N = 185) texts. The asterisks indicate whether the differences between the two text categories
of a given task are statistically significant (Mann–Whitney U test; ns, not significant; * p ≤ 0.05;
** p ≤ 0.01; and *** p ≤ 0.001). Values that are significantly higher within a pair of columns are shown
in boldface. 95% confidence intervals for the median (according to [58]) are shown in parentheses.

Text Property Canonical Non-Canonical Fictional Non-Fictional

Sentence Length 3.96 (3.88, 4.05) 3.96 (3.87, 4.08) ns 3.96 (3.91, 4.03) 4.10 (4.07, 4.16) ***
Noun 2.00 (1.99, 2.02) 1.97 (1.95, 1.98) *** 1.98 (1.97, 1.99) 1.97 (1.95, 1.99) ns

Verb 1.80 (1.79, 1.81) 1.777 (1.772, 1.783) *** 1.785 (1.779, 1.792) 1.844 (1.836, 1.853) ***
Adjective 1.54 (1.53, 1.55) 1.49 (1.47, 1.53) *** 1.52 (1.51, 1.53) 1.63 (1.61, 1.66) ***
Adverb 1.54 (1.51, 1.55) 1.51 (1.49, 1.53) * 1.52 (1.51, 1.53) 1.40 (1.37, 1.42) ***
Pronoun 1.83 (1.80, 1.84) 1.78 (1.77, 1.79) *** 1.79 (1.78, 1.80) 1.37 (1.33, 1.42) ***

Preposition 1.75 (1.74, 1.77) 1.73 (1.72, 1.74) *** 1.736 (1.729, 1.744) 1.76 (1.75, 1.77) ***

The most important observation that stands out from a superficial inspection of
Tables 2 and 3 is that the left two columns, which show the values for canonical and non-
canonical fiction, exhibit a rather uniform pattern: while there are no significant differences
between the values for sentence length (in the top row), the ApEn as well as the ShEn
values for all series derived from POS-frequencies within boxes are higher for canonical
than for non-canonical texts.

In contrast, in the right pair of columns, showing the comparison between fictional
and non-fictional texts, there is no uniform pattern. Fictional texts have higher ApEn and
ShEn values than non-fictional texts for Adverb and Pronoun, and the ApEn value for
Noun is higher in fictional than in non-fictional texts. Non-fictional texts have higher ApEn
and ShEn values for Verb, Adjective and Preposition, and the ShEn value for Sentence
Length is higher than for fictional texts.

In conclusion, Tables 2 and 3 thus show that entropy values—both ApEn and ShEn—
are consistently higher in canonical than in non-canonical fiction for POS-tag frequencies
within boxes, whereas there is no such clear tendency in the comparison between fictional
and non-fictional prose (though there are also significant differences).

Stated differently, the results shown in Tables 2 and 3 suggest that canonical fictional
texts are characterized by a higher degree of uncertainty than non-fictional texts, when
treated either as a bag-of-boxes distribution (with ShEn) or a sequence-of-boxes distribution
(ApEn). Fictional texts differ from non-fictional texts in terms of the uncertainty associated
with specific POS-tags; however, there is no uniform pattern. It appears that, in fictional
prose, pronouns and adverbs are distributed less predictably than in non-fictional prose,
while in non-fictional texts, the distribution of verbs, adjectives and prepositions is less
predictable in comparison with fictional texts.

Visual inspection of the data in Tables 2 and 3 does not prima facie show any clear
patterns with respect to the differences in magnitude of the ApEn values (Table 2) and
the ShEn values (Table 3), for each pair of columns. In order to determine whether the
degrees of uncertainty observed for the various text category/feature combinations are a
property of the texts as bags of boxes or as a function of the linear sequence of the boxes,
we used classification tasks with a Support Vector Machine, which allows us to estimate
the discriminatory power of each feature.

3.2. Classification

In two classification tasks, we determined what features can most efficiently classify
or separate the categories of text under analysis—canonical vs. non-canonical fiction and
fictional vs. non-fictional (expository) prose. We refer to the task of classifying canonical vs.
non-canonical texts as ‘Task 1’ and the task of classifying non-fictional vs. fictional texts
as ‘Task 2’. We used a Support Vector Machine (SVM) with a Radial Basis Function (RBF)
kernel for the two tasks. As the categories to be classified are of different size, we used
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balanced accuracy as our evaluation measure. Wherever we compare classification results,
we used the 5× 2CV paired t-test [59] with a significance level of α = 0.05. We report the
mean of the 10 runs, 5 times 2-fold cross-validation, for each setting.

Table 4 shows the classification results for the two tasks using ApEn values and ShEn
values calculated for each text as features for the classification task. As in Tables 2 and 3,
values that are significantly higher than their counterparts are highlighted with boldface.
The top section of the table shows the results for each individual property. The most
important observation is that ApEn separates canonical from non-canonical fictional texts
better than ShEn does (Task 1).

Wherever the results are significantly better than random accuracy (50%), ApEn is
more effective than ShEn. Moreover, for ApEn, classification is significantly different from
random accuracy for all but one text property, i.e., Adverb, while the differences are not
statistically significant for three text properties for ShEn, i.e., Sentence Length, Adjective
and Adverb (indicated by a dagger† in Table 4). Table 4 also shows the classification results
when all text properties are taken into account. In Task 1, ApEn outperformed ShEn by a
large margin (77.3% vs. 68.5%).

Table 4. Balanced accuracy of classification (in %) for the single features for the canonical/non-
canonical distinction (Task 1) and the non-fictional/fictional distinction (Task 2). To compare classifi-
cation results, we used the 5 × 2CV paired t-test [59] with a significance level of α = 0.05. Values that
are significantly higher within a pair of columns are shown in boldface. All values are significantly
different (p ≤ 0.05) from random accuracy (50%), except where indicated by a dagger (†).

Task 1 Task 2
ApEn ShEn ApEn ShEn

Sentence Length 54.0 ± 1.6 50.0 ± 1.0 † 53.6 ± 2.9 61.7 ± 2.3
Noun 73.6 ± 2.9 60.0 ± 4.5 57.4 ± 1.9 64.2 ± 1.8
Verb 71.3 ± 3.4 56.2 ± 3.8 65.5 ± 2.4 74.0 ± 1.6

Adjective 55.2 ± 2.5 51.5 ± 2.7 † 71.7 ± 2.1 74.3 ± 1.0
Adverb 51.6 ± 1.4 † 51.0 ± 1.5 † 72.8 ± 2.2 73.0 ± 2.9
Pronoun 68.0 ± 1.7 63.8 ± 1.8 95.1 ± 1.5 95.0 ± 1.7

Preposition 69.1 ± 2.4 59.7 ± 1.7 56.9 ± 2.6 61.4 ± 1.3

All 77.3 ± 2.6 68.5 ± 2.3 95.4 ± 1.8 96.5 ± 1.9

While the overall accuracy measures for ApEn may seem moderate in Task 1—77.3%
using all features, with the POS-tag Noun alone reaching 73.6%—it should be borne in
mind that this task is particularly difficult. Canonical and non-canonical texts belong to
the same genre—fictional prose—and the differences between them can be expected to be
subtle. The accuracy values for ShEn, which are significantly lower than those for ApEn,
show that the difference between canonical and non-canonical fiction is not so much a
matter of global (bag-of-boxes) distributions as it is a matter of sequential organization
(sequence-of-boxes distribution).

The results for Task 2 differ strikingly from those for Task 1. Importantly, ShEn overall
appeared to perform better than ApEn in this task. The results are significantly higher
for Sentence Length, Noun and Verb. For three of the features—Adjective, Adverb and
Pronoun— ApEn and ShEn values do not differ significantly. Concerning the results based
on all features, the accuracy values of ShEn and ApEn are also similar, with values of > 95%,
and the observed difference is not significant. This result suggests that the differences
between fictional and non-fictional texts are a matter of global distribution rather than
sequential organization.

The right column of Table 4 shows another interesting result: The feature Pronoun
alone classifies fictional vs. non-fictional texts with very high accuracy (≈95%), for both
ApEn and ShEn. In fact, using all features does not lead to a significantly better performance
than using Pronoun alone.
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Given the prevalence of the feature Pronoun in the classification of fictional vs. non-
fictional texts (Task 2), we repeated the task using all features except Pronoun, to gain a
better understanding of the role of the remaining text properties. Without Pronoun, the
performance of classification dropped to 89.7% and 91.0% for ApEn and ShEn, respectively,
a considerable decrease for both features.

In comparison with other classification studies, the accuracy scores obtained in our
study may appear to be rather moderate overall. Studies based on lexical material or
n-grams may be more successful in text classification (see, for instance [60] on novels by
Stephen King). We would like to emphasize, however, that we are interested in under-
standing the higher-level design features of texts, not their make-up in terms of low-level
features, such as words or n-grams.

Our endeavour is thus more comparable to studies that aim to classify texts in terms
of parameters associated with linguistic laws, such as Zipf’s law [34,35] and the Menzerath–
Altmann law [61–64]. For comparison, we therefore ran classification tasks using param-
eters of these laws as input features (as suggested by a reviewer). The lambda-values of
Zipfian distributions fitted to lemma counts delivered accuracy scores of 64.8% (Task 1)
and 56.8% (Task 2). The two parameters b and c of a Menzerath–Altmann distribution
(y = axbe−cx) fitted to the average length of clauses and measured in tokens as a function
of the number of clauses in a sentence, yielded accuracy scores of 55.8% (Task 1) and 68.6%
(Task 2) (we used the package ‘menzerath’ for R [65] to extract the parameters with the
function ‘menzerath()’ [method ‘MAL’]).

This illustrates, again, how difficult Task 1 is. Our experiments with the parameters of
linguistic laws were only preliminary, and there are certainly ways of optimizing the classi-
fication process, e.g., by applying a more precise definition of ‘clause’ (we split sentences
into clauses by relying on punctuation). In any case, they confirm that classification with a
low number of features that describe a text as a whole is a difficult undertaking and that
accuracy scores in the range of 75–80% as obtained with Approximate Entropy for Task 1
are less disappointing than they might appear to be on first sight. The lambda parameters
of Zipf’s law and the two parameters of the Menzerath–Altmann law (b and c) are shown
in Supplementary Figures S5 and S6, respectively.

3.3. Most Discriminative Features

As mentioned above, the discrimination of canonical vs. non-canonical texts (Task 1)
is much more difficult than that of fictional vs. non-fictional texts (Task 2). While in Task 2
there is one prominent feature—Pronoun—the contributions of the features in Task 1 are
more evenly distributed. In order to determine degrees of feature importance, we applied
two methods.

First, we used sensitivity analysis [66]; the results are shown in Supplementary Figures S7–S8.
This analysis confirms the impression given by Table 4 that Noun and Verb are the most important
discriminators for ApEn in Task 1, while Pronoun is the most important discriminator for ShEn.
Second, we ran a brute-force search on the ApEn features as well as the ShEn ones (to give
readers a visual impression of the discriminatory power of pairs of features, we provide
pair plots of all features for ApEn and ShEn in the Supplementary Figures S1–S4).

Again, the most effective pair of ApEn features was that of Noun and Verb. Figure 1a
visualizes the values of the two features for all fictional texts. The ApEn values of fictional
texts in both the Noun and Verb series tended to be higher for canonical than for non-canonical
texts. Moreover, the correlation between these two features, i.e., the ApEn of Noun and of
Verb, was higher for canonical texts (Pearson coefficient 0.75) than for non-canonical texts
(0.49). For comparison, Figure 1b shows the ShEn values for Noun and Verb. The figure
demonstrates that the discriminative power of the two features is significantly lower than that
of the corresponding ApEn values as shown in Figure 1a.
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Figure 1. ApEn (a) and ShEn (b) of Noun and Verb, the two best features for classification of canonical
vs. non-canonical texts (Task 1). ApEn and ShEn values of these two features provide an accuracy of
75.9% and 68.4%, respectively. The coloured regions and the border (dashed) line show the decision
space of the Support Vector Machine.

In Task 2, ApEn and ShEn of Pronoun were the most effective features in discriminating
fictional from non-fictional texts with an accuracy of >95%. As Table 4 shows, adding
more features does not improve the classification results significantly. In Figure 2a,b, the
distributions of ApEn and ShEn values for Pronoun are visualized in the form of violin
plots. The figures show that the values are clearly higher for fictional than for non-fictional
texts, while the ranges of values for canonical and non-canonical texts largely overlap.

Figure 2. Values for ApEn (a) and ShEn (b) of Pronoun. These two features yield high accuracy for
the classification of fictional vs. non-fictional texts (Task 2).

Note also that the values for non-fictional texts are very broadly distributed, while
the values for fictional (canonical and non-canonical) texts are consistently very high. As
there is hardly any difference between the plots for ApEn and ShEn, we can assume that
the uncertainty due to the distribution of pronouns is a matter of global distribution, rather
than sequential organization, as mentioned above.

4. Discussion and Conclusions

The most important result of our study can be summarized as follows: Canonical and
non-canonical fictional texts differ in their degrees of predictability regarding the sequential
distribution of the major parts of speech Noun, Pronoun, Verb, Adjective, Adverb and
Preposition in windows of 25 tokens, and this was reflected in their higher Approximate
Entropy (ApEn) values (cf. Table 2).

In other words, following a given window of text, there is less certainty about the
frequency of specific parts of speech in the next window in canonical fictional texts, in
comparison to non-canonical fictional texts. This result confirms our expectation that
canonical fictional texts may be less predictable than non-canonical texts in terms of their
textual structure. Whether or not this is perceived by a reader remains to be investigated.
We assume that the observed differences are located at a medium level of text or discourse
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organization. They are probably not so much a matter of sentence-level syntax as they are
of textual organization at the paragraph level.

Specifically, we suspect that frequency distributions of part-of-speech tags reflect
discourse modes where the less predictable structural organization of canonical texts is due
to (more unpredictable) shifts between discourse modes. The most important discourse
modes in (traditional) fictional prose are those of narration and dialogue, followed perhaps
by description. Verbs and nouns are important discriminators of discourse modes, insofar as
verbs are prevalent in narration and dialogue, while nouns are more frequent in description
and are particularly rare in dialogue.

In order to test this hypothesis, more detailed and thorough investigations will be
needed. One way of approaching this task could be with Latent Dirichlet Allocation (LDA),
which is commonly used for Topic Modelling [67]). If rhetorical modes are associated with
multinomial distributions over parts of speech, as we assume, LDA-models (potentially
supervised/labelled) could be trained on mixed-genre corpora. The models trained in this
way could be used to assign to each window of text a distribution of discourse modes,
and the resulting distributions could be analysed using methods like the ones applied in
the present study, or other ways of capturing the global structural properties of texts (e.g.,
MFDFA [9]).

As the discriminative power of Shannon Entropy (ShEn) was lower than that of ApEn
in Task 1, we assume that our results concerning the difference between canonical and
non-canonical fictional texts do not reflect bag-of-boxes distributions but rather sequential
organization within individual texts as reflected in sequences of boxes.

The results of our comparison between fictional and non-fictional prose were very
different. The task of discriminating fictional from non-fictional texts was overall much
easier than the classification of canonical vs. non-canonical fictional texts, as shown by the
(balanced) accuracy scores of the classification tasks. This is not surprising, as we are here
dealing with a question of genre classification, whereas canonical and non-canonical texts
belong to the same genre and (by hypothesis) differ in terms of the textual structure.

Since ApEn did not fare better than ShEn in the fictional/non-fictional classification
task, we assume that this is a matter of the bag-of-boxes distributions of text features, rather
than of their sequential structure. Note also that there was no consistent pattern in the
distribution of ShEn values across text properties. It appears that fictional and non-fictional
texts differ in the ways parts of speech are distributed, with some of them showing flatter
distributions (with higher entropy) and others showing steeper distributions (with lower
entropy values) without a general trend.

An interesting observation that emerged from Task 2 was the central role of pronoun
frequencies, which showed high performance. Pronouns are often not analysed in text
classification and are often ignored as they are filtered out as stopwords. However, there
are also studies acknowledging the importance of pronouns. For example, Kernot [68]
showed that data taken from 30 articles written by three female and two male authors
could be classified into gender categories by using only three pronouns, i.e., my, her and its.

Similarly, a study of sentimentalism in literature, Yu [69], found that pronouns are par-
ticularly valuable discriminators. In the context of register classification, the discriminatory
power of pronouns is plausible. Qureshi et al. [70] found that the ratio of the number of
adjectives to the number of pronouns is a good discriminator for distinguishing fictional
from non-fictional texts.

Our finding that pronouns are informative when their predictability of occurrence is
studied fits into this picture. While fictional texts are characterized by alternations between
narrative passages and dialogue, the latter mode being associated with deictic pronouns (I,
you), non-fictional prose can be expected to exhibit a more even distribution of anaphoric
pronouns (she, he, they).

Our finding that the sequential structure of canonical texts is less predictable than that
of non-canonical texts can be compared to results from vision studies. The basic perceptual
features of visual images include, for example, oriented gradients of luminance or colour
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(edges). It has been shown that the distribution of edge orientations is less predictable
across individual images of traditional artworks than in several types of non-art images [7].
In analogy to the present results for texts, the entropy of edge orientations is relatively high
in visual artworks. High entropy of edge orientations can also be observed in other stimuli
that beholders like more, including artificially generated visual patterns [71,72].

In the auditory domain, an intermediate degree of unpredictability and its resolution
during listening are thought to evoke musical pleasure [36] in agreement with predictive
coding accounts of brain function [37,73] (for a review of possible neural correlates of
musical expectations in the human brain, see [74]). We speculate that a certain degree of
unpredictability in the distribution of basic structural (perceptual) features is one of the
hallmarks of aesthetically appreciated stimuli. Whether this hypothesis can be generalized
to other types of text and whether this reflects domain-general perceptual and cognitive
processes across sensory domains remains to be investigated.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/e24020278/s1: Table S1: List of texts in the Jena Corpus of
Expository and Fictional Prose (JEFP Corpus, Version 2.0). Figure S1: Pair-plot of all Approximate
Entropy (ApEn) features in fictional/canonical and fictional/non-canonical texts. Figure S2: Pair-plot
of all Shannon Entropy (ShEn) features in fictional/canonical and fictional/non-canonical texts.
Figure S3: Pair-plot of all Approximate Entropy (ApEn) features in fictional/canonical, fictional/non-
canonical and non-fictional texts. Figure S4: Pair-plot of all Shannon Entropy (ShEn) features in
fictional/canonical, fictional/non-canonical and non-fictional texts. Figure S5: Zipf’s law coefficient
(lambda) of fictional/canonical, fictional/non-canonical and non-fictional texts. Figure S6: The two
parameters (b and c) of the Menzerath–Altmann law in fictional/canonical, fictional/non-canonical
and non-fictional texts. Figure S7: Sensitivity analysis of ApEn features and ShEn features in
classification of fictional/canonical and fictional/non-canonical texts. Figure S8: Sensitivity analysis
of ApEn features and ShEn features in classification of fictional and non-fictional texts.
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