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Abstract: Many visual representations, such as volume-rendered images and metro maps, feature a
noticeable amount of information loss due to a variety of many-to-one mappings. At a glance, there
seem to be numerous opportunities for viewers to misinterpret the data being visualized, hence,
undermining the benefits of these visual representations. In practice, there is little doubt that these
visual representations are useful. The recently-proposed information-theoretic measure for analyzing
the cost–benefit ratio of visualization processes can explain such usefulness experienced in practice
and postulate that the viewers’ knowledge can reduce the potential distortion (e.g., misinterpretation)
due to information loss. This suggests that viewers’ knowledge can be estimated by comparing
the potential distortion without any knowledge and the actual distortion with some knowledge.
However, the existing cost–benefit measure consists of an unbounded divergence term, making the
numerical measurements difficult to interpret. This is the second part of a two-part paper, which aims
to improve the existing cost–benefit measure. Part I of the paper provided a theoretical discourse
about the problem of unboundedness, reported a conceptual analysis of nine candidate divergence
measures for resolving the problem, and eliminated three from further consideration. In this Part
II, we describe two groups of case studies for evaluating the remaining six candidate measures
empirically. In particular, we obtained instance data for (i) supporting the evaluation of the remaining
candidate measures and (ii) demonstrating their applicability in practical scenarios for estimating the
cost–benefit of visualization processes as well as the impact of human knowledge in the processes.
The real world data about visualization provides practical evidence for evaluating the usability and
intuitiveness of the candidate measures. The combination of the conceptual analysis in Part I and
the empirical evaluation in this part allows us to select the most appropriate bounded divergence
measure for improving the existing cost–benefit measure.

Keywords: information theory; theory of visualization; cost–benefit analysis; divergence measure;
benefit of visualization; human knowledge in visualization; abstraction; deformation; volume visual-
ization; metro map

1. Introduction

This two-part paper is concerned with the measurement of the benefit of visualization
and viewers’ knowledge used in visualization. The history of measurement science shows
that the development of measurements in different fields has not only stimulated scientific
and technological advancements but also encountered some serious contentions due to
instrumental, operational, and social conventions [1]. While the development of measure-
ment systems, methods, and standards for visualization may take decades of research, one
can easily imagine their impact on visualization as a scientific and technological subject.
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“Measurement ... is defined as the assignment of numerals to objects or events accord-
ing to rules” [2].

Rules may be defined based on physical laws (e.g., absolute zero temperature), obser-
vational instances (e.g., the freezing and boiling points of water), or social traditions (e.g.,
seven days per week). Without exception, measurement development in visualization aims
to discover and define rules that will enable us to use mathematics in describing, differenti-
ating, and explaining phenomena in visualization, as well as in predicting the impact of a
design decision, diagnosing shortcomings in visual analytics workflows, and formulating
solutions for improvement.

In 2016, Chen and Golan proposed an information-theoretic measure for quantifying
the cost–benefit of visualization [3]. However, this measure consists of an unbounded
divergence term, making the numerical measurements difficult to interpret. In the first part
of this paper [4], Chen and Sbert:

• Reviewed the related work that prepared for this cost–benefit measure, provided the
measure with empirical evidence, and featured the application of the measure.

• Identified a shortcoming of using the Kullback–Leibler divergence (KL-divergence) in
the cost–benefit measure and demonstrated the shortcoming using practical examples.

• Presented a theoretical discourse to justify the use of a bounded measure for
finite alphabets.

• Proposed a new bounded divergence measure, while studying existing bounded
divergence measures.

• Analyzed nine candidate measures using seven criteria reflecting desirable con-
ceptual or mathematical properties, and narrowed the nine candidate measures to
six measures.

In this second part of the paper, we focus on the remaining six candidate measures
and evaluate them based on empirical evidence. In particular:

• We report several case studies for collecting practical instances to evaluate the remain-
ing candidate measures.

• We demonstrate the uses of the cost–benefit measurement to estimate the benefit of
visualization in practical scenarios and the human knowledge used in the visualization
processes.

• We report the discovery of a new conceptual criterion that a divergence measure is a
summation of the entropic values of its components, which is useful in analyzing and
visualizing empirical data.

• Finally, we bring the multi-criteria decision analysis (MCDA) in Parts I and II together
and offer a recommendation to revise the information-theoretic measures proposed by
Chen and Golan [3].

In addition, we use the data collected in two visualization case studies to explore
the relationship between the benefit of visualization and the viewers’ knowledge used in
visualization. As shown in Figure 1, in one case study, we asked participants to perform
tasks for estimating the walking time (in minutes) between two underground stations
indicated by a pair of red or blue arrows. Although the deformed London underground
map was not designed to perform visualization tasks, many participants performed rather
well, including those who had very limited experience of using the London underground.
This suggests that with the presence of knowledge, a seemingly-tiny amount of visual
information can be very useful.

We proposed two different ways of estimating viewers’ knowledge that has been used
in the visualization process to alleviate the potential distortion. When we use different
candidate measures to estimate viewers’ knowledge, we evaluate these candidate measures
using the collected practical instances, while demonstrating that we are getting closer to be
able to estimate the “benefit” of and “knowledge” used in practical visualization processes.
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Readers are encouraged to consult the related reports on the cost–benefit analysis [5]
and the Part I of this paper [4]. Nevertheless, this part of the paper is written in a self-
contained manner.

Figure 1. The London underground map (right) is a deformed map. In comparison with a relatively
more faithful map (left), there is a significant amount of information loss due to many-to-one
mappings in the deformed map, which omits some detailed variations among different connection
routes between pairs of stations (e.g., distance and geometry). One common rationale is that the
deformed map was designed for certain visualization tasks, which likely excluded the task for
estimating the walking time between a pair of stations indicated by a pair of red or blue arrows.
In one of our experiments, when asked to perform such tasks using the deformed map, some
participants with little knowledge about London or London Underground performed these tasks
well. Can information theory explain this phenomenon? Can we quantitatively measure relevant
factors in this visualization process?

2. Related Work

This two-part paper is concerned with information-theoretic measures for quantifying
aspects of visualization, such as benefit, knowledge, and potential misinterpretation. The
first part [4] focuses its review on previous information-theoretic work in visualization.
In this section, we focus our review on previous measurement work in visualization.

2.1. Measurement Science

There is currently no standard measurement scale for measuring the benefit of visu-
alization, levels of visual abstraction, the human knowledge used in visualization, or the
potential to misinterpret visual abstraction. While these are considered to be complex un-
dertakings, many scientists in the history of measurement science would have encountered
similar challenges [1].

In their book [6], Boslaugh and Watters described measurement as “the process of
systematically assigning numbers to objects and their properties, to facilitate the use of
mathematics in studying and describing objects and their relationships.” They emphasized
that measurement is not limited to physical qualities (e.g., height and weight) but also
includes abstract properties (e.g., intelligence and aptitude). Pedhazur and Schmelkin [7]
asserted the necessity of an integrated approach for measurement development, involving
data collection, mathematical reasoning, technology innovation, and device engineering.
Tal [8] pointed out that measurement is often not totally “real”, involves the represen-
tation of ideal systems and reflects conceptual, metaphysical, semantic, and epistemo-
logical understandings. Schlaudt [9] went one step further, referring measurement as a
cultural technique.

This work is particularly inspired by the historical development of temperature scales
and seismic magnitude. The former attracted the attention of many well-known scientists,
benefited from both experimental observations (e.g., by Newton, Fahrenheit, Delisle, Cel-
sius, etc.) and theoretical discoveries (e.g., by Boltzmann, Thomson (Kelvin), etc.). The
latter started not long ago as the Richter scale was outlined in 1935. Since then, there have
been many schemes proposed relating different physical properties. Many scales in both
applications are related to logarithmic transformations.
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Figure 2 depicted a number of instances that are quantified in different temperature
scales. Isaac Newton proposed one of the first temperature scales based on his observation
of over 20 instances [10]. Nine of them are shown in Figure 2, where the corresponding data
in other scales were obtained based on Grigull’s study of the Netwon scale [11]. Although
the Newton scale has not been adopted, his approach to mark and observe different data
points at his proposed scale has been considered as “the first attempt to introduce an
objective way of measuring ... temperature” [12].

From that first step, it took more than 40 years and many other proposals to developed
the Celsius scale (with two of Newton’s data points as the reference points), which is
most commonly used today. It took another century to develop the Kelvin scale with
absolute zero as a new reference point. History motivates us to collected practical instances
and conduct data-driven evaluation of candidate measures for estimating the benefit
of visualization.
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Figure 2. Major temperate scales proposed in history. Different lines show instances used as obser-
vation points, some of which became major reference points. Note: “Celsius* 1742” indicates the
original scale proposed by Anders Celsius, while “Celsius 1743” indicates the revised Celsius scale
used today that was proposed by Jean-Pierre Christin. The Newton scale is not linearly related to the
others (shown as dash lines).

2.2. Metrics Development in Visualization

Behrisch et al. [13] presented a survey of quality metrics for information visualization.
Bertini et al. [14] described a systemic approach of using quality metrics for evaluating
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high-dimensional data visualization focusing on scatter plots and parallel coordinates plots.
A variety of quality metrics have been proposed to measure many different attributes,
such as abstraction quality [15–17], quality of scatter plots [18–24], quality of parallel
coordinates plots [25], cluttering [26–28], aesthetics [29], visual saliency [30], and color
mapping [31–34].

In particular, Jänicke et al. [30] first considered a metric for estimating the amount of
original data that is depicted by visualization and may be reconstructed by viewers. Chen
and Golan [3] used the abstract form of this idea in defining their cost–benefit ratio. While
the work by Jänicke et al. [30] relied on computer vision techniques for reconstruction, this
work focused on collecting and analyzing empirical data because human knowledge has a
major role to play in information reconstruction.

2.3. Measurement in Empirical Experiments

Almost all controlled empirical studies in visualization involve measuring the partici-
pants’ performance in visualization processes, typically in terms of accuracy and response
time (e.g., [35]). Many uncontrolled empirical studies also collect participants’ experience
and opinions qualitatively. Such collected data allow us to assess the benefit of visualization
or potential misinterpretation. The empirical studies particularly relevant to this work are
those on the topics of visual abstraction and human knowledge in visualization.

Isenberg [36] presented a survey of evaluation techniques on non-photorealistic and
illustrative rendering. Isenberg et al. [37] reported an observational study comparing hand-
drawn and computer-generated non-photorealistic rendering. Cole et al. [38] performed a
study evaluating the effectiveness of line drawing in representing shape. Mandryk et al. [39]
evaluated the emotional responses to non-photorealistic generated images. Liu and Li [40]
presented an eye-tracking study examining the effectiveness and efficiency of schematic
designs for depicting 30◦ and 60◦ directions in underground maps. Hong et al. [41]
evaluated the usefulness of distance cartograms map “in the wild”. These studies confirmed
that visualization users can deal with significant information loss due to visual abstraction
in many situations.

Tam et al. [42] reported an observational study comparing automated and semi-
automated machine learning (ML) workflows. Their information-theoretical analysis
showed that ML developers entered a huge amount of knowledge (measured in bits) into a
visualization-assisted ML workflow. Kijmongkolchai et al. [43] reported a study designed
for detecting and measuring human knowledge used in visualization, and translated
the traditional accuracy values to information-theoretic measures. They encountered an
undesirable property of the Kullback–Leibler divergence in their calculations. In this work,
we collect empirical data to evaluate the mathematical solutions proposed to address the
issue encountered in [43].

If we can address this mathematical issue successfully, we will be able to complement
qualitative methods for assessing the value of visualization (e.g., by Wall et al. [44]) with
quantitative measurement; we will be able to carry out many experiments (e.g., those by
Cleveland and McGill [35] and Saket et al. [45]) to examine the trade-off between alphabet
compression and potential distortion [3]; we will be able to estimate the knowledge used
(or gained) by the users in (or from) visualization as discussed by Sacha et al. [46]; and we
will be able to transform the current qualitative methods for optimizing visual analytics
workflow (e.g., [47]) to quantitative methods.

3. Overview, Notations, and Problem Statement
3.1. Brief Overview

Whilst hardly anyone in the visualization community would support any practice
intended to deceive viewers, there have been many visualization techniques that inherently
cause distortion to the original data. The deformed London underground map in Figure 1
shows such an example. The distortion in this example is largely caused by many-to-one
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mappings. A group of lines that would be shown in different lengths in a faithful map are
now shown with the same length.

Another group of lines that would be shown with different geometric shapes are now
shown as the same straight line. In terms of information theory, when the faithful map
is transformed to the deformed map, a portion of information has been lost due to the
many-to-one mappings. In this work, we follow the Shannon’s definition of information.
Many-to-one mappings result in the reduction of Shannon entropy [48].

The common phrase that “the appropriateness of information loss depends on tasks”
is not an invalid explanation. Partly by a similar conundrum in economics “what is the
most appropriate resolution of time series for an economist”, Chen and Golan proposed an
information-theoretic cost–benefit ratio for measuring various factors involved in visualiza-
tion processes [3]. Its qualitative version is:

Benefit
Cost

=
Alphabet Compression− Potential Distortion

Cost
(1)

This cost–benefit ratio was described and discussed in the first part of the paper [4].
Appendix A provides a more detailed explanation of this measure in the context of visual-
ization, while Appendix B explains in detail how tasks and users are considered by this
measure in the abstract. A more comprehensive introduction can be found in an arXiv
report [5].

3.2. Mathematical Notations

Consider a simple metro map consisting of only two stations in Figure 3. We consider
three different grid resolutions, with 1× 1 cell, 2× 2 cells, and 4× 4 cells, respectively. The
following set of rules determine whether a potential path is allowed or not:

• The positions of the two stations are fixed on each grid and there is only one path
between the red station and the blue station.

• As shown on the top-right of Figure 3, only horizontal, and diagonal path-lines
are allowed.

• When one path-line joins another, it can rotate by up to ±45◦.
• All joints of path-lines can only be placed on grid points.

For the first grid with the 1× 1 cell, there is only one possible path. We define an
alphabet A to contain this option as its only letter a1, i.e., A = {a1}. For the second grid
with 2× 2 cells, we have an alphabet B = {b1, b2, b3}, consisting of three optional paths.
For the third grid with 4× 4 cells, there are 15 optional paths, which are letters of alphabet
C = {c1, c2, . . . , c15}. When the resolution of the grid increases, the alphabet of options
becomes bigger quickly. We can imagine it gradually allows the designer to create a more
faithful map.

To a designer of the underground map, at the 1× 1 resolution, there is only one choice
regardless of how much the designer would like to draw the path to reflect the actual
geographical path of the metro line between these two stations. At the 2× 2 and 4× 4
resolutions, the designer has 3 and 15 options, respectively. Increasing the number of
options is one factor that causes the increasing uncertainty about the selection of a specific
option. The other factor is the provability of each option being selected. This uncertainty
can be measured by Shannon entropy, which is defined as:

H(Z) = −
n

∑
i=1

pi log2 pi where pi ∈ [0, 1],
n

∑
i=1

pi = 1

where Z is an alphabet, and can be replaced with A, B, or C. To calculate Shannon entropy,
the alphabet Z needs to be accompanied by a probability mass function (PMF), which is
written as P(Z). Each letter zi ∈ Z is thus associated with a probability value pi ∈ P.

Note: In this paper, to simplify the notations in different contexts, for an information-
theoretic measure, we use an alphabet Z and its PMF P interchangeably, e.g.,H(P(Z)) =



Entropy 2022, 24, 282 7 of 37

H(P) = H(Z). Readers can find more mathematical background about information theory
in [49] in general, and [5] in relation to this paper.

a1 b1 b2 b3 

c1 c2 c3 c4 c5 

c8 c9 c10 c6 c7 

c11 c12 c13 c14 c15 

  

 
 

Rules 

Figure 3. Three alphabets illustrate possible metro maps (letters) in different grid resolutions. In-
creasing the resolution enables the depiction of more reality, while reducing the resolution compels
more abstraction.

To ensure the calculation is easy to follow, we consider only the first two grids below.
Let us first consider the single-letter alphabet A and its PMF Q. As n = 1 and q1 = 1, we
haveH(A) = 0 bits. A is 100% certain, reflecting the fact that the designer has no choice.

The alphabet B has three design options b1, b2, and b3. If they have an equal chance
to be selected by the designer, we have a PMF Qu with q1 = q2 = q3 = 1/3, and thus
H(Qu(B)) ≈ 1.585 bits. When we examine the three options in Figure 3, it is not unreason-
able to consider a second scenario that the choice may be in favor of the straight line option
b1 in designing a metro map according to the real geographical data. If a different PMF Qv
is given as q1 = 0.9, q2 = q3 = 0.05, we haveH(Qv(B)) ≈ 0.569 bits. The second scenario
features less entropy and is thus of more certainty.

Consider that the designer is given a metro map designed using alphabet B, and is
asked to produce a more abstract map using alphabet A. To the designer, it is a straightfor-
ward task, since there is only one option in A. When a group of viewers is visualizing the
final design a1, we could give these viewers a task to guess what may be the original map
designed with B. If most viewers have no knowledge about the possible options b2 and
b3, and almost all choose b1 as the original design, we can describe their decisions using a
PMF P such that p1 = 0.998, p2 = p3 = 0.001. Since P is not the same as either Qu or Qv,
the viewers’ decisions diverge from the actual PMF associated with B. This divergence can
be measured using the Kullback–Leibler divergence (KL-divergence):

DKL(P(Z)||Q(Z)) =
n

∑
i=1

pi(log2 pi − log2 qi) =
n

∑
i=1

pi log2
pi
qi
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Using DKL, we can calculate (i) if the original design alphabet B has the PMF Qu,
we have DKL(P||Qu) ≈ 1.562 bits; and (ii) if the original design alphabet B has the PMF
Qv, we have DKL(P||Qv) ≈ 0.138 bits. There is more divergence in case (i) than case (ii).
Intuitively, we can guess this as P appears to be similar to Qv.

Recall the qualitative formula in Equation (1). In the original mathematical defini-
tion [3], the benefit of a visual analytics process is defined as:

Benefit = AC− PD = H(Zi)−H(Zi+1)−DKL(Z′i||Zi) (2)

where Zi is the input alphabet to the process and Zi+1 is the output alphabet. Z′i is an
alphabet reconstructed based on Zi+1. Z′i has the same set of letters as Zi but likely a
different PMF. In Equation (2), the first two terms,H(Zi)−H(Zi+1), directly measure the
amount of information loss in terms of Shannon entropy, while the third term, DKL(Z′i||Zi),
measures the consequence of the information loss.

In terms of Equation (2), we have Zi = B with PMF Qu or Qv, Zi+1 = A with PMF Q,
and Z′i = B′ with PMF P. We can thus calculate the benefit in the two cases as:

Benefit of case (i) = H(B)−H(A)−DKL(B′||B)
= H(Qu)−H(Q)−DKL(P||Qu)

≈ 1.585− 0− 1.562 = 0.023bits

Benefit of case (ii) = H(Qv)−H(Q)−DKL(P||Qv)

≈ 0.569− 0− 0.138 = 0.431bits

In case (ii), because the viewers’ expectation is closer to the original PMF Qv, there
is more benefit in the visualization process than case (i) though case (ii) has less AC than
case (i).

However, DKL has an undesirable mathematical property. If we consider a third case,
(iii), where the original PMF Qw is strongly in favor of b2, such as q1 = ε, q2 = 1− 2ε, q3 = ε,
where 0 < ε < 1 is a small positive value. If ε = 0.001, DKL(P||Qw) = 9.933 bits. If ε→ 0,
DKL(P||Qw)→ ∞. Since the maximum entropy (uncertainty) for B is only about 1.585 bits,
it is difficult to interpret that viewers’ divergence can be more than that maximum, not to
mention the infinity.

3.3. Problem Statement

When using DKL in Equation (1) in a relative or qualitative context (e.g., [47,50]),
the unboundedness of the KL-divergence does not pose an issue. However, this does be-
come an issue when DKL is used to measure the PD in an absolute and quantitative context.

In the first part of this paper [4], Chen and Sbert showed that, conceptually, it is the
unboundedness that is not consistent with a conceptual interpretation of KL-divergence
for measuring the inefficiency of a code (alphabet) that has a finite number of codewords
(letters). They proposed to find a suitable bounded divergence measure to replace the DKL
term in Equation (2). They examined nine candidate measures, analyzed their mathematical
properties with the aid of visualization, and narrowed these down to six measures using
multi-criteria decision analysis (MCDA) [51].

In this work, we continue their MCDA process by introducing criteria based on the
analysis of instances obtained when using the remaining six candidate measures in different
case studies, which correspond to criteria S1, S2, R1, and R2 in Table 1 that is presented in
Section 7.

For self-containment, we give the mathematical definition of the six candidate mea-
sures below. In this second part of the paper, we treat them as black-box functions, since
they have already undergone the conceptual evaluation in the first part of this paper.
For more detailed conceptual and mathematical discourse on these six candidate measures,
please consult that part [4].
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Table 1. A summary of the multi-criteria decision analysis (MCDA). Each measure is scored against
a criterion using an integer in [0, 5] with 5 being the best. Scores are calculated as: starting with a
full score of 5. For each “good” deduct 1, each “adequate” deduct 2, and each “inadequate” deduct
3. The top table summarize the empirical scores obtained from the two synthetic case studies (S1

and S2) in Section 5 and two experimental case studies (R1 and R2) in Section 6. The bottom table
presents the final results of MCDA by combining the subtotals of the seven conceptual criteria in the
first part of the paper, the subtotals of the empirical criteria in this second part of the paper, and the
scores of the extra conceptual criterion discussed in Section 5.3.

A Summary of the Empirical Scores Obtained of the Four Case Studies

Criteria DJS
√
DJS Dk=1

new Dk=2
new Dk=1

ncm Dk=2
ncm

S1 : order adequate adequate excellent excellent good good
benefit adequate good excellent good excellent good
knowledge excellent excellent excellent excellent excellent excellent
score 1 2 5 4 4 3

S2 : order excellent excellent good excellent adequate good
benefit adequate excellent good adequate good adequate
knowledge excellent excellent excellent excellent excellent excellent
score 3 5 3 3 2 2

R1 : order excellent excellent good excellent inadequate good
benefit excellent excellent excellent excellent excellent excellent
knowledge excellent excellent good good adequate good
score 5 5 3 4 0 3

R2 : order excellent excellent excellent excellent adequate excellent
benefit adequate adequate adequate excellent adequate adequate
knowledge excellent excellent excellent excellent excellent excellent
score 3 3 3 5 1 3

Empirical Subtotal: 12 15 14 16 7 11

Combining All Scores Obtained from the Conceptual and Empirical Evaluation

Criteria DJS
√
DJS Dk=1

new Dk=2
new Dk=1

ncm Dk=2
ncm

Conceptual Subtotal [4]: 30 30 28 30 26 29
Empirical Subtotal: 12 15 14 16 7 11
Componentization (extra criterion): 5 1 5 5 5 5

Total without the extra criterion: 42 45 42 46 33 40

Total with the extra criterion: 47 46 47 51 38 45

The first candidate measure is Jensen–Shannon divergence [52], which is defined as:

DJS(P||Q) =
1
2
(
DKL(P||M) +DKL(Q||M)

)
= DJS(Q||P)

=
1
2

n

∑
i=1

(
pi log2

2pi
pi + qi

+ qi log2
2qi

pi + qi

) (3)

where P and Q are two PMFs associated with the same alphabet Z and M is the average
distribution of P and Q. Each letter zi ∈ Z is associated with a probability value pi ∈ P
and another qi ∈ Q. With the base 2 logarithm as in Equation (3), DJS(P||Q) is bounded by
0 and 1.

The second candidate measure is the square root of DJS. The conceptual evaluation
gave both DJS and

√
DJS the same promising score 30 as shown in Table 1. The third and

fourth candidate measures are two instances of a new measure Dk
new proposed by Chen
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and Sbert [4]. The two instances are Dk
new(k = 1) and Dk

new(k = 2). They received scores
of 28 and 30, respectively, in the conceptual evaluation. Dk

new is defined as follows:

Dk
new(P||Q) =

1
2

n

∑
i=1

(pi + qi) log2
(
|pi − qi|k + 1

)
(4)

where k > 0. As 0 ≤ |pi − qi|k ≤ 1, we have

1
2

n

∑
i=1

(pi + qi) log2(0 + 1) ≤ Dk
new(P||Q) ≤ 1

2

n

∑
i=1

(pi + qi) log2(1 + 1)

Since log2 1 = 0, log2 2 = 1, ∑ pi = 1, ∑ qi = 1, Dk
new(P||Q) is thus bounded by

0 and 1.
The fifth and sixth candidate measures are two instances of a non-commutative version

of Dk
new. It is denoted as Dk

ncm, and the two instances are Dk
ncm(k = 1) and Dk

ncm(k = 2),
which also received scores of 26 and 29, respectively, in the conceptual evaluation. Dk

ncm is
defined as follows:

Dk
ncm(P||Q) =

n

∑
i=1

pi log2
(
|pi − qi|k + 1

)
, (5)

which captures the non-commutative property of DKL.
As DJS,

√
DJS, Dk

new, and Dk
ncm are bounded by [0, 1], if any of them is selected to

replace DKL, Equation (2) can be rewritten as

Benefit = H(Zi)−H(Zi+1)−Hmax(Zi)D(Z′i||Zi) (6)

where Hmax denotes maximum entropy, while D is a placeholder for DJS,
√
DJS, Dk

new,
or Dk

ncm. Note that whileHmax(Zi)D(Z′i||Zi) is bounded byHmax(Zi),Hmax(Zi) can have
any non-negative value and is calculated as log2 ‖Zi‖, where ‖Zi‖ is the number of letters
in Zi.

4. Evaluation Methodology and Criteria

Historically, developing different temperature scales is motivated by the need for
defining and quantifying the divergence between any pair of values representing two
instances of different temperatures. Isaac Newton approached this problem by collecting
over 20 instances, nine of which are shown in Figure 2.

Given two PMFs P and Q associated with an alphabet Z with n letters, measuring the
divergence between P and Q involves the definition and quantification of the interaction
between n pairs of probability values. Hence, the measuring function is n-dimensional and
is likely more difficult to define. Nevertheless, we can adapt Isaac Newton’s approach of
using data points with practical meanings. Unlike the Newton scale, we do not need these
data points to specify a scale, but only to evaluate candidate measures. Analogously, this is
similar to use Newton’s data points to evaluate other temperature scales in Figure 2.

Consider a real world phenomenon being visualized by a user or a group of users for
a specific task. Let alphabet Zw, Zv, and Zt be the information spaces of the phenomenon,
the visualization, and the task concerned, respectively. There are two major transformations,
one from Zw to Zv and another from Zv to Zt. The first major transformation may contain
processes for data capture, data processing, and data visualization, while the second major
transformation may contain all cognitive processes from viewing to task performance. Both
transformations may feature alphabet compression and potential distortion.

Most visualization tasks (including confirmation, categorization, recognition, search,
estimation, etc.) can be abstracted as a decision to select from two or more options. A deci-
sion alphabet Zt essentially contains all valid options with a PMF. In some cases, there can
be numerous options (e.g., counting). There is a ground truth PMF Q that reflects the ideal
task performance when users have full access to perfect data sampled in the information
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space of the phenomenon Zw, have an infinite amount of time to view the data with or
without visualization, and do not have any cognitive bias in selecting the correct option.
Although an accurate Q may be difficult to obtain, one can estimate it in a synthetic or
real-world case study, which will be demonstrated in the next two sections.

As the transformation from Zw to Zv will lose a fair amount of information, users, who
have a different amount of knowledge about the phenomenon, the visual representation,
and the task concerned, will perform differently. Such difference will be captured in the
PMF, P, compiled according to the actual task performance. For example, consider three
typecasting cases:

(a) P is close to a uniform PMF Puniform, while the ground truth Q is dissimilar to a uniform
PMF—This suggests that the users may not have adequate knowledge and may
have been making random guesses. In such a case, their task performance would
lead to a PMF similar to Puniform.

(b) P is close to a PMF Pvisinfo that characterizes the available visual information while the
ground truth Q differs from Pvisinfo noticeably—This suggests that the users may not
have adequate knowledge and may have been reasoning about the options in Zt
entirely based on what is depicted visually. In such a case, their performance would
result in a PMF similar to Pvisinfo.

(c) P is close to the ground truth Q, while Q differs from Puniform and Pvisinfo noticeably—This
suggests that the users may have been able to make the perfect combination of
the available visual information and their knowledge. In such a case, their task
performance could lead to a PMF similar to the ideal PMF Q.

One obvious method to determine whether a visual design is suitable for a group
of users is to ask these users to perform some tasks. For a particular task, the users’ task
performance can be sampled and approximated using a PMF Psampled. All the candidate
measures can quantify the divergence between Psampled and the ground truth PMF Q. We
can also use such a candidate measure D∗ to quantify the benefit of visualization as:

Benefit = H(Q)−H(Pvisinfo)−Hmax(Q)D∗(Psampled‖Q)

Before we are able to reach the final conclusion, we consider that D∗ may be any
one of the six candidate measures given in Section 3.3, i.e., DJS,

√
DJS, Dk=1

new, Dk=2
new, Dk=1

ncm,
and Dk=2

ncm. In addition, we can also estimate the impact of the human knowledge used in
performing a visualization task as:

Kυ = Hmax(Q)
(
D∗(Pvisinfo‖Q)−D∗(Psampled‖Q)

)
Kψ = Hmax(Q)

(
D∗(Puniform‖Q)−D∗(Psampled‖Q)

)
where Kυ is an estimation against the scenario where users rely only on visual information
without using any knowledge, and Kψ is that against the scenario of random guesses.
If Kυ > 0 and Kψ > 0, they suggest a positive impact of human knowledge. If Kυ < 0 or
Kψ < 0, they suggest some biases.

Given some instance data in the form of PMFs Psampled, we would like to observe how
different candidate measures would (i) order these instances in terms of their divergence
against an estimated ground truth PMF Q, (ii) quantify the benefit at a scale meaningful to
visualization scientists, and (iii) assign the sensible signs to Kυ and Kψ.

5. Synthetic Case Studies

We first consider two synthetic case studies, S1 and S2, which allow us to define
idealized situations, from which collected data do not contain any noise. In many ways,
this is similar to testing a piece of software using pre-defined test cases. Nevertheless,
these test cases feature more complex alphabets than those considered by the conceptual
evaluation presented in the first part of this paper [4].
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5.1. Synthetic Case S1

Let Zw be a phenomenon alphabet with two letters, good and bad, for describing a
scenario (e.g., an object or an event), where the ground truth probability of good is q1 = 0.8,
and that of bad is q2 = 0.2. In other words, Q = {0.8, 0.2}. Imagine that a biased process
(e.g., a distorted visualization, faulty data collection, an incorrect algorithm, or a misleading
communication) conveys the information about the scenario always bad, i.e., a visualization
alphabet Zv with a PMF Pvisinfo = Rbiased = {0, 1}. Users at the receiving end of the process
may have different knowledge about the actual scenario, and they will make a decision, Zt,
after receiving the output of the process. For example, there are five users, and we obtained
the probability of their decisions (with different Psampled) as follows:

• LD—The user has a little doubt about the output of the process, and decides the
letter of bad 90% of the time, and the letter of good 10% of the time, i.e., with PMF
PLD = {0.1, 0.9}.

• FD—The user has a fair amount of doubt, with PFD = {0.3, 0.7}.
• RG—The user makes a random guess, with PRG = {0.5, 0.5}.
• UC—The user has adequate knowledge about Zw but under-compensates it slightly,

with PUC = {0.7, 0.3}.
• OC—The user has adequate knowledge about Zw but over-compensates it slightly,

with POC = {0.9, 0.1}.
We can use different candidate measures to compute the divergence between Q and

each Psampled. The bar chart in Figure 4 shows different divergence values returned by
these measures, while the transformations from Q to Rbiased and then to different Psampled
are illustrated on the right margin of the figure. Each value is decomposed into two parts,
one for good and one for bad, except that the candidate measure

√
DJS cannot distinguish

the component measures for individual letters since it is a global transformation after DJS
is calculated. This shortcoming of

√
DJS was not noticed in the conceptual analysis in the

Part I of this paper [4].
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Figure 4. An example scenario with two states good and bad has a ground truth PMF Q = {0.8, 0.2}.
From the output of a biased process that always informs users that the situation is bad. Five users, LD,
DF, RG, UC, and OC, have different knowledge and thus different divergence. The five candidate
measures return different values of divergence. We would like to see which sets of values are more
intuitive. The illustration on the top-right shows two transformations of the alphabets and their PMFs,
one by the misleading communication and the other by the reconstruction. The bar chart shows the
divergence values calculated by each candidate measure, while the four parallel coordinate plots
(PCPs) show the values ofHmaxD (divergence scaled by SEmax), benefit, Kυ (impact of knowledge
against relying solely on visual information), and Kψ (against random guess).
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All these measures can order these five users reasonably well. The users UC (under-
compensate) and OC (over-compensate) have the same values with Dk

new and Dk
ncm, while

DJS and
√
DJS consider OC has slightly more divergence than UC. For DJS, UC:OC =

0.010:0.014 and for
√
DJS, UC:OC = 0.098:0.120.

Dk=1
ncm and Dk=2

ncm show strong asymmetric patterns between good and bad, reflecting
the probability values in Psampled. In other words, the more decisions on good, the more
good-related divergence. This asymmetric pattern is not in any way incorrect, as the KL-
divergence is also non-commutative and would also produce much stronger asymmetric
patterns. An argument for supporting commutative measures would point out that the
higher probability of good in Q should also influence the balance between the good-related
divergence. We are slightly in favor of commutativity as it is easier to interpret. In terms
of ordering, we consider Dk

new “excellent”, Dk
ncm “good” due to asymmetry, and DJS and√

DJS “adequate” as the non-equal UC and OU measures are not so intuitive.
As H(Q) = 0.722 and H(Rbiased) = 0, the amount of alphabet compression (AD)

is 0.722 bits. Hmax(Q) = 1 bit. We can compute the benefits of the visualization to the
six users, which are shown in the left parallel coordinate plot (PCP) in Figure 4. From
these PCPs, we notice that DJS,

√
DJS, Dk=2

ncm, and Dk=2
new give positive benefits to all five

users, with DJS returning the highest values. Dk=1
ncm, and Dk=1

new yield negative benefit values
for user LD, which is consistent with our expectation. In terms of benefit quantification,
we consider Dk=1

ncm and Dk=1
new are “excellent”,

√
DJS, Dk=2

ncm, and Dk=2
new “good”; and DJS

“adequate”.
With Pvisinfo = {0, 1} and Puniform = {0.5, 0.5}, we can calculate Kυ and Kψ, which

are shown in the middle and right PCPs in Figure 4, respectively. From the two PCPs,
we cannot observe any major issue in categorizing positive and negative impact by any
candidate measure. Hence, for knowledge impact, we consider all “excellent”.

To continue the multi-criteria decision analysis (MCDA) [51] in the first part of the
paper [4], we rate the six candidate measures using the same scoring system, i.e., using
ordinal values between 0 and 5 (0 unacceptable, 1 fall-short, 2 inadequate, 3 mediocre,
4 good, and 5 best). By combining our evaluation of the ordering of divergence, benefit
quantification, and the sign of knowledge impact, we give a 5 score to Dk=1

new, a 4 to Dk=2
new

and Dk=1
ncm, a 3 to Dk=2

ncm, a 2 to
√
DJS and a 1 to DJS. The qualitative rating and numerical

scores are given in Table 1.

5.2. Synthetic Case S2

We now consider a slightly more complicated scenario with four pieces of data, A,
B, C, and D, which can be defined as an alphabet Zw with four letters. The ground
truth PMF is Q = {0.1, 0.4, 0.2, 0.3}. Consider two processes that combine these into two
classes AB and CD, each resulting in a two-letter alphabet Zv. These typify clustering
algorithms, downsampling processes, discretization in visual mapping, and so on. One
process is considered to be correct, which has a PMF for AB and CD as Rcorrect = {0.5, 0.5},
and another biased process with Rbiased = {0, 1}.

Let CG, CU, and CB be three users at the receiving end of the correct process, and BG,
BS, and BM be three other users at the receiving end of the biased process. The users with
different knowledge exhibit different abilities to reconstruct the original Zw featuring A,
B, C, and D from aggregated information about AB and CD in Zv. Similar to the good-bad
scenario, such abilities can be captured by a PMF Psampled. For example, we have:

• CG makes random guess, PCG = {0.25, 0.25, 0.25, 0.25}.
• CU has useful knowledge, PCU = {0.1, 0.4, 0.1, 0.4}.
• CB is highly biased, PCB = {0.4, 0.1, 0.4, 0.1}.
• BG makes guess based on Rbiased, PBG = {0.0, 0.0, 0.5, 0.5}.
• BS makes a small adjustment, PBS = {0.1, 0.1, 0.4, 0.4}.
• BM makes a major adjustment, PBM = {0.2, 0.2, 0.3, 0.3}.

Figure 5 compares the divergence values returned by the candidate measures for these
six users, while the transformations from Q to Rcorrect or Rbiased, and then to Psampled are



Entropy 2022, 24, 282 14 of 37

illustrated on the right. Different measures provided slightly different ordering of the six
users as:

DJS,
√
DJS,Dk=2

new :CU < CG < BM < BS < CB < BG

Dk=2
ncm :CU < CG < BM < BS < [CB, BG]

Dk=1
ncm :CU < BM < CG < BS < [CB, BG]

Dk=1
new :CU < BM < CG < BS < CB < BG

collective votes :CU < CG < BM < BS < CB < BG

The order of divergence can be observed in the bar chart as the first PCP where the di-
vergence values are scaled byHmax = 2 bits. Using the collective votes as the benchmark, we
consider DJS,

√
DJS, and Dk=2

new “excellent”, Dk=2
ncm and Dk=1

new “good”, and Dk=1
ncm “adequate”.

The PCPs in Figure 5 also depict two additional sets of values for Pvisinfo when a
user relies solely on visual information. For CG, CU, and CB, the benchmark is Cvi that
corresponds to Rcorrected. For BG, BS, and BM, the benchmark is Bvi that corresponds to
Rbiased. From the first PCP, we can observe that Bvi causes more distortion than Cvi.
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Figure 5. An example scenario with four data values: A, B, C, and D. Two processes (one correct and
one biased) aggregated them to two values AB and CD. Users CG, CU, CB attempt to reconstruct
[A, B, C, D] from the output [AB, CD] of the correct process, while BG, BS, and BM attempt to do so
with the output from the biased processes. The bar chart shows the divergence values of the six users
computed using the five candidate measures. The illustration on the right shows two transformations
of the alphabets and their PMFs, one by the correct or biased process (pr.) and the other by the
reconstruction. The bar chart shows the divergence values calculated by each candidate measure,
while the four PCPs show the values ofHmaxD (i.e., divergence scaled by SEmax), benefit, Kυ and Kψ.
The values for Cvi and Bvi correspond to Rcorrect and Rbiased, respectively.

However, because the entropy of the ground truth alphabet H(Q) = 1.84, and the
entropy values of Rcorrected and Rbiased are 1 and 0 bits, Rbiased results in more alphabet
compression. The second PCP shows that if a user relies solely on visual information,
Rbiased leads to more benefit, except that Dk=2

ncm thinks otherwise. We cannot find major
issues with other benefit values in the second PCP, though we consider that the negative
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values produced by
√
DJS,Dk=1

ncm, andDk=1
new are intuitive. In terms of benefit quantification,

we consider
√
DJS to be “excellent”, Dk=1

ncm and Dk=1
new “good”, and the others “adequate”.

Observing the third and fourth PCPs is interesting. The clustering algorithm changes
Q = {0.1, 0.4, 0.2, 0.3} to Rcorrect = {0.5, 0.5} for users CG, CU, and CB and Rbiased = {0, 1}
for users BG, BS, and BM. The random guess of Q with a uniform distribution is not that
bad. Only CU’s knowledge has a positive impact against random guess as shown in the
last PCP.

Against the less-ideal visual information characterized by Rcorrect and Rbiased, the knowl-
edge of all six users has a positive impact. It is important to state here the knowledge can
be gained from other visualization. For example, we can postulate that the reason CU, BS,
and BM can make adjustments against what the clustering algorithm says is because they have
seen some visualizations of the raw data without clustering at an early stage of a workflow.
In general, we cannot find any major issues with the PCPs for Kυ and Kψ. We thus rate all
candidate measures as “excellent”.

By combining our evaluation of the ordering of divergence, benefit quantification,
and the sign of knowledge impact, we give a 5 score to

√
DJS, a 3 to DJS, Dk=1

new and Dk=2
new,

and a 2 to Dk=1
ncm and Dk=2

ncm.

5.3. An Extra Conceptual Criterion

The square root of JS-divergence, i.e.,
√
DJS, is the only candidate measure that is not

the probabilistic mean of its component measures, which correspond to the letters of the
alphabet concerned. From the perspective of visualization, it cannot be depicted in the
same way as the other five measures. As demonstrated in Figures 4 and 5,

√
DJS values are

depicted in grey bars, and one cannot view the individual contributions of its components
to the overall divergence quantity as intuitively as others. Although this shortcoming of√
DJS may not affect the deployment of

√
DJS in numerical applications, it will hinder

its deployment in applications of visual analytics, making it difficult to observe, analyze,
and explain the relationships between a divergence value and its component measures and
the contributions of different component measures.

We encountered this issue after we considered the synthetic cases in this section. In
order to avoid the complication of introducing any synthetic case in the first part of the
paper [4], we report this issue as an extra conceptual criterion in this second part of the
paper. For this extra conceptual criterion, we give a 1 score to

√
DJS, and a 5 score to each

of other five candidate measures.

6. Experimental Case Studies

To complement the synthetic case studies in Section 5, we conducted two surveys
to collect some realistic examples that feature the use of knowledge in visualization. In
addition to providing instances of criteria R1 and R2 for selecting a bounded measure,
the surveys were also designed to demonstrate that one could use a few simple questions
to estimate the cost–benefit of visualization in relation to individual users.

It is necessary to note that these surveys are not intended for evaluating any hypothesis
related to the application concerned. They are designed to collect data that may be similar
to the results of a controlled, semi-controlled, or uncontrolled empirical study, or to the
estimation by a visual designer after an interview with potential users.

6.1. Volume Visualization (Criterion R1)

This survey, which involved ten surveyees, was designed to collect some real-world
examples that reflect the use of knowledge in viewing volume visualization images. We
invited surveyees with different levels of knowledge about volume visualization and
medical imagining. They all volunteered their time as technical advisers without any
financial reward. The full set of questions was presented to surveyees in the form of slides,
which are included in the Supplementary Materials.
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The full set of survey results is given in Appendix C. The featured volume datasets
were from “The Volume Library” [53], and visualization images were either rendered
by the authors or from one of the four publications [54–57]. The transformation from a
volumetric dataset to a volume-rendered image typically features a noticeable amount of
alphabet compression.

Some major algorithmic functions in volume visualization, e.g., iso-surfacing, transfer
function, and rendering integral, all facilitate alphabet compression, hence information loss.
As a rendering integral, maximum intensity projection (MIP) incurs a huge amount of infor-
mation loss in comparison with the commonly-used emission-and-absorption integral [58].
As shown in Figure 6, the surface of arteries are depicted more or less in the same color.

The accompanying question intends to tease out two pieces of knowledge, “curved
surface” and “with wrinkles and bumps”. Among the ten surveyees, one selected the
correct answer B, eight selected the relatively plausible answer A, and one selected the
doubtful answer D. Among the participants, four rated their knowledge of medical imaging
and volume visualization at 4 or 5 (out of 5). We consider them as an expert group. For this
particular question (Figure 6), three selected answer A and one selected B.

Question 5: The image on the right depicts a computed 
tomography dataset (arteries) that was rendered using a 
maximum intensity projection (MIP) algorithm. Consider 
the section of the image inside the red circle (also in the 
inset of a zoomed-in view). Which of the following 
illustrations would be the closest to the real surface of 
this part of the artery?   

A B 

C D 

Curved, 
rather smooth 

Flat, 
rather smooth 

Flat, 
with wrinkles and bumps   

Curved, 
with wrinkles and bumps  

Image by Min Chen, 2008 

Figure 6. A volume dataset was rendered using the maximum intensity projection (MIP) method,
which causes curved surfaces of arteries to appear rather flat. Posing a question about a “flat area” in
the image can be used to tease out a viewer’s knowledge that is useful in a visualization process. This
example was first described in Part I of this two-part paper [4] for demonstrating the role of human
knowledge in dealing with information loss due to many-to-one mappings in such a visualization
image. Similar to Figure 3 (Section 3) in this part, the example was used in Part I to illustrate the
difficulty to interpret the unboundedness of the KL-divergence when considering a binary alphabet
A = {curved, flat} with maximum entropy of 1 bit.

Let alphabet Z = {A, B, C, D} contain the four optional answers. Based on our
observation of photographs online and consultation with medical doctors, we first assume a
ground truth PMF Q1 = {0.1, 0.878, 0.002, 0.02} since there might still be a small probability
for a section of an artery to be flat or smooth. The rendered image depicts a misleading
impression, implying that answer C is correct or a misleading PMF RC = {0, 0, 1, 0}. The
amount of alphabet compression is thusH(Q1)−H(RC) = 0.628 bits.

The top four PCPs in Figure 7 show the measurements returned by the six candidate
measures in a way similar to the PCPs in Figures 4 and 5. In terms of divergence ordering,
we notice a major anomaly that Dk=1

ncm returns divergence values indicating the “experts”
group has the most divergence, followed by “all” and then “rest”. Looking at some
marginal difference in detail, Dk=2

ncm indicates that “all” has the highest divergence, followed
by “rest” and then “experts”. Dk=1

new indicates the group giving answer D has marginally
more divergence than that giving answer C. These ordering conclusions are not intuitive.
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DJS,
√
DJS, andDk=2

new returned the expected ordering, i.e., “rest” > “all” > “experts”, and C
> D > A > B.
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Figure 7. For the survey question shown in Figure 6, our survey of 10 participants returned 8 answers
for A, 1 for B, 0 for C, and 1 for D. Among them, more knowledgeable participants (referred to
as experts) returned 3 answers for A and 1 for B, and none for C or D. We consider two possible
ground truth PMFs. Q1 = {0.1, 0.878, 0.002, 0.02} is based on our observations of photographs of
arteries, and Q2 = {0.75, 0.25, 0.0, 0.0} is based on the experts’ survey results. The top four PCPs
show the values ofHmaxD, benefit, Kυ, and Kψ calculated based on Q1, while the bottom four PCPs
are measured based on Q2. In addition, we also consider five other groups that make a random guess
or always answer A, B, C, or D.

In terms of benefit quantification, DJS and
√
DJS suggest that “expert” is similar to

making random guesses and “rest” is similar to the A group. Dk
ncm and Dk

new all consider
that making random guesses is more beneficial than “expert”. This becomes a question
about how to interpret the difference between Q1 and {0.25, 0.25, 0.25, 0.25}, and that
between Q1 and {0.75, 0.25, 0, 0}, i.e., which is the more meaningful difference?

We thus introduce a second possible ground truth PMF based on the answers of
“experts”, i.e., Q2 = {0.75, 0.25, 0, 0}. The calculation results are depicted in the bottom four
PCPs in Figure 7. In terms of divergence order, Dk=1

ncm shows an outlier, indicating the A
group has more divergence than random guesses. With the observation of two PCPs in
the first column of Figure 7, we consider DJS,

√
DJS, and Dk=2

new “excellent”, Dk=2
ncm and Dk=1

new
“good”, and Dk=1

ncm “inadequate”.
DJS,

√
DJS,Dk=1

ncm, andDk=2
ncm all rate the C and D groups with the maximum divergence,

while Dk=1
new and Dk=2

new do not. Following a careful reading of the intermediate calculation
results, we notice that Dk=1

new and Dk=2
new would rate the divergence between {1, 0, 0, 0} and

{0, 0, 1, 0} as the maximum divergence, but not for the divergence between {0.75, 0.25, 0, 0}
and {0, 0, 1, 0}. This is an interesting feature of Dk=1

new and Dk=2
new. We cannot decide whether

to reward or penalize this feature. We hope to conduct future studies to examine the relative
merits of this feature in detail.

In terms of benefit quantification, we cannot observe any major issues in the second
column of Figure 7. We thus rate all candidate measures “excellent”.

From the PCPs in the third and fourth columns, we notice that with Q2, more groups
show a positive impact of knowledge. This is understandable, as Q1 deviates more from
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the survey results. If we assume Q1 is correct, then participants clearly do not have
the necessary knowledge to answer the question in Figure 6 with the misleading MIP
visualization. If Q2 is correct, not only do the “experts” have the knowledge, but the “rest”
group also seems to have some useful knowledge. In the Q1-Kψ PCP, only DJS and

√
DJS

indicate a positive knowledge impact for the “experts”. This is intuitive. In the Q2-Kψ PCP,
only Dk=1

new indicates a negative knowledge impact for the A group.
This is not intuitive. We thus consider DJS and

√
DJS “excellent”, Dk=2

ncm, Dk=1
new,

and Dk=2
new “good”, and Dk=1

ncm “adequate”. By combining our evaluation of the ordering
of divergence, benefit quantification, and the sign of knowledge impact, we give a 5 score
to DJS,

√
DJS, a 4 to Dk=2

new, a 3 to Dk=2
ncm, and a 0 to Dk=1

ncm.

6.2. London Underground Map (Criterion R2)

This survey was designed to collect some real-world data that reflects the use of
knowledge in viewing different London underground maps. It involved sixteen surveyees,
twelve at King’s College London (KCL) and four at University of Oxford. Surveyees were
interviewed individually with the stimuli shown in Figure 1. Each surveyee was asked
to answer 12 questions using either a geographically-faithful map or a deformed map,
followed by two further questions about their familiarity of a metro system and London.
A £5 Amazon voucher was offered to each surveyee as an appreciation of their effort and
time. The survey sheets and the full set of survey results is given in Appendix D.

Harry Beck first introduced a geographically-deformed design of the London under-
ground maps in 1931. Today, almost all metro maps around the world adopt this design
concept. Information-theoretically, the transformation of a geographically-faithful map to
such a geographically-deformed map causes a significant loss of information. Naturally,
this affects some tasks more than others.

For example, the distances between stations on a deformed map are not as useful as in
a faithful map. The first four questions in the survey asked surveyees to estimate how long
it would take to walk (i) from Charing Cross to Oxford Circus, (ii) from Temple and Leicester
Square, (iii) from Stanmore to Edgware, and (iv) from South Rulslip to South Harrow. On the
deformed map, the distances between the four pairs of the stations are all about 50 mm.
On the faithful map, the distances are (i) 21 mm, (ii) 14 mm, (iii) 31 mm, and (iv) 53 mm,
respectively. According to the Google map, the estimated walk distances and times are (i)
0.9 miles, 20 min; (ii) 0.8 miles, 17 min; (iii) 1.6 miles, 32 min; and (iv) 2.2 miles, 45 min,
respectively.

The average range of the estimations about the walk time by the 12 surveyees at KCL
are: (i) 19.25 [8, 30], (ii) 19.67 [5, 30], (iii) 46.25 [10, 240], and (iv) 59.17 [20, 120] minutes.
The estimations by the four surveyees at Oxford are: (i) 16.25 [15, 20], (ii) 10 [5, 15], (iii)
37.25 [25, 60], and (iv) 33.75 [20, 60] minutes. The values correlate better to the Google
estimations than what would be implied by the similar distances on the deformed map.
Clearly some surveyees were using some knowledge to make better inference.

Let Z be an alphabet of integers between 1 and 256. The range is chosen partly to
cover the range of the answers in the survey, and partly to round up the maximum entropy
Z to 8 bits. For each pair of stations, we can define a PMF using a skew normal distribution
peaked at the Google estimation ξ. As an illustration, we coarsely approximate the PMF as
Q = {qi | 1 ≤ i ≤ 256}, where

qi =



0.01/236 if 1 ≤ i ≤ ξ − 8 (wild guess)
0.026 if ξ − 7 ≤ i ≤ ξ − 3 (close)
0.12 if ξ − 2 ≤ i ≤ ξ + 2 (spot on)
0.026 if ξ + 3 ≤ i ≤ ξ + 12 (close)
0.01/236 if ξ + 13 ≤ i ≤ 256 (wild guess)
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Using the same way in the previous case study, we can estimate the divergence and
the benefit of visualization for an answer in each range. Recall our observation of the
phenomenon in Section 6.1 that the measurements by DJS,

√
DJS, Dk=1

new, Dk=2
new, Dk=1

ncm and
Dk=2

ncm occupy different ranges of values, with Dk=2
new be the most generous in measuring

the benefit of visualization. With the entropy of the alphabet as H(Q) ≈ 3.6 bits and
the maximum entropy being 8 bits, the benefit values obtained for this example exhibit a
compelling pattern:

Benefit for: DJS
√
DJS Dk=1

new Dk=2
new Dk=1

ncm Dk=2
ncm

spot on −1.765 −2.777 −0.418 0.287 −3.252 −2.585
close −3.266 −3.608 −0.439 0.033 −3.815 −3.666
wild guess −3.963 −3.965 −0.416 −0.017 −3.966 −3.965

Only Dk=2
new has returned positive benefit values for spot on and close answers. Since

it is not intuitive to say that those surveyees who gave good answers benefited from
visualization negatively, clearly only the measurements returned by Dk=2

new are intuitive.
In terms of benefit quantification, we consider thus Dk=2

new “excellent” and the other five
measures “adequate”.

In addition, the ordering resulting from Dk=1
new is inconsistent with others. For di-

vergence order, we consider Dk=1
new “adequate” and the other five measures “excellent”.

We have not detected any major issues with the values for Kυ and Kψ. For the im-
pact of knowledge, we thus rate all candidate measures “excellent”.

More detailed discussions with further computational results and PCPs can be found
in Appendix D. By combining all these observational ratings, we give a 5 score to Dk=2

new,
a 3 score to DJS,

√
DJS, Dk=1

ncm, and Dk=2
ncm, and a 1 score to Dk=1

new.

7. Conclusions

This two-part paper aims to improve the mathematical formulation of an information-
theoretic measure for analyzing the cost–benefit of visualization as well as other processes in
a data intelligence workflow [3]. The concern about the original measure is its unbounded
term based on the KL-divergence. The conceptual analysis in the first part of the paper [4]
examined nine candidate measures and narrowed the options down to six, providing
important evidence to the multi-criteria decision analysis (MCDA) of these candidate
measures.

In the second part of the paper, we used two synthetic and two experimental case
studies to obtain some data, which allowed us to observe the behaviors of the remaining
candidate measures. Building on the MCDA in the first part, the case studies provided two
additional aspects of the MCDA with important evidence.

From the top table in Table 1, we can observe that the empirical data helps identify
the strengths and weaknesses of each candidate measures considered in this paper. The
empirical data suggests that Dk

new(k = 2) is slightly ahead of
√
DJS (i.e., 16 vs. 15). Since

the conceptual analysis in the first part of this paper [4] gives a subtotal of 30 to DJS,
√
DJS,

and Dk
new(k = 2). We cannot separate Dk

new(k = 2) and
√
DJS conclusively.

However, it is necessary to consider the extra conceptual criteria discussed in Section 5.3.
From a visualization perspective, we cannot ignore the shortcoming of

√
DJS discovered

during the analysis of empirical data (i.e., its value is not the probabilistic mean of the entropic
measures of its components). This places Dk

new(k = 2) in a favorable position. We therefore
propose to revise the original cost–benefit ratio in [3] to the following:

Benefit
Cost

=
Alphabet Compression− Potential Distortion

Cost

=
H(Zi)−H(Zi+1)−Hmax(Zi)D2

new(Z′i||Zi)

Cost

(7)
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This cost–benefit measure was developed in the field of visualization for optimizing
visualization processes and visual analytics workflows. Its broad interpretation may
include data intelligence workflows in other contexts [59]. The measure has now been
improved by using visual analysis and with the empirical data collected in the context of
visualization applications.

The history of measurement science [1] informs us that proposals for metrics, measures,
and scales will continue to emerge in visualization, typically following the arrival of new
theoretical understanding, new observational data, new measurement technology, and so
on. As measurement is one of the driving forces in science and technology, we shall
welcome such new measurement development in visualization.

The work presented in the first part of this paper [4] and this second part does not
indicate a closed chapter but an early effort to be improved frequently in the future. For
example, future work may discover measures that have better mathematical properties
than Dk=2

new,
√
DJS, and DJS, or future experimental observations may provide evidence

that DJS or
√
DJS offer more intuitive explanations than Dk=2

new in other case studies. In
particular, we would like to continue our theoretical investigation into the mathematical
properties of Dk

new.
“Measurement is not an end but a means in the process of description, differentiation,

explanation, prediction, diagnosis, decision making, and the like” [7]. Having a bounded
cost–benefit measure offers many new opportunities of developing tools for aiding the
measurement and optimization of data intelligence workflows and for using such tools in
practical applications, especially in visualization and visual analytics.
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MCDA Multi-Criteria Decision Analysis
ML Machine Learning
PCP Parallel Coordinates Plot
PMF Probability Mass Function
OC Over-Compensate
RG Random Guess
UC Under-Compensate

Appendix A. Explanation of the Original Cost-Benefit Measure

This appendix is not an independent paper but supports Part II of this two-part paper
by providing some background information about the cost–benefit ratio proposed in [3] and
its role in visualization. Mathematical knowledge of information theory is not a prerequisite
for reading this appendix.

The first section of this appendix contains an extraction from a previous publica-
tion [47], offering a relatively concise but informative description of the cost–benefit ratio.
The inclusion of this is to minimize the readers’ effort to locate such an explanation. The ex-
traction has been slightly modified. In the second section of this appendix, we provide a
relatively informal and somehow conversational discussion about using this measure to
explain why visualization is useful.

Appendix A.1. An Information-Theoretic Measure for Cost-Benefit Analysis

Chen and Golan introduced an information-theoretic formula for measuring the cost–
benefit ratio of a visual analytics (VA) workflow or any of its component processes [3].
The formula consists of three fundamental measures that are abstract representations of
a variety of qualitative and quantitative criteria used in practice, including operational
requirements (e.g., accuracy, speed, errors, uncertainty, provenance, and automation),
analytical capability (e.g., filtering, clustering, classification, and summarization), cognitive
capabilities (e.g., memorization, learning, context-awareness, and confidence), and so on.
The abstraction results in a formula with the desirable mathematical simplicity [3]. The
qualitative form of the formula is as follows:

Benefit
Cost

=
Alphabet Compression− Potential Distortion

Cost
(A1)

The formula describes the trade-off among the three fundamental measures:

• Alphabet Compression (AC) measures the amount of entropy reduction (or information
loss) achieved by a process. As it was noticed in [3], most visual analytics processes
(e.g., statistical aggregation, sorting, clustering, visual mapping, and interaction) fea-
ture many-to-one mappings from input to output, hence losing information. Although
information loss is commonly regarded as harmful, it cannot be all bad if it is a general
trend of VA workflows. Thus, the cost–benefit ratio makes AC a positive component.

• Potential Distortion (PD) balances the positive nature of AC by measuring the errors
typically due to information loss. Instead of measuring mapping errors using some
third party metrics, PD measures the potential distortion when one reconstructs inputs
from outputs. The measurement takes into account humans’ knowledge that can be
used to improve the reconstruction processes. For example, given an average mark
of 62%, the teacher who taught the class can normally guess the distribution of the
marks among the students better than an arbitrary person.

• Cost (Ct) of the forward transformation from input to output and the inverse transfor-
mation of reconstruction provides a further balancing factor in the cost–benefit ratio
in addition to the trade-off between AC and PD. In practice, one may measure the cost
using time or a monetary measurement.
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Appendix A.2. An Information-Theoretic Reasoning about Why Visualization Is Useful

There have been many arguments about why visualization is useful. Streeb et al.
collected a large number of arguments and found that many arguments were in conflict
with each other [60]. Chen and Edwards presented an overview of schools of thought
in the field of visualization, and showed that the “why” question was a bone of major
contention [61].

The most common argument about the “why” question is because visualization
offers insight or helps humans to gain insight. When this argument is used outside the
visualization community, there are often counter-arguments that statistics and algorithms
can offer insight automatically and often with better accuracy and efficiency. There are
also concerns that visualization may mislead viewers, which casts further doubts about the
usefulness of visualization, while leading to a related argument that “visualization must be
accurate” in order for it to be useful.

The accuracy argument itself is not bullet-proof since there are many types of uncer-
tainty in a visualization process, from uncertainty in data, to that caused by visual mapping,
and to that during perception and cognition [62]. Nevertheless, it is easier to postulate that
visualization must be accurate, as it seems to be counter-intuitive to condone the idea that
“visualization can be inaccurate,” not mentioning the idea that “visualization is normally
inaccurate,” or “visualization should be inaccurate.”

The word “inaccurate” is itself an abstraction of many different types of inaccuracy.
Misrepresentation truth is a type of inaccuracy. Such acts are mostly wrong, but some (such
as wordplay and sarcasm) may cause less harm. Converting a student’s mark in the range
of [0, 100] to the range of [A, B, C, D, E, F] is another type of inaccuracy. This is a common
practice and must be useful. From an information-theoretic perspective, these two types of
inaccuracy are information loss.

In their paper [3], Chen and Golan observed that statistics and algorithms usually
lose more information than visualization. Hence, this provides the first hint about the
usefulness of visualization. They also noticed that like wordplay and sarcasm, the harm
of information loss can be alleviated by knowledge. For someone who can understand
a workplay (e.g., a pun) or can sense a sarcastic comment, the misrepresentation can
be corrected by that person at the receiving end. This provides the second hint about
the usefulness of visualization because any “misrepresentation” in visualization may be
corrected by a viewer with appropriate knowledge.

On the other hand, statistics and algorithms are also useful, and sometimes more
useful than visualization. As statistics and algorithms usually cause more information loss,
some aspects of information loss must be useful. One important merit of losing information
in one process is that the succeeding process has less information to handle and thus incurs
less cost. This is why Chen and Golan divided information loss into two components,
a positive component called alphabet compression and a negative component called potential
distortion [3].

The positive component explains why statistics, algorithms, visualization, and in-
teraction are useful because they all lose information. The negative component explains
why they are sometimes less useful because information loss may cause distortion during
information reconstruction. Both components are moderated by the cost of a process (i.e.,
statistics, algorithms, visualization, or interaction) in losing information and reconstructing
the original information. Hence, given a dataset, the best visualization is the one that loses
the most information while causing the least distortion. This also explains why visual
abstraction is effective when the viewers have adequate knowledge to reconstruct the lost
information and may not be effective otherwise [63].

The central thesis by Chen and Golan [3] may appear to be counter-intuitive to many
as it suggests “inaccuracy is a good thing”, partly because the word “inaccuracy” is an
abstraction of many meanings and itself features information loss. Perhaps the reason
for the conventional wisdom is that it is relatively easy to think that “visualization must
be accurate”. To a very small extent, this is a bit like the easiness to think that “the
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earth is flat” a few centuries ago, because the evidence for supporting that wisdom was
available everywhere, right in front of everyone at that time. Once we step outside the
field of visualization, we can see the phenomena of inaccuracy everywhere, in statistics
and algorithms as well as in visualization and interaction. All these suggest that “the earth
may not be flat,” or “inaccuracy can be a good thing”.

In summary, the cost–benefit ratio proposed by Chen and Golan [3] explains that when
visualization is useful, it is because visualization has a better trade-off than simply reading
the data, simply using statistics alone, or simply relying on algorithms alone.

The ways to achieve a better trade-off include: (i) visualization may lose some infor-
mation to reduce the human cost in observing and analyzing the data, (ii) it may lose some
information since the viewers have adequate knowledge to recover such information or
can acquire such knowledge at a lower cost, (iii) it may preserve some information because
it reduces the reconstruction distortion in the current and/or succeeding processes, and (iv)
it may preserve some information because the viewers do not have adequate knowledge to
reconstruct such information or it would cost too much to acquire such knowledge.

Appendix B. How Tasks and Users Are Featured in the Cost-Benefit Ratio?

This appendix is not an independent paper but supports Part II of this two-part
paper by explaining how information theory can explain mathematically represent the
common wisdom in visualization that visualization is user- and task-dependent. Mathematical
knowledge of information theory is not a prerequisite for reading this appendix.

Whilst hardly anyone in the visualization community would support any practice
intended to deceive viewers, there have been many visualization techniques that inherently
cause distortion to the original data. The deformed London underground map in Figure 1
shows such an example. The distortion in this example is largely caused by many-to-one
mappings. A group of lines that would be shown in different lengths in a faithful map
is now shown with the same length. Another group of lines that would be shown with
different geometric shapes is now shown as the same straight line. In terms of information
theory, when the faithful map is transformed to the deformed map, a good portion of
information has been lost because of these many-to-one mappings.

In fact, there are many other forms of information loss. For example, when a high-
resolution data variable (e.g., an integer in the range [0, 10,000]) is visually encoded as a
bar in a bar chart that is restricted to a height of 1000 pixels, about every 10 values are
mapped onto the same height in terms of pixels. Furthermore, it is unlikely that humans
can precisely identify the height of each bar at the pixel resolution. Likely a viewer may
perceive a height of 833 pixels to be the same as one with 832 pixels or 834 pixels, which
is also a many-to-one mapping. When multivariate data records are encoded as glyphs,
there is usually a significant amount of information loss. As we have discussed in the
first part of this paper [4], in volume visualization, when a sequence of n voxel values are
transformed to a single pixel value, as long as n is a reasonably large value, a huge amount
of information loss is almost guaranteed to happen.

Despite the ubiquitous phenomenon of information loss in visualization, it has been
difficult for many of us to contemplate the idea that information loss may be a good thing.
In particular, one theory based on an algebraic framework defines three principles that
formalize the notion of graphical integrity to prevent such information loss [64]. When one
comes across an effective visualization but featuring noticeable information loss, the typical
answer is that it is task-dependent, and the lost information is not useful to the task
concerned. When a visualization is evaluated, common critiques are about information loss,
such as inadequate resolution, view obstruction, distorted representation, which are also
characteristics of the aforementioned glyphs, volume rendering, and deformed metro map.

The common phrase that “the appropriateness of information loss depends on tasks”
is not an invalid explanation. On its own, this explanation is not adequate, because:
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• The appropriateness depends on many attributes of a task, such as the selection of
variables in the data and their encoded visual resolution required to complete a task
satisfactorily, and the time allowed to complete a task.

• The appropriateness depends also on other factors in a visualization process, such as
the original data resolution, the viewer’s familiarity of the data, the extra information
that is not in the data but the viewer knows, and the available visualization resources.

• The phrase creates a gray area as to whether information loss is allowed or not,
and when or where one could violate some principles such as those principles in [64].

Partly inspired by the above puzzling dilemma in visualization and partly by a simi-
lar conundrum in economics “what is the most appropriate resolution of time series for
an economist”, Chen and Golan proposed an information-theoretic cost–benefit ratio for
measuring various factors involved in visualization processes [3]. As this cost–benefit ratio
can measure some abstract characteristics of “data”, “visualization”, “information loss”,
“knowledge”, and “task” using the most fundamental information-theoretic unit bit, it pro-
vides a means to define their relationship coherently. In this appendix, we continue to use
the qualitative version of this cost–benefit ratio as given in Equation (A1) in Appendix A,
making it more accessible to readers who are not familiar with information theory.

Chen and Golan noticed that not only do visualization processes lose information but
also other data intelligence processes also lose information. For example, when statistics
is used to down-sample a time series, or to compute its statistical properties, there is a
substantial amount of information loss; when an algorithm groups data points into clusters
or sort them according to a key variable, there is information loss; and when a computer
system asks a user to confirm an action, there is information loss in the computational
processes [65].

They also noticed that almost all decision tasks, the number of decision options is usu-
ally rather small. In terms of information theoretic quantities, the amount of information
(i.e., in terms of Shannon entropy) associated with a decision task is usually much lower
than the amount of information associated with the data entering a data intelligence work-
flow. They concluded that this general trend of information reduction must be a positive
thing for any data intelligence workflows. They referred to the amount of information
reduction as Alphabet Compression (AC) and made it a positive contribution to the benefit
term in Equation (A1).

Figure A1 shows an example of a simple visual analytics workflow, where at the
moment, the visual analytics process is simply a visualization process, (a1), for viewing a
deformed London underground map. There can be many possible visualization tasks, such
as counting the number of stops between two stations, searching for a suitable interchange
station, and so on. From the workflow in Figure A1, one can easily observe that the amount
of information contained in the world around the entire London underground system must
be much more than the information contained in the digital data describing the system.

The latter is much more than the information depicted in the deformed map. By the
time when the workflow reaches a task, the number of decision options is usually limited.
For example, counting the number stops may have optional values between 0 and 50. The
amount of information contained in the counting result is much smaller than that in the
deformed map. This evidences the general trend observed in [3].
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Figure A1. A visual analytics workflow features a general trend of alphabet compression from left
(World) to right (Tasks). The potential distortion compares at an information space reconstructed
based on the output with the original input information space. When we place different processes
(i.e., (a1,a2,b–d)), in the workflow, we can appreciate that statistics, algorithms, visualization, and in-
teraction have different levels of alphabet compression, potential distortion, and cost.

After considering the positive contribution of information, we must counterbalance
AC by the the term Potential Distortion (PD), which describes, in abstract, the negative
consequences that may be caused by information loss. In the past, one typically uses a
third-party metric to determine whether a chosen decision option is good or not. This
introduces a dilemma that one needs a fourth-party metric to determine if the third-party
metric is good or not, and this can go on forever.

At least, mathematically, this unbounded reasoning paradigm is undesirable. This
third-party metric was avoided in Equation (A1) by imagining if a viewer would have to
reconstruct the original data that is visualized, how much the reconstructed data would
diverge from the original data. In [3], this divergence is measured using the well-known
Kullback–Leibler divergence (KL-divergence) [66]. As this divergence measure is un-
bounded, Chen and Sbert proposed to replace it with a bounded measure in the first part
of thus paper [4], where they have detailed the concerns about the unboundedness.

As shown in Equation (A1), the AC term makes a positive contribution, the PD term
makes a negative contribution, reflecting the two sides of the same coin of information
loss. Both terms have the same unit bit and are moderated by the term Cost. The term
AC characterizes many useful approaches in visualization and visual analytics, such as
data filtering and visual abstraction, while the term PD characterizes many undesirable
shortcomings, such as rendering errors and perceptual errors.

The term Cost encompasses all costs of the visualization process, including compu-
tational costs (e.g., visual mapping and rendering), cognitive costs (e.g., cognitive load),
and consequential costs (e.g., impact of errors). The term is defined as an energy measure,
but can be approximated using time, monetary, and other appropriate measures.

The cost–benefit ratio in Equation (A1) can also be used to measure other processes in
a visual analytics workflow. One can simply imagine replacing the block (a1) in Figure A1
with one of the other four blocks on the left, (a2) for faithful visual mapping, (b) for statistics,
(c) for algorithms, and (d) for interactive information retrieval. This exercise allows us
to compare the relative merits among the four major components of visual analytics,
i.e., statistics, algorithms, visualization, and interaction [67].

For example, statistics may be able to deliver a set of indicators about the London
underground map to a user. In comparison with the deformed map, these statistical
indicators contain much less information than the map, offering more AC contribution. If a
user is asked to imagine what the London underground system looks like, having these
statistical indicators will not be very helpful. Hence, statistics may cause more PD.

Of course, whether to use statistics or visualization may be task-dependent. Mathe-
matically, this is largely determined by both the PD and Cost associated with the perception
and cognition process in Figure A1. If a user tries to answer a statistical question using
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the visualization, it is likely to cost more than using statistics, provided that the statisti-
cal answer has already been computed or statistical calculation can be performed easily
and quickly.

Whether to use statistics or visualization may also be user-dependent. Consider
a user A that has a fair amount of prior knowledge about the London underground
system and another user B that has little. If both are shown some statistics about the
system (e.g., the total number of stations of each line), A can redraw the deformed map
more accurately than B and more accurately than without the statistics, even though the
statistical information is not meant to support the users’ this task. Hence, to A, having a
deformed map to help appreciate the statistics may not be necessary, while to B, viewing
both statistics and the deformed map may help reduced the PD but may also incur more
cost in terms of effort. Hence, visualization is more useful to B.

This example echos the scenario presented in Figure 1, where we asked two questions:
Can information theory explain this phenomenon? Can we quantitatively measure some
factors in this visualization process? If prior knowledge can explain the trade-off among
AC, PD, and Cost in comparing statistics and deformed map. We can also extrapolate this
reasoning to analyze the trade-off in comparing viewing the deformed map (more AC) and
viewing the faithful map (less AC) as in Figure 1. Perhaps we can now be more confident
to say that information theory can explain such a phenomenon. In the main body of this
second part of the paper, we demonstrate the potential answer to the second question,
i.e., we can quantitatively measure some relevant factors in such a visualization process.

To some readers, it may still be counter-intuitive to consider that information loss has a
positive side. It is essential for asserting why visualization is useful as well as asserting the
usefulness of statistics, algorithms, and interaction since they all usually cause information
loss [47]. Further discourse on this topic can be found in Appendix A.

Table A1. The answers by ten surveyees to the questions in the volume visualization survey. The sur-
veyees are ordered from left to right according to their self-ranking about the knowledge of volume
visualization. In rows 1–8, the dataset used in each question is indicated in square brackets. Correct
answers are indicated by letters in round brackets. The upper case letters are the most appropriate
answers, while the lower case letters with brackets are acceptable answers as they are correct in
some circumstances. The lower case letters without brackets are incorrect answers. In rows 9 and 10,
the self-assessment scores are in the range of [1 lowest, 5 highest].

Surveyee’s ID

Questions with (Correct Answers) and [Database] in Brackets S1 S2 S3 S4 S5 S6 S7 S8 P9 P10

1. Use of different transfer functions (D), [Carp] (D) (D) (D) (D) (D) c b (D) a c
2. Use of translucency in volume rendering (C), [Engine Block] (C) (C) (C) (C) (C) (C) (C) (C) d (C)
3. Omission of voxels of soft tissue and muscle (D), [CT head] (D) (D) (D) (D) b b a (D) a (D)
4. sharp objects in volume-rendered CT data (C), [CT head] (C) (C) a (C) a b d b b b
5. Loss of 3D information with MIP (B, a), [Aneurysm] (a) (B) (a) (a) (a) (a) D (a) (a) (a)
6. Use of volume deformation (A), [CT head] (A) (A) b (A) (A) b b (A) b b
7. Toenails in non-photo-realistic volume rendering (B, c), [Foot] (c) (c) (c) (B) (c) (B) (B) (B) (B) (c)
8. Noise in non-photo-realistic volume rendering (B), [Foot] (B) (B) (B) (B) (B) (B) a (B) c (B)

9. Knowledge about 3D medical imaging technology 4 3 4 5 3 3 3 3 2 1
10. Knowledge about volume rendering techniques 5 5 4–5 4 4 3 3 3 2 1
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Table A2. Summary statistics of the survey results in Table A1, where we classified experts simply
based on their self-assessment with an average rate (≥4) in answering Q9 and Q10. They are S1, S2,
S3, and S4.

All Participants Experts The Rest

Question A B C D A B C D A B C D

1. (Carp) numbers: 1 1 2 6 0 0 0 4 1 1 2 2
probability: 0.10 0.10 0.20 0.60 0.00 0.00 0.00 1.00 0.17 0.17 0.33 0.33

2. (Engine Block): numbers: 0 0 1 9 0 0 0 4 0 0 1 5
probability: 0.00 0.00 0.10 0.90 0.00 0.00 0.00 1.00 0.00 0.00 0.17 0.83

3. (CT head) numbers: 2 2 0 6 0 0 0 4 2 2 0 2
probability: 0.20 0.20 0.00 0.60 0.0 0.0 0.0 1.00 0.33 0.33 0.00 0.33

4. (CT head) numbers: 2 4 3 1 1 0 0 3 0 1 4 0 1
probability: 0.20 0.40 0.30 0.10 0.25 0.00 0.75 0.00 0.17 0.67 0.00 0.17

5. (Aneurism) numbers: 8 1 0 1 3 1 0 0 5 0 0 1
probability: 0.80 0.10 0.00 0.10 0.75 0.25 0.00 0.00 0.83 0.00 0.00 0.17

6. (CT head) numbers: 5 5 0 0 3 1 0 0 2 4 0 0
probability: 0.50 0.50 0.00 0.00 0.75 0.25 0.00 0.00 0.33 0.67 0.00 0.00

7. (Foot) numbers: 0 5 5 0 0 1 3 0 0 4 2 0
probability: 0.00 0.50 0.50 0.00 0.00 0.25 0.75 0.00 0.00 0.67 0.33 0.00

8. (Foot) numbers: 1 8 1 0 0 4 0 0 1 4 1 0
probability: 0.10 0.80 0.10 0.00 0.00 1.00 0.00 0.00 0.17 0.67 0.17 0.00

Appendix C. Survey Results of Useful Knowledge in Volume Visualization

This appendix is not an independent paper but supports Part II of this two-part paper
by providing additional details about the survey on volume visualization described in
Section 6.1 in this part of the paper.

This survey consists of eight questions presented as slides. The questionnaire is given
in the Supplementary Materials. The ten surveyees were primarily colleagues from the UK,
Spain, and the USA. They include doctors and experts in medical imaging and visualization,
as well as several persons who are not familiar with the technologies of medical imaging
and data visualization. Table A1 summarizes the answers from these ten surveyees.

There is also a late-returned survey form that was not included in the analysis. As a
record, the answers in this extra survey form are: 1: c, 2: d, 3: (D), 4: a, 5: (a), 6: (A), 7: (c), 8:
(B), 9: 5, 10: 4. The upper case letters (always in brackets) are the most appropriate answers,
while the lower case letters with brackets are acceptable answers as they are correct in some
circumstances. The lower case letters without brackets are incorrect answers.

The following example illustrates how to estimate the benefit of visualization and
knowledge impact based on the survey result of Question 5. We first define the following:

• Ground truth PMF Q = {0.1, 0.878, 0.002, 0.02}.
• If one always answers A: Pa = {1, 0, 0, 0}.
• If one always answers B: Pb = {0, 1, 0, 0}.
• If one always answers C: Pc = {0, 0, 1, 0}.
• If one always answers D: Pd = {0, 0, 0, 1}.
• Survey results (all): Pall = {0.8, 0.1, 0, 0.1}.
• Survey results (expert): Pexpert = {0.75, 0.25, 0, 0}.
• Survey results (rest): Prest = {0.83, 0, 0, 0.17}.

We can roughly translate the survey results to the following PMFs:

• Survey results (all): Pall = {0.8, 0.1, 0, 0.1}.
• Survey results (expert): Pexpert = {0.75, 0.25, 0, 0}.
• Survey results (rest): Prest = {0.83, 0, 0, 0.17}.

The four sets of measured values returned by different candidate measures are shown
in Figure A2, i.e., (a) divergence values, (b) benefit of visualization, (c) impact of knowledge
Kυ (against the scenario of relying on visual information only), and (d) impact of knowledge
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Kψ (against the scenario of random guess). In each table, the columns labeled with 1–6 are
six candidate bounded divergence measures used for estimating the values concerned in
each table (i.e., divergence, benefit, Kυ, or Kψ).

Row “random” estimates the values for a viewer who makes random guesses. Rows
“A”–“D” estimate the values for viewers for answering “A”–“D”, respectively. Row “all”
estimates the values associated with all viewers as a group. Row “experts” estimates the
values associated with those experts as a group, while row “rest” estimates the values
associated with the non-expert group.

Divergence 1 2 3 4 5 6

DJS DJSsqrt Dncm1 Dncm2 Dnew1 Dnew2

random 0.359 0.599 0.3808 0.168 0.5124 0.297

A 0.758 0.871 0.9260 0.856 0.9087 0.833

B 0.064 0.253 0.1661 0.021 0.1631 0.021

C 0.990 0.995 0.9986 0.997 0.9066 0.862

D 0.929 0.964 0.9855 0.971 0.9086 0.858

all 0.502 0.708 0.7066 0.529 0.7572 0.593

experts 0.348 0.589 0.7176 0.501 0.7039 0.487

rest 0.725 0.851 0.6942 0.522 0.7879 0.655

Benefit 1 2 3 4 5 6

DJS DJSsqrt Dncm1 Dncm2 Dnew1 Dnew2

random -0.090 -0.570 -0.134 0.292 -0.397 0.034

A -0.889 -1.114 -1.224 -1.084 -1.190 -1.038

B 0.500 0.122 0.296 0.585 0.302 0.586

C -1.351 -1.362 -1.369 -1.366 -1.185 -1.097

D -1.230 -1.300 -1.343 -1.314 -1.189 -1.088

all -0.376 -0.789 -0.785 -0.431 -0.886 -0.559

experts -0.067 -0.551 -0.807 -0.375 -0.780 -0.345

rest -0.822 -1.075 -0.761 -0.417 -0.948 -0.681

(a) divergence values (b) benefit of visualization

K_upsilon 1 2 3 4 5 6

DJS DJSsqrt Dncm1 Dncm2 Dnew1 Dnew2

random 1.262 0.792 1.236 1.658 0.788 1.130

A 0.463 0.248 0.145 0.282 -0.004 0.059

B 1.851 1.484 1.665 1.952 1.487 1.683

C 0.000 0.000 0.000 0.000 0.000 0.000

D 0.121 0.062 0.026 0.052 -0.004 0.009

all 0.976 0.573 0.584 0.935 0.299 0.538

experts 1.284 0.811 0.562 0.992 0.405 0.751

rest 0.529 0.287 0.609 0.949 0.237 0.415

K_psi 1 2 3 4 5 6

DJS DJSsqrt Dncm1 Dncm2 Dnew1 Dnew2

random 0.000 0.000 0.000 0.000 0.000 0.000

A -0.799 -0.544 -1.090 -1.376 -0.793 -1.071

B 0.590 0.692 0.429 0.293 0.699 0.553

C -1.262 -0.792 -1.236 -1.658 -0.788 -1.130

D -1.141 -0.730 -1.209 -1.606 -0.792 -1.122

all -0.286 -0.219 -0.652 -0.723 -0.489 -0.593

experts 0.022 0.019 -0.674 -0.666 -0.383 -0.379

rest -0.732 -0.505 -0.627 -0.709 -0.551 -0.715

(c) knowledge impact Kυ (d) knowledge impact Kψ

Figure A2. Estimating the benefit of visualization and knowledge impact in relation to the survey
result of Question 5 (Figure 6).

Appendix D. Survey Results of Useful Knowledge in Viewing London
Underground Maps

This appendix is not an independent paper but supports Part II of this two-part paper
by providing additional details about the empirical study on viewing London Underground
maps described in Section 6.2 in this part of the paper.

It is necessary to note that this empirical study is not a hypothesis-based study. We
can easily anticipate that some participants can use a very small or illusive amount of
information shown on a map to answer questions that seem to require some information
that is not on the map. However, this study is not designed to draw a conclusion about
this phenomenon, but to collect some data about the phenomenon. As such a phenomenon
suggests that there is a knowledge input to the visualization process, we would like to
use the collected data to evaluate a few information-theoretic measures that have been
proposed for quantifying the impact of such knowledge. Figure A3 shows the set up for
this empirical study.
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Figure A3. A survey for collecting data that reflects the use of some knowledge in viewing two types
of London underground maps.

Figures A4–A6 show the questionnaire used in the survey about two types of London
Underground maps. Table A3 summarizes the data from the answers by the 12 surveyees
at King’s College London, while Table A4 summarizes the data from the answers by the
four surveyees at the University Oxford.

In Section 6.2, we discussed Questions 1–4 in some detail. In the survey, Questions
5–8 constitute the second set. Each question asks surveyees to first identify two stations
along a given underground line, and then determine how many stops between the two
stations. All surveyees identified the stations correctly for all four questions, and most also
counted the stops correctly. In general, for each of these cases, one can establish an alphabet
of all possible answers in a way similar to the example of walking distances. However,
we did not observe any interesting correlation between the correctness and the surveyees’
knowledge about metro systems or London.

With the third set of four questions, each question asks surveyees to identify the closest
station for changing between two given stations on different lines. All surveyees identified
the changing stations correctly for all questions.

The design of Questions 5–12 was also intended to collect data that might differentiate
the deformed map from the faithful map in terms of the time required for answering
questions. As shown in Figure A7, the questions were paired, such that the two questions
feature the same level of difficulties.

Although the comparison seems to suggest that the faithful map might have some
advantage in the setting of this survey, we cannot be certain about this observation as the
sample size is not large enough. In general, we cannot draw any meaningful conclusion
about the cost in terms of time. We hope to collect more real world data about the timing
cost of visualization processes for making further advances in applying information theory
to visualization.

The space cost is a valid consideration. While both maps have a similar size (i.e.,
deformed map: 850 mm × 580 mm, faithful map: 840 mm × 595 mm), their font sizes for
station labels are very different. For long station names, “High Street Kensington” and
“Totteridge & Whetstone”, the labels on the deformed map are of 35 mm and 37 mm in
length, while those on the faithful map are of 17 mm and 18 mm long. Taking the height
into account, the space used for station labels in the deformed map is about four times of
that in the faithful map. In other words, if the faithful map were to display its labels with
the same font size, the cost of the space would be four times of that of the deformed map.
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Table A3. The answers by twelve surveyees at King’s College London to the questions in the London
underground survey.

Surveyee’s ID
Questions P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 Mean

Q1: answer (min.) 8 30 12 16 20 15 10 30 20 20 20 30 19.25
time (sec.) 06.22 07.66 09.78 11.66 03.72 04.85 08.85 21.12 12.72 11.22 03.38 10.06 09.27

Q2: answer (min.) 15 30 5 22 15 14 20 20 25 25 25 20 19.67
time (sec.) 10.25 09.78 06.44 09.29 12.12 06.09 17.28 06.75 12.31 06.85 06.03 10.56 09.48

Q3: answer (min.) 20 45 10 70 20 20 20 35 25 30 20 240 46.25
time (sec.) 19.43 13.37 10.06 09.25 14.06 10.84 12.46 19.03 11.50 16.09 11.28 28.41 14.65

Q4: answer (min.) 60 60 35 100 30 20 45 35 45 120 40 120 59.17
time (sec.) 11.31 10.62 10.56 12.47 08.21 07.15 18.72 08.91 08.06 12.62 03.88 24.19 11.39

Q5: time 1 (sec.) 22.15 01.75 07.25 03.78 14.25 37.68 06.63 13.75 19.41 06.47 03.41 34.97 14.29
time 2 (sec.) 24.22 08.28 17.94 05.60 17.94 57.99 21.76 20.50 27.16 13.24 22.66 40.88 23.18
answer (10) 10 10 10 9 10 10 10 10 9 10 10 10

time (sec.) 06.13 28.81 08.35 06.22 09.06 06.35 09.93 12.69 10.47 05.54 08.66 27.75 11.66

Q6: time 1 (sec.) 02.43 08.28 01.97 08.87 05.06 02.84 06.97 10.15 18.10 21.53 03.00 07.40 08.05
time 2 (sec.) 12.99 27.69 04.81 10.31 15.97 04.65 17.56 16.31 20.25 24.69 15.34 20.68 15.94

answer (9) 9 10 9 9 4 9 9 9 8 9 9 9
time (sec.) 07.50 06.53 04.44 16.53 19.41 05.06 13.47 07.03 12.44 04.78 07.91 16.34 10.12

Q7: time 1 (sec.) 17.37 08.56 01.34 03.16 08.12 01.25 21.75 15.56 02.81 07.84 02.22 46.72 11.39
time 2 (sec.) 17.38 13.15 02.34 03.70 08.81 02.25 22.75 26.00 17.97 10.37 03.18 47.75 14.64

answer (7) 7 7 7 7 6 7 7 7 6 7 7 7
time (sec.) 07.53 06.34 03.47 03.87 02.75 04.09 02.16 04.94 26.88 05.31 06.63 12.84 07.23

Q8: time 1 (sec.) 12.00 08.50 06.09 02.88 08.62 14.78 19.12 08.53 12.50 10.22 12.50 20.00 11.31
time 2 (sec.) 13.44 10.78 23.37 09.29 13.03 36.34 23.55 09.50 13.53 10.23 32.44 22.60 18.18

answer (6) 6 6 6 6 6 6 6 6 6 6 6 6
time (sec.) 02.62 05.94 02.15 04.09 04.94 07.06 07.50 04.90 04.37 04.53 05.47 09.43 05.25

Q9: answer (P) P P P P P P P P P P P P
time (sec.) 35.78 02.87 07.40 13.03 06.97 52.15 13.56 02.16 08.13 09.06 01.93 08.44 13.46

Q10: answer (LB) LB LB LB LB LB LB LB LB LB LB LB LB
time (sec.) 05.50 03.13 12.04 14.97 07.00 26.38 11.31 03.38 06.75 07.47 06.50 09.82 09.52

Q11: answer (WP) WP WP WP WP WP WP WP WP WP WP WP WP
time (sec.) 06.07 05.35 07.72 05.00 04.32 23.72 05.25 03.07 10.66 05.37 02.94 17.37 08.07

Q12: answer (FP) FP FP FP FP FP FP FP FP FP FP FP FP
time (sec.) 05.16 02.56 11.78 08.62 03.60 19.72 11.28 03.94 20.72 01.56 02.50 06.84 08.19

live in metro city >5 yr >5 yr mths 1–5 yr >5 yr 1–5 yr weeks >5 yr 1–5 yr >5 yr mths mths
live in London >5 yr >5 yr mths 1–5 yr 1–5 yr mths mths mths mths mths mths mths
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Survey Questions for the London Underground Study 
 

Participant’s Anonymised ID:  Time and Date:  

 

Survey Coordinator’s ID:  Survey Location:  

 
Q1. Please use the Conventional London Underground Map to answer this question as accurately as 
possible. 
Consider these two stations, Charing Cross and Oxford Circus (as indicated by blue arrows on the 
map). Estimate how long it would take (in minutes) for an ordinary healthy adult to walk from 
Charing Cross to Oxford Circus. 
 

How Long (mins)?  Response Time (mins & secs):  

 
 
Q2. Please use the Other London Underground Map to answer this question as accurately as 
possible. 
Consider these two stations, Temple and Leicester Square (as indicated by blue arrows on the map). 
Estimate how long it would take for an ordinary healthy adult to walk from Temple to Leicester 
Square. 
 

How Long (mins)?  Response Time (mins & secs):  

 
 
Q3. Please use the Conventional London Underground Map to answer this question as accurately as 
possible. 
Consider these two stations, Stanmore and Edgware (as indicated by red arrows on the map). 
Estimate how long it would take (in minutes) for an ordinary healthy adult to walk from Stanmore to 
Edgware. 
 

How Long (mins)?  Response Time (mins & secs):  

 
 
Q4. Please use the Other London Underground Map to answer this question as accurately as 
possible. 
Consider these two stations, South Rulslip and South Harrow (as indicated by red arrows on the 
map). Estimate how long it would take for an ordinary healthy adult to walk from South Rulslip to 
South Harrow. 
 

How Long (mins)?  Response Time (mins & secs):  

 
  Figure A4. London underground survey: question sheet 1 (out of 3).
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Q5. Please use the Conventional London Underground Map to answer this question as quickly as 
possible. 
(a) Where are station Russell Square and station Barons Court on the Piccadilly line (navy colour 

or dark blue)? 
(b) How many stops between Russell Square and Barons Court (excluding the source and 

destination, i.e., Russell Square and Barons Court)? 
 

(a) Response Time (mins & secs), first station:  total:  

 

(b) How many stops?  Response Time (mins & secs):  

 
 
Q6. Please use the Other London Underground Map to answer this question as quickly as possible. 
(a) Where are station Piccadilly Circus and station Queen’s Park on the Bakerloo line (brown 

colour)? 
(b) How many stops between Piccadilly Circus and Queen’s Park (excluding the source and 

destination, i.e., Piccadilly Circus and Queen’s Park)? 
 

(a) Response Time (mins & secs), first station:  total:  

 

(b) How many stops?  Response Time (mins & secs):  

 
 
Q7. Please use the Conventional London Underground Map to answer this question as quickly as 
possible. 
(a) Where are station Richmond and station West Kensington on the District line (green colour)? 
(b) How many stops between Richmond and West Kensington (excluding Richmond and West 

Kensington)? 
 

(a) Response Time (mins & secs), first station:  total:  

 

(b) How many stops?  Response Time (mins & secs):  

 
 
Q8. Please use the Other London Underground Map to answer this question as quickly as possible. 
(a) Where are station Epping and station Snaresbrook on the Central line (red colour)? 
(b) How many stops between Epping and Snaresbrook (excluding Epping and Snaresbrook)? 
 

(a) Response Time (mins & secs), first station:  total:  

 

(b) How many stops?  Response Time (mins & secs):  

 
 
  

Figure A5. London underground survey: question sheet 2 (out of 3).
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Q9. Please use the Conventional London Underground Map to answer this question as quickly as 
possible. 
Consider these two stations, Ladbroke Grove on the Circle line and North Wembley on the 
Bakerloo line (as indicated by yellow arrows on the map). Find the closest station for changing 
between Ladbroke Grove and North Wembley. 
 

Where to change?  Response Time (mins & secs):  

 
 
Q10. Please use the Other London Underground Map to answer this question as quickly as 
possible. 
Consider these two stations, Old Street on the Northern line and Canada Water on the Jubilee line 
(as indicated by yellow arrows on the map). Find the closest station for changing between Old 
Street and Canada Water. 
 

Where to change?  Response Time (mins & secs):  

 
 
Q11. Please use the Conventional London Underground Map to answer this question as quickly 
as possible. 
Consider these two stations, Watford on the Metropolitan line and Stanmore on the Jubilee line (as 
indicated by green arrows on the map). Find the closest station for changing between Watford and 
Stanmore. 
 

Where to change?  Response Time (mins & secs):  

 
 
Q12. Please use the Other London Underground Map to answer this question as quickly as 
possible. 
Consider these two stations, Cockfosters on the Piccadilly line and Walthamstow Central on the 
Victoria line (as indicated by green arrows on the map). Find the closest station for changing 
between Cockfosters and Walthamstow Central . 
 

Where to change?  Response Time (mins & secs):  

 
 

 
 

How long have you lived or stayed in a city with a metro/underground system? 
 

  a. Never   b. a few days   c. a few weeks 

  d. a few months   e. between 1 and 5 years   f. more than 5 years 

 
How long have you lived or stayed in London? 
 

  a. Never   b. a few days   c. a few weeks 

  d. a few months   e. between 1 and 5 years   f. more than 5 years 

 

Figure A6. London underground survey: question sheet 3 (out of 3).
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Table A4. The answers by four surveyees at the University of Oxford to the questions in the London
underground survey.

Surveyee’s ID
Questions P13 P14 P15 P16 Mean

Q1: answer (min.) 15 20 15 15 16.25
time (sec.) 11.81 18.52 08.18 07.63 11.52

Q2: answer (min.) 5 5 15 15 10.00
time (sec.) 11.10 02.46 13.77 10.94 09.57

Q3: answer (min.) 35 60 30 25 37.50
time (sec.) 21.91 16.11 10.08 22.53 17.66

Q4: answer (min.) 20 30 60 25 33.75
time (sec.) 13.28 16.21 08.71 18.87 14.27

Q5: time 1 (sec.) 17.72 07.35 17.22 09.25 12.89
time 2 (sec.) 21.06 17.00 19.04 12.37 17.37
answer (10) 10 8 10 10
time (sec.) 04.82 02.45 02.96 15.57 06.45

Q6: time 1 (sec.) 35.04 38.12 11.29 07.55 23.00
time 2 (sec.) 45.60 41.32 20.23 40.12 36.82
answer (9) 9 10 9 8
time (sec.) 03.82 13.57 08.15 34.32 14.97

Q7: time 1 (sec.) 01.05 02.39 09.55 11.19 06.05
time 2 (sec.) 02.15 05.45 09.58 13.47 07.66
answer (7) 10 6 7 7
time (sec.) 01.06 01.60 02.51 14.06 04.81

Q8: time 1 (sec.) 08.74 26.14 20.37 15.01 17.57
time 2 (sec.) 16.50 30.55 27.01 17.91 22.99
answer (6) 6 6 6 6
time (sec.) 09.30 03.00 02.11 04.94 04.48

Q9: answer (P) P P P P
time (sec.) 05.96 09.38 04.56 05.16 06.27

Q10: answer (LB) LB LB LB LB
time (sec.) 12.74 07.77 01.30 09.94 07.94

Q11: answer (WP) WP WP WP WP
time (sec.) 09.84 04.43 03.39 07.18 06.21

Q12: answer (FP) FP FP FP FP
time (sec.) 06.22 10.46 06.78 05.10 07.14

live in metro city never days days days
live in London never days days days

0 10 20 30 40

Q1

Q2

Q3

Q4

Q5a

Q6a

Q5b

Q6b

Q7a

Q8a

Q7b

Q8b

Q9

Q10

Q11

Q12

Time (sec.)

deformed map (KCL) 

faithful map (KCL) 

deformed map (Oxf) 

faithful map (Oxf) 

Figure A7. The average time used by surveyees for answering each of the 12 questions. The data
does not indicate any significant advantage of using the geographically-deformed map.



Entropy 2022, 24, 282 35 of 37

Divergence 1 2 3 4 5 6

DJS DJSsqr Dncm1 Dncm2 Dnew1 Dnew2

spot on 0.7249 0.8514 0.9107 0.8273 0.5565 0.4684

close 0.9126 0.9553 0.9811 0.9625 0.5591 0.5001

wild guess 0.9997 0.9998 1.0000 0.9999 0.5563 0.5064

Benefit 1 2 3 4 5 6

DJS DJSsqr Dncm1 Dncm2 Dnew1 Dnew2

spot on -1.765 -2.777 -3.252 -2.585 -0.418 0.287

close -3.266 -3.608 -3.815 -3.666 -0.439 0.033

wild guess -3.963 -3.965 -3.966 -3.965 -0.416 -0.017

Figure A8. The original table of numerical values for the text in the main paper.
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Figure A9. The PCPs of the data in Figure A8.
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