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Abstract: Large-scale knowledge graphs not only store entities and relations but also provide
ontology-based information about them. Type constraints that exist in this information are of great
importance for link prediction. In this paper, we proposed a novel complex embedding method,
CHolE, in which complex circular correlation was introduced to extend the classic real-valued compo-
sitional representation HolE to complex domains, and type constraints were integrated into complex
representational embeddings for improving link prediction. The proposed model consisted of two
functional components, the type constraint model and the relation learning model, to form type
constraints such as modulus constraints and acquire the relatedness between entities accurately by
capturing rich interactions in the modulus and phase angles of complex embeddings. Experimental
results on benchmark datasets showed that CHolE outperformed previous state-of-the-art methods,
and the impartment of type constraints improved its performance on link prediction effectively.

Keywords: type constraint; link prediction; complex embedding; complex circular correlation

1. Introduction

Knowledge graphs (KGs), such as Freebase [1], WordNet [2], and YAGO [3], produce
massive relational data to support a wide range of applications of artificial intelligence,
including recommender systems, question answering, and intelligent search. In these
downstream applications of KGs, vast data quantities are organized into directed multi-
graphs that consist of both knowledge components (entities and concepts) and knowledge
structure (relations) [4], and the information processing mechanisms of applications take
a knowledge-driven form [5] to make better use the relational data. However, the lack
of associations between entities can lead to the incompleteness of knowledge structures,
which can directly affect the spread and application of KGs. Hence, the completion of the
missing relationships, known as link prediction, has become one of the main problems
in relational learning, and all knowledge representation methods prioritize this process.
Notably, knowledge graphs form various entities and relationships while also providing
a wealth of ontology-based information about them [6]. This information, in particular
information about types, can be regarded as abstract semantic constraints and play im-
portant roles in knowledge-driven applications. The introduction of type constraints can
enhance the accuracy of link prediction and the knowledge discovery ability of KGs, thus
improving the integrity of knowledge structures and their practical availability in down-
stream applications such as question answering systems. Specifically, two types of type
constraints—type constraints of entities (TCE, also known as the instanceOf relation or
entity-type information [7]) and type constraints of relation (TCR)—are crucial for link
prediction. Figure 1 shows a triple from Freebase [1] with type constraints to illustrate the
roles of TCE and TCR in the structure of knowledge.

In recent years, various knowledge embedding approaches have been proposed and
widely used in knowledge graph completion [8], question answering [9] and recommender
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systems [10] to support specific applications in many industries such as medicine and
e-commerce. Most of them encode entities and relationships into low-dimensional real
vectors and models to fill in the missing relationships of KGs. Translational models,
including TransE [11], TransH [12], and TransR/CTransR [13], utilize distance-based trans-
lational properties to handle 1-to-1, 1-to-N, N-to-1, and N-to-N relations. DistMult [14] and
RESCAL [15] regard the link prediction task as a 3D binary tensor completion problem [16]
and builds relational directed graphs by using the relation matrix or tensor. HolE [17]
introduces circular correlation to capture rich interactions between embeddings of entities
and implement compositional representations. However, all the above methods ignore
the vital role of type information in KGs and only model entities and relationships on the
instance view. TKRL [6] investigates the importance of type information for link prediction
and uses relation-specific type constraints to achieve outstanding performance. TransC [18]
and JOIE [19] jointly model the instance view graph and the ontology view graph of KGs,
and illustrate that the introduction of ontology information can improve the performance
of link prediction. Unfortunately, most of the existing methods represent the entities, rela-
tionships, and types as single real vectors, making it difficult to adequately integrate type
constraints into instances and restricting the precision and flexibility of relational learning.
More specifically, each element of real-valued vectors is a real number, which only can
provide one degree of freedom for modeling the relations between entities. For large-scale
KGs, in which the number of dimensions is much smaller than the number of entities and
relations, such single degree of freedom representation with real number can cause the
position of golden facts to converge on almost one point in the geometric space, which is
over-strict for complex relations such as N-to-N relations and type constraints [20].
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To address this issue, we sought inspiration from complex representation [16,21] to ex-
tend the classic real-valued compositional representation method HolE [17], and proposed
a novel complex embedding method named CHolE to represent entities and relationships
combined with type constraints. In the proposed approach, entities and the relationship
between them were encoded as complex vectors (their types are still embedded as real
vectors), which provided two degrees of freedom, modulus and phase angles, for mod-
eling complex relationships and type constraints. Meanwhile, the circular correlation, a
real compositional operator proposed by HolE [17], was extended to complex domain
and was named complex circular correlation. In complex circular correlation, real-valued
multiplication was replaced by complex multiplication, in which the modulus of complex
numbers were multiplied and their phase angles performed addition and subtraction.
While providing two degrees of freedom for knowledge representation, the multiplication
of modulus retained the ability of compositional representation of HolE [17], and the sub-
traction of phase angles introduced the advantages of distance-based approaches such as
TransE [11] to improve the precision and flexibility of relational learning. On the one hand,
in CHolE, the real circular correlation [17] and distance-based operation were adopted to
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model the type constraints and integrated into entities and relationships as the modulus
of complex embeddings. On the other hand, the complex version of circular correlation
was applied in relational learning to consider the modulus constraints and interactions
among phase angles. Correspondingly, CHolE consisted of two main components: the
type constraint model (TCM) and the relation learning model (RLM). The TCM, which
embeds the types of entities as real vectors in Euclidean space, models the TCE with the
traditional distance-based operation similar to TransC [18] and takes the real circular corre-
lation [17] as compositional operator to form the TCR. The TCE and TCR are then imposed
on the modulus of complex embeddings to be injected into the entities and relationships.
The RLM adopts complex circular correlation to project pairwise interaction in Hermitian
dot product [16] of head entity and tail entity on the relationship vector (complex vector)
and calculates a sum over a fixed partition [17] of their real parts. In this way, modulus
constraints and phase interactions react to type constraints and nonontological interac-
tions, respectively, and are simultaneously integrated by a unified mechanism to capture
semantic associations in relationships flexibly. We evaluated our approach on the classic
link prediction task, known as entity prediction, and the experimental results showed that
CHolE outperformed state-of-the-art methods on benchmark datasets. The contributions
of our work can be summarized as follows:

• A novel complex embedding model, named CHolE, was proposed to model relational
learning with type constraints, which extended compositional representation HolE [17]
to complex domain and injected the type information as modulus constraints into
complex embeddings of entities and relations for improving link prediction. It was able
to model the entities, relations and the relevant type constraints jointly and effectively
utilize their type information for improving link prediction.

• A brand new compositional representation mechanism was developed to integrate the
ontology-based information and instance information in KGs. This mechanism used
the modulus and phase angles of complex vectors to form the type constraints and
nonontological interactions between entities and combined them together with the
complex circular correlation to capture multifaceted associations in relations.

• In the experiments, the proposed method outperformed state-of-the-art real-valued
knowledge representation methods, including TransE [11], TransH [12], RESCAL [15],
DistMult [14], HolE [17], and the classic complex embedding model ComplEx [16], on
link prediction tasks. The experimental results on standard benchmark datasets
showed that the impartment of type constraints obtained performance gains on
link prediction.

The remainder of this paper was organized as follows: Section 2 introduces various
methods of knowledge embedding methods for link prediction; Sections 3 and 4 describe
the complex circular correlation, formulation, methodology, and other details of the pro-
posed method. Section 5 reports the dataset, process, and results of our experiments on the
proposed model. Section 6 discusses the influence of type constraints on the performance
of link prediction, and Section 7 provides the conclusion and future work.

2. Related Works

In recent years, various knowledge embedding methods have been proposed, which treat
observed facts in KGs as triple sets and can be categorized into three groups: (1) translation-based
models (2) tensor factorization-based models, and (3) neural network-based models [22]. In
addition to the review of the above three methods, the methods with type information and
complex embedding methods were introduced, which were directly relevant to our work.

2.1. Translation-Based Models

Inspired by word2vec [23], TransE [11] adopted the scoring function fr(h, t) = ||h + r− t||
as translation invariant to represent the relationship between entities and introduced a
margin-based hinge ranking loss function [11] to improve the performance and effective-
ness of the model. A variety of translation-based models, such as TranH [12], TransR [13],
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and TransD [24], have been proposed successively and extended the original TransE model
to address complex relationships, including 1-to-N, N-to-1 and N-to-N. While inheriting
the idea of translation invariance of TransE, these models stretch out various relation spaces
and project relationships into them to enhance the capacities of knowledge representa-
tion. TransH [12] forms relation-specific hyperplanes and projects each entity on them
via e⊥ = e−wTew to make the same entity produce different embeddings in various
relationships. TransR [13] extends relation-specific hyperplanes proposed by TransH [12]
to relation-specific spaces and constructs the relation-specific matrix to make projections as
e⊥ = Mre. TransD [24] introduces mapping vectors wh, wt, wr to form projection matrix
Mh

r = wrwT
h + I, Mt

r = wrwT
t + I for head entity and tail entity, respectively, and simplifies

the relation-specific matrix in TransR [13].

2.2. Tensor Factorization-Based Models

Such methods regard link prediction as a 3D binary tensor completion problem [16]
and encode relational directed graph by using the relational matrix or tensor. The core
idea of tensor factorization is to map all relationships in KGs into 3D tensor structure
X ∈ Rn×n×m, and each entry xijk of tensor indicates whether a k-th type of relationship is
found between the i-th entity and the j-th entity. RESCAL [15] introduced a bilinear model
to obtain the latent semantic associations between entities and calculate the scoring func-
tion f (h, r, t) = hTMrt with relation matrix Mr to determine the existence of relationships.
DistMult [14] restricts the relation matrix into diagonal matrices to simplify the computa-
tional complexity of RESCAL. HOLE [17] introduced circular correlation as a compositional
operator, which can be interpreted as compression of tensor products of the head and tail
entities to capture pairwise interactions of entity features [17] and equivalently utilizes fast
Fourier transform (FFT) [25] to accelerate its computational process. A few complex tensor
factorization methods, introduced in a separate paragraph later in this work, have been
developed and made progress in performance.

2.3. Neural Network-Based Models

Neural networks, especially deep networks, have powerful capabilities of complicated
relational learning and are widely applied in knowledge representation and link prediction.
SME [26] introduced linear and bilinear networks to calculate energy functions, which can
be used to measure the confidence of semantic relation matching. NTN [27] applies a neural
tensor network, which replaces standard linear layers with bilinear tensor layers to depict
complicated semantic relations more precisely. ConvKB [28] introduced a convolutional
neural network to generate feature maps of triples and capture the latent semantic relations
with them. R-GCN [29] improved graph neural network for knowledge graph represen-
tation, which provides relation-specific weight matrices to identify various relationships
between an entity and its neighbors. The multi-scale dynamic convolutional network
(M-DCN) [30] generates multi-scale convolution filters in the convolution layer to learn
different characteristics among input embeddings for modeling the complex relations in
KGs. HyperGEL [31] extends hyperbolic graph neural network by introducing the relation
features and forms an encoder–decoder hyperbolic embedding learning framework for
KG completion.

2.4. Methods with Type Information

In addition to entities and relationships, most KGs contain tremendous type informa-
tion, which plays an important role in link prediction. In recent years, some embedding
methods with type information have been proposed, which either integrate type infor-
mation into relational learning or focus on the joint representation of the ontology and
instance views of KGs. TKRL [6] constructs type-specific projection matrices Mrh, Mrt for
head entity and tail entity and defines the energy function E(h, r, t) = ||Mrhh + r−Mrtt||
to capture multiple-category semantic information in entities for enhancing the embedding
model. TransC [18] embeds types as spheres in Euclidean space and uses the geometric
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inclusion to depict the hierarchy structure and the instantiation of types. JOIE [19] pro-
posed a multi-view embedding framework, which composed of the ontology view and the
instance view, and establishes intra-view component and cross-view component to model
hierarchy-aware structure of types and their instantiations.

2.5. Complex Embedding Methods

Recently, increasingly complex embedding methods have emerged and demonstrated
their strong representation capabilities in KGs. ComplEx [16] first introduced complex
embedding into the domain of knowledge representation and used the Hermitian dot prod-
uct to extend DistMult [14] to complex vector space so as to address asymmetric relations
more effectively. RotatE [21] embeds the entities and relations to the complex vector space
and defines each relation as a rotation from the head entity to the tail entity, which can
effectively model various relation patterns, including inversion, symmetric/antisymmetric,
and composition. QuatE [32] further extends complex space into 4D hypercomplex space
known as quaternion space and adopts the Hamilton product to capture richer latent
semantics meanings in entities and construct more compact interaction structure between
them. DualQuatE [33] introduces dual quaternion into knowledge graph embedding and
uses both rotation and translation simultaneously to represent various relations between
entities in KGs.

3. Preliminaries

In this section, complex circular correlation, the complex version of circular corre-
lation [17], was briefly introduced and used as compositional operator in the proposed
model. The problem of relational learning with type constrains involved in our method
and experiment is formulated in detail.

3.1. Complex Circular Correlation
3.1.1. HolE and Circular Correlation

Holographic embedding (HolE) [17] is one of the most remarkable compositional
representation methods, which is related to holographic models of associative memory
in that it introduces circular correlation as compositional operator to create binary rela-
tional representations. Plate [34] investigated circular correlation, circular convolution and
aperiodic convolution as compressed outer products of two vectors for forming associ-
ations in holographic reduced representations. In HolE [17], circular correlation, which
calculates a sum over a fixed partition of pairwise interactions in tensor product, was
similarly employed as a compression of the tensor product to capture rich interactions
while simultaneously making the model concise and efficient [17]. Concretely, R denotes
the sets of real values, and a, b ∈ Rn denote two n-dimensional real vectors. The circular
correlation ?: Rn ×Rn → Rn is defined [17] as

[a ? b]j =
n−1

∑
k=0

akb[(j+k) mod n], (1)

In Equation (1), the circular correlation compresses the real tensor product by summing over
the interactions of tensor product in accordance with the subscript rule sr(j, k) = (j + k) mod n,
as illustrated in Figure 2 [34].

In the relation-specific scoring function σ(rT
p (a ? b)), where rp denotes the real vector

of the p-th type relation and σ(·) is the logistic function, all n2 interactions in tensor product
matrices are grouped into n partitions by subscript rule, which are summed up separately.
In the above scoring function, the relation vector assigns the weights for each partition to
separate the possible interactions relevant to relation-specific pattern from the irrelevant
interactions [17]. Although circular correlation provides strong semantic interaction capa-
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bilities, it does not increase the dimensionality of the composite representation [17]. Its
computational process can be accelerated via FFT as follows:

a ? b = F−1
(
F (a)�F (b)

)
, (2)

where F (·) and F−1(·) denote the FFT and its inverse, x denotes the complex conjugate of
x ∈ C, and � denotes the Hadamard product.
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3.1.2. Complex Circular Correlation

In this work, a novel complex compositional operator named complex circular cor-
relation was introduced. This operator extended the real circular correlation to complex
domains to model the entities and relationships with ontology constraints. With regard to
complex vectors u, v ∈ Cn, the tensor product in real circular correlation was expanded to
the Hermitian product, which is defined as

〈u, v〉 = uTv, (3)

where x denotes the complex conjugate of x ∈ Cn, and an entry in it can be denoted as

wjk = ujvk =
(
Re
(
uj
)
− i·Im

(
uj
))
· (Re(vk) + i·Im(vk)), (4)

where uj, vk ∈ C are complex numbers, Re(·) and Im(·) denote the real part and the
imaginary part of a complex number, respectively, and uj denotes the conjugate of uj ∈ C.
We rewrote Equation (4) in a form that corresponded with the polar coordinates to divide
operations into dot product and phase rotation, as follows:

wjk = ujvk

=
(

m
(
uj
)
· e−i·θ(uj)

)
·
(

m(vk) · ei·θ(vk)
)

= m
(
uj
)
m(vk) · ei·(θ(vk)−θ(uj)),

(5)

where i is the imaginary unit, m(·) denotes the moduli of complex numbers, and θ(·) returns
its phase angle in the range [−π,π]. In this form, the squared moduli m(x)2 = Re(x)2 + Im(x)2

can be interpreted as the energy of a complex number, and be assigned into the real and
imaginary parts by Re(x) = m(x) cos θ(x),Im(x) = m(x) sin θ(x). If m(x)2 is on, then
its components Re(x)2, Im(x)2 have the possibility of being on, which depends on the
phase angle θ(x). For the entry wjk in Hermitian product 〈u, v〉, the moduli m

(
uj
)
, m(vk)

is distributed to the real and imaginary parts in accordance with their difference in phase
angle θ(vk)− θ(uj).
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The Hermitian product 〈u, v〉 was partitioned, and the interactions in a partition were
summed up in a similar manner as real circular correlation [17] to define the complex
circular correlation as

[u ? v]j =
n−1

∑
k=0

ukv[sr(j,k)] =
n−1

∑
k=0

m(uk)m
(

v[sr(j,k)]

)
· ei·(θ(v[sr(j,k)])−θ(uk)), (6)

where u, v ∈ Cn are the complex vectors, and [u ? v]j is the j-th entry of u ? v. In Equation
(6), the polar form of complex circular correlation is provided, where m(·), θ(·) denote
the moduli and phase angle of complex number, respectively, and sr(j, k) = (j + k) mod n.
Assuming that the moduli of uk and v[sr(j,k)] are fixed, if and only if the phase angles of all
interactions in a partition are the same (with consistency of phase), ideally, then the moduli
of the sum over them take the maximum value. Figure 3 illustrates the sum over a fixed
partition with consistency of phase angles and inconsistency of phase angles.
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The complex circular correlation can be accelerated via FFT similar to its real ver-
sion [17]. Specifically, it can be divided into four parts by following the different combina-
tions of real and imaginary parts as

u ? v = Re(u) ? Re(v) + Im(u) ? Im(v) + i·(Re(u) ? Im(v)− Im(u) ? Re(v)), (7)

where ? on the left-hand side of the equation denotes the complex circular correlation
operator, and ? on the right-hand side represents its real version. Thus, the complex circular
correlation can be obtained by calculating the FFT of four components in Equation (7) and
taking their algebraic sum.

3.1.3. Mechanisms of Modulus Constraint and Phase Interaction

With the complex circular correlation, the corresponding scoring function is introduced
to form the modulus constraints and the phase interaction. The scoring function similar to
HolE [17] is defined as

f (h, r, t) = σ(Re(rT(h ? t))), (8)

where h and t are complex vectors of the head and tail entity, respectively, r is the conjugate
of complex vector of the relationship in triple (h, r, t), ? denotes the complex circular
correlation in Equation (5), Re(·) takes the real part of complex number, and σ(·) denotes



Entropy 2022, 24, 330 8 of 19

the logistic function. We investigate the j-th interaction of Re(rT(h ? t)) in Equation (8)
as follows:[

Re
(

rT(h ? t)
)]

j
= Re

(
rj

n−1
∑

k=0
hkt[sr(j,k)]

)
= Re

(
m
(
rj
)
ei·(−θ(rj))

n−1
∑

k=0
m(hk)m

(
t[sr(j,k)]

)
ei·(θ(t[sr(j,k)])−θ(hk))

)
= m

(
rj
) n−1

∑
k=0

m(hk)m
(

t[sr(j,k)]

)
·Re(ei·(θ(t[sr(j,k)])−θ(hk)−θ(rj))),

(9)

where rj, hk, t[sr(j,k)] denotes the corresponding entries of r, h, t, respectively, and all other
symbols have the same meaning as in Equations (6) and (8).

In Equation (9), the phase interaction is described as Re(ei·(θ(t[sr(j,k)])−θ(hk)−θ(rj))).
It is defined as the real part of unit-length complex number, and its phase angle is
equal to θ

(
t[sr(j,k)]

)
− θ(hk)− θ

(
rj
)
. When the difference between the t[sr(j,k)] and hk

satisfies θ
(

t[sr(j,k)]

)
− θ(hk) = θ

(
rj
)
, the value of phase interaction is equal to one. If

θ
(

t[sr(j,k)]

)
− θ(hk)− θ

(
rj
)
= ± π/2, then it takes on the value zero. Although the three

phase angles of t[sr(j,k)], hk, rj take other values, the value of the phase interaction varies
in the range [−1, 1]. The modulus constraint is defined as follows: let all the phase interac-
tions be one, then

[
Re
(

rT(h ? t)
)]

j
in Equation (9) becomes the modulus constraint and

degrades into a real circular correlation, where the values of entries of the relation vector
and all interactions are nonnegative. In an overall view, the entries of relation vector r in
Equation (9) can pick out the interactions with consistency of phase angles and make them
available in complex circular correlation. In other words, the modulus constraint limits the
energy of each interaction, and the phase interaction determines the weight of its energy
projection on the real part. Figure 4 illustrates the modulus constraint and phase interaction
in detail.
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In the proposed model, the modulus constraint was used to represent the type con-
straints of entities and relations, and the interactions between entities other than type
constraints were modeled with the phase interaction, as elaborated in Section 4.
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3.2. Problem Formulation

The problem of integrated embedding of KGs with type constraints was formulated in
complex space, which consisted of entities and various relationships between them and
their type constraints. For a clear illustration, Table 1 gives a summary of all symbols used
in this paper.

Table 1. Symbols and descriptions.

Symbols Descriptions Symbols Descriptions

KG knowledge graph rTCR TCR relation
E entity set S triple set
C type (concept) set SI general triple set
R relation set STC type constraint triple set
RI instance-level relation set STCE TCE triple set

RTC type constraint relation set STCE TCR triple set
rTCE TCE (instanceOf ) relation

Given a knowledge graph that includes entities, types, and various relations, it can
be formalized as KG = {E,C,R,S}, where E is the entity set, C is the type set (also known as
concept set), R is the relation sets, and S is the triple set, to denote the relational facts. In
this formulation, relation sets R = RI∪RTC consist of two subsets, RI and RTC, which denote
the instance-level relation and the type constraint relation, respectively. Similarly, the triple
sets S = SI∪STC are divided into two subsets, SI and STC, to denote the relational facts of
instance-level relation and its type constraints.

Here, the specific relations between entities, which are called instance-level relation,
are distinguished from the type constraints: (1) Instance-level relation, which is denoted as
rj ∈RI, indicates the relation between entities. For example, the “writtenBy” is an instance-
level relation and can connect the entity “Shakespeare” and “Romeo and Juliet” directly to
represent the fact “Romeo and Juliet is written by Shakespeare”; (2) Type constraint relation,
which indicates the TCE (also known as the instanceOf relation) and the TCR, is denoted as
RTC = {rTCE,rTCR}. For the relation of TCE rTCE, each entity e ∈ E belongs to at least one
type c ∈C, and one or more instances of a type are found in KG. For example, the entity
“Shakespeare” is the instantiation of one type “author”, and another type “written_work” has
an instance “Romeo and Juliet”. The relation of TCR rTCR indicates the types of head and
tail entity for an instance-level relation. For instance, the “writtenBy” relation has the head
type “written_work” and the tail type “author”. In each fact by this relation (h, r, t), the
head entity belongs to the head type and this is the same with the tail entity and the tail
type. Two types of triple sets were used to denote the facts of the Instance-level relation
and type constraints, including the TCE and TCR: (1) General triple set, which contains
a mass of facts of various instance-level relations, is formalized as SI =

{(
h, rj, t

)∣∣h, t ∈ E
and rj ∈RI }; (2) Type constraint triple sets can be divided into the TCE triple set and TCR
triple set. The TCE triple set is formalized as STCE = {(c, rTCE, e)|e ∈ E and c ∈C} because
the entity e is one of instantiations of the type (concept) c. TCR triple set is defined as STCR
=
{(

ch, rj, ct
)∣∣ch, ct ∈C and rj ∈RI}, where ch and ct denote the head and tail type of the

relation rj, respectively.
In the proposed method, the entity e ∈ E and instance-level relation rj ∈RI were

embedded into complex vector space. Specifically, the entity e was mapped to an n-
dimensional complex vector e ∈ Cn, and Re(e), Im(e), m(e), and θ(e) ∈ Rn are four
n-dimensional real vectors that encoded the real part, imaginary part, modulus, and phase
angle of the complex vector e, respectively. Likewise, the instance-level relation rj ∈RI is
represented as complex vector rj, and Re

(
rj
)
, Im

(
rj
)
, m
(
rj
)
, and θ

(
rj
)
∈ Rn are defined

similarly. We still embedded the types of entities c ∈ C to real vector space as n-dimensional
real vector c ∈ Rn.
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4. Methodology
4.1. Overview

In this section, the complex embedding method CHolE was introduced in detail.
CHolE focused on relational learning with type constraints and addressed the link predic-
tion problem more accurately by using the type information of entities and relations. In the
proposed approach, the entities and relations were embedded as n-dimensional complex
vectors, and their modulus vectors and phase angle vectors were used to capture the type
constraints and interactions between entities other than type constraints. As shown in
Figure 5, CHolE was composed of two main functional parts: the TCM and the RLM. The
TCM had two key components, namely: TCE and TCR. These dealt with the TCE and
TCR, respectively, with the modulus of complex vectors. The RLM integrated the type
constraints formed by TCE and TCR components and adopted complex circular correlation
as compositional operator to learn more detailed interactions between entities with the
phase interactions. These models and components are detailed in Figure 5.

Entropy 2022, 24, x FOR PEER REVIEW 10 of 19 
 

 

4. Methodology 
4.1. Overview 

In this section, the complex embedding method CHolE was introduced in detail. 
CHolE focused on relational learning with type constraints and addressed the link pre-
diction problem more accurately by using the type information of entities and relations. 
In the proposed approach, the entities and relations were embedded as n-dimensional 
complex vectors, and their modulus vectors and phase angle vectors were used to capture 
the type constraints and interactions between entities other than type constraints. As 
shown in Figure 5, CHolE was composed of two main functional parts: the TCM and the 
RLM. The TCM had two key components, namely: TCE and TCR. These dealt with the 
TCE and TCR, respectively, with the modulus of complex vectors. The RLM integrated 
the type constraints formed by TCE and TCR components and adopted complex circular 
correlation as compositional operator to learn more detailed interactions between entities 
with the phase interactions. These models and components are detailed in Figure 5. 

 
Figure 5. An overview of CHolE model. The leftmost part contains a part of KG that includes 
seven entities, their types, and one relationship between them. The TCM learns the TCE and TCR 
with the modulus of complex vectors (green box). The RLM models the detailed interactions with 
the modulus and phase angles of complex (blue box). The solid circle denotes the real number, 
and the slash-marked circle with arrow line denotes the complex number (slash-marked circle 
without arrow line is the moduli of complex number). For a brief description: let the relationship 
of phase angles be zero and simplify the phase angles of golden entity pairs to be the same to 
make the phase difference of entries in head and tail entities be zero (this can be also regarded as a 
special case in Equation (9). 

4.2. TCM 
The goal of TCM is to represent the type constraints in KGs, including the TCE and 

TCR. The TCE establishes a correspondence between an entity and its type (also known 
as the instanceOf relation), and the TCR limits the types of head entity and tail entity in 
certain relationships. Accordingly, two components of TCM, the TCE component and 
TCR component, were developed to address the two types of constraints with the modu-
lus of complex vectors. In CHolE, an entity was embedded as an n-dimensional complex 
vector e ∈ ℂ , and its modulus vector and phase angle vector were encoded as 𝑚(e), 𝜃(e) ∈ ℝ . Likewise, the relationship between entities was formalized as complex 
vector r ∈ ℂ  and defined as 𝑚(r), 𝜃(r) ∈ ℝ . The type of entities (also known as con-
cept) was encoded as a real vector c ∈ ℝ . 

  

Figure 5. An overview of CHolE model. The leftmost part contains a part of KG that includes seven
entities, their types, and one relationship between them. The TCM learns the TCE and TCR with
the modulus of complex vectors (green box). The RLM models the detailed interactions with the
modulus and phase angles of complex (blue box). The solid circle denotes the real number, and the
slash-marked circle with arrow line denotes the complex number (slash-marked circle without arrow
line is the moduli of complex number). For a brief description: let the relationship of phase angles be
zero and simplify the phase angles of golden entity pairs to be the same to make the phase difference
of entries in head and tail entities be zero (this can be also regarded as a special case in Equation (9).

4.2. TCM

The goal of TCM is to represent the type constraints in KGs, including the TCE and
TCR. The TCE establishes a correspondence between an entity and its type (also known
as the instanceOf relation), and the TCR limits the types of head entity and tail entity in
certain relationships. Accordingly, two components of TCM, the TCE component and TCR
component, were developed to address the two types of constraints with the modulus of
complex vectors. In CHolE, an entity was embedded as an n-dimensional complex vector
e ∈ Cn, and its modulus vector and phase angle vector were encoded as m(e), θ(e) ∈ Rn.
Likewise, the relationship between entities was formalized as complex vector r ∈ Cn and
defined as m(r), θ(r) ∈ Rn. The type of entities (also known as concept) was encoded as a
real vector c ∈ Rn.
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4.2.1. TCE Component

The TCE constraint between entity and its type, otherwise known as instanceOf relation,
is considered a basic ontology constraint and exists widely in KGs. In the TCE component,
we adopted the distance-based scoring function proposed by TransC [18] to model the
instanceOf relation. The distance range of types varied depending on the number of entities
that the type contained. Concretely, given a complex vector of an entity e ∈ Cn and a
real vector of its type c ∈ Rn, we defined the scoring function to measure the existence of
instanceOf relation as follows:

fTCE(c, e) = Relu
(
‖ m(e)−m(c) ‖2 −

numc

numE
· br
)

, (10)

where e ∈ Cn, c ∈ Rn are the embedding vectors of entity and type, m(·) ∈ Rn is the mod-
ulus vector of complex vector and real vector, ‖ m(e)−m(c) ‖2 is the dissimilarity measure
by the L2-norm between m(e) and m(c), Relu(·) signifies the ReLU activation function, and
numc/numE · br indicates the threshold of distance between m(e) and m(c). Here, br ≥ 0
is a hyperparameter that denotes the base of range (radius) for types, numc ∈ N+ denotes
the quantity of entities belonging to type c, and numE ∈ N+ is the total amount of e ∈ E.
Thus, the entities of a certain type were located in a sphere [18] in Euclidean space, where
its center was the endpoint of real vector m(c), and its radius depended on the proportion
of the number of entities it owned in the total in KG. If one type has numerous entities,
these entities are supposed to be distributed into spheres with larger radii to ensure that
each entity is distinguishable. If only a few entities belong to a type, then the smaller
radius is obtained using Equation (10) to emphasize the similarity among them, while
ensuring differentiation.

A margin-based hinge loss function was minimized to learn the instanceOf relations
and discriminate positive triples from others, which can be expressed as follows:

LSTCE
TCE =

1
|S TCE|

∑
ξ∈STCE

∑
ξ ′/∈STCE

[
γTCE + fTCE(ξ)− fTCE

(
ξ ′
)]

+ , (11)

where STCE denotes the set of correct triples, and ξ is a positive triple (c, rTCE, e), ξ ′ de-
notes negative triple (c, rTCE, e′) or (c′, rTCE, e) by corrupting ξ, [x]+ = max(0, x) and
γTCE > 0 is the margin to separate positive triples and negative triples. For an in-
stanceOf triple (c, rTCE, e) ∈ STCE, we stochastically replace type c with alternatives
c′ ∈

{
cj
∣∣cj ∈ C and cj 6= c

}
or replace entity e with e′ ∈

{
ej
∣∣ej ∈ E and ej 6= e

}
and filter

those candidates in STCE.

4.2.2. TCR Component

Similar to the TCE, type constraints, which are called TCR, exist in various relations.
For a specific relationship r ∈ RI , its head entity and tail entity are restricted to specific
types. TKRL [6] used type-specific projection to form h and t and constrained them to
specific types crh, crt, where head and tail should belong in this relation. In the proposed
model, the TCR component was established with the modulus of complex vector for
relationship r, and the circular correlation was used as compositional operator to model
the type constraint of relation. We defined the TCR scoring function similar to HolE [17] as

fTCR(crh, r, crt) = σ
(

m(r)T(crh ? crt)
)

, (12)

where crh, crt ∈ Rn are the real vector representations of relation-specific types, m(r) de-
notes the modulus vector of complex vector r ∈ Cn, xT indicates the transposition of vector
x, ? denotes the real circular correlation defined in Equation (1), and σ(x) = 1/(1 + e−x) is
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the logistic function. The hinge loss function was applied and minimized for training of
the TCR component:

LSTCR
TCR =

1
|S TCR|

∑
τ∈STCR

∑
τ′/∈STCR

[
γTCR + fTCR

(
τ′
)
− fTCR(τ)

]
+, (13)

where τ is the positive triple (crh, rTCR, crt) ∈ STCR, τ′ denotes the corrupted triple
(crh

′ , rTCR, crt) or (crh, rTCR, crt ′ ), the positive margin of hinge function is denoted as γTCE,
and [x]+ = max(0, x). We corrupted the positive triple by randomly replacing type crh or crt
with other candidates c′ ∈

{
cj
∣∣cj ∈ C, and cj 6= crh and cj 6= crt

}
.

In summary, we defined the complete loss function for the whole TCM as

LSTC
TC = LSTCE

TCE + LSTCR
TCR , (14)

Thus, the type constraints, which represent entities and relationships, are marked on
the modulus of complex vectors and make them satisfy the TCE and TCR simultaneously.

4.3. RLM

As mentioned previously, the mechanism of TCM, which generates relation-specific
types and groups entities into them with modulus of complex vectors, was described. In this
subsection, the RLM was introduced to capture more specific semantic relatedness between
each entity pair with phase interactions and learn various instance-level relationships by
complex circular correlation. In the RLM, entities and relationships between them were
embedded as complex vectors to combine phase interactions with modulus constraints that
provide type information about them. The mechanism of complex circular correlation with
modulus constraint and phase interaction was described in detail in Section 3.1. Here, we
defined the scoring function and the loss function for RLM directly. Given head entity h ∈ E,
tail entity t ∈ E and a certain relationship r ∈ RI , their complex vector representations were
h, t, r ∈ Cn, respectively. The scoring function of relational learning is defined as

fRL(h, r, t) = σ(Re(rT(h ? t))), (15)

where x indicates the conjugate of complex vector x, ? denotes the complex circular correla-
tion described in Equation (5), Re(·) denotes the real part of complex number and σ(·) is
the logistic function. The corresponding hinge loss function was defined and minimized as

LSI
RL =

1
|S I |

∑
ξ∈SI

∑
ξ ′/∈SI

[
γLR + fLR

(
δ′
)
− fLR(δ)

]
+, (16)

where δ denotes positive triple (h, r, t) ∈ SI , δ′ denotes negative triple (h′, r, t) or (h, r, t′),
γRL > 0 is the margin to distinguish between positive and negative examples and
[x]+ = max(0, x). In negative sampling, for a relational triple (h, r, t), the alternative
entity is randomly picked up from the entity set E =

{
ej
∣∣ej ∈ E , and ej 6= h and ej 6= t

}
.

The bern strategy was adopted, as discussed in Wang et al., 2014 [12], to calculate different
probabilities for replacing the head or tail entity.

We integrated LSTC
TC and LSI

RL and defined the overall loss function as their weighted sums

L = LSI
LR + α · LSTC

TC , (17)

where α ∈ [0, 1] is the hyperparameter as the balance factor to leverage two loss functions
LSTC

TC and LSI
RL.

5. Experiments

In this section, we presented our experiments and evaluation results of CHolE on link
prediction. To evaluate the performance of our approach, we first described the benchmark
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datasets used in our experiments. We then introduced the evaluation protocol, baselines,
and implementation details of our experiments. The experimental results showed that the
proposed model outperformed state-of-the-art baselines.

5.1. Datasets

In this work, we evaluated our approach on two benchmark datasets: FB15K-571 [6]
and FB15K-237-TC. The vast majority of previous studies used FB15K [11], WN18 [11]
and their variants for model evaluation. FB15K-571 is a variant of FB15K developed by
Xie et al. [6] for evaluating the performance of KG embedding with type information. It
contains 571 types of entities, 123,842 TCE (instanceOf ) triples, and the relation-specific
type information (TCR information) of 1345 relationships [6]. To avoid the inverse re-
lation loophole in evaluation [35], we constructed a new dataset named FB15K-237-TC
from FB15K-237 [35], which was widely applied in knowledge embedding and removed
inverse relations in a similar manner as FB15K-571: collecting types of entities through the
type/instance field and the relation-specific type information located in rdf-schema#range field
in FB15K [6]. The detailed statistics of FB15K-571 and FB15K-237-TC are shown in Table 2.

Table 2. Statistics of FB15K-571 and FB15K-237-TC.

Dataset FB15K-571 FB15K-237-TC

#Entity * 14,951 14,541
#Type 571 542

#General (Instance-level) Relation 1345 237
#General Relation Triple 592,213 310,116

#TCE (instanceOf Relation) Triple 123,842 121,287
#TCR Triple 1345 237

#Train (General Relation Triple) 483,142 272,115
#Valid (General Relation Triple) 50,000 17,535
#Test (General Relation Triple) 59,071 20,466

* The #X represents the number of elements in the X set.

5.2. Experiment Settings

Link prediction is a common task for knowledge graph evaluation, and its goal is to
predict the missing entities or relations in incomplete triples. Following existing studies
about knowledge embedding [11–13,16], the link prediction was implemented with our
approach in the scenario below: given the partial triple (?, rI , et) or (eh, rI , ?), the proposed
model was trained with triples in the training set, and the trained embeddings were used
to predict the missing head entity or tail entity. In our experiment, we performed link
prediction on two datasets and compared it with baseline models.

5.2.1. Baselines

To compare the performance of our model in link prediction, we elected six representa-
tive state-of-the-art models as baselines that included translation-based models (TransE [11],
TransH [12]), tensor factorization-based models (RESCAL [15], DistMult [14], HolE [17]),
and the classical complex embedding method (ComplEx [16]). Following most relational
learning methods with ontology information [6,18,19], the pairwise ranking loss [11] was
used for evaluation. In the FB15K-571 dataset, we implemented ComplEx with pairwise
ranking loss for comparison and trained the method using the recommended parameters
provided by the authors [16].

5.2.2. Evaluation Protocol

For evaluation, we used the same ranking method proposed by TransE [11]. Concretely,
for each triple (h, r, t) in the test set, either head entity h or tail entity t was removed and
replaced by all other members in the entity set to generate candidate triples (h′, r, t) and
(h, r, t′). The scores were calculated using function fRL in Equation (15) and ranked in
“Raw” and “Filtered” settings [12]. In the “Raw” setting, all the restructured triples were
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ranked, and in the “Filtered” setting, those triples that existed in the training, validation or
test set were removed from the list of candidates. Following previous studies, we adopted
two standard evaluation metrics on the link prediction to compare the performance of our
model with the baselines: (1) the mean reciprocal rank (MRR) of all correct triples, (2) the
proportion of positive triples in the test set ranked in top 1, top 3, and top 10 (as Hits@1,
Hits@3, Hits@10). All the metrics were positive indicators where higher value was expected
and implied better performance of models.

5.2.3. Implementation Details

In the experiment, we implemented CHolE with Tensorflow2.6 and ran it on the host
equipped with NVIDIA RTX 3060 graphics processing units. Two versions of our model,
the CHolE (only RL) and the CHolE (TC+RL), were provided to evaluate the improve-
ment of type constraints on link prediction. The “only RL” version contained only the
RLM but not TCM, and the “TC+RL” version covered the two main components. In the
training, we adopted the stochastic gradient descent (SGD) [36] algorithm to minimize the
loss function and utilized Adam [37] as the optimizer to find the best hyperparameters
for updating embedding on the validation set. We trained our model until convergence
but stopped, at most, at 1500 rounds. For the hyperparameters, we selected the dimen-
sionality n among {50, 100, 150, 200, 250, 300, 350, 400}, the learning rate lr for SGD
among {0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1}, the margins of hinge loss γTCE, γTCR, γLR
among {0.1, 0.15, 0.2, 0.3, 0.5, 0.7, 1.0}, the base of type radius br in Equation (10) among
{0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0}, the balance factor of losses α in Equation (17)
among {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, the batch number per epoch for
general relation triples, and instanceOf triples among {100, 200, 500, 1000}. Negative sam-
pling was performed on TCM and RLM with a negative sampling ratio 1 in the training
process, and the Xavier initializer [38] was deployed to keep the scale of the initial embed-
dings constant.

5.3. Results of Link Prediction

Table 3 shows the evaluation results on FB15K-571 and FB15K-237-TC datasets for link
prediction. The two versions (“only RL” and “TC+RL”) of CHolE were compared with the
baselines listed below. From the results shown in Table 3, we observed the following:

• CHolE outperformed baseline models on most of the metrics for link prediction
on FB15K-571 and FB15K-237-TC. This condition demonstrated that the proposed
complex embedding method was effective and promising, and the impartment of type
constraints considerably improved the performance on link prediction.

• Compared with the original HolE [17], the experimental results of the “RL only”
version of CHolE were higher on FB15K-237-TC, but most of the metrics, including
MRR (Filtered), Hits@1, Hits@3, and Hits@10 were slightly lower than HolE [17], and
the MRR (Raw) was flat on FB15K-571. This finding was partially because the complex
circular correlation in CHolE led to more complicated and rigorous constraints with
modulus and phase angles, which were more difficult to reach. However, with the
introduction of type constraints, the entities were grouped into their relation-specific
types with modulus to make the modulus constraint harder, and the greater possibility
of phase matching was obtained. Most of the experimental results indicated that the
full version (“TC + RL”) of CHolE performed better than HolE [17] on two datasets.
In the FB15K-571 dataset, CHolE (TC+RL) obtained 0.019 higher MRR (Filtered), 2.2%
higher Hits@1, 2.4% higher Hits@3 and 0.7% higher Hits@10. In the FB15K-237-TC
dataset, the full version of CHolE obtained 0.061 higher MRR (Raw), 0.059 higher MRR
(Filtered), 7% higher Hits@1, 5.8% higher Hits@3 and 5.7% higher Hits@10.

• Compared with the complex embedding ComplEx [16], the “RL only” version of
CHolE obtained higher results on most metrics, and the “TC+RL” version made
significant progress on two datasets. As seen in Table 3, CHolE(TC+RL) obtained
0.058 higher MRR (Filtered), 7.7% higher Hits@1, 6% higher Hits@3 and 1.7% higher
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Hits@10 on FB15K-571, and 0.08 higher MRR (Filtered), 9.1% higher Hits@1, 9.8%
higher Hits@3 and 6% higher Hits@10 on FB15K-237-TC. We ascribed the improvement
of the full version of CHolE to having utilized the modulus and phase angles to capture
the semantic relatedness on ontology and instance view, respectively. By contrast, the
ComplEx [16] extended DistMult [14] to complex space. It neither took full advantage
of the modulus and phase angles of complex representational vectors nor integrated
type constraints into relational interactions with them.

Table 3. Link prediction results on FB15K-571 and FB15K-237-TC *.

Dataset FB15K-571 FB15K-237-TC

Metrics MRR Hits@N MRR Hits@N

Setting Raw Filter N = 1 N = 3 N = 10 Raw Filter N = 1 N = 3 N = 10

TransE 0.417 0.150 0.314 0.476 0.144 0.233 0.147 0.263 0.398
TransH 0.495 0.284 0.535 0.641 0.136 0.041 0.160 0.331

RESCAL 0.189 0.354 0.235 0.409 0.587 0.255 0.185 0.278 0.397
DistMult 0.350 0.577 0.100 0.191 0.106 0.207 0.376

HolE 0.232 0.524 0.402 0.613 0.739 0.124 0.222 0.133 0.253 0.391
ComplEx 0.223 0.485 0.347 0.577 0.729 0.109 0.201 0.112 0.213 0.388

CHolE (RL only) 0.232 0.510 0.387 0.601 0.725 0.158 0.260 0.178 0.290 0.422
CHolE (TC+RL) 0.231 0.543 0.424 0.637 0.746 0.185 0.281 0.203 0.311 0.448

* Best score is in bold, and scores that are underlined represent better results than the original model HolE. For
FB15K-571, the scores of DistMult [14] and HolE [17] are taken from the corresponding original papers, the
results of TransE [11] and TransH [12] are taken from [39], and the result of RESACAL [15] comes from [17]. For
FB15K-237-TC, the scores of TransE [11], DistMult [14], HolE [17], and ComplEx [16] are taken from [29], and the
results of TransH [12] and RESCAL [15] come from [39,40], respectively.

6. Discussion

In this subsection, we examined how the critical parameters of TCM affected the
performance on link prediction and investigated the balance factor of losses α and the base
of type radius br. This process was performed to study the effects of type constraints on
link prediction. The balance factor of losses, denoted as α in Equation (17), was used for
leveraging two losses LSTC

TC and LSI
RL. The base of type radius br in Equation (10) indicated

the radius scale of types and was used to calculate the radius value combined with the
proportion of type-specific instances in all entities.

6.1. Balance Factor of Losses

The impartment of type constraints was beneficial for capturing ontology-based associ-
ations between entities and correctly completing the missing entities in relations. To prove
this point, we investigated the performance of link prediction on FB15K-571 and FB15K-237-
TC with diverse values of the balance factor of losses α that indicated the strength of type
constraints and reported the results in Figure 6. As shown in Figure 6, all metrics increased
with the balance factor of losses when α increased from 0 to 0.4 on FB15K-571. However,
most metrics started to decline after α reached 0.4. On FB15K-237-TC, the experimental
results showed similar trends, and the identical inflection point αip = 0.6 was slightly
different from the experiment on FB15K-571. Thus, from this investigation, we conceived
that an appropriate balance factor of losses contributed to improve the performance of
CHolE on link prediction, and excessive values of α caused overconstraint that led to the
degradation of performance.
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6.2. Base of Type Radius

We discussed the effects of the strength of type constraints on the performance of link
prediction in Section 6.1. Here, we implemented our model with the change in the base of
type radius, a hyperparameter br in Equation (10), and reported the results of CHolE at
different type constraint scales on two datasets (Figure 7). On the FB15K-571 dataset, most
of the metrics increased with the base of type radius from 0 to 1 and decreased gradually
when br > 1. The experimental results on FB15K-237-TC reflected the similar tendencies of
the performance change. The reason for this can be interpreted as follows: the suitable base
of type radius (br = 1) set type constraints to the appropriate scales that could make the
constraints available, while possessing satisfactory distinguishing degrees for the entities
owned by the same type. However, if the scale of constraints was set extremely small, then
entities belonging to the same type could not be distinguished from each other. Excessively
large base br can enlarge the scale of type constraints and cause partial or total invalidation
of them.
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7. Conclusions

In this paper, a novel complex embedding method called CHolE was proposed to
extend the classic compositional representation HolE [17] to complex domain and model
the entities and relations with their type constraints in the complex vector space. It encoded
the type constraints and nonontological interactions as the modulus constraints and phase
interactions of complex embeddings, respectively, and introduced the complex circular
correlation to integrate them together and capture the multifaceted relatedness between
entities in KGs. Thus, in comparison with previous complex embedding methods, CHolE
made more efficient use of the moduli and phase angle of the complexes by taking them
as two relatively independent degrees of freedom to encode the ontological information
and nonontological information in KGs. Thus, type constraints can be well integrated into
representational embeddings of entities and relations for improving the model’s perfor-
mance on link prediction. The experimental results on benchmark datasets showed that the
proposed method outperformed previous state-of-the-art methods, and the impartment
of type constraints could improve the model’s performance on link prediction effectively.
Moreover, this work also demonstrated the importance of the type information in KGs for
some critical tasks, such as link prediction. Thus, efficient use of it will enable downstream
applications in various fields to benefit more from KGs.

Nevertheless, the proposed method focused only on modeling type constraints rather
than other ontology-level relations, such as hierarchical-aware relations. In the future, we
plan to extend the type embeddings to complex vector space and construct hierarchical
structures of types by improving the interaction mechanism of modulus and phase angles
of complex embeddings.
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