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Abstract: Zero-Knowledge Proof is widely used in blockchains. For example, zk-SNARK is used in
Zcash as its core technology to identifying transactions without the exposure of the actual transaction
values. Up to now, various range proofs have been proposed, and their efficiency and range-flexibility
have also been improved. Bootle et al. used the inner product method and recursion to construct an
efficient Zero-Knowledge Proof in 2016. Later, Benediky Bünz et al. proposed an efficient range proof
scheme called Bulletproofs, which can convince the verifier that a secret number lies in [0, 2κ − 1] with
κ being a positive integer. By combining the inner-product and Lagrange’s four-square theorem, we
propose a range proof scheme called Cuproof. Our Cuproof can make a range proof to show that a
secret number v lies in an interval [a, b] with no exposure of the real value v or other extra information
leakage about v. It is a good and practical method to protect privacy and information security. In
Bulletproofs, the communication cost is 6 + 2 log κ, while in our Cuproof, all the communication cost,
the proving time and the verification time are of constant sizes.

Keywords: zero-knowledge proof; range proof; inner-product; Bulletproofs; blockchain

1. Introduction

The blockchain technology is the most well-known decentralized and tamper-proof
information technology, and it can be applied to construct many different digital service
systems or application platforms, such as digital currencies, supply systems and so on.
Wu et al. [1] elaborated the intellectual cores of the blockchain-Internet of Things (BIoT).
Fedorov et al. [2] stated how to apply blockchain technology to 5G. Cryptocurrencies were
the first to bring the concept of blockchain into the world. The blockchain-based cryptocur-
rencies enable peer-to-peer transactions and make sure that the transactions are valid. In
the Bitcoin [3] system, all the transactions are recorded in a public ledger, and everyone
can check whether the transactions in the ledger are valid. The hash function used in the
blockchains ensures that the transaction data cannot be tampered with. However, every
coin has two sides. Despite its advantage, the transparency in Bitcoin also has a disadvan-
tage. In a transaction of Bitcoin, the transaction data, the addresses of the senders and the
receivers are almost transparent, and it means that Bitcoin cannot achieve anonymity and
cannot provide the same level of privacy as paper cash.

In order to offset the disadvantages that exist in Bitcoin, people have start to think
about using zero-knowledge proof to protect the privacy of blockchain users, because
a zero-knowledge proof is a cryptographic protocol that has strong privacy protection
function. In [4], Sun et al. showed how zero-knowledge proof technology is applied to the
blockchain. There are lots of blockchain-based cryptocurrencies using range proofs [5,6] or
zk-SNARKs [7–10] such as Zcash [11]. The transactions between the shielded addresses
are what makes Zcash special. In these transactions, although the traders’ addresses and
the amount of the transactions are all covert, the validity of these transactions can still be
checked because zk-SNARKs have been applied. According to the property of protecting
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anonymity, more and more cryptocurrencies apply range proof as a tool to avoid the
disclosure of users’ information.

In 2018, Bünz et al. proposed a type of range proof that is called Bulletproofs [5].
The efficiency of Bulletproofs is particularly well suited for the blockchains. However, its
communication cost, which is 6 + 2 log κ, grows with larger κ. In this paper, we combine
the Lagrange’s four-square theorem with Bulletproofs [5] to construct a range proof for
arbitrary interval [a, b]. In our scheme, the communication cost is 4 elements of G and 18
elements of Z. Our Cuproof is a good method to protect uers’ privacy and information
security. For example, we can use the Cuproof scheme to declare that our age v lies in some
interval. Because of the RSA assumption and discrete logarithm problems, it is hard for
the verifier to get the secret v but still believe that v is in this interval.

1.1. Related Work

Nowadays, information security or privacy protection has become more and more
important for each of us. A number of works on information security or privacy protect
have been published. For example, Dong et al. [12] elaborated how overconfidence affects
information security investment and information security performance. Range proof
technology, a kind of zero-knowledge proof protocol, is a good method for protecting
information security or privacy. There have been lots of research works on range proof
since the first relevant algorithm of range proof was proposed. Brickel et al. [6] first stated
the correlative algorithm of range proof in 1987. Its purpose was to send reliable values
to other participants, which can allow a user with a discrete logarithm to disclose one
bit of information to another user so that any other user can verify the equations as they
receive each bit. In 1998, Chan et al. [13] showed how to use the algorithm given in [6] to
verify the non-negative transaction amount and they also enhanced the algorithm in [6].
Their improved proof method was called CTF proof. In 2000, Boudot [14] used the square
numbers to build an effective range proof which was based on CTF.

By using the Lagrange’s four-square theorem [15], that is, any non-negative integer
can be represented as the sum of squares of four integers, Lipmaa [16] proposed a proof
of any range for the first time. In 2005, Groth [17] pointed out that if y is a non-negative
integer, then 4y + 1 could be represented as the sum of the squares of three integers. Using
Boneh-Boyen signature [18], Teranishi et al. [19] proposed many anonymous authentication
methods in 2006. In 2008, Camenisch et al. [20] used signature method that relies on the
security of the q-Strong Diffie-Hellman assumptions to construct a range proof. In 2014,
Belenkiy [21] designed a scheme to extend the u-proof cryptographic specification [22] by
making use of the membership proof of a set. This scheme can be used twice to compare
the size of one committed value with some other committed value, and therefore it can be
used to construct a range proof.

Bootle et al. [23] made a step forward on the efficiency of space in Zero-Knowledge
Proof based on discrete logarithms. They combined the inner product method and recursion
to enhance the efficiency of Zero-Knowledge Proof. Based on this work, Bünz et al. [5]
improved the inner product method for zero certificate range proof and proposed a more
efficient Zero-Knowledge Proof scheme called Bulletproofs.

1.2. Contributions

Our scheme, called Cuproof for conveniency, is established on the techniques of
Bulletproofs and Lagrange’s three-square theorem given in [17]. Our protocol can be
used to construct a range proof for arbitrary range. The argument of our scheme has
low computation complexity. The main difference between Bulletproofs and ours is that
Bulletproofs’s communication cost [5] is logarithmic in κ, where κ is the exponent in
the proving range [0, 2κ − 1], while the cost in our scheme is constant. The key is that
we combine the following Theorem 2 with Bulletproofs. Our Cuproof satisfies the three
security properties required for a secure Zero-Knowledge Proof: completeness, soundness,
and zero-knowledge.
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1.3. Structure of the Paper

In Section 2, some mathematical symbols, definitions, and theorems are given. The
framework and construction of our range proof protocol are stated in Section 3. In
Section 3.1, we show how to construct a proof that convinces the verifier that the prover
knows the secret number v. In Section 3.2, we describe our range proof protocol Cuproof
in detail. The performance comparisons among Bulletproofs, some other range proof
protocols and Cuproof are shown in Section 4. Finally, the proof of Theorem 3 about our
Cuproof will be given in Appendix A.

2. Preliminaries

Before we state our protocol, we first state some of the underlying tools. In this paper,
A is a PPT adversary, which is a probabilistic interactive Turing Machine that runs in
polynomial time in the security parameter λ.

2.1. Notation

Let [N] denote the set {1, ..., N − 1}. Let p and q denote two prime numbers. Let G
denote the multiplicative group of integers modulo n, where n is the product of p and q,
i.e., G is a RSA group. Let Z denote the set of all integers. Let Zn denote the ring of integers
modulo n. Let Gj and Zj

n be vector spaces of dimension j over G and Zn, respectively.
Let Z∗n denote Zn \ {0}. Group elements which represent commitments are capitalized.

For example, C = gahα is a Pedersen commitment to a for g, h ∈ G. x $← Z∗n means the
uniform sampling of an element from Z∗n. In this paper, a ∈ Fj is a vector with elements
a1, ..., aj ∈ F. For an element c ∈ Zn and a vector a ∈ Zj

n, we denote by b = c · a ∈ Zj
n the

vector with bi = c · ai. For the two vectors a, b ∈ Fj, let 〈a, b〉 = ∑
j
i=1 ai · bi denote the inner

product and a ◦ b = (a1 · b1, ..., aj · bj) ∈ Fj be the Hadamard product, respectively. We
define vector polynomials P(x) = ∑d

i=0 pi · xi ∈ Zj[x] where each coefficient pi is a vector
in Zj. The inner product between two vector polynomials l(x) and r(x) is defined as

〈l(x), r(x)〉 =
d

∑
i=0

i

∑
j=0
〈li, rj〉 · xi+j ∈ Z[x] (1)

Let a‖b denote the concatenation of two vectors: if a ∈ Zj
n and b ∈ Zm

n then a‖b ∈ Zj+m
n .

For 0 6 ` 6 s, we use Python notation to denote slices of vectors:

a[:`] = a[0:`] = (a1, ..., a`) ∈ F`,

a[`:] = a[`:s] = (a`+1, ..., as) ∈ Fs−`.

Let t(x) = 〈l(x), r(x)〉, then the inner product is defined such that t(x) = 〈l(x), r(x)〉 holds
for all x ∈ Zn. For vectors g = (g1, ..., gj) ∈ Gj and a ∈ Zj

n, we write C = ga = ∏
j
i=1 gai

i ∈ G.
We set~u = (1, 2, 3, ..., u) ∈ Zu for u ≥ 1.

2.2. Assumptions

Groups of Unknown Order: In order to achieve the soundness of our range proof,
we use the RSA group G where the order of the group is unknown. The RSA group is
generated by a trusted setup.

RSA Group: In the multiplicative group G of the integers modulo n where n is the
product of the large primes p and q. The hardness of computing the order of the group G is
the same as the hardness of factoring n.
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Assumption 1 (Discrete Log Relation Assumption). For all PPT adversaries A and j ≥ 2,
there exists a negligible function µ(λ) such that:

P


G = Setup

(
1λ
)

,

g1, ..., gj
$← G;

a1, ..., aj ∈ Z2λn ← A
(

g1, ..., gj

) :
∃ai 6= 0,

∏
j
i=1 gai

i = 1

 ≤ µ(λ).

As Bünz et al. [5] stated, ∏
j
i=1 gai

i = 1 is a non trivial discrete log relation among
g1, ..., gj. The discrete log relation assumption makes sure that an adversary cannot find
a non-trivial relation between randomly selected group elements. This assumption is
equivalent to the discrete-log assumption when j ≥ 1.

Assumption 2 (Order Assumption). For any efficient adversary A there exists a negligible
function µ(λ) such that:

P

 g1 6= 1∧ ga1
1 = 1 :

G $← Setup(λ),

(g1, a1)
$← A(G),

where a1 6= 0 ∈ Z2λn,
and g1 ∈ G

 ≤ µ(λ).

Lemma 1. A PPT adversary A breaking Order Assumption can also break Discrete Log Relation
Assumption easily.

Proof. We show that if an adversary AOrd breaks the Order Assumption, then we can
construct ADL which breaks the Discrete Log Relation Assumption with overwhelming
probability. In order to get a vector (g1, g2, ..., gj) ∈ Gj and a vector (a1, a2, ..., aj) ∈ Zj

2λn

such that ga1
1 · g

a2
2 · · · g

aj
j = 1 where gi 6= 1, ai 6= 0 and i ∈ {1, 2, . . . , j}, we run AOrd for n

times and it will output gj ∈ G and aj ∈ Z such that g
aj
j = 1 for j = 1, . . . , n. It follows that

∏n
j=1 g

aj
j = 1.

2.3. Commitments

Definition 1 (Commitments). A non-interactive commitment scheme consists of a pair of prob-
abilistic polynomial time algorithms (Setup, Com). The setup algorithm pp ← Setup(1λ)
generates the public parameters pp with the security parameter λ. The commitment algorithm
Compp defines a function Mpp × Rpp → Cpp for a message space Mpp, a randomness space Rpp,
and a commitment space Cpp determined by pp. For a message x ∈ Mpp, the algorithm draws

r $← Rpp uniformly at random, and computes commitment com = Compp(x, r).

Definition 2 (Pedersen Commitment). Let Mpp = Zn, Rpp = Z2λn and Cpp = (G, ∗) be a
multiplicative group, the commitment is generated as follows:

Setup : g, h $← G,
Com(x; r) = (gxhr).

Definition 3 (Pedersen Vector Commitment). Let Mpp = Zj
n, Rpp = Z2λn and Cpp = (G, ∗)

being a multiplicative group, the commitment is generated as follows:

Setup : g = (g1, ..., gj), h $← G,
Com(x = (x1, ..., xj); r) = hrgx = hr ∏i gxi

i ∈ G.
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2.4. Zero-Knowledge Arguments of Knowledge

A Zero-Knowledge Argument consists of three interactive algorithms (Setup, P , V)
which run in probabilistic polynomial time. Setup is the common reference string generator,
P is the prover, and V is the verifier. The algorithm Setup produces a common reference
string σ on inputting 1λ. The transcript produced by P and V is denoted by tr ←<
P(s),V(t) > when they interact on the inputs s and t. We write < P(s),V(t) >= b where
b = 0 if the verifier rejects, b = 1 if the verifier accepts.

LetR be a polynomial-time-decidable ternary relation. Given a parameter σ, the w is
a witness for a statement u only if (σ, u, w) ∈ R. We define the CRS-dependent language

Lσ = {u|∃w : (σ, u, w) ∈ R}

as the set of all the statements which have a witness w in the relationR.

Definition 4 (Argument of Knowledge). (Setup,P ,V) is called an argument of knowledge for
relationR if it satisfies both the Perfect Completeness and the Computational Soundness.
Perfect Completeness:

P
[

(σ)← Setup(1˘); (σ, u, w) /∈ R or
(u, w)← A(σ) 〈P(σ, u, w),V(σ, u)〉 = 1

]
= 1.

Computational Soundness:

P
[

(σ)← Setup(1˘); u /∈ Lσ and
u← A(σ) 〈A,V(σ, u)〉 = 1

]
≈ 0.

Definition 5 (Perfect Special Honest-Verifier Zero-Knowledge). A public coin argument of
knowledge (Setup, P , V), as defined in [5], is a perfect special honest verifier zero knowledge
(SHVZK) argument of knowledge forR if there exists a probabilistic polynomial time simulator S
such that for every pair of interactive adversaries A1 and A2, we have

P

 (σ, u, w) ∈ R and A1(tr) = 1

σ← Setup(1λ)
(u, w, ρ)← A2(σ)
tr ← 〈P(σ, u, w)
V(σ, u; ρ)〉



= P

 (σ, u, w) ∈ R and A1(tr) = 1
σ← Setup(1λ)
(u, w, ρ)← A2(σ)
tr ← S(u, ρ)


where ρ is the public coin randomness used by the verifier. The "transcript" can be simulated by S
without knowing w.

Definition 6 (Zero-Knowledge Range Proof). Given a commitment scheme (Setup, Com)
over a message space Mpp which is a set with a total ordering, a Zero-Knowledge range proof is a
SHVZK argument of knowledge for the relationRRange :

(pp, (com, l, r), (x, ρ)) ∈ RRange
m

com = Com(x; ρ) ∧ (l ≤ x < r).

Theorem 1 (Lagrange’s four-square theorem). Any non-negative integer can be represented as
the sum of the squares of four integers.

The proof for Theorem 1 is given in [15] and an algorithm for finding four such squares
was provided in [16].
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Theorem 2 (Lagrange’s three-square theorem). If x is a positive integer, then 4x + 1 can be
written as the sum of three integer squares.

The proof for Theorem 2 is given in [17], and ref. [15] offered an efficient and simple
algorithm for finding three such squares. Theorem 2 also means writing 4x + 1 as the sum
of three squares implies that x is non-negative.

3. Efficient Range Proof Protocol

In this section, we will present our range proof protocol.

3.1. Four Integer Zero-Knowledge Proof

We now describe how to use the inner-product argument to construct a proof. The prover
convinces the verifier that a commitment V contains a number v in a given range without
revealing v.

In our proof, a Pedersen commitment V is an element in the group G that is used to
perform the inner product argument and λ is the security parameter.

We let v ∈ Zn, and an element V ∈ G be a Pedersen commitment to v which uses a
random number r. The proof system proves the following relation:

{(g, h, V ∈ G; v ∈ Zn, r ∈ Z2λn) : V = hrgv} (2)

Choose a = (a1, a2, a3, a4) ∈ Z4
n such that

v = a2
1 + a2

2 + a2
3 + a2

4, i.e. 〈a, a〉 = v (3)

Let y ∈ Z∗2λn and y = ~4 · y ∈ Z4. The prover P uses an element in G to generate a
commitment to the vector a. To convince V that v be a positive number, the prover must
prove that he knows an opening a ∈ Z4

n satisfying 〈a, a〉 = v. To construct this zero
knowledge proof, V should randomly choose z ∈ Z2λn, and then the prover proves that

〈a, a〉z2 + 〈a− a, y〉z = vz2 (4)

This equality can be re-written as:

〈a · z− y, a · z + y〉 = vz2 − δ(y) (5)

The verifier can easily calculate that δ(y) = 〈y, y〉 ∈ Z. Hence, the problem of proving that
Equation (3) holds is reduced to proving a single inner-product identity.

If the prover sends to the verifier the two vectors in the inner product in Equation (5),
then the verifier could check Equation (5) itself by using the commitment V to v and be
convinced that Equation (3) holds. However, these two vectors reveal the information of
a and so the prover cannot send them to the verifier. To solve this problem, we use two
additional blinding terms sL, sR ∈ Z4

2λn.



Entropy 2022, 24, 334 7 of 16

To prove the statement Equation (2), P and V should obey the following protocol:

P inputs v, r and computes :

a = [a1, a2, a3, a4] ∈ Z4
n s.t.〈a, a〉 = v (6)

α
$← Z2λn (7)

A = hαgaha ∈ G (8)

sL, sR
$← Z4

2λn (9)

ρ
$← Z2λn (10)

S = hρgsL hsR ∈ G (11)

P → V : A, S (12)

V : y′, z′ $← Z∗2λn (13)

V computes : y = gy′ , z = gz′ ∈ G (14)

V → P : y, z (15)

Here, let us expand two linear vector polynomials l(x) and r(x) in Z4[x], and a quadratic
polynomial t(x) ∈ Z[x] as follows:

l(x) = az− y + sLx ∈ Z4[x]
r(x) = az + y + sRx ∈ Z4[x]
t(x) = 〈l(x), r(x)〉 = t0 + t1 · x + t2 · x2 ∈ Z[x]

The constant terms of l(x) and r(x) are the inner product vectors in Equation (5). The blind-
ing vectors sR and sL make sure that the prover can publish l(x) and r(x) for random x
and does not need to reveal any information of a. The constant term t0 of t(x) is the result
of the inner product in Equation (5). The prover needs to convince the verifier that the
following equation hold:

t0 = vz2 − δ(y)

P computes :

τ1, τ2
$← Z2λn (16)

Ti = gti hτi ∈ G, i ∈ {1, 2} (17)

P → V : T1, T2 (18)

V : x′ $← Z∗2λn (19)

V computes : x = gx′ ∈ G (20)

V → P : x (21)

P computes :

l = l(x) = az− y + sLx ∈ Z4 (22)

r = r(x) = az + y + sRx ∈ Z4 (23)

t̂ = 〈l, r〉 ∈ Z (24)

τx = τ2 · x2 + τ1 · x + z2r ∈ Z (25)

µ = αz + ρx ∈ Z (26)

P → V : τx, µ, t̂, l, r (27)
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V checks these equations and computes :

P = Az · Sx · g−y · hy ∈ G (28)

P ?
= hµ · gl · hr ∈ G (29)

gt̂hτx ?
= Vz2

g−δ(y) · Tx
1 · Tx2

2 ∈ G (30)

t̂ ?
= 〈l, r〉 ∈ Z (31)

Corollary 1 (Four-Integer Zero-Knowledge Proof). The Four-Integer Zero-Knowledge Proof
presented in Section 3.1 has perfect completeness, perfect special honest verifier zero-knowledge,
and computational soundness.

Proof. The Four-Integer Zero-Knowledge Proof is a special case of the aggregated loga-
rithmic proof from the following Section 3.2 with m = 1, hence, it is a direct corollary of
Theorem 3.

3.2. Aggregating Logarithmic Proofs

Bünz et al. [5] stated a type of proof for m values, which is more efficient than conduct-
ing m individual range proofs. Based on Bulletproofs, we can also perform a proof for m
values as [5] does. In this section, we show that this can be done with some modification
to the protocol of zero-knowledge proof in Section 3.1. The relation that we will prove is
as follows:

{(g, h ∈ G, V ∈ Gm; v ∈ Zm
n , r ∈ Zm

2λn) :
Vj = hrj gvj for all j ∈ [m]}. (32)

The prover does similar work as the prover does for a simple zero-knowledge proof
in Section 3.1 except for the following modifications. First, we set y ∈ Z∗2λn, y = y · −→4m ∈
Z4m and |−→4m| = 4m. As in Equation (6), the prover needs to find a ∈ Z4m

n so that

〈a[4(j−1):4j], a[4(j−1):4j]〉 = vj for all j ∈ [m].

We accordingly modify l(x) and r(x) as follows:

l(x) =
m

∑
j=1

z · j
(

04(j−1)‖a[4(j−1):4j]‖04(m−j)
)
− y + sL · x (33)

r(x) =
m

∑
j=1

z · j
(

04(j−1)‖a[4(j−1):4j]‖04(m−j)
)
+ y + sR · x (34)

To compute τx, we adjust the randomness rj of each commitment Vj such that τx = τ1 · x +

τ2 · x2 + z2
m
∑

j=1
j2 · rj. That is, the verification checking Equation (30) needs to be adjusted to

include all the Vj commitments as follows

gt̂hτx = V(z2·~m◦~m)g−δ(y)Tx
1 Tx2

2 (35)

Finally, we change the definition of A as follows:

A = hα
m

∏
j=1

g
j·a[4(j−1):4j]
[4(j−1):4j] ·

m

∏
j=1

h
j·a[4(j−1):4j]
[4(j−1):4j] (36)

Theorem 3 (Aggregate Logarithmic Proof). The Aggregate Logarithmic Proof presented in
Section 3.2 has perfect completeness, perfect honest verifier zero-knowledge, and computational
soundness.
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The proof for Theorem 3 is presented in Appendix A. This protocol can also be
transformed into a NIZK protocol by using the Fiat-Shamir heuristic.

3.3. Our Protocol: Cuproof

In this section, we will demonstrate how to prove that a secret number is within
an arbitrary interval. The goal of our range proof protocol is to convince the verifier
that the secret number v is in [a, b]. Based on Theorem 2, We can find a, b ∈ Zn and
d = (d1, . . . , d6) ∈ Z6

n such that the following conditions hold:{
d2

1 + d2
2 + d2

3 = 4v− 4a + 1 = v1 ∈ Z,
d2

4 + d2
5 + d2

6 = 4b− 4v + 1 = v2 ∈ Z.
(37)

The whole protocol is similar to the special case of the aggregating logarithmic proofs from
Section 3.2 for m = 2 and a ∈ Z6

n. In this protocol, we set δ(y) ∈ Z, y ∈ Z6. We will prove
the following relations:

{(g, h ∈ G, V = (V1, V2) ∈ G2) :
Vj = hrj gvj ∀ j ∈ {1, 2}, V = gvhr ∧ v ∈ [a, b]} (38)

The protocol is as follows:

P inputs v, r and computes :

v1 = 4v− 4a + 1, v2 = 4b− 4v + 1 ∈ Z, (39)

Finds d = (d1, . . . , d6) satisfying (37) (40)

α
$← Z2λn (41)

A = hα
2

∏
j=1

g
j·d[3(j−1):3j]
[3(j−1):3j] ·

2

∏
j=1

h
j·d[3(j−1):3j]
[3(j−1):3j] ∈ G (42)

sL, sR
$← Z6

2λn (43)

ρ
$← Z2λn (44)

S = hρgsL hsR ∈ G (45)

P → V : A, S (46)

V : y′, z′ $← Z∗2λn (47)

V computes : y = gy′ , z = gz′ ∈ G (48)

V → P : y, z (49)

Here, as shown in Section 3.1, we have

t(x) = 〈l(x), r(x)〉 = t0 + t1 · x + t2 · x2 ∈ Z[x].
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P computes :

τ1, τ2
$← Z2λn (50)

Ti = gti hτi ∈ G, i ∈ {1, 2} (51)

(t1, t2 can be computed without knowing x)

P → V : T1, T2 (52)

V : x′ $← Z∗2λn (53)

V computes : x = gx′ ∈ G (54)

V → P : x (55)

P computes : (56)

l = z ·
2

∑
j=1

j · (03(j−1)‖d[3(j−1):3j]‖03(2−j))

− y + sLx ∈ Z6. (57)

r = z ·
2

∑
j=1

j · (03(j−1)‖d[3(j−1):3j]‖03(2−j))

+ y + sRx ∈ Z6. (58)

t̂ = 〈l, r〉 = t0 + t1 · x + t2 · x2 ∈ Z (59)

r1 = 4r, r2 = −4r ∈ Z (60)

τx = τ2x2 + τ1x + z2
2

∑
j=1

j2 · rj ∈ Z (61)

µ = αz + ρx ∈ Z (62)

P → V : τx, µ, t̂, l, r (63)

V computes and checks these equations :

V1 = V4 · g−4a · g = g4v−4a+1h4r = gv1 hr1 ∈ G (64)

V2 = g4b ·V−4 · g = g4b−4v+1h−4r = gv2 hr2 ∈ G (65)

V = (V1, V2) ∈ G2 (66)

P = AzSxg−yhy ∈ G (67)

P ?
= hµglhr ∈ G (68)

gt̂hτx ?
= Vz2·(~2◦~2)g−δ(y)Tx

1 Tx2

2 ∈ G (69)

t̂ ?
= 〈l, r〉 ∈ Z (70)

Theorem 4. The protocol for range proof presented here above has perfect completeness, perfect
special honest verifier zero-knowledge, and computational soundness.

Proof. The protocol for range proof is a special case of the Aggregated Logarithmic Proof
in Section 3.2 with m = 2 and a ∈ Z6

n. Hence, this theory is a direct corollary of our
Theorem 3.

In short, we call our given protocol for range proof Cuproof.

4. Performance

In order to evaluate the practical performance of our Cuproof, we provide a reference
implementation in Python. We set that the sizes of the two primes p and q are 1024 bits.
The prover uses the algorithms of [15,16] to generate the witnesses a and d, and compute
the l and r. A Pedersen hash function over an RSA group whose modulo n = p ∗ q is
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benchmarked. We performed our experiments on our computer with an Intel i5-7500
CPU@3.4 GHZ and we used a single thread. Table 1 shows the comparison of our Cuproof
with Bulletproofs and the three range proofs put out by Boudot [14], Lipmaa [16] and
Groth et al. [24], respectively. It states that the communication cost is const while Bullet-
proof’s communication cost is sublinear in n. Moreover, Cuproof is more efficient than
the three range proof schemes proposed by Boudot [14], Lipmaa [16] and Groth et al. [24],
respectively. Table 2 shows the proving time, verification time, and the gates of the range
proofs under the different ranges (the final data is the average of the data we obtained
by doing 10,000 experiments). Figure 1 shows the line charts of the proving time and the
verification time of the Four-Integer Zero-Knowledge Proofs (no including the witness
generation) for the secret of the different sizes, respectively. Figure 2 shows the line charts
of the proving time and the verification time of the Range Proofs (no including witness
generation), respectively. No matter how large the range is, the proving time is near 170
ms and the verification time is near 447 ms. Figure 3 shows the proof sizes in different
intervals and it demonstrates that the proof size is near 5500 bytes. Table 3 shows the proof
sizes, proving time and the verification time for the interval range proofs on the different
sizes, respectively.

Table 1. The comparison of Cuproof with Bulletproofs and the three range proofs respectively
proposed by Boudot [14], Lipmaa [16] and Groth [24] for arithmetic circuit satisfiability with d the
maximum size of the committed polynomials, m wires, SRS (the structured reference string) and n
gates. The computational costs are measured in terms of the number of group elements and ring
elements. mG means m group elements in the RSA group, `Ex means ` group exponentiations. ` is
the number of the elements that the known circuit inputs.

Scheme Universal SRS Circle SRS Size P ′s Computation V ′s Computation

Bulletproofs [5] n
2G − 2 log2(n) + 6G+ 5Zp 8nEx 4nEx

Boudot [14] 16G − 6G+ 19Z 36Ex 38Ex
Lipmaa [16] 14G − 12G+ 18Z 36Ex 36Ex

Groth et al. [24] − 3n + mG 3G 4n + m− `Ex 3P + `Ex
This work 14G − 7G+ 15Z 28Ex 38Ex

Table 2. Asymptotic efficiency comparison of zero-knowledge proofs for arithmetic circuits. Here
n is the number of gates. A white rhombus for post-quantum security denotes that it is feasibly
post-quantum secure. A black rhombus for untrusted setup denotes that the scheme is updatable. DL
stands for discrete log.

Scheme PQ? Universal Untrusted Setup Assumption
Runtime

Prover Verifier

Bulletproofs [5] ♦ � � DL O(n log(n)) O(n log(n))
Boudot [14] ♦ � ♦ DL O(n log(2n)) O(n log(n + 2))
Lipmaa [16] ♦ � ♦ DL O(n log(2n + 4)) O(n log(2n))
This work ♦ � ♦ RSA O(6 log(n)) O(6 log(n))
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Figure 1. Four-integer zero-knowledge proof time.

Figure 2. Range proof time.

Figure 3. Sizes for range proofs.
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Table 3. Our Cuproof’s performances for the different sizes’ range proofs.

Range Size Gates
Proof Size Timing (ms)

(Bytes) Prove Verify

64 bit 6 5561 175.4 446.2
128 bit 6 5462 170.8 444.6
256 bit 6 5681 168.4 452.3
512 bit 6 5382 167.4 450.7

1024 bit 6 5763 177.5 449.6
2048 bit 6 5751 166.8 447.8

5. Conclusions

In this paper, we construct a kind of range proof scheme Cuproof, which can prove
v ∈ [a, b] without revealing v’s actual value. In our protocol, by combining Theorem
2 into Bulletproofs, we reduce the communication cost to the constant sizes, make the
computation complexity lower, and enhance the efficiency of our range proof. Compared to
the works [14,16], our zero-knowledge proof Cuproof is more efficient. The Cuproof can be
applied to cryptocurrencies such as Monero [25] does and it can also be used for personal
privacy protection. For example, in a biometric-based identity authentication system, we
can use our Cuproof to prove that the Euclidean distance between the two biometric vectors
respectively extracted during the registration phase and during authentication phase is
within a preset threshold to identify a user’s identity. Besides, we can also use Cuproof to
prove that we are adults without exposing our true age. For instance, we can use Cuproof
to prove that our age is lager than 18. However, a disadvantage of our range proof is that it
still needs a trusted setup. Once the trusted setup is malicious, the secret number needs to
be proved whether it has been leaked. In addition, because the security of Cuproof is based
on the discrete logarithm problem, it is vulnerable to quantum attacks. Therefore, in our
future work, we may use two groups to remove the trusted setting, one is a common group
and the other is the verifier’s secret group, that is, Equation (68) is checked in the common
group and Equation (69) is checked in the verifier’s secret group. In addition, in order to
resist quantum attacks, we will consider to improve Cuproof based on an integer lattice.
For example, we will use the elements in some integer lattice to replace the secret vectors
of Cuproof.
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Appendix A. Proof of Theorem 3

Proof. Perfect completeness always holds as the fact that t0 = z2 · 〈~m ◦ ~m, v〉 − δ(y, y) for
all valid witnesses. In order to prove perfect honest-verifier zero-knowledge, we construct
a simulator that produces a distribution of proofs for a given statement (g, h ∈ G, g, h ∈
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G4·m, V ∈ Gm) which is indistinguishable from valid proofs produced by an honest prover
interacting with an honest verifier. All the proof elements and the challenges according to
the randomness supplied by the adversary from their respective domains are chosen by the
simulator or directly computed by the simulator. S and T1 are computed according to the
verification equations, that is,

S = (h−µ · g−l−y · hy−r · Az)−x−1
,

T1 = (g−t̂−δ(y) · h−τx ·Vz2 ·~m◦~m · Tx2

2 )−x−1
.

According to the simulated witness (l, r) and the verifier’s randomness, the simulator
runs the inner-product argument. In the zero-knowledge proof, all elements are either
independently randomly distributed or their relationship is completely defined by the
verification equation. Because we can successfully simulate the witness, the inner product
argument remains zero knowledge, thus the leaking information about witness does not
change the zero-knowledge property of the overall protocol. The simulator is efficient
because it runs in time O(V + PInnerProduct). In the Aggregating Logarithmic Proofs, if the
proof π passes successfully, then it means:

〈a[4(j−1):4j], a[4(j−1):4j]〉 = vj for all j ∈ [m],
ξ(j, m)− y + sL · x = l(x),
ξ(j, m) + y + sR · x = r(x),

τx = τ1 · x + τ2 · x2 + z2
m
∑

j=1
j2 · rj,

t̂ = 〈l, r〉,
µ = αz + ρ x.

Here, ξ(j, m) =
m
∑

j=1
z · j
(

04(j−1)‖a[4(j−1):4j]‖04(m−j)
)

.

If any of the above equations does not hold and the prover passes the verification as

Az · Sx · g−y · hy = hµ · gl · hr,

gt̂hτx = V(z2·~m◦~m)g−δ(y)Tx
1 Tx2

2 .

then we have
hαz+ρxgξ(j,m)−y+sL ·xhξ(j,m)+y+sR ·x = hµ · gl · hr

and
gt̂hτx = g(z

2 ∑m
j=1 j2vj)−δ(y)+xt1+x2t2 h(z

2 ∑m
j=1 j2rj)+τ1x+τ2x2

.

By shifting the equations to one side we get:

gt̂−(z2 ∑m
j=1 j2vj)−δ(y)+xt1+x2t2 hτx−(z2 ∑m

j=1 j2rj)+τ1x+τ2x2
= 1

and
hαz+ρx−µgξ(j,m)−y+sL ·x−lhξ(j,m)+y+sR ·x−r = 1.

Because some of the above equations do not hold, one or more of the following situations
must be encountered:

t̂− (z2
m

∑
j=1

j2vj)− δ(y) + xt1 + x2t2 6= 0,

τx − (z2
m

∑
j=1

j2rj) + τ1x + τ2x2 6= 0,

αz + ρx− µ 6= 0,



Entropy 2022, 24, 334 15 of 16

m

∑
j=1

z · j
(

04(j−1)‖a[4(j−1):4j]‖04(m−j)
)
− y + sL · x− l 6= 0,

m

∑
j=1

z · j
(

04(j−1)‖a[4(j−1):4j]‖04(m−j)
)
+ y + sR · x− r 6= 0.

This contradicts the Order Assumption and Discrete Log Relation Assumption. Therefore,
our Cuproof has computational soundness.
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