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Abstract: Recent advances in neuroscience have characterised brain function using mathematical
formalisms and first principles that may be usefully applied elsewhere. In this paper, we explain
how active inference—a well-known description of sentient behaviour from neuroscience—can be
exploited in robotics. In short, active inference leverages the processes thought to underwrite human
behaviour to build effective autonomous systems. These systems show state-of-the-art performance
in several robotics settings; we highlight these and explain how this framework may be used to
advance robotics.

Keywords: free energy; model-based control; adaptive robots; generative model; Bayesian inference;
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1. Active Inference

Active inference (AIF) is a unifying framework for describing and designing adaptive
systems [1–4]. AIF emerged in the late 2000s as a unified theory of brain function [5,6]
derived from statistical physics [2,7] and has since been used to simulate a wide range of
behaviours in neuroscience [1,8], machine learning [9–13] and robotics [14]. AIF is an inter-
esting framework for robotics because it unifies state-estimation, control and world model
learning as inference processes that are solved by optimising a single objective functional: a
free energy (also known as negative evidence lower bound), as used in variational Bayesian
inference [15]. Furthermore, it endows robots with adaptive capabilities central to real
world applications [14] (e.g., adaptation to internal and external parameter changes [16]).
Additionally, its strong neuroscience foundation reduces the gap between engineering and
the life sciences, thereby finessing human-centred robotic applications.

Although AIF has yet to be scaled—to tackle high dimensional problems—to the same
extent as established approaches, such as deep reinforcement learning [17,18], numerical
analyses generally show that active inference performs at least as well in simple environ-
ments [9,19–23], and better in environments featuring volatility, ambiguity and context
sensitivity [21,22]. In this paper, we consider how AIF’s features could help address key
technical challenges in robotics and discuss practical robotic applications. Our exposition
provides a broad perspective that suppresses mathematical details, which can be found in
the references herein [1–4,14,24,25].

In AIF, a generative model encodes an agent’s predictions (i.e., posterior beliefs), and
preferred state and observation trajectories (i.e., prior beliefs) [2]. Behaviour realises the
agent’s preferences by matching posterior with prior beliefs. Specifically, state-estimation,
control and learning are unified by minimising a free energy functional scoring the dis-
crepancy between current beliefs and prior preferences under the state-space model. For
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continuous states, AIF filters incoming observations through variational inference in gen-
eralised coordinates of motion [26]. This enables flexible and scalable inference algorithms
and extends Kalman filters by accommodating non-linear, non-Markovian time-series [26–28].
AIF generalises discrete and continuous optimal control [29], and planning to partially
observed environments, similarly to model predictive control or control as inference [30,31].
However, a crucial difference is that the (expected) free energy optimised during planning
combines exploitative and explorative behaviour [32] in a Bayes optimal fashion [2,7].
The agent’s model—i.e., representations and goals—can then be learnt through few-shot
learning [21], structure learning, imitation learning, and evolutionary approaches [1,33–35].

2. Solutions to Technical Challenges in Robotics

Current AIF models can help address challenges that require online adaptation, ro-
bustness and explainability, and may bring new perspectives to the state-of-the-art in
estimation, control and planning—see Figure 1.

• Accurate and robust state tracking. Filtering schemes developed for neuroimaging
time-series [26] enable accurate state-tracking in highly complex and volatile en-
vironments [27,36]. This allows for continuous refinement of past, present, future
state-estimation and the estimated precision of sensors as new information arrives [37]
(c.f., Bayes optimal estimators of Kalman gain [38]). Moreover, AIF fuses multiple
sensory streams, by weighing incoming sensory information by their estimated preci-
sion [36,39]. This enables accurate and robust inferences.

• Adaptive model-based and shared control. Describing the agent’s behaviour with a
generative model—prescribing attracting states and trajectories—ensures robustness
and adaptivity in the presence of noise, external fluctuations, and parameter changes.
AIF humanoid robots [36] and industrial manipulators [40] show improved behaviour
in the presence of internal and external parameter changes [16] and shared compliance
control [41]. The robot’s autonomy—in shared control—can also be dynamically
tuned. In particular, the operator may be given high-level control and the robot
low-level control.

• Learning and grounding. AIF agents learn from sparse and noisy observations by
actively sampling informative data points, enabling few-shot learning. Learning latent
structure by optimising model evidence, subject to prior preferences in the genera-
tive model, leads to organising knowledge in hierarchical, sparsely interconnected
modular (i.e., factorised) representations with temporal depth, usually represented
with a graphical model [2]. This offers a promising pathway for biologically plausible
neurosymbolic technologies [42,43].

• Operational specification, safety and explainability. AIF behaviour is explainable
as a mixture of information and goal-seeking policies that are explicitly encoded (and
evaluated in terms of expected free energy) in the generative model as priors—which
can be specified by the user. Planning, which proceeds by generating counterfactual
actions and assessing their consequences [1], can be monitored online and control can
be returned to the user if necessary (i.e., policy switching). Moreover, the generative
model can be specified as a directed graph (i.e., a Bayesian network), which entails the
causal relationships between agent’s representations [44,45]. This affords an explicit
and transparent explanation of sentient behaviour.
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control, planning and learning in robotics with applications including social, industrial and collab-
orative robotics, body prosthetics and neurotechnology. (A) AIF explained: Blue circles indicate ob-
servations while grey circles indicate random variables that need to be inferred. The black arrows 

Figure 1. Active inference framework (AIF). AIF could engender important advances in estimation,
control, planning and learning in robotics with applications including social, industrial and collab-
orative robotics, body prosthetics and neurotechnology. (A) AIF explained: Blue circles indicate
observations while grey circles indicate random variables that need to be inferred. The black arrows
indicate causal relationships implicit in a graphical model (e.g., a Bayesian network). The blue arrows
indicate the process by which the agent infers future actions and observations. First, the agent infers
the current states from available observation modalities (Bayesian fusion). Then, the agent infers the
best available course of action by imagining the counterfactual consequences, in terms of future states
and observations. These inferential processes are solved by optimising an (expected) free energy
functional of beliefs about states and plausible action sequences. AIF generative models may be
hierarchical and encode agent’s representations at increasing levels of abstraction and temporal scales.
Perception minimises the discrepancy between predictions and input at all levels. The top layer
encodes the estimated (and preferred) states of the world—and the bottom layer encodes sensory
input. (B) Practical perspectives: AIF can provide context sensitivity, online adaptivity, accurate state
tracking, uncertainty resolution and shared control in a neurologically plausible fashion throughout
a wide range of applications.
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3. Practical Perspectives

Based on these properties, we envisage important applications of AIF in robotics.

• Context adaptive robots. AIF agents build generative (world) models by continuously
optimising free energy with regard to incoming data. This optimisation process
maximises model accuracy while minimising complexity, which enables generalisation
and context-adaptivity [36]. Contrariwise, robots that solely optimise accuracy risk
overfitting, which could lead to catastrophic outcomes when the context changes,
such as when performing assistive surgery on a new patient. The ability to generalise
and adapt is necessary for robotic skills such as scene understanding and adaptive
control and should facilitate robots to operate in volatile (e.g., social) environments
(e.g., hospitals) [36,46]. In industrial applications, this allows robots to operate freely
while adapting to real world conditions—once the designer has specified preferences
over the final outcome.

• Safer robots. AIF agents continuously resolve uncertainty by selecting informative ac-
tions that minimise risk [1], which is important for high-stakes, high-uncertainty tasks,
such as human-robot interaction [41]. Actions are selected to minimise expected free
energy, which minimises risk (expected cost) and ambiguity (expected inaccuracy) [1].
This allows for information seeking behaviour that is accompanied with an explicit
and quantifiable measure of risk. Additionally, when uncertain about current states of
affair, robots should automatically seek advice and guidance from the user, e.g., via
shared control.

• Social and collaborative robots. AIF robots model others’ intentions to predict others’
actions, such as movements [47], enabling intentional understanding [48]. This allows
robots to operate safely in social environments by constantly resolving uncertainty
about others’ intentions and implicit goals [42]. This embodiment [49] is crucial for
social robots, such as personal aides, auxiliary robot nurses and companions, e.g.,
assisting the disabled and elderly. In collaborative robotics, AIF allows for imitation
learning and intentional blending, whence robot goals and intentions can be guided
by the user before and during the task [41,50].

• Wearable devices. The belief updating process that underwrites AIF is energetically
efficient [51], which should aid the development of wearable devices with a degree of
autonomy, such as exoskeletons [52]. This follows as optimising model free energy
decreases the movement from prior to posterior, which corresponds to the computa-
tional (and hence energetic) cost of inference [1,2]. In addition, wearables directed by
human intention [53] should benefit from AIF’s intentional understanding [48], and
adaptive and shared control capabilities [41].

• Regulatory processes. Generative models with temporal depth induce allostatic
control, whence the robot acts on its environment to pre-empt homeostatic con-
trol [54,55]. This should benefit regulatory processes subject to strong external pertur-
bations [16,36], such as closed-loop medical applications such as artificial organs (e.g.,
the artificial pancreas).

• Neurotechnology. The neurological functional plausibility of specific AIF
algorithms [1,46,56] should facilitate integration with the nervous system. This
opens new opportunities for neurotechnology, BCI-enabled sensorimotor restora-
tion, perceptual body extension and brain or body enhancement using prosthetics
and implants [57]. Currently, AIF provides testable hypotheses for optimising neu-
ral excitatory-inhibitory balance using deep brain stimulation to alleviate functional
deficits induced by brain lesions [58]. Soon, monitoring of brain activity may predict
aberrant neural responses, such as seizures, and anticipate the required intervention.

4. Discussion

In this perspective, we explained how active inference—a framework for describ-
ing and designing adaptive systems originating in computational neuroscience—can be
exploited in robotics. In particular, we surveyed some key features of AIF that could
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provide solutions to current technical challenges in robotics, and how these could benefit
human-centred robotic applications in the short-term.

In brief, the theoretical foundations of AIF suggest the potential for important advances
in state-estimation, control, planning and learning that undergirds autonomous robots.
This suggests a promising avenue for endowing robots with online adaptive strategies
and context-sensitive and explainable decision-making. In turn, these advances could
have several applications in robotics, spanning context-adaptive, safe and social robots,
wearable devices, regulatory processes and neurotechnology. AIF brings several things
to the table in this setting. Perhaps the most important aspects are: (i) a commitment
to an explicit, explainable and interpretable world model—in the form of a forward or
generative model—that underwrites inference and learning, (ii) framing state estimation,
control and planning as different aspects of the same inverse or inference problem, whose
solution affords context sensitivity and robustness (iii) and, finally, supplying a tractable
objective function that subsumes different kinds of (Bayes) optimality: namely, an expected
free energy that subsumes Bayesian decision theory and Bayesian optimal design [2,32].
The latter brings with it a quintessentially belief-based specification of sentient behaviour
that can be read as equipping robots with the right kind of curiosity. These foundational
features of AIF are, we suppose, also found in human subjects, and therefore place AIF
robots in a potentially more empathetic relationship to their human operators. It will be
interesting to see whether—or how—these features are leveraged over the next few years.

In short, AIF is generally considered to endow robots and artificial agents with adap-
tive capabilities. While promising, the application is in its early days and much work
remains to be undertaken in order to resolve practical challenges and fulfil the framework’s
potential. Current endeavours include scaling AIF to handle high dimensional state-spaces
in a variety of applications [10,12,13,59], effectively learning the generative model from
data [2,34], and show its practicality in the real world, beyond the lab boundaries. While
significant engineering challenges remain, the state-of-the-art laboratory experiments show
AIF’s potential as a powerful method in robotics [14].
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