
����������
�������

Citation: Hsieh, P.A.; Wu, J.-L. A

Review of the Asymmetric Numeral

System and Its Applications to

Digital Images. Entropy 2022, 24, 375.

https://doi.org/10.3390/e24030375

Academic Editor: Amelia

Carolina Sparavigna

Received: 30 January 2022

Accepted: 2 March 2022

Published: 7 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

A Review of the Asymmetric Numeral System and Its
Applications to Digital Images
Ping Ang Hsieh 1 and Ja-Ling Wu 1,2,*

1 Graduate Institute of Networking and Multimedia, Taipei 10617, Taiwan; r08944039@csie.ntu.edu.tw
2 Department of Computer Science and Information Engineering, National Taiwan University,

Taipei 10617, Taiwan
* Correspondence: wjl@cmlab.csie.ntu.edu.tw

Abstract: The Asymmetric Numeral System (ANS) is a new entropy compression method that the
industry has highly valued in recent years. ANS is valued by the industry precisely because it
captures the benefits of both Huffman Coding and Arithmetic Coding. Surprisingly, compared with
Huffman and Arithmetic coding, systematic descriptions of ANS are relatively rare. In 2017, JPEG
proposed a new image compression standard—JPEG XL, which uses ANS as its entropy compression
method. This fact implies that the ANS technique is mature and will play a kernel role in compressing
digital images. However, because the realization of ANS involves combination optimization and the
process is not unique, only a few members in the compression academia community and the domestic
industry have noticed the progress of this powerful entropy compression approach. Therefore, we
think a thorough overview of ANS is beneficial, and this idea brings our contributions to the first part
of this work. In addition to providing compact representations, ANS has the following prominent
feature: just like its Arithmetic Coding counterpart, ANS has Chaos characteristics. The chaotic
behavior of ANS is reflected in two aspects. The first one is that the corresponding compressed output
will change a lot if there is a tiny change in the original input; moreover, the reverse is also applied.
The second is that ANS compressing an image will produce two intertwined outcomes: a positive
integer (aka. state) and a bitstream segment. Correct ANS decompression is possible only when both
can be precisely obtained. Combining these two characteristics helps process digital images, e.g., art
collection images and medical images, to achieve compression and encryption simultaneously. In the
second part of this work, we explore the characteristics of ANS in depth and develop its applications
specific to joint compression and encryption of digital images.

Keywords: entropy encoding; Huffman coding; arithmetic coding; Asymmetric Numeral System;
joint image compression and encryption

1. Introduction

In our review paper, we present the operational details and possible applications
of the newly developed lossless compression algorithm—Asymmetric Numeral System
(ANS). ANS is one of the most recently proposed entropy coding methods. Fast execu-
tion speed and close to the theoretical limit compression performance are the prominent
features of ANS; therefore, it has been primarily adopted by industrials. Jarek Duda
first proposed ANS in 2007 [1–3], and it was adopted and implemented by Facebook in
2015, namely, Zstandard [4], which is open-sourced and used in various fields such as
Linux Kernel/Hadoop/Mysql/FreeBSD. Apple also released its ANS implementation—
LZFSE [5]—in 2015 and used it at the bottom layer of iOS and macOS. Google launched
its lossless compression standard—pik [6]—in 2019, in which the entropy coding part also
uses ANS. Microsoft also applied for ANS-related patents [7] in 2019. In addition to the
industry giants mentioned above, the JPEG standard committee began drafting the new
compression standard JPEG XL [8] in 2017. ANS also plays a significant role in its entropy

Entropy 2022, 24, 375. https://doi.org/10.3390/e24030375 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24030375
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-3631-1551
https://doi.org/10.3390/e24030375
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24030375?type=check_update&version=2

Entropy 2022, 24, 375 2 of 33

coding. We can see that in the past five years, ANS has been widely accepted and adopted
by the IT giants, but in the compression academia community and nonexpert IT industry,
the awareness and the adoption of ANS for Multimedia compression is still in its infancy.

Its lossless compression feature makes ANS especially suitable for distortion-less
compression-related applications, such as medical and digital art collection images. The
prospective property of ANS comes from its chaotic characteristics: if the original input is
changed a little bit, its compressed output will change relatively significantly. Similarly,
if we slightly change the compressed representation, the reconstructed version will also
present a rather significant change after decompression. This kind of significant range’s
difference between input and output of a function is one of the preferred features and is
called the avalanche effect in cryptography [9]. Recall that, in ANS, encoding an input
symbol will produce two outputs: a positive integer state and a segment of a bit sequence
(we call this the segmentation feature of ANS). As mentioned above, if the input changes a
little, the corresponding integer state and the bitstream segment of the output will change
significantly. Conversely, if we tiny modify the integer state or the bitstream segment of the
ANS production, the reconstruction will also significantly change after decompression. The
avalanche feature mentioned above is suitable for providing a compact representation of
digital art collection images. A digital art image is now represented by a positive integer
state and a bitstream sequence. Art collectors can store the state separately and open it to
the public as a piece of evidence for claiming the ownership of this artwork while keeping
the bitstream sequence in private as the verifier if a dispute occurs. Because of its avalanche
characteristics, we think there will be an excellent opportunity to combine ANS with the
recently popular NFT (Non-fungible token) [10] to make the intellectual property rights
(IPRs) of an artwork much more secured.

With ANS’s segmentation feature, we can assign different degrees of protection to
various portions of an artwork according to their art values. For example, the portrait
in the middle of the Mona Lisa image certainly has higher art value than its corners or
other flat counterparts. An artwork publisher who intends to sell his digital artworks to
more than one artwork collector can divide his art collection into different pieces and price
them according to the corresponding values. Now, combining all specific features of ANS,
the publisher can generate the state and the bit sequence for each partition. He can now
disclose the state information to the potential customers as a marketing representative of
this partition in NFT applications. Moreover, the publisher can send the bit sequence of the
same segmented area to the actual buyer as a voucher for certifying the ownership. We will
justify the above postulation through a concrete experiment, with the aid of table-ANS [11],
at the end of this writeup.

The contributions of this work include

1. We present an in-depth and systematic discussion about various ANS-related tech-
nologies for providing a clear picture of this new lossless compression tool;

2. We address several selected applications of ANS in response to the survey nature of
this work;

3. We explore the chaotic property of ANS and apply it to compress and encrypt digital
images jointly, which is the desired mechanism for most digital image generators;

4. We present a detailed performance comparison of various lossless compression algo-
rithms in terms of compression ratio and execution speed.

In addition, as application examples, we will explore the feasibility of using ANS to
protect IPRs of art collection images and check the integrity of medical images.

2. Background Knowledge
2.1. Basic Concepts of Asymmetric Numeral Systems

An ANS coder will encode an input to a non-negative integer number and call it the
state. Mathematically, we can illustrate the ANS encoding process as follows.

ANS-encoding: (input, current state)→ (next state)

Entropy 2022, 24, 375 3 of 33

ANS-decoding: (current state)→ (previous state, output).

That is, using the language of the Finite State machine, ANS encoding can be realized
as a transition from a given current state to its next state. At the same time, the ANS
decoding process plays the reverse role of the encoding process (cf. Figure 1).

Entropy 2022, 24, x FOR PEER REVIEW 3 of 34

2. Background Knowledge
2.1. Basic Concepts of Asymmetric Numeral Systems

An ANS coder will encode an input to a non-negative integer number and call it the
state. Mathematically, we can illustrate the ANS encoding process as follows.
ANS-encoding: (input, current state) → (next state)
ANS-decoding: (current state) → (previous state, output).

That is, using the language of the Finite State machine, ANS encoding can be realized
as a transition from a given current state to its next state. At the same time, the ANS de-
coding process plays the reverse role of the encoding process (cf. Figure 1).

(a) ANS Encoder (b) ANS Decoder

Figure 1. ANS coding in State Transition Form: (a) ANS Encoder and (b) ANS Decoder.

Therefore, as shown in Figure 1, we can regard ANS encoding and decoding pro-
cesses as state transitions on a Finite State Machine. Each node denotes a legal state (with
an integer state value). Furthermore, according to the symbol ‘a’, each edge transits from
one node to another.

2.2. Huffman Coding, Arithmetic Coding, and the Asymmetric Numeral Systems
Huffman Coding [12] and Arithmetic Coding [13] are the most well-known and

adopted algorithms among the entropy compression methods. As described, ANS is the
newest entropy coder that the industry has highly valued in recent years. ANS is valued
by the industry precisely because it captures the benefits of both Huffman Coding and
Arithmetic Coding [2]. Huffman Coding is known for its fast encoding and decoding but
has limitations in compression performance (at least one bit is required to represent a
symbol). On the contrary, Arithmetic Coding is characterized by a high compression ratio
(the degree of compression can be close to the theoretical optimal value) but has limita-
tions in encoding and decoding speed.

Generally speaking, the slow execution speed disadvantage of Arithmetic Coding
comes from its involvement in floating-point numbers calculations, which complicates the
practical realization and slows down the entire compression and decompression process.
The shortage mentioned above of arithmetic codes can be understood as follows. Theoret-
ically, the amount of self-information contained in a symbol s with probability 𝑝௦ is logଶ(ଵ௣ೞ) bits. Similarly, in conventional arithmetic coding, the amount of self-information
for two continuous coding stages x and 𝑥′ will be −logଶ𝑝௫ and −logଶ𝑝௫ᇱ bits, respec-
tively. After transition from stage x to stage 𝑥′ by encoding the new symbol s; ideally, we
have 𝑝௫ᇱ = 𝑝௫𝑝௦. Therefore, in arithmetic codes, the probability range after encoding the
incoming symbol shrinks from the previous range by multiplying the probability of the
symbol s, which is less than 1. This explains why floating-point numbers are used in arith-
metic coding′𝑠 implementation. To overcome this shortage, as one of the anonymized re-
viewers mentioned, modern Arithmetic Coding implementations use renormalization,

Figure 1. ANS coding in State Transition Form: (a) ANS Encoder and (b) ANS Decoder.

Therefore, as shown in Figure 1, we can regard ANS encoding and decoding processes
as state transitions on a Finite State Machine. Each node denotes a legal state (with an
integer state value). Furthermore, according to the symbol ‘a’, each edge transits from one
node to another.

2.2. Huffman Coding, Arithmetic Coding, and the Asymmetric Numeral Systems

Huffman Coding [12] and Arithmetic Coding [13] are the most well-known and
adopted algorithms among the entropy compression methods. As described, ANS is the
newest entropy coder that the industry has highly valued in recent years. ANS is valued
by the industry precisely because it captures the benefits of both Huffman Coding and
Arithmetic Coding [2]. Huffman Coding is known for its fast encoding and decoding
but has limitations in compression performance (at least one bit is required to represent a
symbol). On the contrary, Arithmetic Coding is characterized by a high compression ratio
(the degree of compression can be close to the theoretical optimal value) but has limitations
in encoding and decoding speed.

Generally speaking, the slow execution speed disadvantage of Arithmetic Coding
comes from its involvement in floating-point numbers calculations, which complicates the
practical realization and slows down the entire compression and decompression process.
The shortage mentioned above of arithmetic codes can be understood as follows. The-
oretically, the amount of self-information contained in a symbol s with probability ps is
log2

(
1
ps

)
bits. Similarly, in conventional arithmetic coding, the amount of self-information

for two continuous coding stages x and x′ will be −log2 px and −log2 px′ bits, respectively.
After transition from stage x to stage x′, by encoding the new symbol s; ideally, we have
px′ = px ps. Therefore, in arithmetic codes, the probability range after encoding the incom-
ing symbol shrinks from the previous range by multiplying the probability of the symbol
s, which is less than 1. This explains why floating-point numbers are used in arithmetic
coding’s implementation. To overcome this shortage, as one of the anonymized reviewers
mentioned, modern Arithmetic Coding implementations use renormalization, which helps
avoid floating-point operations. The first such fully integer multi-symbol implementation
of Arithmetic Coding was proposed in 1987 in [14]. Nevertheless, the implementation
in [14] needs multiplications and divisions; therefore, several look-up table-based adap-
tive binary arithmetic coding implementations were proposed, which many video and
image compression standards have adopted. Moreover, there is more advanced research
work related to adaptive range coding (Arithmetic Coding with fast renormalization), for
example [15], and multiplication and division free multi-symbol Arithmetic Coding [16].

Entropy 2022, 24, 375 4 of 33

Different from the prescribed speeding up approaches for Arithmetic Coding, to
speed up the processing speed, in ANS, a positive integer state value is the desired target.
To achieve this goal, instead of shrinking the new state variable’s range, Jarek Duda [1]
suggested dividing the original state variable’s range by the symbol’s probability to expand
it into integer values, that is x′ ≈ x

ps
. Therefore, if s ∈ {0,1}, each state transition doubles the

original state range, while if s ∈ {0, 1, 2, . . . , 9}, each state transition will ten times enlarge
the new state’s range. This kind of assignments, in some sense, make the behavior of ANS
similar to that of the conventional weighted number systems, such as Binary and Decimal
number systems.

2.3. Types of the Asymmetric Numeral Systems

According to the distributions of the source symbols and methods of realization,
there are three variants of ANS [1–3,17–34] (follow the chronological sequence of publica-
tion dates):

(i) Uniform Asymmetric Binary System (uABS)
(ii) Range Asymmetric Numeral System (rANS)
(iii) Table Asymmetric Numeral System (tANS)

We will present the definitions and operating processes of various ANSs in the rest of
this section, in “learning by examples” and “step-by-step” ways. We will explain different
versions of ANS encoding and decoding procedures in detail through concrete examples.
Before going into details, a summary about the characteristics of different types of ANS
is given as follows. The inputs processed by uABS are only 0 and 1. The information
processed by rANS is not only 0 and 1 but with a variety of possibilities. tANS tabularizes
the ANS’s encoding and decoding processes.

3. Variations in Asymmetric Numeral Systems
3.1. The Uniform Asymmetric Binary System (uABS)

uABS is the most basic type, and the input processed by it is only two possible cases: 0
or 1. Expressed by a mathematical formula, the input set A looks like: A = {0, 1} , {s0, s1},
with probability distributions: p(s0) = p0 = p, p(s1) = p1 = 1− p, and p0 + p1 = 1. In
uABS, the input is a series of finite number bitstreams consisting of 0 or 1, such as 010011.
The output will be a natural number (i.e., a non-negative integer). For simplicity, we use x
to denote the state variable of a node. Therefore, in the encoding process, as mentioned
above, state transitions are performed as Enc (input bit, current state)→ (next state); or
symbolically reduces to C (s, x) = x′. We also use state transitions to realize the decoding
process: D (x′) = (x, s).

(a) uABS Constructions for Uniformly Distributed Binary Sources

As described in Section 2.2, the function of an uABS (or an ANS in general) encoder
can be represented:

C(s, x) = x′ ≈ x
ps

(1)

This arrangement shows that the smaller the probability of the symbol encoded, the
larger the new state number (or state-variable range) after state transition. This implies
that if the probability of the current encoding symbol is smaller, then we need more bits to
represent its corresponding uABS output.

To give readers a clear picture of the process of ANS encoding, let us examine the
following simple example first.

Example 1: Assume s = {0,1} and p0 = p1 = 0.5. According to Equation (1), the best
encoding function for 0 or 1 would be C(0, x) = C(1, x) = x

p0
= 2x. In fact, taking the

polarity of input symbols into account, the encoding function becomes

C(s, x) = x′ = 2x + s (2)

Entropy 2022, 24, 375 5 of 33

and the decoding function is

D
(

x′
)
= (x, s) =

(⌊
x′

2

⌋
, x mod 2

)
(3)

Now, for the input sequence b1b2b3b4b5 = 01111, the initial state is x0 = 1, and the
Encoding process is conducted in order as follows:

C(b1, x0) = x1 = 2x0 + b1 = 2 ∗ 1 + 0 = 2
C(b2, x1) = x2 = 2x1 + b2 = 2 ∗ 2 + 1 = 5

C(b3, x2) = x3 = 2x2 + b3 = 2 ∗ 5 + 1 = 11
C(b4, x3) = x4 = 2x3 + b4 = 2 ∗ 11 + 1 = 23
C(b5, x4) = x5 = 2x4 + b5 = 2 ∗ 23 + 1 = 47.

That is, for the input b1b2b3b4b5 = 01111, the corresponding uABS output is the
positive integer 47, which is also the value (or range) of the state variable x5 .

Similarly, the relevant Decoding process is conducted in order as follows:

D(x5) = (x4, b5) =
(x5

2 , x5 mod 2
)
=
(

47
2 , 47 mod 2

)
= (23, 1)

D(x4) = (x3, b4) =
(x4

2 , x4 mod 2
)
=
(23

2 , 23 mod 2
)
= (11, 1)

D(x3) = (x2, b3) =
(x3

2 , x3 mod 2
)
=
(

11
2 , 11 mod 2

)
= (5, 1)

D(x2) = (x1, b2) =
(x2

2 , x2 mod 2
)
=
(5

2 , 5 mod 2
)
= (2, 1)

D(x1) = (x0, b1) =
(x1

2 , x1 mod 2
)
=
(2

2 , 2 mod 2
)
= (1, 0).

Clearly, for input 47, the uABS output would be b1b2b3b4b5 = 01111. It is the same as
the original input.

For speeding up the whole coding process, table lookup techniques are often used in
entropy coding areas. This convention also applies to ANS. In the following, we will use
a so-called coding table to illustrate the encoding and decoding processes of uABS with
uniformly distributed inputs.

Example 2. Assume s = {0,1} and p0 = p1 = 0.5. Let us consider the following cod-
ing table, where the table occupancy of 0 and 1 is the same since they have the same
probability distribution.

First, let us take the red-3 in the bottom row of the Table 1 as an example to explain
from the perspective of encoding. Assume the red 3 is the current state, then from the index
of the row it belongs to, we say that the symbol to be encoded is s = 1. In contrast, the corre-
sponding column denotes the encoded state x′ = 7. According to our previous discussions,
mathematically, we have the following uABS expression: C(s, x) = x′ ⇒ C(1, 3) = 7 . Sec-
ond, let us continue to use the red 3 as an example to explain from the perspective of decod-
ing. Now, the red 3 represents the decoded state x, and its corresponding row index denotes
the decoded symbol s = 1. The corresponding column shows that the to-be-decoded state is
x′ = 7. Mathematically, its uABS expression becomes D(x′) = (s, x)⇒ D(7) = (1, 3). In
this way, as long as we know the coding table, we can completely describe the encoding
and decoding processes very efficiently. However, the question is: ‘how is the coding table
constructed?’ We will answer this question later.

Table 1. The uABS’s Encoding and Decoding in the Form of a Coding Table.

x′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13
x s = 0 0 1 2 3 4 5 6
x s = 1 0 1 2 3 4 5 6

(b) ABS Constructions for Non-Uniformly Distributed Binary Sources and the Symbol
Spread Function

Entropy 2022, 24, 375 6 of 33

From Example 2, we can find an interesting phenomenon: when the symbol to be
encoded is 0, the generated next state x′ is an even number, and when the symbol is
1, the next state x′ is an odd number. The reason comes from the encoding function
C (x, s) = 2x + s. Therefore, depending on the polarity of s, we can divide the coding states
into two categories: even-numbered and odd-numbered types.

This observation reveals that there is an allotting mechanism between a given symbol
and its possible mapping states. This mapping mechanism plays an essential role in
building efficient and effective realization of ANS, which is called the symbol spread
function (SSF) [1]. Simply put, SSF addresses the mapping relation from states to symbols.
Here, we use the notation s to represent the symbol spread function. Mathematically, we
have the following expression: s : N→ A⇒ s(x) = s, where N denotes the set of natural
numbers, and A is the set of involved source symbols. With this notion, the SSP used in the
above two examples can be written as s(x) = x mod 2.

In the physical sense, SSF divides a given state into several subsets and allocates a
different symbol to each distinct subgroup. Since ANS is mainly applied to compress
data, therefore, the effectiveness of an SSF is judged by its compression performance and
execution speed. Unfortunately, finding the best SSF for an ANS construction involves
solving complicated combinatorial problems; therefore, sub-optimal heuristic approaches
are adopted in most practical use cases.

From our previous discussions, the selection of SSF is closely related to the symbol
probability ps. Moreover, the encoding function C(s, x) = x′ ≈ x

ps
tells us that the encoded

state x′ corresponding to symbol s would appear at an integer multiple of intervals with
spacing 1

ps
, in a tabularized realization non-uniformly distributed ABS, since the input state

x here could be any non-negative integer.
In summary, if the probability of symbol s is more significant (its occupancy is higher

and the symbol appears more times in the coding table). In addition, the interval spacing
between neighboring states x′ will be smaller, which means more states will be allocated
to the same symbol s. The physical meaning is that the ANS hopes to give more states
for the symbol that appears more often. To give readers a clear picture of the process of
non-uniform ABS encoding, we give an illustrative simple in Appendix A.

We take non-uniform input 01111 as another illustrative example to further discuss
this scenario. In this case, the probability of 0 is 1

5 and the probability of 1 is 4
5 As we can

see in the following Table 2, the appearance of 0 is one out of five, and the appearance of 1
is four out of five.

Table 2. The uABS’s Coding Table for Input “01111”.

x′ 0 1 2 3 4 5 6 7 8 9 10
x s = 0 0 1 2
x s = 1 0 1 2 3 4 5 6 7

3.2. The Range Asymmetric Numeral System (rANS)

(a) The Basic rANS Construction

In an rANS, the set of input symbols to be encoded is A = {s0, s1 . . . sn}, and the
number of occurrences of each symbol si is Li, the total number of occurrences of all
symbols is L, L = ∑ Li. Assume the probability of symbol si is pi, pi =

Li
L , and ∑ ps = 1. In

the following discussions, we call Li a sub-cycle, L a cycle, and ‘cycle’ also stands for ‘the
range’ of an rANS. The major difference between rANS and uABS is whether the number
of symbols involved in the process is more than two or not. To explain the concept of rANS,
again, we start with a simple example.

Example 3. Suppose A = {a, b, c}, with probability distributions: pa = 5
8 , pb = 2

8 ,
and pc =

1
8 . Notice that this assumption of symbol distributions is the same as in Figure 3

of [35]; therefore, the same repeating patterns are obtained, as shown in Figure 2. From
the above discussions, the ideal SSF for this example should assign symbol s to state x′

Entropy 2022, 24, 375 7 of 33

consistently according to ps. So, symbol a should occupy 5
8 of all states, symbol b should

occupy 2
8 of all states, and symbol c should occupy 1

8 of all states. According to this concept,
we have the following coding table.

Entropy 2022, 24, x FOR PEER REVIEW 7 of 34

3.2. The Range Asymmetric Numeral System (rANS)
(a) The Basic rANS Construction

In an rANS, the set of input symbols to be encoded is 𝐴 = {𝑠଴, 𝑠ଵ … 𝑠௡}, and the num-
ber of occurrences of each symbol 𝑠௜ is 𝐿௜ , the total number of occurrences of all symbols
is 𝐿，𝐿 = ∑𝐿௜. Assume the probability of symbol 𝑠௜ is 𝑝௜, 𝑝௜ = ௅೔௅ , 𝑎𝑛𝑑 ∑ 𝑝௦ = 1. In the
following discussions, we call 𝐿௜ a sub-cycle, L a cycle, and ‘cycle’ also stands for ‘the
range’ of an rANS. The major difference between rANS and uABS is whether the number
of symbols involved in the process is more than two or not. To explain the concept of
rANS, again, we start with a simple example.

Example 3. Suppose A = {a, b, c}, with probability distributions: 𝑝௔ = ହ଼ , 𝑝௕ =ଶ଼ , 𝑎𝑛𝑑 𝑝௖ = ଵ଼. Notice that this assumption of symbol distributions is the same as in Figure
3 of [35]; therefore, the same repeating patterns are obtained, as shown in Figure 2. From
the above discussions, the ideal SSF for this example should assign symbol s to state x’
consistently according to 𝑝௦. So, symbol a should occupy ହ଼ of all states, symbol b should
occupy ଶ଼ of all states, and symbol c should occupy ଵ଼ of all states. According to this con-
cept, we have the following coding table.

Of course, this deduction still applies to cases with other different probability distri-
butions, as shown in Figure 2.

Figure 2. The state arrangements in the rANS coding table for various probability distributions of
the three symbols in Example 3, where the Blue-block is used to denote symbol a, Green-block is for
b, and Red-block is for c.

Following the same inferencing, the proper SSF for Example 3 would be:

𝑠 ഥ(𝑥) = ቐ 𝑎, 𝑚𝑜𝑑(𝑥, 8) = {0, 1, 2, 3, 4}𝑏, 𝑚𝑜𝑑(𝑥, 8) = {5, 6}𝑐, 𝑚𝑜𝑑(𝑥, 8) = {7}

Or, we can express 𝑠 ഥ(𝑥) as a repeated pattern ‘aaaaabbc’ with period 8. Similarly, it is
easy to find that the encoding functions 𝐶(𝑎, 𝑥) = ௫௣ೌ = ହ଼ 𝑥 , 𝐶(𝑏, 𝑥) = ௫௣್ = ଶ଼ 𝑥 ,

and 𝐶(𝑐, 𝑥) = ௫௣೎ = 8𝑥 do not work well. In the next paragraph, we will pay attention to
derive the actual encoding functions for Example 3.

First, let us define the Cumulated Distance Function, 𝐶𝐷𝐹[𝑠] = ∑ 𝐿ௌᇲ ; its physical
meaning is to find the sum of the sub-cycle lengths of the symbol s’ before the to-be-en-
coded symbol s, in a cycle. For example, if the to-be-encoded symbol is b, then s’ = a, and
CDF[b] = sum of the sub-cycle lengths for symbol a = 5. Second, since there is more than
one sub-cycle in the coding table for the given symbol s, according to the current state x,
we can find which sub-cycle the to-be-encoded symbol s belong to simply by calculating
 ௫௅ೞ  + 1, where 𝑦 denotes the largest integer less than y. For example, if we are com-

puting C(b,3), then  ଷ௅್  + 1 =2 tells us that we are now encoding that symbol b in its

second sub-cycle. Moreover,  ௫௅ೞ  ∗ L =  ଷ௅್  * 8 = 8 means we should add a bias 8 to
calculate the address of the next state x’. Finally, we should now find the exact position of

Figure 2. The state arrangements in the rANS coding table for various probability distributions of
the three symbols in Example 3, where the Blue-block is used to denote symbol a, Green-block is for
b, and Red-block is for c.

Of course, this deduction still applies to cases with other different probability distribu-
tions, as shown in Figure 2.

Following the same inferencing, the proper SSF for Example 3 would be:

s(x) =


a, mod(x, 8) = {0, 1, 2, 3, 4}

b, mod(x, 8) = {5, 6}
c, mod(x, 8) = {7}

Or, we can express s(x) as a repeated pattern ‘aaaaabbc’ with period 8. Similarly, it
is easy to find that the encoding functions C(a, x) = x

pa
= 8

5 x, C(b, x) = x
pb

= 8
2 x, and

C(c, x) = x
pc

= 8x do not work well. In the next paragraph, we will pay attention to derive
the actual encoding functions for Example 3.

First, let us define the Cumulated Distance Function, CDF[s] = ∑ LS′ ; its physical
meaning is to find the sum of the sub-cycle lengths of the symbol s’ before the to-be-
encoded symbol s, in a cycle. For example, if the to-be-encoded symbol is b, then s’ = a, and
CDF[b] = sum of the sub-cycle lengths for symbol a = 5. Second, since there is more than one
sub-cycle in the coding table for the given symbol s, according to the current state x, we can
find which sub-cycle the to-be-encoded symbol s belong to simply by calculating

⌊
x
Ls

⌋
+ 1,

where byc denotes the largest integer less than y. For example, if we are computing C(b,3),
then

⌊
3
Lb

⌋
+ 1 = 2 tells us that we are now encoding that symbol b in its second sub-cycle.

Moreover,
⌊

x
Ls

⌋
∗ L =

⌊
3
Lb

⌋
* 8 = 8 means we should add a bias 8 to calculate the address of

the next state x′. Finally, we should now find the exact position of the current state x in the
sub-cycle it belongs to, and computing x mod LS can quickly achieve this goal. Therefore,
combining all the relevant calculations we have

C(b, 3) =
⌊

3
Lb

⌋
× L + CDF[b] + 3 mod Lb

=
⌊ 3

2
⌋
× 8 + CDF[b] + 3 mod 2
= 8 + 5 + 1 = 14

From the above discussions, we can conclude that the proper ANS encoding and
decoding functions for a non-binary source with different symbol probability distributions
should respectively be:

C(s, x) =
⌊

x
Ls

⌋
× L + CDF[s] + x mod Ls (4)

Entropy 2022, 24, 375 8 of 33

D
(

x′
)
= (x, s) =

{
x =

⌊
x′
L

⌋
× Ls − CDF[s] + x′ mod L

s = x′ mod L
(5)

According to Equation (4), the rANS coding table for Example 3 should be shown in
Table 3.

Table 3. The rANS Coding Table Realization for Example 3.

x′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
x s = a 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x s = b 0 1 2 3 4 5
x s = c 0 1 2

Notice that the main difference between Tables 3 and 4 lies in the number of encoded
states x’. Since there are three distinct symbols and the minimum symbol probability is one-
eighth; therefore, as shown in Table 3, there are 24 states in total. Moreover, we can easily
check the correctness of Equation (5) by computing: D (14) =

⌊
14
8

⌋
× 2−CDF[b] + 14 mod 8

= 2 − 5 + 6 = 3 and s is the (14 mod 8 =) 6-th symbol in the coding table, which is b. Since
all the above derivation is based on the symbol’s range occupation in the coding table, we
think this is why this approach is called the range ANS in the literature.

Table 4. The Schematic Meaning of Sub-cycles of Symbols, for an rANS Coding Table, in Example 3.

Entropy 2022, 24, x FOR PEER REVIEW 8 of 34

the current state x in the sub-cycle it belongs to, and computing x mod 𝐿ௌ can quickly
achieve this goal. Therefore, combining all the relevant calculations we have 𝐶(𝑏, 3) = 

3𝐿௕  × 𝐿 + 𝐶𝐷𝐹[𝑏] + 3 𝑚𝑜𝑑 𝐿௕ = 
32  × 8 + 𝐶𝐷𝐹[𝑏] + 3 𝑚𝑜𝑑 2 = 8 + 5 + 1 = 14

From the above discussions, we can conclude that the proper ANS encoding and decoding
functions for a non-binary source with different symbol probability distributions should
respectively be: 𝐶(𝑠, 𝑥) = 

𝑥𝐿௦  × 𝐿 + 𝐶𝐷𝐹[𝑠] + 𝑥 𝑚𝑜𝑑 𝐿௦ (4)

𝐷(𝑥ᇱ) = (𝑥, 𝑠) = ൝𝑥 = 
𝑥′𝐿  × 𝐿௦ − 𝐶𝐷𝐹[𝑠] + 𝑥′ 𝑚𝑜𝑑 𝐿𝑠 = 𝑥′ 𝑚𝑜𝑑 𝐿 (5)

According to Equation (4), the rANS coding table for Example 3 should be shown in Table
3.

Notice that the main difference between Tables 3 and 4 lies in the number of encoded
states x’. Since there are three distinct symbols and the minimum symbol probability is
one-eighth; therefore, as shown in Table 3, there are 24 states in total. Moreover, we can
easily check the correctness of Equation (5) by computing: D (14) =  ଵସ଼  × 2 − 𝐶𝐷𝐹[𝑏] +14 𝑚𝑜𝑑 8 =2−5+6 = 3 and s is the (14 mod 8 =) 6-th symbol in the coding table, which is b.
Since all the above derivation is based on the symbol’s range occupation in the coding
table, we think this is why this approach is called the range ANS in the literature.

Table 3. The rANS Coding Table Realization for Example 3.

x’ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
x s = a 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x s = b 0 1 2 3 4 5
x s = c 0 1 2

Table 4. The Schematic Meaning of Sub-cycles of Symbols, for an rANS Coding Table, in Example
3.

Sub-cycle for a Sub-cycle for c ⇩ ⇩
<------------------------- > <-->

x’ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x s = a 0 1 2 3 4 5 6 7 8 9
x s = b 0 1 2 3
x s = c 0 1

<---------> ⇧
 Sub-cycle for b

To accelerate the decoding speed, besides the above addressed basic coding table
construction, the period of the repeat pattern (or the sum of the sub-cycle lengths), L, is
usually selected as an integer power of 2, that is 𝐿 = 2௡. With this setting, in the decoding,
we can use bit-shifting instead of division to realize  ௫ᇱ௅  × 𝐿௦ and use masking instead
of modular operation to implement 𝑥′ 𝑚𝑜𝑑 𝐿. In this way, a decoding process needs one
multiplication operation only.
(b) Streaming ANS Coding and the Renormalization Process

x′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x s = a 0 1 2 3 4 5 6 7 8 9
x s = b 0 1 2 3
x s = c 0 1

Entropy 2022, 24, x FOR PEER REVIEW 8 of 34

the current state x in the sub-cycle it belongs to, and computing x mod 𝐿ௌ can quickly
achieve this goal. Therefore, combining all the relevant calculations we have 𝐶(𝑏, 3) = 

3𝐿௕  × 𝐿 + 𝐶𝐷𝐹[𝑏] + 3 𝑚𝑜𝑑 𝐿௕ = 
32  × 8 + 𝐶𝐷𝐹[𝑏] + 3 𝑚𝑜𝑑 2 = 8 + 5 + 1 = 14

From the above discussions, we can conclude that the proper ANS encoding and decoding
functions for a non-binary source with different symbol probability distributions should
respectively be: 𝐶(𝑠, 𝑥) = 

𝑥𝐿௦  × 𝐿 + 𝐶𝐷𝐹[𝑠] + 𝑥 𝑚𝑜𝑑 𝐿௦ (4)

𝐷(𝑥ᇱ) = (𝑥, 𝑠) = ൝𝑥 = 
𝑥′𝐿  × 𝐿௦ − 𝐶𝐷𝐹[𝑠] + 𝑥′ 𝑚𝑜𝑑 𝐿𝑠 = 𝑥′ 𝑚𝑜𝑑 𝐿 (5)

According to Equation (4), the rANS coding table for Example 3 should be shown in Table
3.

Notice that the main difference between Tables 3 and 4 lies in the number of encoded
states x’. Since there are three distinct symbols and the minimum symbol probability is
one-eighth; therefore, as shown in Table 3, there are 24 states in total. Moreover, we can
easily check the correctness of Equation (5) by computing: D (14) =  ଵସ଼  × 2 − 𝐶𝐷𝐹[𝑏] +14 𝑚𝑜𝑑 8 =2−5+6 = 3 and s is the (14 mod 8 =) 6-th symbol in the coding table, which is b.
Since all the above derivation is based on the symbol’s range occupation in the coding
table, we think this is why this approach is called the range ANS in the literature.

Table 3. The rANS Coding Table Realization for Example 3.

x’ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
x s = a 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
x s = b 0 1 2 3 4 5
x s = c 0 1 2

Table 4. The Schematic Meaning of Sub-cycles of Symbols, for an rANS Coding Table, in Example
3.

Sub-cycle for a Sub-cycle for c ⇩ ⇩
<------------------------- > <-->

x’ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x s = a 0 1 2 3 4 5 6 7 8 9
x s = b 0 1 2 3
x s = c 0 1

<---------> ⇧
 Sub-cycle for b

To accelerate the decoding speed, besides the above addressed basic coding table
construction, the period of the repeat pattern (or the sum of the sub-cycle lengths), L, is
usually selected as an integer power of 2, that is 𝐿 = 2௡. With this setting, in the decoding,
we can use bit-shifting instead of division to realize  ௫ᇱ௅  × 𝐿௦ and use masking instead
of modular operation to implement 𝑥′ 𝑚𝑜𝑑 𝐿. In this way, a decoding process needs one
multiplication operation only.
(b) Streaming ANS Coding and the Renormalization Process

To accelerate the decoding speed, besides the above addressed basic coding table
construction, the period of the repeat pattern (or the sum of the sub-cycle lengths), L, is
usually selected as an integer power of 2, that is L = 2n. With this setting, in the decoding,
we can use bit-shifting instead of division to realize

⌊
x′
L

⌋
× Ls and use masking instead

of modular operation to implement x′ mod L. In this way, a decoding process needs one
multiplication operation only.

(b) Streaming ANS Coding and the Renormalization Process

The two ANSs discussed earlier, uABS and rANS, face a common serious problem: the
state value will become larger and larger in the encoding process if a streaming (or continu-
ous) data source is encountered. This unbounded growth of state range is unacceptable in
practice because, in any computer architecture, the realizable integer is always limited. For
example, in a 64-bit computer, the largest type of integers is the Unsigned Long Int, and its
range is [0, 264 − 1]. If we want to encode an ultra-long sequence, there will be an overflow
even the largest integer type is adopted. In contrast, along with the decoding process, the
state value will decrease and eventually be smaller than 0 and jump to a negative integer
number. In addition, the negative integers have their limits on a computer.

To keep the state values within the computer representable integer ranges during
the encoding and the decoding processes, we should derive a dynamic mechanism for
adjusting the state ranges during the coding processes. When the state value is less than the
allowable range, the mechanism will increase the state range accordingly and vice versa.
We call the state range adjusting mechanism the renormalization process in ANS.

Entropy 2022, 24, 375 9 of 33

Before defining the renormalization process, we noticed that although both the ANS
encoding and decoding involve state transitions, they cannot be described correctly by a
Finite State Machine because the involved states have unbounded ranges if a streaming
source is considered. In other words, the numbers of possible state ranges become finite
only after applying the renormalization process. This bounded involved state range makes
the corresponding ANS realizable by using a limit-sized computational facility. Since both
in encoding and decoding, the involved states may exceed the allowable ranges of the
computing device, we will discuss the renormalization mechanisms for the encoding and
the decoding processes, respectively.

In ANS encoding, when the state value goes out of the designated range, the renormal-
ization process shifts the out-of-range state value one bit to the right, that is, divide the state
value by 2, then removing the least significant bit (LSB) from the state value and stuffing
it into the newly defined ‘ANS-bitstream variable.’ For example, suppose the designated
ANS state range is [18,32]. Now, if the next encoding state goes to 70, which exceeds the
maximum allowable range of 29, since the binary representation of 70 is 10001102, and after
shifting one bit to the right, we have 1000112 = 35, which is still larger than 29. So, we move
one bit of 35 to the right again and obtain 100012 = 17 within the target range. Of course, the
two right-shifted bits 10 are now stored in the pre-described ANS-bitstream variable, and
the renormalization ends. With the aid of renormalization, we can continuously encode the
incoming source symbols and guarantee the state range is within the predefined bound. For
ease of understanding the prescribed renormalization mechanism, Appendix B presents
the pseudo-codes and illustration examples for both the ANS Stream Encoding and the
ANS Decoding.

Observing the extreme example presented in the latter part of Appendix B, we can
conclude that: to guarantee the proper operation of ANS Stream Coding, the total number
of states in the allowable state range must be larger than the number of involved source
symbols. Thus, the compactness consideration gives us the best choice of UIs = b × Ls.
Recall that in ANS, to speed up the processing speed, expanding the new state range by
dividing the original state range by the symbol’s probability is used instead. This statement
tells us that the lower bound of the allowable state range, ILs, is determined by the smallest
probability of the source symbol, which may bring challenges in realization when the source
vocabulary is enormous. Fortunately, [32] investigated how to extend ANS’s capability to
serve the situation that the size of the input set is considerably large—thousands or millions
of symbols. Under this condition, the table size for realizing tANS will be huge also. This
new situation has not been addressed in the traditional ANS-related research. Most of the
ANS-related studies dealt with unsigned byte (uint8_t) inputs, but [32] deals with unsigned
integer (uint32_t) inputs and even higher precision cases. The most significant contribution
of [32] comes from its discussion and investigation about finding a reasonable and realizable
capability. Moreover, [32] proposes ways to achieve the maximal allowable capacity based
on symbol folding and Partial Alphabet Re-Ordering. The core idea of symbol folding
lies in a particular coding technique—Elias gamma coding, commonly used when coding
integers whose upper bound cannot be determined beforehand. This characteristic fits
well with the new condition (i.e., the size of the input set can be enormous). The core idea
of Partial Alphabet Re-Ordering is to supplement the case that symbol folding cannot do
well—the most frequent symbols have the high symbol number. [32] took the technique
to enhance byte codes with restricted prefix properties proposed by S. Culpepper and A.
Moffat [36] in 2005 to surpass this challenging case. As shown in [32], with the aids of two
existing techniques, we can apply ANS to handle applications with an extensive involved
alphabet set.

For ease of discussion, let us focus on the case of a source with reasonable source
symbols in the rest of this work. After understanding why we design the allowable state
range in this way, we start to apply the renormalization process to rANS for making it
feasible in practice in the following sub-section.

Entropy 2022, 24, 375 10 of 33

3.3. The Table Asymmetric Numeral System (tANS)

As the name suggests, tANS focuses on the subject of ANS’s realization using lookup
tables. That achieves all encoding and decoding operations through table lookups, making
encoding and decoding faster and easing for hardware implementations [17,18,31,33]. Since
all processes are operated in a table, the size of the table must have a limit, and this is
equivalent to set an upper bound on the number of states. This design thinking is the same
as that of the stream rANS discussed earlier.

Similar to rANS, in tANS, I := {L, L + 1, . . . , 2L− 1}, where L = 2R, R is a positive
integer. For each symbol s, its state range Is is Is := {Ls, Ls + 1, . . . , 2Ls − 1}, where Ls is
the number of occurrences of symbol s. Assume the actual probability of symbol s is ps,
Ls
L = qs, and qs is designed as close to ps as possible. The same as with the conventional

entropy coding, the higher the difference between qs and ps, the worse the compression
efficiency.

Recall from Example 3, the corresponding SSF is s(x) = aaaaabbc, which is an or-
derly arrangement. In tANS, s(x) can be arranged in much more ways; for example,
s(x) = abaaabaac is another proper choice. Actually, for this particular example, the
total number of possible s(x) will be 8!

5!2!1! = 168, and this is only an example with
a fairly small number of source symbols. Generally speaking, when an English file
is to-be-compressed, ASCII code is the most often used symbol representation. That
is, a symbol has 256 possibilities. In this setting, all possible numbers of SSF s(x) are

256!
i1!i2!...in! , where i1 + i2 + . . . + in = 256, and the number of possible choices is relatively
large. Therefore, the SSFs of tANS provide more possibilities for encoding/decoding, which
increases the degree of system chaos and provides more vital cryptographic characteristics.
Moreover, the associated broader choice in SSF also offers more room for optimizing the
compression performance. It follows that the proper design of an SSF plays the core role
in tANS.

(a) The Encoding and Decoding Functions of tANS:

Due to their similarity in behavior, the design of tANS follows the same principles of
the rANS stream encoder. From the pseudo-codes of ANS stream encoding presented in
Appendix B, we found a while loop in it. At first glance, it seems this while loop will run
for a long time, but in fact, we can use O(1) time to calculate how many while loops we
need to run in advance, as follows.

Assume the to-be-encoded symbol is s, and the current encoded state value x is
higher than the upper bound of the designated allowable state range. According to the
renormalization principle, we must shift the current state x to the right several times to
constrain the resulting state value within the target state range.

Let ks(x) denote how many times the while loops we need to run in advance. For a given
target state range Is := {Ls, Ls + 1, . . . , 2Ls − 1} it is easy to derive ks(x) = log2

⌊
x
Ls

⌋
. After

knowing ks(x), we will modify the calculations of mod(x, 2) to mod
(

x, 2ks(x)
)

and x =
⌊ x

2
⌋

to x =
⌊

x
2ks(x)

⌋
. Therefore, the pseudo-code of the tANS encoding function becomes:

tANS Encoding {
k = ks(x) = log2

⌊
x
Ls

⌋
put mod

(
x, 2k

)
to the LSB o f the ′(ANS−) bitstream variable′;

x =
⌊

x
2ks(x)

⌋
;

x = C(s, x)
}

Entropy 2022, 24, 375 11 of 33

Similarly, the pseudo-code of the tANS decoding function becomes:

tANS Decoding : {
(s, x) = D(x)

use s;
k = k(x) = R− blog2(x)c

x = 2ks(x)x + extract 1 bit f rom the MSB o f the ′bitstream variable′; }

(b) The construction of Coding Tables for tANS

Based on the discussions above, when the current input state is x, the symbol to be
encoded is s, and the output next state is x’, we have x′ = C

(
s, x

2k

)
and the generated bit

sequence = mod
(

x, 2k
)

. Therefore, Tables 5 and 6 illustrate the forms of tANS encoding
and the decoding tables, respectively.

Table 5. The General Form of tANS Encoding Table.

s
x = L x = L + 1 . . . x = 2L − 1

. . .

si
next state = C

(
si,
⌊

x
2k

⌋)
;

bit sequence = mod
(

x, 2k
)

. . .
sn

Table 6. The General Form of tANS Decoding Table.

x′ (Current State) L L + 1 . . . 2L − 1

s (generated symbol)
K (# of bits extracted from the

bitstream Variable)
X (next state)

(c) The Complete Encoding and Decoding Processes of tANS

For a symbol sequence to be encoded, tANS starts its encoding from the last symbol of
the symbol sequence, then the second to last. The generated bit sequence is storing on the
LSB of the bitstream variable during the encoding process. When completing the encoding,
a state and a bitstream will be generated. In the opposite direction, tANS starts its decoding
with a state and a bitstream. As pre-described, the tANS decoder starts extracting bits from
the MSB of the bitstream variable during the decoding.

In short, we can summarize the whole tANS coding process by the following four steps:
Step 1:

• Calculate the actual symbol probability ps in the to-be-compressed file,
• Determine the allowable state range I := {L, L + 1, . . . , 2L− 1} and the state range of

each symbol Is := {Ls, Ls + 1, . . . , 2Ls − 1 },
• Use qs =

Ls
L to approximate ps.

Step 2:

• Determine the proper SSF, s(x) = s, s : L→ A ,
• Establish the tabularized encoding state function composed of C(x, s) = x′ and a

tabularized decoding function composed of D(x′) = (s, x).

Step 3:

• Determine the encoding and decoding tables according to the SSF determined in
Step 2.

Entropy 2022, 24, 375 12 of 33

Step 4:

• Start the encoding and decoding processes.

To give readers a clear picture of the operations of tANS encoding and decoding
and maintain fluent readability, a concrete and step-by-step example that illustrates the
complete tANS processes is given in Appendix C.

3.4. The Avalanche Effect of the tANS

As mentioned earlier, tANS encoding processes can be treated as state transitions in a
Finite State Machine model. Therefore, as long as the encoding input symbol is different, the
encoder will produce (or the model will jump to) different output states even for the same
initial state. Under the same condition given in Example C-1, assume there are two different
inputs: input one is with the symbol sequence “cabcaada,” while input two is with the
symbol sequence “cbbcaada”. That is, the two inputs are different only at the second symbol.
Following the tANS encoding procedure, it is easy to verify that the output corresponds
to input one is (State = 16, bitstream variable = “1101111110111111100”), and the result
associated with input two is (State = 16, bitstream variable = “110111100010000000”). Notice
that the output states are identical, but the bitstreams in the stream variables are dissimilar
starting from the second bit, which is where the two input symbol sequences begin to
have a difference. In the opposite direction, in tANS decoding, the output states generated
during encoding will be used as the starting states of the decoder, and the bitstream stored
on the bitstream variable will be extracted to conduct the renormalization process. Because
of this mutual chaining nature, as long as the operand state or the content of the bitstream
variable is different, the decoded result will be completely different, also.

Like arithmetic coding, this kind of functional behavior that a tiny change in inputs
will produce a significant difference in outputs is one of the preferred features called the
avalanche effect in cryptography. As mentioned above, the avalanching characteristics of
tANS make it applicable to data security protection besides its original well-known usage
in data compression.

As for the chaotic behavior of ANS, there is one more thing that is worthy of notice.
As addressed in Section 3.2(b) and Section 3.3, the ANS encoding and decoding functions
are highly related to the designated SSF, where enormous possible choices exist. In other
words, the combinatorial complexity in selecting SSF will lead to a higher degree of chaos,
especially for tANS.

4. Applications of the Asymmetric Numeral Systems

To provide strong evidence of the value of ANS in practical applications, we review
some collected successful and meaningful applications of ANS that have been addressed in
the literature so far in this section. Additionally, as a new contribution, the application of
ANS to Intellectual Property Rights Management and Integrity Checking of Digital Images
will be discussed in detail in Section 4.3.

4.1. ANS in Index Compression and Machine Learning-Based Lossless Data Compression

Alistair Moffat and Matthias Petri [22] considered how ANS coding could be used with
existing index compression techniques. They showed that ANS could be usefully combined
with several index compression approaches to yield improved compression effectiveness
within reasonable additional resource costs. By joining ANS with each of byte-based codes,
word-based codes, and packed codes, they established new trade-offs for effectiveness and
efficiency in index compression. Experiments on an inverted index for the 426 GiB Gov2
collection, the authors showed in [22] that the combination of blocking and ANS-based
entropy-coding against a set of 16 magnitude-based probability models yields compres-
sion effectiveness superior to most previous mechanisms while still providing reasonable
decoding speed. Later, the same authors extended their study to examine the task of
block-based inverted index compression [23], in which fixed-length blocks of postings data
are compressed independently of each other. Instead of using one parameter, [23] proposed

Entropy 2022, 24, 375 13 of 33

using a two-dimensional selector to summarize each block’s distribution of values. Ref. [23]
also introduced a revised mapping from symbol identifiers to ANS values requiring less
memory and providing byte-friendly output for exception values. Experiments with two
extensive document collections demonstrate that the proposed mechanism can achieve
substantial compression gain, and the query throughput speeds are relatively unaffected.

The field of machine learning has experienced an explosion of activity in recent years.
We have seen many papers looking at applications of modern deep learning methods,
such as AutoEncoder-based and GAN-like mechanisms, to lossy compression. Compar-
atively, applying Deep Neural Networks (DNNs) to lossless compression has been less
well covered in recent works. Ref. [28] seeks to advance in this direction, focusing on
lossless compression using latent variable models. In contrast to implementing bits-back
coding [37] by Arithmetic codes, ref. [28] suggested using ANS instead and termed the new
coding scheme ‘Bits Back with ANS’ (BB-ANS). After conducting a series of experiments,
ref. [28] found that BB-ANS with a Variational AutoEncoder (VAE) outperforms generic
lossless compression algorithms for binarized and raw MNIST, even with a straightforward
one model architecture. The authors of [28] extrapolate these results to predict that state-
of-the-art latent variable models could be used in conjunction with BB-ANS to achieve
significantly better lossless compression rates than current methods. However, as pointed
out by [29], BB-ANS incurs an overhead that grows with the number of latent variables,
restricting the capacity of VAE and posing difficulties for density estimation performance;
hence, the resulting compression rate suffers. Ref. [29] suggested recursively applying
bits-back coding and termed the resulting scheme ‘Bit-Swap’ approach to conquering this
shortage. Bit-Swap [29] improves BB-ANS’s performance on hierarchical latent variable
models with Markov chain structure. Compared to latent variables models with only one
latent layer, these hierarchical latent variable models allow us to achieve better density
estimation performance on complex high-dimensional distributions. Although connecting
ANS with DNN is out of the focus of this writeup, we do think this is one of the future
research directions worthy of further exploration and investigation.

4.2. ANS in Joint Compression and Encryption of Digital Images

As a variation of entropy codes, Duda mentioned in his earliest works [2,3] that there
is considerable freedom while choosing a specific implementation table for ANS; there-
fore, we can simultaneously apply ANS to compress and encrypt a message. Duda and
Niemiec continue to discuss the applicability of ANS for compression with encryption
in [19], pointing out that ANS makes it possible to encrypt the encoded message at nearly
no additional cost simultaneously. Moreover, ref. [19] analyzed the security level provided
by ANS-based cipher. The main security feature provided by ANS is the pre-described
Avalanche effect which comes from ANS’s variable length coding nature. Any attempt to
recover from ANS-coded bits to the original symbols has to resolve the error propagation
problem caused by even a single bit of erroneous decoding. It is well known that the proba-
bility of getting a successful frame synchronization is negligible even for short sequences of
symbols and decreases exponentially with the number of compressed symbols. However,
as analyzed in [34], plain ANS could only support applications with low-level security
requirements. In the same writeup, Seyit Camtepe et al. investigated the natural properties
of ANS, allowing incorporation with authenticated encryption using as little cryptography
as possible. Moreover, they proposed three joint compression and encryption algorithms to
face real applications with much higher security requirements. The first applies a single
ANS with state jumps controlled by a pseudorandom bit generator (PRBG). The second
one uses two copies of ANS, where PRBG manages the transition between the two ANSs.
The third algorithm deploys encoding function evolution to enhance the obtained security
level. The contributions of [34] boomed up the applicability of ANS in joint compression
and encryption a lot.

As mentioned in [34], though, the randomness of the pure Avalanche effect-based
encryption scheme is not enough to deal with high-level security applications. There are

Entropy 2022, 24, 375 14 of 33

cases where low-level security may be workable with the aid of other control mechanisms.
For example, the distribution of art collections and the verification of medical images are
under particular management rules, which is quite different from the communications
scenario among IoT sensors or devices considered in [34]. We believe that ANS might
still provide a useful jointly compressing and encrypting function for those applications.
Therefore, we will investigate the possibility of applying ANS to protect the intellectual
property rights (IPRs) of art collection pictures or check the integrity of medical images in
the next section.

4.3. ANS in Intellectual Property Rights Management and Integrity Checking of Digital Images

To exactly recover a time signal from its frequency domain representation, we need
to know both the magnitude and phase responses of the signal. Likewise, in ANS, both
the correct state value and content of the bitstream variable are a must for reconstructing a
digital image without loss. Based on its avalanche effect, we can apply tANS as a vehicle to
protect the intellectual property rights (IPRs) of art collection pictures or check the integrity
of medical images as described in the following sub-sections.

(a) Some Specific Characteristics of ANS

Before going into the details, let us recall several preferred features provided by ANS.

1. Lossless and Compressive Representation

As pre-described, ANS belongs to the category of entropy coding; lossless compression
is undoubtedly one of its profound properties. Therefore, it is pretty suitable for being
applied to digital art collection images or medical images, where compact and distortion-
free representation is of top priority.

Moreover, ANS provides a compression efficiency close to the Shannon limit, but
relatively few researches of ANS on image compression exist. The JPEG Standard committee
proposed JPEG XL [8] in 2017, in which the entropy coder changed to use rANS. Since JPEG
XL includes many pre-processing and optimization techniques, its reported compression
efficiency is better than the naive approach adopted in this work.

2. Avalanche and Retrospective Properties

The avalanche effect mentioned above is quite suitable for providing a compact
representation of digital art collection images. We can represent a digital art image by a
positive integer state and a bit sequence. Art collectors can open, says the state, to the
public as the evidence for claiming the ownership of this artwork and keep the bit sequence
in private as the verifier if a dispute occurs. Because of its retrospective and avalanche
characteristics, we think there will be an excellent opportunity to combine ANS with the
recently popular NFT (Non-Fungible Token) [11] to make the IPRs of artwork much more
secured. Similarly, we can use these two properties to check the integrity and protect the
privacy of medical images at the same time.

3. Severability

We can apply the compactness and the lossless properties of ANS mentioned above to
digital images in a block-segmented way. With ANS’s segmentable feature, we can assign
different levels of protection or degrees of integrity checking to various portions of an
image according to their importance. An artwork publisher who intends to sell his digital
artworks to more than one artwork collector can divide his art collection into different
pieces and price them according to the corresponding values. Then, the publisher can
generate the state and the bit sequence for representing each partition. He can now disclose
the state information to the potential customers as a marketing representative of this
partition in NFT applications. Moreover, the bit sequence of the same segmented area can
then be sent to the actual buyer as a voucher for certifying the ownership. Moreover, from
the marketing point of view, through the integration of ANS and NFT, a single physical
artwork collection can be distributed, shared, and sold in the virtual world, which enlarges
the potential market size and magnifies the market value of a digital artwork substantially.

Entropy 2022, 24, 375 15 of 33

(b) The Proposed Applications of ANS-based Digital Image Processing System

Figure 3 shows the information flow of the proposed ANS-based digital image process-
ing system. A bank of ANS encoders is used to encode a given image, where each encoder
generates a state and a bitstream representation for a given portion of the segmented input
image. All the generated state values are collected to form a state-map of the image, which
is made public and openly distributed in our system as a digital representation of that
particular picture. On the contrary, we keep the collection of generated bitstreams in the
artist’s (or a museum official’s) hands as proof of the ownership of that image (i.e., the
digital artwork). Notice that we include a segmentation mask into our system, indicating
the geometric pattern and the number of portions the input image could be partitioned.
With the aid of the mask, we can process different portions of an image with distinct ANS
encoders, where different SSFs are adopted to offer various realizations of ANS coding
functions. The more complex and erratic the mask is the higher our system’s security
protection.

Entropy 2022, 24, x FOR PEER REVIEW 15 of 34

We can apply the compactness and the lossless properties of ANS mentioned above
to digital images in a block-segmented way. With ANS’s segmentable feature, we can as-
sign different levels of protection or degrees of integrity checking to various portions of
an image according to their importance. An artwork publisher who intends to sell his dig-
ital artworks to more than one artwork collector can divide his art collection into different
pieces and price them according to the corresponding values. Then, the publisher can gen-
erate the state and the bit sequence for representing each partition. He can now disclose
the state information to the potential customers as a marketing representative of this par-
tition in NFT applications. Moreover, the bit sequence of the same segmented area can
then be sent to the actual buyer as a voucher for certifying the ownership. Moreover, from
the marketing point of view, through the integration of ANS and NFT, a single physical
artwork collection can be distributed, shared, and sold in the virtual world, which en-
larges the potential market size and magnifies the market value of a digital artwork sub-
stantially.
(b) The Proposed Applications of ANS-based Digital Image Processing System

Figure 3 shows the information flow of the proposed ANS-based digital image pro-
cessing system. A bank of ANS encoders is used to encode a given image, where each
encoder generates a state and a bitstream representation for a given portion of the seg-
mented input image. All the generated state values are collected to form a state-map of
the image, which is made public and openly distributed in our system as a digital repre-
sentation of that particular picture. On the contrary, we keep the collection of generated
bitstreams in the artist’s (or a museum official’s) hands as proof of the ownership of that
image (i.e., the digital artwork). Notice that we include a segmentation mask into our sys-
tem, indicating the geometric pattern and the number of portions the input image could
be partitioned. With the aid of the mask, we can process different portions of an image
with distinct ANS encoders, where different SSFs are adopted to offer various realizations
of ANS coding functions. The more complex and erratic the mask is the higher our sys-
tem’s security protection.

Figure 3. Block diagram of the proposed ANS-based digital image processing system for IPR pro-
tection of digital artwork collections. (Notice that the output image of the above figure has been
slightly enlarged to show the effect of segmented masking.).

Figure 4 shows the actual encoder we used to enhance our system’s security protec-
tion capability. We separate the input image into RGB components and segment each
color component into equal-sized blocks (called them sub-images) simply for ease of im-
plementation. Additionally, we add a block-based shuffling module to our system to in-
crease the confusion ability of our system. Finally, Figure 5 shows the block diagram of

Figure 3. Block diagram of the proposed ANS-based digital image processing system for IPR
protection of digital artwork collections. (Notice that the output image of the above figure has been
slightly enlarged to show the effect of segmented masking.).

Figure 4 shows the actual encoder we used to enhance our system’s security protection
capability. We separate the input image into RGB components and segment each color
component into equal-sized blocks (called them sub-images) simply for ease of implemen-
tation. Additionally, we add a block-based shuffling module to our system to increase the
confusion ability of our system. Finally, Figure 5 shows the block diagram of the actual
decoder used in our system. Of course, we can treat the key used to conduct the block-based
permutation as one of the security parameters of the proposed system.

Entropy 2022, 24, x FOR PEER REVIEW 16 of 34

the actual decoder used in our system. Of course, we can treat the key used to conduct the
block-based permutation as one of the security parameters of the proposed system.

Figure 4. The Block Diagram of the Actual Encoder Adopted in Our System.

Figure 5. The Block Diagram of the Actual Decoder Adopted in Our System.

5. Experimental Results
Through a series of experiments, we examine the applicability of the proposed tANS-

based system to protect IPRs of digital artwork collections and the integrity of medical
images in this section. The following experiment is conducted in Darwin MacBook-Pro.lo-
cal 18.7.0 Darwin Kernel Version 18.7.0; root:xnu-4903.278.44~1/RELEASE_X86_64 x86_64
computer system. For the ANS algorithm, we choose new generation entropy codecs: Fi-
nite State Entropy from [38], which is the first implementation of ANS developed by Yann
Collet.

5.1. tANS in IPRs Protection of Digital Artwork Collections
This section will utilize the segmentable and retrospective features of tANS to protect

the IPRs of an artwork image. To make readers better understand what we are doing, let
us examine the related processing flow for the digitized painting picture shown in Figure
6. (We choose a low-resolution picture as the testing benchmark to avoid violating copy-
rights. ANS coding operations will not affect the processed image quality because they
are conducted in the integer domain.)

Figure 4. The Block Diagram of the Actual Encoder Adopted in Our System.

Entropy 2022, 24, 375 16 of 33

Entropy 2022, 24, x FOR PEER REVIEW 16 of 34

the actual decoder used in our system. Of course, we can treat the key used to conduct the
block-based permutation as one of the security parameters of the proposed system.

Figure 4. The Block Diagram of the Actual Encoder Adopted in Our System.

Figure 5. The Block Diagram of the Actual Decoder Adopted in Our System.

5. Experimental Results
Through a series of experiments, we examine the applicability of the proposed tANS-

based system to protect IPRs of digital artwork collections and the integrity of medical
images in this section. The following experiment is conducted in Darwin MacBook-Pro.lo-
cal 18.7.0 Darwin Kernel Version 18.7.0; root:xnu-4903.278.44~1/RELEASE_X86_64 x86_64
computer system. For the ANS algorithm, we choose new generation entropy codecs: Fi-
nite State Entropy from [38], which is the first implementation of ANS developed by Yann
Collet.

5.1. tANS in IPRs Protection of Digital Artwork Collections
This section will utilize the segmentable and retrospective features of tANS to protect

the IPRs of an artwork image. To make readers better understand what we are doing, let
us examine the related processing flow for the digitized painting picture shown in Figure
6. (We choose a low-resolution picture as the testing benchmark to avoid violating copy-
rights. ANS coding operations will not affect the processed image quality because they
are conducted in the integer domain.)

Figure 5. The Block Diagram of the Actual Decoder Adopted in Our System.

5. Experimental Results

Through a series of experiments, we examine the applicability of the proposed tANS-
based system to protect IPRs of digital artwork collections and the integrity of medical
images in this section. The following experiment is conducted in Darwin MacBook-Pro.local
18.7.0 Darwin Kernel Version 18.7.0; root:xnu-4903.278.44~1/RELEASE_X86_64 x86_64
computer system. For the ANS algorithm, we choose new generation entropy codecs:
Finite State Entropy from [38], which is the first implementation of ANS developed by
Yann Collet.

5.1. tANS in IPRs Protection of Digital Artwork Collections

This section will utilize the segmentable and retrospective features of tANS to protect
the IPRs of an artwork image. To make readers better understand what we are doing,
let us examine the related processing flow for the digitized painting picture shown in
Figure 6. (We choose a low-resolution picture as the testing benchmark to avoid violating
copyrights. ANS coding operations will not affect the processed image quality because
they are conducted in the integer domain.)

Different colors in the mask define geometric patterns for different segmenting sub-
images according to various degrees of importance about the image’s content. As previously
addressed, a tANS encodes a sub-image into an outputs state and an associated bitstream.
As shown in Figure 7, our first experiment is to change one byte of the state value in the
encoded domain to see whether the decoded result will show the so-called avalanche effect.

Entropy 2022, 24, x FOR PEER REVIEW 17 of 34

(a) (b)

Figure 6. (a) The painting picture to be protected and (b) the mask used to segment the picture in
(a).

Different colors in the mask define geometric patterns for different segmenting sub-
images according to various degrees of importance about the image’s content. As previ-
ously addressed, a tANS encodes a sub-image into an outputs state and an associated
bitstream. As shown in Figure 7, our first experiment is to change one byte of the state
value in the encoded domain to see whether the decoded result will show the so-called
avalanche effect.

Figure 7. Flow chart of experiments for ANS’s avalanche effect in one-byte state value change. (No-
tice that the input, the output, and the mask images are of the same size.).

We randomly pick a sub-image defined by one specific color in the mask. Then, we
randomly change a byte of the state value of the chosen sub-image. We observe the corre-
sponding decoded output for the following two things:
(1) Does the damaged area of the decompressed image locate in the same areas where

the state value changed?
(2) Is the degree of contamination in the damage severe or not?

There are ten distinct areas with different geometric patterns defined in the mask in
our experiments. Figure 8 shows the snapshots corresponding to each sub-images, where
one byte of the state value in each sub-image is changed randomly.

Figure 6. (a) The painting picture to be protected and (b) the mask used to segment the picture in (a).

Entropy 2022, 24, 375 17 of 33

Entropy 2022, 24, x FOR PEER REVIEW 17 of 34

(a) (b)

Figure 6. (a) The painting picture to be protected and (b) the mask used to segment the picture in
(a).

Different colors in the mask define geometric patterns for different segmenting sub-
images according to various degrees of importance about the image’s content. As previ-
ously addressed, a tANS encodes a sub-image into an outputs state and an associated
bitstream. As shown in Figure 7, our first experiment is to change one byte of the state
value in the encoded domain to see whether the decoded result will show the so-called
avalanche effect.

Figure 7. Flow chart of experiments for ANS’s avalanche effect in one-byte state value change. (No-
tice that the input, the output, and the mask images are of the same size.).

We randomly pick a sub-image defined by one specific color in the mask. Then, we
randomly change a byte of the state value of the chosen sub-image. We observe the corre-
sponding decoded output for the following two things:
(1) Does the damaged area of the decompressed image locate in the same areas where

the state value changed?
(2) Is the degree of contamination in the damage severe or not?

There are ten distinct areas with different geometric patterns defined in the mask in
our experiments. Figure 8 shows the snapshots corresponding to each sub-images, where
one byte of the state value in each sub-image is changed randomly.

Figure 7. Flow chart of experiments for ANS’s avalanche effect in one-byte state value change.
(Notice that the input, the output, and the mask images are of the same size.).

We randomly pick a sub-image defined by one specific color in the mask. Then,
we randomly change a byte of the state value of the chosen sub-image. We observe the
corresponding decoded output for the following two things:

(1) Does the damaged area of the decompressed image locate in the same areas where
the state value changed?

(2) Is the degree of contamination in the damage severe or not?

There are ten distinct areas with different geometric patterns defined in the mask in
our experiments. Figure 8 shows the snapshots corresponding to each sub-images, where
one byte of the state value in each sub-image is changed randomly.

We measure our experiment’s compression performance based on the compression
ratio, defined as the file size before compression to the file size after compression. The
average compression ratio of our experiments is 88%. This ratio is not very impressive
as compared with conventional entropy coders. The reason behind this not-so-good
compression performance is that we did not take many pre-processing and optimization
techniques into account, which have been proved effective in enhancing compression
performance in JPEG XL. Another possible factor for the not-so-impressive compression
performance comes from the usage of tANS. Although tANS is one branch of ANSs, which
provides the best efficiency in realization and processing speed, it is not optimized for
image compression. This fact tells us that still there is a large room for us to develop
ANS-based approaches for providing good performance both in security protection and
compression ratio. As for the degree of contamination, those completely black blocks in the
sub-images of the decompressed picture tell us that the avalanche effect causes 100% of the
impact, even though only a one-byte state value is changed.

5.2. tANS in Integrity Checking of Digital Medical Images

Enforcing protection of the contents of medical imaging, such as computed tomogra-
phy (CT), magnetic resonance (MR), positron emission tomography (PET), mammography,
ultrasound, X-ray, has become a significant issue of computer security. Except for their
being valuable and essential for the early detection, diagnosis, and treatment of diseases,
their more and more widespread distribution makes developing security mechanisms to
guarantee their confidentiality, integrity, and traceability in an autonomous way becomes a
must. Facing such a demand, researchers proposed Reversible Watermarking (RW) [39,40]
schemes for images of sensitive content, e.g., medical images, such that any modification
may aspect their interpretation. However, extra data (the watermark) must be embedded
in the protection target, which usually increases the file size. In this section, we suggest

Entropy 2022, 24, 375 18 of 33

using tANS as the representative of the medical image content to achieve medical images’
security protection and file size reduction simultaneously.

Entropy 2022, 24, x FOR PEER REVIEW 18 of 34

Figure 8. Snapshots of each sub-images, where one byte of the state value in each sub-image is changed
randomly. (Notice that the byte change is zero in the most bottom sub-image, i.e., it is the original
image.)

We measure our experiment’s compression performance based on the compression
ratio, defined as the file size before compression to the file size after compression. The
average compression ratio of our experiments is 88%. This ratio is not very impressive as
compared with conventional entropy coders. The reason behind this not-so-good com-
pression performance is that we did not take many pre-processing and optimization tech-
niques into account, which have been proved effective in enhancing compression perfor-
mance in JPEG XL. Another possible factor for the not-so-impressive compression perfor-

Figure 8. Snapshots of each sub-images, where one byte of the state value in each sub-image is
changed randomly. (Notice that the byte change is zero in the most bottom sub-image, i.e., it is the
original image.)

We use the same system given in Figure 7 to test the integrity of medical images.
Figures 9 and 10, respectively, show the original input and contaminated output images.
Notice that the ability to check Images’ integrity comes from tANS’ avalanche feature while
the segmentability of tANS contributes to parallelizability in implementation.

Entropy 2022, 24, 375 19 of 33

Entropy 2022, 24, x FOR PEER REVIEW 19 of 34

mance comes from the usage of tANS. Although tANS is one branch of ANSs, which pro-
vides the best efficiency in realization and processing speed, it is not optimized for image
compression. This fact tells us that still there is a large room for us to develop ANS-based
approaches for providing good performance both in security protection and compression
ratio. As for the degree of contamination, those completely black blocks in the sub-images
of the decompressed picture tell us that the avalanche effect causes 100% of the impact,
even though only a one-byte state value is changed.

5.2. tANS in Integrity Checking of Digital Medical Images
Enforcing protection of the contents of medical imaging, such as computed tomogra-

phy (CT), magnetic resonance (MR), positron emission tomography (PET), mammogra-
phy, ultrasound, X-ray, has become a significant issue of computer security. Except for
their being valuable and essential for the early detection, diagnosis, and treatment of dis-
eases, their more and more widespread distribution makes developing security mecha-
nisms to guarantee their confidentiality, integrity, and traceability in an autonomous way
becomes a must. Facing such a demand, researchers proposed Reversible Watermarking
(RW) [39,40] schemes for images of sensitive content, e.g., medical images, such that any
modification may aspect their interpretation. However, extra data (the watermark) must
be embedded in the protection target, which usually increases the file size. In this section,
we suggest using tANS as the representative of the medical image content to achieve med-
ical images’ security protection and file size reduction simultaneously.

We use the same system given in Figure 7 to test the integrity of medical images.
Figures 9 and 10, respectively, show the original input and contaminated output images.
Notice that the ability to check Images’ integrity comes from tANS’ avalanche feature
while the segmentability of tANS contributes to parallelizability in implementation.

Figure 9. The original testing medical image.

Figure 9. The original testing medical image.

Entropy 2022, 24, x FOR PEER REVIEW 19 of 34

mance comes from the usage of tANS. Although tANS is one branch of ANSs, which pro-
vides the best efficiency in realization and processing speed, it is not optimized for image
compression. This fact tells us that still there is a large room for us to develop ANS-based
approaches for providing good performance both in security protection and compression
ratio. As for the degree of contamination, those completely black blocks in the sub-images
of the decompressed picture tell us that the avalanche effect causes 100% of the impact,
even though only a one-byte state value is changed.

5.2. tANS in Integrity Checking of Digital Medical Images
Enforcing protection of the contents of medical imaging, such as computed tomogra-

phy (CT), magnetic resonance (MR), positron emission tomography (PET), mammogra-
phy, ultrasound, X-ray, has become a significant issue of computer security. Except for
their being valuable and essential for the early detection, diagnosis, and treatment of dis-
eases, their more and more widespread distribution makes developing security mecha-
nisms to guarantee their confidentiality, integrity, and traceability in an autonomous way
becomes a must. Facing such a demand, researchers proposed Reversible Watermarking
(RW) [39,40] schemes for images of sensitive content, e.g., medical images, such that any
modification may aspect their interpretation. However, extra data (the watermark) must
be embedded in the protection target, which usually increases the file size. In this section,
we suggest using tANS as the representative of the medical image content to achieve med-
ical images’ security protection and file size reduction simultaneously.

We use the same system given in Figure 7 to test the integrity of medical images.
Figures 9 and 10, respectively, show the original input and contaminated output images.
Notice that the ability to check Images’ integrity comes from tANS’ avalanche feature
while the segmentability of tANS contributes to parallelizability in implementation.

Figure 9. The original testing medical image.

Entropy 2022, 24, x FOR PEER REVIEW 20 of 34

Figure 10. Snapshots of each sub-image, where one byte of the state value in each sub-image is changed
randomly. (Notice that in the most bottom sub-image, the byte change is zero.) The independence of
the contamination of each sub-image shows the ability to conduct the integrity checking of the
whole image in parallel.

6. Performance Comparison among Various Lossless Compression Algorithms
As suggested by anonymous reviewers, the comparisons of the performance among

various lossless compression algorithms, in terms of compression ratio and execution
speed, are reported in this Section.

6.1. Description of Experimental Settings
Environment setting is Darwin MacBook-Pro.local 18.7.0 Darwin Kernel Version

18.7.0; root: xnu-4903.278.44~1/RELEASE_X86_64 x86_64; the language is python; the ed-
itor is jupyter notebook. The algorithms we took for comparison included Huffman cod-
ing, Arithmetic Coding, lzma, zlib, gzip, bz2, rANS, Finite State Entropy(tANS),
zstd(tANS), and liblzfse(tANS) with sources from [41–53]. In particular, zstd and liblzfse
are the two table ANS-based algorithms respectively proposed by Facebook and Apple.
Our choice with these algorithms is to compare different lossless compression algorithms
against the ANS counterpart.

The pictures we chose for benchmarking include all black, lattice, Lena, fruits, ba-
boon, airplane, and chest images with sources from [54]. The reason we choose these im-
ages is for diversity. Our choice with the all-black and the black-and-white lattice images
is to see how the algorithms, as mentioned above, performed on low entropy images with
one color and two colors. Similarly, our choice with Lena, fruits, baboon, and airplane
images is to see how those algorithms performed on classic gray images used in image

Figure 10. Snapshots of each sub-image, where one byte of the state value in each sub-image is
changed randomly. (Notice that in the most bottom sub-image, the byte change is zero.) The
independence of the contamination of each sub-image shows the ability to conduct the integrity
checking of the whole image in parallel.

Entropy 2022, 24, 375 20 of 33

6. Performance Comparison among Various Lossless Compression Algorithms

As suggested by anonymous reviewers, the comparisons of the performance among
various lossless compression algorithms, in terms of compression ratio and execution speed,
are reported in this section.

6.1. Description of Experimental Settings

Environment setting is Darwin MacBook-Pro.local 18.7.0 Darwin Kernel Version 18.7.0;
root: xnu-4903.278.44~1/RELEASE_X86_64 x86_64; the language is python; the editor
is jupyter notebook. The algorithms we took for comparison included Huffman coding,
Arithmetic Coding, lzma, zlib, gzip, bz2, rANS, Finite State Entropy(tANS), zstd(tANS),
and liblzfse(tANS) with sources from [41–53]. In particular, zstd and liblzfse are the two
table ANS-based algorithms respectively proposed by Facebook and Apple. Our choice
with these algorithms is to compare different lossless compression algorithms against the
ANS counterpart.

The pictures we chose for benchmarking include all black, lattice, Lena, fruits, baboon,
airplane, and chest images with sources from [54]. The reason we choose these images
is for diversity. Our choice with the all-black and the black-and-white lattice images is
to see how the algorithms, as mentioned above, performed on low entropy images with
one color and two colors. Similarly, our choice with Lena, fruits, baboon, and airplane
images is to see how those algorithms performed on classic gray images used in image
processing communities. Finally, we chose the chest image is to see how these algorithms
performed on a medical image. In order to show how different these pictures are, we show
their histograms also. By the way, our experiments did not involve any preprocessing of
the testing images; therefore, the compression ratios do not as good as expected. However,
we can still see the performance differences among all these algorithms.

6.2. Experiment Results

In the following, we will take the all-black image as an illustrative example to address
and explain our experiment’s procedures and results first. The leftmost (a) and the middle
(b) pictures of Figure 11, respectively, show the all-black image’s snapshot and histogram,
while the rightmost (c) chart reports the compression ratios of all algorithms we want to
compare. Here, the compression ratio is defined as the ratio of the compressed file size to
the uncompressed one. The x-axis of the middle picture denotes the image’s RGB value,
which ranges from 0 (pure black) to 255 (pure white); the corresponding y-axis represents
the number of appearances of each RGB value. Histograms help characterize how different
colors are distributed within an image. Notice that the higher the height of the bar is in the
(c) chart, the poorer the compression performance.

Following the same arguments, Figures 12–17 show the related experimental infor-
mation associated with the black-and-white lattice, the Lena, the fruits, the baboon, the
airplane, and the chest images, respectively.

For providing a clear picture of the relative compression ratio comparison, Table 7
shows the compression ratio of each algorithm in numerals. Moreover, to show the timing
performance of all benchmark algorithms, Table 8 reports the time consuming of each
tested algorithm we obtained in seconds. Notice that, as abovementioned, no optimization
preprocess has been included in any of our experiments.

Entropy 2022, 24, 375 21 of 33

Entropy 2022, 24, x FOR PEER REVIEW 21 of 34

processing communities. Finally, we chose the chest image is to see how these algorithms
performed on a medical image. In order to show how different these pictures are, we show
their histograms also. By the way, our experiments did not involve any preprocessing of
the testing images; therefore, the compression ratios do not as good as expected. However,
we can still see the performance differences among all these algorithms.

6.2. Experiment Results
In the following, we will take the all-black image as an illustrative example to address

and explain our experiment’s procedures and results first. The leftmost (a) and the middle
(b) pictures of Figure 11, respectively, show the all-black image’s snapshot and histogram,
while the rightmost (c) chart reports the compression ratios of all algorithms we want to
compare. Here, the compression ratio is defined as the ratio of the compressed file size to
the uncompressed one. The x-axis of the middle picture denotes the image’s RGB value,
which ranges from 0 (pure black) to 255 (pure white); the corresponding y-axis represents
the number of appearances of each RGB value. Histograms help characterize how differ-
ent colors are distributed within an image. Notice that the higher the height of the bar is
in the (c) chart, the poorer the compression performance.

(a) The testing image (b) The histogram of (a)

(c) Comparisons of compression ratios

Figure 11. The experimental related information associated with the all-black image.

Following the same arguments, Figures 12–17 show the related experimental infor-
mation associated with the black-and-white lattice, the Lena, the fruits, the baboon, the
airplane, and the chest images, respectively.

Figure 11. The experimental related information associated with the all-black image.

Entropy 2022, 24, x FOR PEER REVIEW 22 of 34

(a) The testing image (b) The histogram of (a)

(c) Comparisons of compression ratios

Figure 12. The experimental related information associated with the black-and-white lattice image.

Figure 13. The experimental related information associated with the Lena image.

(a) The testing image (b) The histogram of (a)

(c) Comparisons of compression ratios

Figure 12. The experimental related information associated with the black-and-white lattice image.

Entropy 2022, 24, 375 22 of 33

Entropy 2022, 24, x FOR PEER REVIEW 22 of 34

(a) The testing image (b) The histogram of (a)

(c) Comparisons of compression ratios

Figure 12. The experimental related information associated with the black-and-white lattice image.

Figure 13. The experimental related information associated with the Lena image.

(a) The testing image (b) The histogram of (a)

(c) Comparisons of compression ratios

Figure 13. The experimental related information associated with the Lena image.

Entropy 2022, 24, x FOR PEER REVIEW 23 of 34

(a) The testing image (b) The histogram of (a)

(c) Comparisons of compression ratios

Figure 14. The experimental related information associated with the fruits image.

(a) The testing image (b) The histogram of (a)

(c) Comparisons of compression ratios

Figure 15. The experimental related information associated with the baboon image.

Figure 14. The experimental related information associated with the fruits image.

Entropy 2022, 24, 375 23 of 33

Entropy 2022, 24, x FOR PEER REVIEW 23 of 34

(a) The testing image (b) The histogram of (a)

(c) Comparisons of compression ratios

Figure 14. The experimental related information associated with the fruits image.

(a) The testing image (b) The histogram of (a)

(c) Comparisons of compression ratios

Figure 15. The experimental related information associated with the baboon image. Figure 15. The experimental related information associated with the baboon image.
Entropy 2022, 24, x FOR PEER REVIEW 24 of 34

(a) The testing image (b) The histogram of (a)

(c) Comparisons of compression ratios

Figure 16. The experimental related information associated with the airplane image.

(a) The testing image (b) The histogram of (a)

(c) Comparisons of compression ratios

Figure 17. The experimental related information associated with the chest image.

Figure 16. The experimental related information associated with the airplane image.

Entropy 2022, 24, 375 24 of 33

Entropy 2022, 24, x FOR PEER REVIEW 24 of 34

(a) The testing image (b) The histogram of (a)

(c) Comparisons of compression ratios

Figure 16. The experimental related information associated with the airplane image.

(a) The testing image (b) The histogram of (a)

(c) Comparisons of compression ratios

Figure 17. The experimental related information associated with the chest image. Figure 17. The experimental related information associated with the chest image.

6.3. Observations Obtained from Our Experiments

Those rows with gray backgrounds in Table 7 report compression ratios obtained from
ANS-related algorithms. We could make some comments to these results:

1. ANS-related algorithms performed well if the data distribution is highly skewed,
inferred from the all-black and the lattice images.

2. ANS-related algorithms performed generally if the data distribution is almost uniform,
inferred from Lena, fruits, and baboon images.

3. ANS-related algorithms performed well for medical images (c.f., chest image) because
most of the area in a medical image is of the same color black or white), which also
coincides with our first comment.

4. As for the compression ratio, we found that ANS-related algorithms performed almost
the same as the arithmetic coding or a little bit better, which is as expected from the
theoretical point of view.

5. As for the time consumption, we found that ANS-related algorithms almost need the
least execution time among all algorithms and are comparable to the Huffman code,
which is also as expected from the theoretical point of view.

As we said in Section 6.2, we did not employ any image preprocessing before com-
pressing the images. This fact explains why the compression ratios of some images are not
as good as expected. In general, some steps before applying the entropy coding are a must
within a standard image compression algorithm. For example, in pik, which Google releases
and adopts ANS as its source coding component, it involved some image preprocessing
techniques to enhance its compression performance.

Entropy 2022, 24, 375 25 of 33

Table 7. Compression ratios of all benchmark images in all tested algorithms.

Algorithm
Picture

All Black Lattice Lena Fruits Baboon Airplane Chest

Arithmetic-code 0.00131 0.22174 0.97008 0.96003 0.97161 0.83429 0.79038
Huffman-code 0.12533 0.24435 0.97291 0.96212 0.97544 0.83673 0.79266

rANS 4 × 10−5 0.047 0.90697 0.95826 0.98997 0.71251 0.31487
tANS_FSE 7 × 10−5 0.2058 0.93765 0.94194 0.95575 0.81241 0.72081
tANS_zstd 5 × 10−5 0.00238 0.87594 0.90971 0.96825 0.70071 0.14375

tANS_liblzfse 0.00077 0.00576 0.91833 0.93128 0.96233 0.74537 0.18732
lzma 0.00031 0.00214 0.75684 0.80398 0.86879 0.63955 0.12609
zlib 0.001 0.0132 0.89948 0.92114 0.94867 0.75443 0.18086
gzip 0.00101 0.00967 0.89949 0.92116 0.94869 0.75447 0.17982
bz2 6 × 10−5 0.00216 0.73081 0.80389 0.91668 0.59302 0.1007

Table 8. Time consuming of all benchmark image in all tested algorithms (seconds).

Algorithm
Picture

All Black Lattice Lena Fruits Baboon Airplane Chest

Arithmetic-code 0.00543 0.00416 0.00395 0.00485 0.00646 0.00515 0.0057
Huffman-code 0.00249 0.0022 0.00206 0.00263 0.00247 0.00267 0.00263

rANS 0.00183 0.00223 0.00178 0.002 0.00233 0.00196 0.00228
tANS_FSE 0.00241 0.00212 0.00189 0.00219 0.0018 0.00188 0.0017
tANS_zstd 0.01235 0.11686 0.11693 0.12242 0.10236 0.18194 1.84513

tANS_liblzfse 0.00887 0.0187 0.01367 0.01394 0.01223 0.01776 0.07471
lzma 0.03119 0.15142 0.19254 0.19741 0.18212 0.20994 2.00818
zlib 0.00372 0.01307 0.02393 0.02478 0.02246 0.02851 0.15271
gzip 0.00449 0.0497 0.024 0.02522 0.02261 0.02967 0.2924
bz2 0.00866 0.07017 0.06489 0.07004 0.07578 0.06919 0.19868

7. Conclusions

ANS is valued by the industry precisely because it captures the benefits of both Huff-
man coding and arithmetic coding. Surprisingly, compared with Huffman and arithmetic
coding, the application of ANS to image compression is rare. Therefore, this paper intends
to give a self-contained review of ANS-related technologies in depth and apply them
to compress and encrypt digital images. ANS’s lossless compression feature makes it
especially suitable for distortion-less compression-related applications, such as medical
and digital art collection images. The retrospective of ANS comes from its avalanche
breakdown characteristic, which can easily be realized by using table ANS. Further, we
suggested combining ANS with the recently popular NFT (non-fungible token) to make
the intellectual rights of artwork much more secure.

In addition, as application examples, we explored the feasibility of using ANS to art
collection images and medical images. We thoroughly investigated ANS’s avalanche effect,
which makes ANS applicable to lossless compression, segmentation, and retrospective
digital images. Moreover, we successfully applied ANS’s avalanche characteristic and
segmentability to check the integrity of medical images in parallel.

As ANS is still under development, there is enormous room for future research. We
list some topics that we plan to explore shortly in the following:

(1) The combinatorial complexity in designing proper SSF makes developing an optimal
ANS codec concerning a specific target becomes very challenging. Thus, finding a
heuristic approach for reaching an effective ANS solution for a given input source is
of great interest.

(2) Based on the obtained states and bitstreams, develop some post-processing, such as
prefix or suffix coding, or go through a hash function to find a unique state represen-
tation is worthy of doing.

(3) Develop an efficient way to combine image recognition and segmentation techniques
to automatically find Region of Interests (ROIs) in a picture so that the mask does not

Entropy 2022, 24, 375 26 of 33

need to be manually set. This subject is of interest and beneficial to those planning to
develop ANS-based image protection applications systematically and automatically.

(4) Since one of the tANS coded results is a bitstream, which indeed can be losslessly
compressed again to make the space smaller, then, “what is the best combination of
all possible entropy coders?” would be an exciting research topic.

(5) Before the image enters the ANS coder, it can be processed (transformed) in ad-
vance. Since the mask can divide an image at will, applying other image processing
techniques to a sub-image with arbitrary shapes becomes challenging.

(6) As mentioned at the end of Section 4.1, properly combining ANS with DNN to
produce a fast compression mechanism with a high compression ratio is a research
direction worthy of further exploration and investigation.

Author Contributions: Formal analysis, P.A.H.; Funding acquisition, J.-L.W.; Investigation, P.A.H.
and J.-L.W.; Methodology, P.A.H.; Project administration, J.-L.W.; Resources, J.-L.W.; Software, P.A.H.;
Supervision, J.-L.W.; Writing—original draft, P.A.H.; Writing—review & editing, J.-L.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by Minister of Science and Technology, Taiwan MOST 109-2218-
E-002-015.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

This part of the appendix presents an illustrative example for understanding the
process of non-uniform ABS encoding.

Example A-1. Let us consider a non-uniformly distributed binary source with distri-
butions p0 = 0.25 and p1 = 0.75. In this example, since p0

p1
= 1

3 , the corresponding SSF will
allocate one quarter of all possible states to the symbol ‘s = 0’ and three quarters of them to
the symbol ‘s = 1’.

To achieve this goal, we detail the construction flow of the lookup table of Example A-1
in the following. According to Equation (1), the encoding function of symbol 0 is C(x, 0) =
4x; the encoding function of symbol 1 is C(x, 1) = 4

3 x. The physical interpretation is that
for every four states, there will be a state corresponding to symbol 0; every 4

3 states, there
will be a state corresponding to symbol 1. Because the ratio involves non-integer numbers,
which can be synonymous with every four states, three of them correspond to symbol 1 and
the others to symbol 0. If expressed by a coding table, the result is shown as in Table A1.

Table A1. The coding table realization of non-uniform ABS for Example A-1.

x′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13
x s = 0 0 1 2 3
x s = 1 0 1 2 3 4 5 6 7 8 9

From the coding table, it can be found that the state corresponding to symbol 0 does
appear once every four, and the state corresponding to symbol 1 does appear three times in
each four. Let us extend the above discussions further and consider the situations associated
with several different probability distributions. Figure A1 illustrates the even and the odd
number distributions associated with different probabilities of the symbol 1, if the ideal
ABS coding function, C(x, s) = x′ = x

ps
, is applied directly. Since the involved distributions

of symbols are the same as those in [35], we obtain the same even-odd distribution patterns,
as shown in Figure 1 of [35].

Entropy 2022, 24, 375 27 of 33

Entropy 2022, 24, x FOR PEER REVIEW 27 of 34

Author Contributions: Formal analysis, P.A.H.; Funding acquisition, J.-L.W.; Investigation, P.A.H.
and J.-L.W.; Methodology, P.A.H.; Project administration, J.-L.W.; Resources, J.-L.W.; Software,
P.A.H.; Supervision, J.-L.W.; Writing—original draft, P.A.H.; Writing—review & editing, J.-L.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Minister of Science and Technology, Taiwan MOST 109-2218-
E-002-015.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A
This part of the appendix presents an illustrative example for understanding the pro-

cess of non-uniform ABS encoding.
Example A-1. Let us consider a non-uniformly distributed binary source with distri-

butions 𝑝଴ = 0.25 𝑎𝑛𝑑 𝑝ଵ = 0.75. In this example, since ௣బ௣భ = ଵଷ, the corresponding SSF
will allocate one quarter of all possible states to the symbol ‘s = 0′ and three quarters of
them to the symbol ‘s = 1′.

To achieve this goal, we detail the construction flow of the lookup table of Example
A-1 in the following. According to Equation (1), the encoding function of symbol 0 is 𝐶(𝑥, 0) = 4𝑥; the encoding function of symbol 1 is 𝐶(𝑥, 1) = ସଷ 𝑥. The physical interpreta-
tion is that for every four states, there will be a state corresponding to symbol 0; every ସଷ
states, there will be a state corresponding to symbol 1. Because the ratio involves non-
integer numbers, which can be synonymous with every four states, three of them corre-
spond to symbol 1 and the others to symbol 0. If expressed by a coding table, the result is
shown as in Table A1.

Table A1. The coding table realization of non-uniform ABS for Example A-1.

x′ 0 1 2 3 4 5 6 7 8 9 10 11 12 13
x s = 0 0 1 2 3
x s = 1 0 1 2 3 4 5 6 7 8 9

From the coding table, it can be found that the state corresponding to symbol 0 does
appear once every four, and the state corresponding to symbol 1 does appear three times
in each four. Let us extend the above discussions further and consider the situations asso-
ciated with several different probability distributions. Figure A1 illustrates the even and
the odd number distributions associated with different probabilities of the symbol 1, if the
ideal ABS coding function, 𝐶(𝑥, 𝑠) = 𝑥ᇱ = ௫௣ೞ, is applied directly. Since the involved distri-
butions of symbols are the same as those in [35], we obtain the same even-odd distribution
patterns, as shown in Figure 1 of [35].

Figure A1. In ABS, the even and the odd number distributions associated with different probabilities
of the symbol 1.
Figure A1. In ABS, the even and the odd number distributions associated with different probabilities
of the symbol 1.

Take the above figure as an example: in the second row, p1 = 3
7 , symbol 1 (deep-blue

block) appears three times with a period of seven; as for the third row, where p1 = 1
3 ,

symbol 1 appears once with a period of three; and, in the fourth row, where p1 = 3
10 ,

symbol 1 appears three times with a period of ten. However, if one looks at Table A1 in
depth, one will find that the ideal encoding function, C(x, 1) = 4

3 x, does not give the
matched result presented on the coding table. For example, when x = 2, s = 1, the third row-
and- fourth column of the coding table shows that the corresponding next state is 3, but
according to the ideal encoding function, the result should be C(2, 1) = 4

3 ∗ 2 = 2.67. The
reason for this mismatch comes from the fact that, as indicated in Equation (1), the state
range expansion in ABS (or ANS in general) is just inversely approximately proportional
to the symbol’s probability. In other words, even for a simple non-uniform binary source,
the applicable ABS coding function is not unique. According to the actual probability
distributions, one must modify the naive encoding function to provide good compression
performance.

Based on the abovementioned design guidelines for SSF and observations from
Table A1, we deduce that a better SSF for Example A-1 would be:

s(x) =
{

0, x mod 4 = 0
1, otherwise

Or s(x) will map the non-negative integers into a recurring decimal with the repeating
pattern “0111”. The proper Encoding and Decoding Functions respectively are:

C(x, s) = x′ =
{

4x, s = 0
4
⌊ x

3
⌋
+ mod(x, 3) + 1 , s = 1

(A1)

D
(

x′
)
= (s, x) =

{ (
0, x

4
)
, mod(x, 4) = 0(

1, 3
⌊ x

4
⌋
+ mod(x, 4)− 1

)
, otherwise

(A2)

The notation mod (x, N) stands for the operation x mod N in the above expressions.
Moreover, Equations (A1) and (A2) are special cases of the range Asymmetric Numeral
System (rANS), which will be addressed in Section 3.2.

Appendix B

This part of the appendix presents pseudo-codes and illustration examples of the ANS
Stream Encoding and Decoding.

Let Is = [LIs, UIs] denote the designated State Range, where LIs and UIs represent the
allowable state values’ lower and upper bounds. Moreover, let s be the to-be-encoded
source symbol and C(s, x) = x′ be the corresponding ANS encoding function. Then,

Entropy 2022, 24, 375 28 of 33

the renormalization and the corresponding ANS Stream encoding processes presented in
Section 3.2(b) cab be addressed by the following pseudo codes:

ANS Stream Encoding : {
while(x /∈ Is or x > UIs) {

put mod(x, 2) to the MSB o f the ′ANS
−bitstream variable′;

x =
⌊ x

2
⌋

;
}

x′ = C(s, x)
}

Similarly, in ANS decoding, the state value may be smaller than the designated range.
Now, the renormalization process shifts the out-of-ranged state one bit to its left (i.e.,
multiplies the state value by (2)). We then extract the most significant bit (MSB) from the
ANS-bitstream variable and add it into the LSB of the magnified state value.

For example, let us suppose the target range of state is [15,29]. Assume the content of
the ANS-bitstream variable is 1102, and the current state is 5, which is less than the permis-
sible range lower bound 15, so renormalization is a must. Since the binary representation
of 5 is 1012, after shifting one bit to the left, we have 10102 = 10. Now, extracting the MSB
from the ANS-bitstream variable, which is 1, and adding it to the just obtained range value
10, we have the new current state value 11= 10112, which is still less than the lower bound
15; clearly, we have to conduct left-shifting operation one time more. After applying the
second left bit shifting to 11 and adding the second MSB of the ANS-bitstream variable
(which is 1) to it, we have the newest state value 101112 = 23, which is now within the
target state range, and the renormalization process ends.

Follow the same idea, the corresponding ANS Stream decoding processes presented
in Section 3.2(b) can be addressed by the following pseudo codes:

ANS Stream Decoding : {
(s, x) = D(x′)

use s;
while(x /∈ Is or x < LIs) {

x = 2x + 1 bit taken f rom the MSB o f the ′ANS bitstream Variable ′;
}
}

Up to now, we know how to perform ANS stream encoding and decoding if the
permissible state range is given; but the question is how to determine the proper state
range such that the corresponding ANS will provide good compression and execution
performances. According to the basic definitions and characteristics of ANS, for each
source symbol si, there will be an allowable state range, Isi , {Lsi, Lsi + 1, . . . , b·Lsi −
1}, where b is the base of the used number system (i.e., b = 2 and b = 10 for the binary
and the decimal number systems, respectively). As for all the involved symbols, it is
straightforward to get the following state range bounds: LIs ≥ L and UIs ≤ b·L − 1.
Generally speaking, if we select L as a power of two and let b = 2, just like we have done
in the abovementioned ANS stream coding processes, the associated ANS will be more
efficient in practical implementations. A nature question may arise now: Does an allowable
state value have to be located within the range of {Ls, Ls + 1, . . . , b·Ls − 1}? In other words,
at least, there are bLs possible states in Is. To answer this question, let us take an extreme
example that does not conform to the above condition. Suppose b = 2 and assume the range
of state Is = {5, 6}, which does violate the state range constraint (that should be {5, (2*5 −
1)} = {5,9}), as mentioned earlier. Suppose the current calculated state value is 7, which
is greater than the allowable maximum state value 6. According to the renormalization
process, we should shift state 6 one bit to the right and get the new state value 3. After

Entropy 2022, 24, 375 29 of 33

adding the MSB extracted from the ANS-bitstream variable (assume it is 1), the state value
changes from 3 to 4. That is, in the renormalization process, the target state range {5, 6} has
been skipped entirely. It means that there is no way to return to the allowed state range for
conducting operations afterward. Use the Finite State Machine language.

Appendix C

This part of the appendix presents a detailed and step-by-step illustration example for
understanding tANS encoding and decoding processes.

Example C-1. Suppose the input source has four symbols A : {a, b, c, d}, and the
corresponding probability distributions are pa =

2
16 , pb = 3

16 , pc =
5

16 , pd = 6
16 . Now, let

us consider the following to-be-compressed sequence ‘cabcaada.’ According to the tANS
coding processes summarized in Section 3.3(c), we have

Step 1: Select L = 16 => State range I := {16, 17, . . . , 31} and sub-cycle length for
each symbol becomes:

Ia = [La, 2La − 1] = [2, 3] => qa =
La
L = 2

16 , |Ia| = 2
Ib = [Lb, 2Lb − 1] = [3, 5] => qb = Lb

L = 3
16 , |Ib| = 3

Ic = [Lc, 2Lc − 1] = [5, 9] => qc =
Lc
L = 5

16 , |Ic| = 5
Id = [Ld, 2Ld − 1] = [6, 11] => qc =

Lc
L = 6

16 , |Id| = 6

It can be found in step 1 that, for each symbol s, qs = ps, there is no compression
performance deficiency because L is exactly a power of 2.

Step 2: Determine the SSF, s(x) = s, and its tabularized encoding and decoding
functions.

Since the choice of SSF has many possibilities here as follows:

s(x) =


a, i f x ∈ {16, 31}

b, i f x ∈ {19, 22, 26}
c, i f x ∈ {17, 21, 24, 27, 29}

d, i f x ∈ {18, 20, 23, 25, 28, 30}

.

From step 1, we know the full cycle range is [2, 11], which is composed of the following
four sub-cycles: Ia = [2, 3], Ib = [3, 5], Ic = [5, 9], and Id = [6, 11]; and with the aid of
the above SSF, Tables A2 and A3 show the associated tabularized encoding and decoding
functions, respectively.

Table A2. tANS tabularized Encoding Function associated with Example C-1.

s
x

2 3 4 5 6 7 8 9 10 11

a 16 31 - - - - - - - -
b - 19 22 26 - - - - - -
c - - - 17 21 24 27 29 - -
d 18 20 23 25 28 30

Table A3. tANS tabularized Decoding Function associated with Example C-1.

x′ 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
x 2 5 6 3 7 6 4 8 7 9 5 8 10 9 11 3

That is, according to the current state x, the next encoded state x′ will respectively
be C(a, 2) = 16, or C(a, 3) = 31. Moreover, according to the designed SSF, x’ = 23
corresponds to the fourth member concerning the sub-cycle of symbol d. It is the third
entry of Id = [6, 11], that is 8.

Step 3: Determine the encoding table and decoding table according to the symbol
spread function defined in Step 2.

Entropy 2022, 24, 375 30 of 33

For ease of explanation, we present the resulting encoding table first and choose an
example table entry to verify its correctness the second. According to the form of encoding
table presented in Table 5, Table A4 shows the complete encoding table associated with
Example C1. The first row indicates the current input state value in the table, and the first
column denotes the to-be-encoded symbol. Each entry of the table consists of two elements:
the top element gives the value of the encoded state after renormalization; at the same time,
the bottom presents the content of the (ANS-) stream variable.

Table A4. The complete tANS encoding table associated with Example C1.

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s = a 16
000

16
001

16
010

16
011

16
100

16
101

16
110

16
111

31
000

31
001

31
010

31
011

31
100

31
101

31
110

31
111

s = b 22
00

22
01

22
10

22
11

26
00

26
01

26
10

26
11

19
000

19
001

19
010

19
010

19
100

19
101

19
110

19
111

s = c 27
0

27
1

29
0

29
1

17
00

17
01

17
10

17
11

21
00

21
01

21
10

21
11

24
00

24
01

24
10

24
10

s = d 23
0

23
1

25
0

25
1

28
0

28
1

30
0

30
1

18
00

18
01

18
10

18
11

20
00

20
01

20
10

20
11

Now, take the gray-colored entry as a benchmark for verification. That is, the current
input state is 25, and the symbol to be encoded is c. According to Table A4, C(c, 25) =
NOT FOUND in the first step, this is because the legal state range of symbol c (cf. Table A2)
would be Ic = [Lc, 2Lc − 1] = [5, 9]. Thus, the pre-described renormalization process has
to be applied. According to the renormalization rule mentioned in Section 3.2(b), we should
shift right 25 by 2 (= log2

⌊
x
Lc

⌋
= log2

⌊ 25
5
⌋
) bits and put the two LSBs (01) of the state

2510 = 110012 into the bitstream variable in order. So, the content of the bitstream variable
changes from empty to 102 and that of the state value from 2510 = 110012 to 610 = 1102.
Since 610 is within the legal state range of symbol c, the encoding process ends. Finally,
according to Table A2, C(s, x) = x′ => C(c, 6) = 21, which is the next state. As explained
above, this entry stores the bit sequence 012 on the bitstream variable and outputs the
corresponding next state 21. We can fill in all other entries in similar ways.

Follows the form of decoding table presented in Table 6, Table A5 shows the complete
decoding table associated with Example C-1.

Table A5. The complete tANS decoding table associated with Example C1.

x′ (Current State) 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
s (generated

symbol) a c d b d c b d c d b c d c d a

K (# of bits
extracted from the
bitstream variable)

3 2 2 3 2 2 2 1 2 1 2 1 1 1 1 3

X (next state) + y 16
+y

20
+y

24
+y

24
+y

28
+y

24
+y

16
+y

16
+y

28
+y

18
+y

20
+y

16
+y

20
+y

18
+y

22
+y

24
+y

When decoding, let y denote the bit sequence extracted from the bitstream variable.
Again, we take the gray-colored entry as a benchmark for verification. That is, the input
state to the decoder is 24. According to Table A2, the generated symbol is c, and the
corresponding decoded state value would be 7. However, 7 is not in the legal state range
I := [16, 31], so we should left-shift 7 by 2 (= R− blog2(7)c = 4− blog2(7)c) bit and add K
(=2) bits taken from the bitstream variable (denoted as y) to the renormalized result. It is
easy to check that the output of the decoder becomes 28 + y now. We can fill in all other
table entries in similar ways.

Entropy 2022, 24, 375 31 of 33

Step 4: After completing the coding tables construction, we start encoding the inputs
symbol by symbol. let us look back to Example C-1, where the input symbols string is
“cabcaada” in sequence. Now, suppose the initial state is 19, then Figure A2 illustrates the
ANS encoding process in detail.

Entropy 2022, 24, x FOR PEER REVIEW 32 of 34

Figure A2. The complete tANS encoding process associated with Example C-1, with the initial state
19 and input sequence “cabcaada”.

From the above figure, it follows that the encoded state is 16 and the content of the
bitstream variable is “1101111110111111100”.

Similarly, in the opposite direction and according to the decoding table, we tANS
decode the current state 16 associated with the bitstream “1101111110111111100”, as illus-
trated in Figure A3. It is easy to check that we can recover the correct initial state 19 suc-
cessfully. Notice that, in decoding, the bitstream extracted from the stream variable is in
the reverse order of that of the encoding counterpart.

Figure A3. The complete tANS decoding process associated with Example C-1, with the input state
19 and stored bitstream ‘1101111110111111100’.

References
1. Duda, J. Asymmetric numeral systems. arXiv 2009, arXiv:0902.0271.
2. Duda, J. Asymmetric numeral systems: entropy coding combining speed of Huffman coding with compression rate of arithme-

tic coding. arXiv 2014, arXiv:1311.2540v2.
3. Duda, J.; Tahboub, K.; Gadgil, N.J.; Delp, E.J. The use of asymmetric numeral systems as an accurate replacement for Huffman

coding. In Proceedings of the Picture Coding Symposium, Cairns, Australia, May 2015, pp. 65–69.
4. GitHub: Zstandard—Fast Real-Time Compression Algorithm. Available online: https://github.com/facebook/zst (30 January

2022).
5. GitHub: LZFSE Compression Library and Command Line Tool. Available online: https://github.com/lzfse/lzfse (30 January

2022).
6. GitHub: Google/Pik: A New Lossy/Lossless Image Format for Photos and the Internet. Available online:

https://github.com/google/pik (30 January 2022).

Figure A2. The complete tANS encoding process associated with Example C-1, with the initial state
19 and input sequence “cabcaada”.

From the above figure, it follows that the encoded state is 16 and the content of the
bitstream variable is “1101111110111111100”.

Similarly, in the opposite direction and according to the decoding table, we tANS
decode the current state 16 associated with the bitstream “1101111110111111100”, as
illustrated in Figure A3. It is easy to check that we can recover the correct initial state
19 successfully. Notice that, in decoding, the bitstream extracted from the stream variable is
in the reverse order of that of the encoding counterpart.

Entropy 2022, 24, x FOR PEER REVIEW 32 of 34

Figure A2. The complete tANS encoding process associated with Example C-1, with the initial state
19 and input sequence “cabcaada”.

From the above figure, it follows that the encoded state is 16 and the content of the
bitstream variable is “1101111110111111100”.

Similarly, in the opposite direction and according to the decoding table, we tANS
decode the current state 16 associated with the bitstream “1101111110111111100”, as illus-
trated in Figure A3. It is easy to check that we can recover the correct initial state 19 suc-
cessfully. Notice that, in decoding, the bitstream extracted from the stream variable is in
the reverse order of that of the encoding counterpart.

Figure A3. The complete tANS decoding process associated with Example C-1, with the input state
19 and stored bitstream ‘1101111110111111100’.

References
1. Duda, J. Asymmetric numeral systems. arXiv 2009, arXiv:0902.0271.
2. Duda, J. Asymmetric numeral systems: entropy coding combining speed of Huffman coding with compression rate of arithme-

tic coding. arXiv 2014, arXiv:1311.2540v2.
3. Duda, J.; Tahboub, K.; Gadgil, N.J.; Delp, E.J. The use of asymmetric numeral systems as an accurate replacement for Huffman

coding. In Proceedings of the Picture Coding Symposium, Cairns, Australia, May 2015, pp. 65–69.
4. GitHub: Zstandard—Fast Real-Time Compression Algorithm. Available online: https://github.com/facebook/zst (30 January

2022).
5. GitHub: LZFSE Compression Library and Command Line Tool. Available online: https://github.com/lzfse/lzfse (30 January

2022).
6. GitHub: Google/Pik: A New Lossy/Lossless Image Format for Photos and the Internet. Available online:

https://github.com/google/pik (30 January 2022).

Figure A3. The complete tANS decoding process associated with Example C-1, with the input state
19 and stored bitstream ‘1101111110111111100’.

References
1. Duda, J. Asymmetric numeral systems. arXiv 2009, arXiv:0902.0271.
2. Duda, J. Asymmetric numeral systems: Entropy coding combining speed of Huffman coding with compression rate of arithmetic

coding. arXiv 2014, arXiv:1311.2540v2.
3. Duda, J.; Tahboub, K.; Gadgil, N.J.; Delp, E.J. The use of asymmetric numeral systems as an accurate replacement for Huffman

coding. In Proceedings of the Picture Coding Symposium, Cairns, Australia, May 2015; pp. 65–69.
4. GitHub: Zstandard—Fast Real-Time Compression Algorithm. Available online: https://github.com/facebook/zst (accessed on

30 January 2022).
5. GitHub: LZFSE Compression Library and Command Line Tool. Available online: https://github.com/lzfse/lzfse (accessed on 30

January 2022).

https://github.com/facebook/zst
https://github.com/lzfse/lzfse

Entropy 2022, 24, 375 32 of 33

6. GitHub: Google/Pik: A New Lossy/Lossless Image Format for Photos and the Internet. Available online: https://github.com/
google/pik (accessed on 30 January 2022).

7. Gladding, D.E.; Gopalakrishnan, S.; Shaileshkumar, D.K.; Lin, H.-K. Features of Range Asymmetric Number System Encoding
and Decoding, JUSTIA Patents: Publication Number: 20200413106. Available online: https://patents.justia.com/search?q=
Asymmetric+number+system+coding (accessed on 30 January 2022).

8. Wikipedia: JPEG XL. Available online: https://en.wikipedia.org/wiki/JPEG_XL (accessed on 30 January 2022).
9. Wikipedia: Avalanche Effect. Available online: https://en.wikipedia.org/wiki/Avalanche_effect (accessed on 30 January 2022).
10. Goodwin, J. What Is an NFT? Non-Fungible Tokens Explained, CNN Business. Updated 2003 GMT (0403), 10 November 2021.

Available online: https://edition.cnn.com/2021/03/17/business/what-is-nft-meaning-fe-series/index.html (accessed on 30
January 2022).

11. Wikipedia: Asymmetric Numeral Systems. Available online: https://en.wikipedia.org/wiki/Asymmetric_numeral_systems
(accessed on 30 January 2022).

12. Moffat, A. Huffman Coding. ACM Comput. Surv. 2019, 52, 1–35. [CrossRef]
13. Razaq, U.; Lizhong, X.; Li, C.; Usman, M. Evolution and Advancement of Arithmetic Coding over Four Decades. Open J. Sci.

Technol. 2020, 3, 194–236.
14. Witten, I.H.; Neal, R.; Cleary, J. Arithmetic coding for data compression. Commun. ACM 1987, 30, 520–540. [CrossRef]
15. Belyaev, E.; Liu, K.; Gabbouj, M.; Li, Y. An efficient adaptive binary range coder and its VLSI architecture. IEEE Trans. Circuits

Syst. Video Technol. 2015, 25, 1435–1446. [CrossRef]
16. Belyaev, E.; Forchhammer, S.; Liu, K. An Adaptive Multialphabet Arithmetic Coding Based on Generalized Virtual Sliding

Window. IEEE Signal Processing Lett. 2017, 24, 1034–1038. [CrossRef]
17. Giesen, F. Interleaved entropy coders. arXiv 2014, arXiv:1402. 3392v1.
18. Najmabadi, S.M.; Wang, Z.; Baroud, Y.; Simon, S. High Throughput Hardware Architectures for Asymmetric Numeral Systems

Entropy Coding. In Proceedings of the 9th International Symposium on Image and Signal Processing and Analysis (ISPA), Zagreb,
Croatia, 7–9 September 2015; pp. 256–259. [CrossRef]

19. Duda, J.; Niemiec, M. Lightweight compression with encryption based on asymmetric numeral systems. arXiv 2016,
arXiv:1612.04662.

20. Yokoo, H. On the stationary distribution of asymmetric binary systems. In Proceedings of the International Symposium on
Information Theory, Barcelona, Spain, 10–15 July 2016; pp. 11–15.

21. Yokoo, H. On the stationary distribution of asymmetric numeral systems. In Proceedings of the International Symposium on
Information Theory and its Applications, Monterey, CA, USA, 30 October 2016; pp. 631–635.

22. Moffat, A.; Petri, M. ANS-based index compression. In Proceedings of the International Conference on Information and
Knowledge Management, Singapore, 6–11 November 2017; pp. 677–686.

23. Moffat, A.; Petri, M. Index compression using byte-aligned ANS coding and two- dimensional contexts. In Proceedings of the
International Conference on Web Search and Data Mining, Marina del Rey, CA, USA, 5–9 February 2018; pp. 405–413.

24. Yokoo, H.; Shimizu, T. Probability approximation in asymmetric numeral systems. In Proceedings of the International Symposium
on Information Theory and Its Applications, Singapore, 28–31 October 2018; pp. 670–674.

25. Fujisaki, H. Invariant measures for the subshifts associated with the asymmetric binary systems. In Proceedings of the Interna-
tional Symposium on Information Theory and Its Applications (ISITA), Singapore, 28–31 October 2018; pp. 675–679.

26. Dubé, D.; Yokoo, H. Empirical evaluation of the effect of the symbol distribution on the performance of ANS. In Proceedings of
the Poster Presented at the SITA Symposium, Iwaki, Fukushima, Japan, 18–21 December 2018.

27. Dubé, D.; Yokoo, H. Fast Construction of Almost Optimal Symbol Distributions for Asymmetric Numeral Systems. In Proceedings
of the IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019.

28. Townsend, J.; Bird, T.; Barber, D. Practical Lossless Compression with Latent Variables Using Bits Back Coding ICLR. arXiv 2019,
arXiv:1901.04866.

29. Kingma, F.; Abbeel, P.; Ho, J. Bit-Swap: Recursive Bits-Back Coding for Lossless Compression with Hierarchical Latent Variables.
In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Volume 97,
pp. 3408–3417.

30. Fujisaki, H. On irreducibility of the stream version of the asymmetric binary systems. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. 2020, 103, 757–768. [CrossRef]

31. Najmabadi, S.M.; Tran, T.-H.; Eissa, S.; Tungal, H.S.; Simon, S. An architecture for asymmetric numeral systems entropy
decoder—A comparison with a canonical Huffman decoder. J. Signal Processing Syst. 2019, 91, 805–817. [CrossRef]

32. Moffat, A.; Petri, M. Large-Alphabet Semi-Static Entropy Coding Via Asymmetric Numeral Systems. ACM Trans. Inf. Syst. 2020,
1, 1–33. [CrossRef]

33. Wang, N.; Wang, C.; Lin, S.-J. A simplified variant of tabled asymmetric numeral systems with a smaller look-up table. Distrib.
Parallel Database 2021, 39, 711–732. [CrossRef]

34. Camtepe, S.; Duda, J.; Mahboubi, A.; Morawiecki, P.; Nepal, S.; Pawlowski, M.; Pieprzyk, J. Compcrypt—Lightweight ANS-based
Compression and Encryption. IEEE Trans. Inf. Forensics Secur. 2021, 16, 3859–3873. [CrossRef]

35. Lossless Compression with Asymmetric Numeral Systems, Posted by by Brian Keng (2020/9/26). Available online: https:
//bjlkeng.github.io/posts/lossless-compression-with-asymmetric-numeral-systems/ (accessed on 30 January 2022).

https://github.com/google/pik
https://github.com/google/pik
https://patents.justia.com/search?q=Asymmetric+number+system+coding
https://patents.justia.com/search?q=Asymmetric+number+system+coding
https://en.wikipedia.org/wiki/JPEG_XL
https://en.wikipedia.org/wiki/Avalanche_effect
https://edition.cnn.com/2021/03/17/business/what-is-nft-meaning-fe-series/index.html
https://en.wikipedia.org/wiki/Asymmetric_numeral_systems
http://doi.org/10.1145/3342555
http://doi.org/10.1145/214762.214771
http://doi.org/10.1109/TCSVT.2014.2372291
http://doi.org/10.1109/LSP.2017.2705250
http://doi.org/10.1109/ISPA.2015.7306068
http://doi.org/10.1587/transfun.2019EAP1140
http://doi.org/10.1007/s11265-018-1421-4
http://doi.org/10.1145/3397175
http://doi.org/10.1007/s10619-020-07316-9
http://doi.org/10.1109/TIFS.2021.3096026
https://bjlkeng.github.io/posts/lossless-compression-with-asymmetric-numeral-systems/
https://bjlkeng.github.io/posts/lossless-compression-with-asymmetric-numeral-systems/

Entropy 2022, 24, 375 33 of 33

36. Culpepper, J.S.; Moffat, A. Enhanced byte codes with restricted prefix properties. In International Symposium on String Processing
and Information Retrieval; Buenos Aires Argentina, November 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–12.

37. Hinton, G.; van Camp, D. Keeping neural networks simple by minimizing the description length of the weights. In Proceedings
of the Sixth Annual Conference on Computational Learning Theory (COLT), Santa Cruz, CA, USA, 26–28 July 1993; pp. 5–13.

38. FiniteStateEntropy Algorithm. Available online: https://github.com/Cyan4973/FiniteStateEntropy (accessed on 30 January
2022).

39. Caldelli, R.; Filippini, F.; Becarelli, R. Reversible Watermarking Techniques: An Overview and a Classification. EURASIP J. Inf.
Secur. 2010, 2010, 134546. [CrossRef]

40. Yang, C.Y.; Wu, J.L. Two-Bit Embedding Histogram-Prediction-Error Based Reversible Data Hiding for Medical Images with
Smooth Area. Computers 2021, 10, 152. [CrossRef]

41. LZMA Algorithm from Python Usage. Available online: https://docs.python.org/3/library/lzma.html (accessed on 30 Jan-
uary 2022).

42. LZMA Algorithm from Wikipedia. Available online: https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93
Markov_chain_algorithm (accessed on 30 January 2022).

43. Zlib Algorithm from Python Usage. Available online: https://docs.python.org/3/library/zlib.html (accessed on 30 January 2022).
44. Zlib Algorithm from Wikipedia. Available online: https://en.wikipedia.org/wiki/Zlib (accessed on 30 January 2022).
45. Gzip Algorithm from Python Usage. Available online: https://docs.python.org/3/library/gzip.html (accessed on 30 Jan-

uary 2022).
46. Gzip Algorithm from Wikipedia. Available online: https://en.wikipedia.org/wiki/Gzip (accessed on 30 January 2022).
47. Bzip2 Algorithm from Python Usage. Available online: https://docs.python.org/3/library/bz2.html (accessed on 30 Jan-

uary 2022).
48. Bzip2 Algorithm from Wikipedia. Available online: https://en.wikipedia.org/wiki/Bzip2 (accessed on 30 January 2022).
49. Zstd Algorithm from Python Usage. Available online: https://pypi.org/project/zstd/ (accessed on 30 January 2022).
50. Zstd Algorithm from Wikipedia. Available online: https://en.wikipedia.org/wiki/Zstd (accessed on 30 January 2022).
51. Liblzfse Algorithm from Python Usage. Available online: https://github.com/ydkhatri/pyliblzfse (accessed on 30 January 2022).
52. Liblzfse Algorithm from Wikipedia. Available online: https://en.wikipedia.org/wiki/LZFSE (accessed on 30 January 2022).
53. rANS Algorithm. Available online: https://github.com/rygorous/ryg_rans (accessed on 30 January 2022).
54. Test Images for Experiment. Available online: https://sipi.usc.edu/database/database.php?volume=misc&image=28#top

(accessed on 30 January 2022).

https://github.com/Cyan4973/FiniteStateEntropy
http://doi.org/10.1155/2010/134546
http://doi.org/10.3390/computers10110152
https://docs.python.org/3/library/lzma.html
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Markov_chain_algorithm
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Markov_chain_algorithm
https://docs.python.org/3/library/zlib.html
https://en.wikipedia.org/wiki/Zlib
https://docs.python.org/3/library/gzip.html
https://en.wikipedia.org/wiki/Gzip
https://docs.python.org/3/library/bz2.html
https://en.wikipedia.org/wiki/Bzip2
https://pypi.org/project/zstd/
https://en.wikipedia.org/wiki/Zstd
https://github.com/ydkhatri/pyliblzfse
https://en.wikipedia.org/wiki/LZFSE
https://github.com/rygorous/ryg_rans
https://sipi.usc.edu/database/database.php?volume=misc&image=28#top

	Introduction
	Background Knowledge
	Basic Concepts of Asymmetric Numeral Systems
	Huffman Coding, Arithmetic Coding, and the Asymmetric Numeral Systems
	Types of the Asymmetric Numeral Systems

	Variations in Asymmetric Numeral Systems
	The Uniform Asymmetric Binary System (uABS)
	The Range Asymmetric Numeral System (rANS)
	The Table Asymmetric Numeral System (tANS)
	The Avalanche Effect of the tANS

	Applications of the Asymmetric Numeral Systems
	ANS in Index Compression and Machine Learning-Based Lossless Data Compression
	ANS in Joint Compression and Encryption of Digital Images
	ANS in Intellectual Property Rights Management and Integrity Checking of Digital Images

	Experimental Results
	tANS in IPRs Protection of Digital Artwork Collections
	tANS in Integrity Checking of Digital Medical Images

	Performance Comparison among Various Lossless Compression Algorithms
	Description of Experimental Settings
	Experiment Results
	Observations Obtained from Our Experiments

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

