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Abstract: An approach for the cryptographic security enhancement of encryption is proposed and
analyzed. The enhancement is based on the employment of a coding scheme and degradation of
the ciphertext. From the perspective of the legitimate parties that share a secret key, the degradation
appears as a transmission of the ciphertext through a binary erasure channel. On the other hand,
from the perspective of an attacker the degradation appears as a transmission of the ciphertext over a
binary deletion channel. Cryptographic security enhancement is analyzed based on the capacity of
the related binary deletion channel. An illustrative implemementation framework is pointed out.

Keywords: encryption; cryptographic security enhancement; erasure error correction; channel with
deletion errors; mutual information; channel capacity; the probability of classification error

1. Introduction

Enhancing the security of certain cryptographic primitives by employing randomness
has been employed in a number of reported designs (see, e.g., [1,2]), as well as in the context
of wire-tap coding. Following these approaches, two main directions have appeared. One
approach is based on the employment of a cryptograhic key control of error correction
encoding and decoding, given, for example, in [3–7]. The other approach is the employment
of error-correction coding and noisy channels for cryptographic security enhancement of a
given encryption scheme: This approach has been reported, for example, in [8–15].

Motivation. The employment of coding and noisy channel based techniques for the
security enhancement of given encryption appears as an important topic. In particular, this
approach could significantly increase the cryptographic security margin of a lightweight
encryption scheme. On the other hand, this approach also implies additional complexity
overhead. Accordingly, it appears as an interesting issue to design security enhancement
with a number of parameters that provide control over desired security enhancement and
required implementation and execution overheads of the encryption. The main motiva-
tion for this paper was addressing the security enhancement of a given encryption that
provides the opportunity for trade-off between the security margin increasing and the
required overhead.

Summary of the Results. This paper proposes a novel approach for the security en-
hancement of an encryption scheme. The proposed encryption is analyzed employing
certain results of information theory. The enhancement is based on the employment of an
error-correction coding scheme and degradation of the ciphertext. From the perspective of
the legitimate parties that share a secret key, the degradation appears as a transmission of
the ciphertext through a binary erasure channel. On the other hand, from the perspective
of an attacker, the degradation appears as a transmission of the ciphertext over a binary
deletion channel. The degradation is performed by employing a simulated noisy channel
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that consists of two sub-channels so that an additional flexibility is provided for the se-
lection of the parameters to achieve the desired security and the enhancement overhead.
Cryptographic security enhancement is analyzed based on the capacity of the related binary
deletion channel. It is shown that the enhancement is a function of the following param-
eters: probabilities of deletion in the sub-channels, capacity of the sub-channels, and the
probability of the sub-channel selection for a transmission. An illustrative implementation
framework is pointed out which employs a stream cipher.

Organization of the Paper. A novel scheme for cryptographic security enhancement
of an encryption employing error-correction coding and a simulated channel that on an
attacker’s side appears as a channel with synchronization errors is proposed in Section 2.
Preliminaries and background for the security evaluation are given in Section 3. Section 4
provides a cryptographic security evaluation of the proposed enhanced encryption. An
illustrative approach for the implementation is discussed in Section 5. Concluding notes
are given in Section 6.

2. Proposal for a Security Enhanced Encryption

This section proposes the cryptographic security enhancement of an encryption scheme
employing error-correction coding and a simulator of a channel with synchronization errors
displayed in Figure 1.

We use the following notation. The message, a data vector subject to encryption is
denoted by m ∈ {0, 1}n′ and we assume that it is a realization of the binary vector variable
M. Encrypted form of m is denoted by c ∈ {0, 1}n′ and we assume that it is a realization of
the binary vector variable C:

c = Enck(m) ,

where Enck(·) denotes the encryption mapping controlled by the secret key k. The vector x
denotes the encoded version of c employing an error-correction encoding Encode(·), that
performs mapping {0, 1}n′ → {0, 1}n, n > n′:

x = Encode(Enck(m))

and x is a realization of a random binary variable X.
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Figure 1. Security enhanced encryption scheme.

We consider a channel in which the input sequence is divided into subsequences and
these subsequences are transmitted through independent i.i.d. binary deletion channels
and the arrived bits after the deletion channels are combined preserving their order in the
original input sequence. Consequently, the resulting channel is an i.i.d. binary deletion
channel with parameters which depend on the parameters of the considered subchannels.

A simulator of the considered channel is controlled by a vector s generated by the
encryption algorithm which is considered as a realization of a binary random vector S.
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An attacker on the encryption scheme at Figure 1 faces the problem of cryptanalysis in
a known plaintext attack displayed in Figure 2.

X = ? y 
Error  

Correction  
Encoding  

Encryption  

C=? m 

S = ? 

Secret Key K = ? 

Deletion 
Channel 

Figure 2. Model of encryption for cryptanalysis at the attacker’s side under known plaintext attack.

Note that the legitimate parties face the problem of decoding after a binary erasure
channel, but the attacker faces a much harder problem of dealing with the decoding after
a deletion channel. The knowledge of attackers is limited to the following. Each channel
input bit is transmitted through Channel 1 with probability λ, and through Channel 2 with
probability λ̄, independently of each other. If transmitted through Channel 1 a bit is deleted
with the probability d1, and if transmitted through Channel 2 a bit is deleted with the
probability d2 . The attacker does not know the specific realization of the “individual chan-
nel selection events”, i.e., they do not know which specific sub-channel bit is transmitted
through, and which specific sub-channel each output symbol is received from.

An illustrative instantiate of the proposed framework is given in Section 5.

3. Preliminaries and Background
3.1. Entropy, Mutual Information, and Shannon Capacity

This section provides a summary explanation on the entropy, mutual information and
Shannon capacity. A random variable is denoted by an upper-case letter (e.g., A) and its
realization is denoted by a lower-case letter (e.g., a). The entropy of a random object A is
denoted by H(A), and the mutual information between two random objects A and B is denoted
by I(A; B). The binary entropy function is denoted by h(p) = −p log2 p− (1− p) log2(1− p).

The entropy of a random variable A is defined as:

H(A) := ∑
x∈support(A)

Pr[A = a] log2
1

Pr[A = a]
, (1)

The mutual information I(A; B) between jointly distributed random variables A and
B is defined as follows:

I(A; B) := H(A)− H(A|B) = H(B)− H(B|A) (2)

where conditional entropy is defined as:

H(A|B) = ∑
b∈supp(B)

Pr(B = b)H(A|B = b) (3)

and:
H(A|B = b) = ∑

a∈supp(A)

Pr(A = a|B = b) log2
1

Pr(A = a|B = b)
(4)

Consequently, the conditional mutual information when the third variable Z is given as:

I(A, B|Z) := H(A|Z)− H(A|B, Z) = H(B|Z)− H(B|A, Z). (5)
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The Shannon capacity of a channel is denoted by C and is defined as:

C := sup{I(A; B)}, (6)

where A corresponds the channel input, B corresponds to the channel output, and the
supremum is over the choice of the distribution of A.

3.2. Mutual Information and Capacity of the Deletion Channel with Fragmentation

The considered communication channel is displayed in Figure 3 and it consists of two
sub-channels: Ch1 and Ch2.
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Figure 3. Model of the deletion channel with frangmentation.

An i.i.d. binary input deletion channel is considered in which every transmitted
bit is either randomly deleted with probability d or received correctly with probability
1− d while there is no information about the values or the positions of the lost symbols at
the transmitter or at the receiver. In the transmission of n symbols through the channel,
the input sequence is denoted by x = (x1, ..., xn) in which xi ∈ {0, 1}, and x ∈ {0, 1}n.
The output binary sequence is denoted by y = (y1, ..., ym) in which m is a realization of a
binomial random variable with parameters n and d (due to the characteristics of the i.i.d.
deletion channel).

Let x and y denotes input and output codewords of the considered channel, respectively.
Further on, let xi denotes part of the codeword x transmiied through Chi, i = 1, 2,

and let ni denotes numbers of the codeword bits transmitted through Chi, i = 1, 2. Finally,
let yi denotes the vector received trough Chi when the channel input is xi, i = 1, 2,. We
assume that the vectors x, y, xi, yi and ni, are realizations of the random variables X, Y, Xi,
Yi and Ni, respectively, i = 1, 2.

In continuation, we consider I(Xi, Yi), i = 1, 2, following [16]:

I(Xi, Yi) = I(Xi, Yi, Ni)− I(Xi, Ni|Yi)
= I(Xi, Yi|Ni) + I(Xi, Ni)− I(Xi, Ni|Yi)

≤ I(Xi, Yi|Ni) + H(Ni)
≤ I(Xi, Yi|Ni) + log2(N + 1)

= ∑n
ni=0 P(Ni = ni)I(Xi, Yi|Ni = ni) + log2(N + 1),

(7)

where in deriving the first inequality we have used the fact that:

H(Ni|Xi) = 0 and I(Xi, Ni|Yi) ≥ 0 ,

and in deriving the second equality the fact that:

H(Ni) = −∑N
n=1 (

N
n )λ

nλ̄N−nlog2((
N
n )λ

nλ̄N−n)
≤ log2(N + 1) .

I(Xi, Yi|Ni = ni) ≤ niC(di) + H(Di|Ni = ni) ,
(8)

where di denotes the probability of deletions through the transmission of ni bits over the
i-th channel and di, is realization of the corresponding random variable Di, i = 1, 2.
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Accordingly:
H(Di|Ni = ni)

= −∑ni
n=1 (

ni
n )d

n
i d̄ni−n

i log2((
ni
n )d

n
i d̄ni−n

i )
≤ log2(ni + 1) .

(9)

and
I(Xi, Yi) ≤ ∑n

ni=0 P(Ni = ni)(niC(di) + log2(ni + 1))
+log2(n + 1)

≤ Exp{Ni}C(di) + 2log2(n + 1) ,
(10)

where Exp{Ni} denotes the expected value of the variable Ni and the last inequality results
since log2(ni + 1) ≤ log(n + 1), i = 1, 2. Finally:

I(Xi, Yi) ≤ λinC(di) + 2log2(n + 1) , i = 1, 2. (11)

It is shown in [16] that:

I(X, Y) ≤ nλC(d1) + nλ̄C(d2) + 4log2(n + 1)
+nd̄log2(d̄) + nλd̄1log2(λd̄1) + nλ̄d̄2log2(λ̄d̄2)

= Ψ(n, λ, d1, d2, C(d1), C(d2))
(12)

where d̄ = 1− d, d = λd1 + λ̄d2, λ̄ = 1− λ. d̄1 = 1− d1, d̄2 = 1− d2.

3.3. The Probability of Error and the Equivocation after a Noisy Channel

Suppose the random variables A and B represent input and output messages (out of
m possible messages), and the given conditional entropy H(A|B) represents the average
amount of information lost on A when B is given. According to [17,18], for example, we
have the following general upper bound on the equivocation:

H(A)− I(A, B) ≤ h(Perr) + Perrlog2(m− 1), (13)

where h(·) ≤ 1 is the binary entropy function and Perr = 1 − Pr(A = a|B = b), and
following [15], when A is such that it has the maximum possible entropy H(A) = m,
we have:

1− I(A, B)
m

≤ 1
m

+
Perr

m
log2(m− 1). (14)

4. Security Evaluation of the Enhanced Encryption
4.1. Security Notation

We employ a traditional approach for analyzing cryptographic security (see [19],
for example) based on the following two issues: (i) a description of what a “break” of the
scheme means, and (ii) a specification of the assumed power of the adversary. A cryp-
tographic scheme is considered as a secure one in a computational sense, if for every
probabilistic polynomial-time adversary A performing an attack of some specified type,
and for every polynomial p(n), there exists an integer N such that the probability that A
succeeds (where success of the attack is also well-defined) is less than 1

p(n) for every n > N.
Accordingly, the following two definitions specify a security evaluation scenario and a
security statement.

Definition 1 ([19]). The Adversarial Indistinguishability Experiment consists of the follow-
ing steps:

1. The adversary A chooses a pair of messages (m0; m1) of the same length n, and passes them
on to the encryption system for encrypting.

2. A bit b∈{0,1} is chosen uniformly at random, and only one of the two messages (m0; m1),
precisely mb, is encrypted into ciphertext Enc(mb) and returned to A;

3. Upon observing Enc(mb), and without knowledge of b, the adversary A outputs a bit b0;
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4. The experiment output is defined to be 1 if b0 = b, and 0 otherwise; if the experiment output
is 1, denoted shortly as the event (A→1), we say that A has succeeded.

Definition 2 ([19]). An encryption scheme provides indistinguishable encryption in the presence
of an eavesdropper, if for all probabilistic polynomial-time adversaries A:

Pr[A → 1|Enc(mb)] ≤
1
2
+ ε , (15)

where ε = negl(n) is a negligibly small function.

Definitions 1 and 2 are more precisely discussed in [19].

4.2. Evaluation of the Security Gain

We consider the encryption/decryption scheme proposed in Section 2 which is a
security enhanced scheme of a certain basic one. Our goal is to estimate the advantage of
A in the indistinguishability game specified by Definition 1 when c← Enc(mb) where c
is a particular realization of C, assuming that the advantage of A is known when m0 and
m1 are two chosen realizations of M and the corresponding realization c′b of C′ is given,
i.e., the advantage of A is known for the basic (security non-enhanced) scheme.

We assume that in the corresponding statistical model, the considered encryption
scheme is such that:

I(S, Y) = 0 and I(S, Y|M) = 0 , (16)

i.e., the knowledge of Y and M does not leak (provide) any information on S.

Lemma 1. We consider the advantage of the adversary A (specified by Definition 2) to win the
indistinguishability game (specified by Definition 1), assuming that the mapping of m into c′ is
such that 1

2+ε equals the advantage of the adversary to win the game. Under these assumptions:

Pr[A → 1|Y = y] =
1
2
+ ε · δ,

δ
∆
= Pr(X = x′′b |Y = y) . (17)

Proof. For simplicity, it is assumed that 1
2 +ε equals the advantage of the adversary A

(specified by Definition 2) to win the indistinguishability game. Consequently, let b which
denotes the index of the selected message by realization of the random variable B.

The probability Pr(B = b|Y = y) thatAwins the game is determined by the following:

Pr(B = b|Y = y) = Pr(B=b,Y=y)
Pr(Y=y)

= ∑x Pr(B=b,Y=y,X=x)
Pr(Y=y)

= ∑x Pr(B=b|Y=y,X=x)Pr(Y=y,X=x)
Pr(Y=y)

= ∑x Pr(B=b|X=x)Pr(Y=y,X=x)
Pr(Y=y) .

(18)

The lemma assumption implies:

Pr(B = b|C = cb) =
1
2
+ ε , (19)

where cb corresponds to the selected mb, and:

Pr(B = b|X = x) =
1
2

for any c 6= cb . (20)
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Note that the encoding mapping c → x is a deterministic one-to-one mapping and
consequently has no impact on the advantage of adversary A, i.e., we have:

Pr[A → 1|X = x] = Pr[A → 1|C = c] =
1
2
+ ε . (21)

Consequently:
Pr(B = b|Y = y) =

Pr(B = b|X = xb)Pr(Y = y, X = xb)

Pr(Y = y)
+

∑x:x 6=xb
Pr(B = b|X = x)Pr(Y = y, X = x)

Pr(Y = y)
,

Finally, we obtain:
Pr(B = b|Y = y) =

( 1
2+ε)Pr(Y=y,X=xb)− 1

2 Pr(Y=y,X=xb)
Pr(Y=y)

+
1
2 ∑x Pr(Y=y,X=x)

Pr(Y=y)
= 1

2 + ε · Pr(X = xb|Y = y) .

(22)

QED.

Definition 1 implies that the security of an encryption scheme increases as the differ-
ence on the adversary A advantage from 1

2 decreases: The factor δ < 1 shows the reduction
rate of the advantage, and so we call it the advantage reduction factor.

Theorem 1. We consider the adversaryA (specified by Definition 2) to win the indistinguishability
game (specified by Definition 1). Let the basic encryption mapping {0, 1}n → {0, 1}n of m into
c′, be such that 1

2+ε equals the advantage of the adversary. Consequently, the advantage of the
adversary A, in the security enhanced scheme specified in Section 2 is:

Pr[A → 1|Y = y] <
1
2
+ ε · Ψ(n, λ, d1, d2, C(d1), C(d2)) + 1

log2(2n − 1)
. (23)

where:
Ψ(n, λ, d1, d2, C(d1), C(d2)) =

λC(d1) + nλ̄C(d2) + 4log2(n + 1)
+ nd̄log2(d̄) + nλd̄1log2(λd̄1) + nλ̄d̄2log2(λ̄d̄2)

(24)

and d̄ = 1− d, d = λd1 + λ̄d2, λ̄ = 1− λ. d̄1 = 1− d1, d̄2 = 1− d2.

Proof. According to the (14) we have:

1− I(X, Y)
n

≤ 1
n
+

Perr

n
log2(2

n − 1) , (25)

and taking into account that:

Perr = 1− Pr(X = xb|Y = Y) (26)

we obtain:
1
n Pr(X = xb|Y = y)log2(2

n − 1)
≤ −1 + I(X,Y)

n + 1
n + 1

n log2(2
n − 1)

< I(X,Y)
n + 1

n ,
(27)

and:

Pr(X = xb|Y = y) <
I(X, Y) + 1

log2(2n − 1)
. (28)
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Finally, taking into account (12) we have:

Pr(X = xb|Y = y) <
Ψ(n, λ, d1, d2, C(d1), C(d2)) + 1

log2(2n − 1)
. (29)

Substitution of (29) into the statement of Lemma 1 yields the proof. QED.

Lemma 1 shows that the encryption mapping m→c enhances the security because
the probability that A wins the game becomes closer to 1

2 , which corresponds to random
guessing, by the factor δ, and Theorem 1 shows that the upper bound on δ is << 1.

5. Notes on Implementation Issues

As an illustration, this section proposes an instantiate of the generic framework given
in Section 2. This section yields particular designs for the following three main parts of the
generic framework: (i) encryption scheme; (ii) coding scheme; (iii) simulated noisy channel.
Encryption. The following Figure 4 displays a model of the encryption box based on a
stream cipher: The inputs are the session secret key k and the plaintext message m, and the
outputs are the ciphertext c and the control s of simulated noisy channel.

C 

m 

S K  

state state  
transition 
function 

output 
function  

1 

output 
function  

2 

Secret  Session Key 

Figure 4. Model of encryption based on a stream cipher.

Note that the above scheme provides all vectors (sequences) required by encryption
box in Figure 1, and in particular the vector s required for the simulation of a noisy channel.
Coding. As an option for suitable error correction coding we point to the LDPC codes
reported in [20,21]. The time and space complexity of these codes is O(nlog2n) and O(n),
respectively. In order to keep decoding complexity as claimed, the number of errors intro-
duced by the simulated noisy channel should be below the error capability of the employed
code, [22]. Otherwise if we are at the error-correcting capability limit we face an increase of
the decoding complexity. We assume that up to ∆ errors can be corrected with the claimed
complexity. In a particular case as reported in [21] (Algorithm C), the time complexity will
be O(g2

maxn), where gmax is a parameter, providing at the same decoding error-rate.
As an alternative option for suitable error correction coding we also point to the polar

codes proposed in [23] and considered in [6,7,24], for example.
Simulated Noisy Channel. The simulated noisy channel box takes the sequence s as the input
and performs its mapping block-by-block in order to obtain three sequences required for
the simulated noisy channel composed of two binary erasure channels. Let s(n) denotes an
n-bit segment of s, and let the functions fi(·), i = 1, 2, 3, perform mapping {0, 1}n → {0, 1}n

generating the following three binary n-dimensional vectors:

`(n) = [`i]
n
i=1 = f1(s(n)) ,

e(n,1) = [e(1)i ]ni=1 = f2(s(n)) ,

e(n,2) = [e(2)i ]ni=1 = f3(s(n)) .



Entropy 2022, 24, 406 9 of 10

We assume that the functions are such that the following is valid, where W(·) and
Exp(·) are the vector weight and the expected value of the weight: (i) Exp(W(`(n))) = nλ;
(ii) Exp(W(e(n,1))) = nd1; (iii) Exp(W(e(n,2))) = nd2.

Let x(n) = [xi]
n
i=1 be the codeword after the encoding box, and y(n) = [yi]

n
i=1 denotes

the degraded codeword after the simulated noisy channel according to the following
algorithm. Please note that in order to keep the number of the erased bits within the error
correction capability of the employed code, the parameter ∆∗ is used: When the number
of already erased bits is greater than ∆∗, the probability of erasures should be reduced,
and accordingly, there are two different rules regarding appearance of the output bit as “?”.
Consequently, we consider the following simulator of the noisy channel.

Simulated Noisy Channel

• Input: x(n) = [xi]
n
i=1, the parameter ∆∗ < ∆

• set w = 1.
• do i = 1, n

– if w ≤ ∆∗

yi = ? and w = w + 1 if `i · e
(1)
i = 1 or `i · e

(2)
i = 1

yi = xi otherwise

– if w > ∆∗

yi = ? if `i · e
(2)
i = 1

yi = xi otherwise

• Output: y(n) = [yi]
n
i=1

Note that for the legitimate receiver, y(n) appears as the codeword x(n) after the binary
erasures channels. On the other hand, because the attacker does not know the sequence s,
y(n) appears as the codeword x(n) after the binary deletion channels displayed in Figure 3.

6. Conclusions

This paper proposes a generic design for a measurable cryptographic security en-
hancement of certain secret key encryption schemes. This security enhancement is based
on the following (see Figure 1): (i) employment of an error correction coding, (ii) splitting
the codeword into two parts in the secret key dependent manner; and (iii) degradation
each of the codeword parts by simulated binary erasure channels where the erasures are
secret key dependent.

Note that for an attacker that does not know the secret key, the resulting channel
appears as a simulated deletion channel. The security enhancement is quantified employ-
ing reported results on the capacity of the related two parallel binary deletion channels.
The reported upper bound on the resulting channel capacity is established employing the
upper bound on the mutual information between the inputs and outputs of the component
deletion channels. The final lower bound on the achieved security gain is derived by em-
ploying relations between the probability of correct decoding and the mutual information
between input and output of the resulting channel.

It is shown that the enhancement is a function of the following parameters: probabili-
ties of deletion in the sub-channels, capacity of the sub-channels and the probability of the
sub-channel selection for the transmission. Consequently, a desirable security enhancement,
as well as, the implementation complexity could be achieved based on a suitable selection
of the parameters related to the the employed channels and the coding scheme.

Accordingly, the main contributions of this paper are: (i) novel design of an encryption
scheme which employs dedicated coding and simulated noisy channels that, from an
attacker perspective, appear as binary deletion channels; and (ii) its cryptographic security
evaluation, based on mutual information between input and output of certain channel with
bits deletion, employing the adversarial indistinguishably experiment. It is out of the scope
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of this paper to discuss in detail particular implementations of the proposed framework,
and so just illustrative notes are given regarding a possible implementation approach.
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