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Abstract: Speaker recognition is an important classification task, which can be solved using several
approaches. Although building a speaker recognition model on a closed set of speakers under
neutral speaking conditions is a well-researched task and there are solutions that provide excellent
performance, the classification accuracy of developed models significantly decreases when applying
them to emotional speech or in the presence of interference. Furthermore, deep models may require
a large number of parameters, so constrained solutions are desirable in order to implement them
on edge devices in the Internet of Things systems for real-time detection. The aim of this paper is
to propose a simple and constrained convolutional neural network for speaker recognition tasks
and to examine its robustness for recognition in emotional speech conditions. We examine three
quantization methods for developing a constrained network: floating-point eight format, ternary
scalar quantization, and binary scalar quantization. The results are demonstrated on the recently
recorded SEAC dataset.

Keywords: speaker recognition; convolutional neural network; quantization; emotional speech

1. Introduction

A typical speaker recognizer consists of two main components: a feature extraction
module and a speaker modeling part. The feature extraction module transforms raw audio
signals into feature vectors that capture speaker-specific properties. Based on these vectors,
the speaker model is trained. Which features to extract and what technique to use for the
modeling are strongly dependent on the intended application, computing resources, and
amount of speech data available [1].

In the past several decades, many techniques for automatic speaker recognition (SR)
have emerged—from the oldest non-parametric to statistical and state-of-the-art methods
based on deep neural networks [2,3].

Vector quantization (VQ) [4] and dynamic time warping (DTW) [5] are representa-
tive examples of the earliest non-parametric techniques for text-independent and text-
dependent speaker recognition, respectively. However, in recent years, classification meth-
ods for speaker recognition have centered around statistical approaches, with hidden
Markov models (HMMs), Gaussian mixture models (GMMs) and support vector machines
(SVMs) being representatives, and artificial neural networks (ANN) [6]. Generative mod-
els, such as VQ and GMM, estimate the feature distribution within each speaker, while
discriminative models, such as SVM and ANN, focus on modeling the boundary between
speakers [1].

Entropy 2022, 24, 414. https://doi.org/10.3390/e24030414 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24030414
https://doi.org/10.3390/e24030414
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-0748-4672
https://orcid.org/0000-0002-4558-9918
https://doi.org/10.3390/e24030414
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24030414?type=check_update&version=1


Entropy 2022, 24, 414 2 of 17

The early standard statistical approaches rely on extracting low-dimensional input
feature vectors. Spectral features, such as Mel-frequency cepstral coefficients (MFCC) are
frequently used as they are easy to compute, capture detailed characteristics of individ-
ual speakers, and thus yield good performance [1,7]. Next, methods that incorporate i-
vectors [8] and joint factor analysis (JFA) [9] showed promising results. Moreover, standard
machine learning approaches, such as SVM and k-nearest neighbors (KNN), performed
well in combination with MFCCs [10]. Still, it is observed that MFCC could fail when
speech is introduced to real-world noises [11]. On the other hand, speech characteristics
such as prosodic features, are less discriminative and easier to impersonate [12].

Even though standard statistical methods have led to significant progress in the SR
field, most of these algorithms perform well only with test utterances in neutral speaking
style, while they struggle to recognize speakers in more natural, emotional speech, which
greatly limits their applications. For example, in research works presented in [10,13,14],
when neutral speech is used in training and emotional speech for testing, the system fails
significantly, with accuracy decreasing by more than 50% for some emotions. When the
same emotional state is used for both training and testing, the classification scores reach
better results [13], but recording emotional datasets could be demanding.

The speaker embedding representation, mainly i-vectors and x-vectors, are also used
extensively for speaker recognition studies [15]. The advantage of these techniques lies in
capturing speaker information robust to various external factors such as channel variation
and background noise. Sarma et al. [16] proposed an approach to transform the i-vectors
containing speaker-specific information into an emotion invariant space by creating emotion
invariant speaker embedding. The proposed method led to an improvement in accuracy
over the average speaker model-based framework with different emotions.

Incorporating deep neural networks (DNN) into systems based on hand-crafted fea-
tures [1], as well as systems where DNNs are used to directly capture features, brought new
possibilities into the area [11]. The latter approach introduced more flexibility in the overall
SR process as it removes the necessity of preprocessing the raw audio data and thereby
losing possibly valuable information. Lukic et al. [17] created a simple convolutional neural
network to learn the features from raw spectrograms for the speaker identification task.
They also introduced speaker clustering by using the activations of post-convolutional
layers of pre-trained speaker identification CNNs to cluster the unknown speakers.

CNN-based models can be found in several other studies as a part of the architecture
for speaker or emotion recognition. McLaren et al. built a SR system as a CNN that per-
formed computation of senone probabilities and compared it with an i-vector approach [18].
Shafik et al. [19] proposed a CNN-based model for speech identification that works on
the spectrograms of audio signals and their radon transforms. The model they propose
provides high performance in terms of accuracy when the signal is exposed to noise, such
as musical interference or the speech of another speaker. In [20], a lightweight CNN-based
speech emotion recognition (SER) system using speech spectrograms was presented. With
low computational complexity, the experimental results demonstrated that the system
achieves a better recognition performance than the state-of-the-art SER systems. Anvarjon
et al. [21] built a novel end-to-end CNN with a multi-attention module (MAM) for age and
gender recognition from speech signals, with high classification accuracy results. These
examples outline the importance of developing and enhancing deep learning models,
especially CNN-based models for different speech processing tasks.

Most high-performable CNN architectures are complicated, deep networks, with in-
tensive memory and processing requirements. As a consequence, a lot of these architectures
are hard to integrate into real-time systems, especially when computation resources are
highly limited, as in the case of smartphones [11]. Dai et al. [11] studied the performance of
the VGGVox model on audio signals with background noises as well as signals recorded in
controlled, noised-reduced environments. They introduced the model quantization process
based on the affine mapping scheme and studied the applicability of the quantized CNN for
real-life applications. While the computational requirements of the VGGVox model could
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be reduced without a serious performance cost, there is still space for the optimization of
a CNN for usage in different environmental conditions. It can be concluded that there is
a lack of research that analyzes the performance of constrained CNN models for speaker
recognition tasks in general, including the case of aroused emotional state of a speaker.

In this paper, we propose a constrained CNN model for speaker recognition, which
performs classification by processing speech spectrograms. The model we propose is
designed following two ideas. Firstly, we wanted to design a robust model, which can
operate in the case of an aroused emotional state in a speaker. Filters of rectangular kernel
size recently became popular for emotion recognition tasks [20,22], so we decided to analyze
and exploit them for the SR task. Kernels of such shape could better follow the shape of fast
temporal changes of speech, embedded in spectrograms, which may lead to the reduction
in the required network depth for high classification accuracy.

The idea of simplicity was further carefully considered as the emerging market of In-
ternet of Things (IoT) devices is rapidly growing. Thus, we design constrained models and
analyze their performance as such models can be implemented on small edge devices in IoT
systems for real-time processing. Quantization appears as an effective tool for neural net-
work reduction and there exist various approaches [23–32]. Here, we analyze post-training
reduction in CNN weights using one of three popular quantization techniques: floating
point eight (FP8) format, ternary quantization, and binary quantization. FP8 approach
is chosen as it can provide performance almost equal as in the case of the full-precision
network, whereas ternary and binary quantization provide the highest compression rates
among scalar quantization techniques. Experiments are performed on the recently recorded
Serbian emotional amateur corpus (SEAC), which is recorded by amateur speakers using
mobile phones. The dataset consists of five predefined emotional styles: neutral, anger,
fear, sadness, and joy.

The rest of the paper is organized as follows. In Section 2 we provide a description of
the proposed architecture, including a full-precision convolutional neural network. Next,
quantized CNN is described in detail in Section 3. In Section 4, we provide the experimental
results, performance of the full-precision and quantized models as well as comparison
with other models. Finally, the advantages and disadvantages of the proposed model are
summarized in Section 5.

2. Proposed Speaker Recognition Architecture

With the rapid development and wider availability of powerful hardware in the
previous decade, end-to-end neural networks became popular for speech signal processing.
Commonly, spectrograms can be extracted from speech signals as a 2D visual representation
of signal energy at different frequencies over time, and they can be further used for network
training and classification [17,19–21,33,34]. For such extraction, we exploit short-term
Fourier transform.

Before running the procedure for spectrogram image creation, input audio files are
preprocessed. In the preprocessing stage, silence regions are detected using the algo-
rithm described in [35] and removed from the input files. After silence removal, files are
normalized to the maximum range.

In the next step, files are divided into segments whose length is set to 1 s. If the last
segment is shorter than 0.8 s, that segment is removed from the training set. If the last
segment’s length is between 0.8 s and 1 s, it is extended to 1 s by replicating samples from
the beginning of the segment. Each segment is then converted to the grayscale spectrogram
image. Spectrograms are calculated using a 32 ms Hanning window with a time shift
of 16 ms, so that there is an overlap among neighboring spectrograms of 50%. Finally,
spectrogram images are saved in .png format resized to 128 × 170. Examples of created
spectrograms can be seen in Figure 1.
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Figure 1. Examples of spectrograms for various styles of emotional speech obtained from the SEAC
database: (a) neutral; (b) anger; (c) joy; (d) fear; and (e) sadness.

The proposed full-precision convolutional neural network is described in Table 1.

Table 1. The proposed CNN model.

Layer Arguments Number of Parameters

Convolution2D Filters = 16, kernel size = (9, 3),
input shape (128, 170, 1) 448

MaxPooling2D Pool size = (2, 2)
Convolution2D Filters = 32, kernel size = (3, 1) 1568
MaxPooling2D Pool size = (2, 2)

Flatten
Dense_1 Nodes = 128 4,989,056
Dropout Rate = 0.2
Dense_2 Nodes = 23 2967

Total number of parameters 4,994,039

Basically, the model consists of two convolutional layers followed by two max pooling
layers: a fully-connected layer and the output layer. The shape of the input spectrograms is
set to (128, 170, and 1) where the first two parameters correspond to the spatial resolution
of an image, whereas the third indicates that the image is grayscale. The first convolutional
layer has 16 kernels of size (9, 3) and it is followed by the rectified linear units (ReLu)
activation function and a max pooling layer of size (2, 2). The second convolutional layer
has 32 kernels of size (3, 1). Similarly to the first convolution layer, this layer is also followed
by the ReLu activation function and a max pooling layer of size (2, 2). It can be observed
that the kernels in the first convolutional layer have larger dimensions compared with the
second convolutional layer and that the height of the kernels is larger than the width. The
aim of the rectangular shape is more precise in capturing quick temporal changes, whereas
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kernel size reduction in the second layer should lead to better detection of discriminative
features [22]. Next, the fully-connected layer has 128 nodes, whereas the output layer has
23 nodes, which is equal to the number of speakers used from the SEAC database. Finally,
we use the softmax activation function after the output layer. Between the fully-connected
layer and the output layer, we use dropout regularization with the parameter 0.2. The total
number of parameters of the network is 4,994,039.

3. Quantized CNN

Deployment of neural network models to the embedded devices depends on several
characteristics of the model, primarily on the achieved accuracy, processing time, and
available memory. Most of the contemporary models are based on deep learning techniques
that can provide high accuracy but at the expense of increasing memory and processing
time. Thus, the quantization of neural network models is becoming an extremely important
step from the standpoint of model deployment.

The design of quantizers is not uniquely determined and it strongly depends on the
desired quality of reconstructed data as well as the complexity. Quantization refers to a
process that maps values from the input set of data, which can be infinite in general, to
the output set that consists of a fixed number of representative levels. Depending on the
number of input samples that are processed at the same time, quantizers can be classified
as vector and scalar. However, the vector quantizer’s design is more complex, so scalar
quantization solutions are primarily analyzed for neural network compression tasks. In this
section, we will describe three popular fixed scalar quantization approaches for quantizing
neural networks. In the following sections, we will demonstrate the robustness of these
approaches in the proposed CNN network, deployed for SR using emotional speech not
seen in training.

3.1. The 8-Bit Floating Point Quantization

Floating point arithmetic is standardized within the IEEE 754 technical standard [26].
According to the standard, there are three basic binary formats, with encoding in lengths of
32 bits, 64 bits, and 128 bits. Commonly, 32 bits format is referred to as full-precision or
single precision, whereas 64 bits format is a double precision and 128 bits is a quadruple
precision format. Floating point 8 (FP8) arithmetic refers to a floating point format of a
reduced precision [27,28], which exploits 8 bits for encoding an input sample. This format
type is sometimes denoted as a minifloat format and represents a popular reduced precision
alternative alongside a half-precision (16 bits) format. As minifloats have reduced precision,
they are not well suited for general purpose arithmetic but they can be used for special
purposes, such as to design constrained neural networks.

FP8 design can be carried out following the principles of the IEEE 754 standard.
According to the standard, floating point format is specified by three components: sign,
exponent, and mantissa. If we consider that there is one bit ‘s’ to encode a sign, e bits to
encode exponent E (a1a2 . . . ae) and m bits to encode mantissa M (b1b2 . . . bm), a real number
x can be represented in a floating point format as:

x = (sa1a2 . . . aeb1b2 . . . bm)2 (1)

The exponent E and mantissa M can be calculated as:

E = (a1a2 . . . ae)2 =
e−1

∑
i=0

ae−i2i (2)

M = (b1b2 . . . bm)2 =
m−1

∑
i=0

bm−i2i (3)
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Finally, the number x represented in the floating point format can be calculated as [32]:

x = (−1)s2Eb

(
1 +

M
2m

)
(4)

where Eb = E—bias denotes the biased exponent. It should be noted that M can take values
from 0 to 2m − 1 whereas Eb can take values from −2e−1 to 2e−1 − 1. The value of bias and
ranges of exponent and mantissa M depend on the number of bits reserved to represent
exponent and mantissa.

In this paper, we discuss two FP8 formats. Firstly, we will examine the effects of
applying a common (s, e, m) = (1, 4, 3) format, further denoted with FP8_v1. In this case,
bias = 8, so that the biased exponent can take values from −8 to 7 whereas mantissa can
take values from 0 to 23–1 = 7. The second format that we analyze here is defined as
(s, e, m) = (1, 5, 2) and it became popular recently as a part of a hybrid method for DNN
training and inference [27]. In this case, bias = 16, the bias exponent takes values in the
range from −16 to 15, whereas mantissa can take values from 0 to 22–1 = 3. This format is
further denoted as FP8_v2.

Let us consider an input sample x1. Determination of an FP8 representation for the
given input sample can be done using Equation (4) and the following steps:

Step 1: Find the parameter s, following the rule:

s =
{

0 x1 ≥ 0
1 x1 < 0

(5)

Step 2: Find the biased exponent value Eb by calculating the binary logarithm of the input
sample:

Eb = blog2( |x1| )c (6)

where b·c denotes the floor rounding function. If Eb > 2e−1− 1, set Eb = 2e−1− 1. Similarly,
if Eb < −2e−1, set Eb = −2e−1.
Step 3: Find the mantissa M value as:

M = round
(

2m
(
|x1|
Eb
− 1
))

(7)

Step 4: Calculate the quantized value using Equation (4).

3.2. Binary Quantization

Fixed scalar binary quantization is the simplest scalar quantization model, which
encodes an input real-valued sample x using 1 bit only. This way, maximal compression is
achieved regarding scalar quantization techniques. Here, we exploit a symmetric binary
quantizer, so that a binarized sample xb is obtained using the following rule [23]:

xb = Sign(x) =
{

+1 x ≥ 0
−1 x < 0

(8)

Besides such deterministic binarization function, stochastic binarization function can be
found in the literature, but such a model is harder to implement as it requires specific
hardware [23].

3.3. Ternary Quantization

Ternary quantization was introduced to the neural network quantization task to reduce
accuracy loss that occurs in binary quantization, by introducing a zero as an additional
representative level. If we assume that x is present at the quantizer’s entrance, quantized
value xt is obtained using the following rule [25]:
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xt =


y1 x > ∆1
0 ∆2 ≤ x ≤ ∆1
y2 x < ∆2

(9)

where ∆1 and ∆2 represent decision-making thresholds. Here, we apply a symmetric
ternary scalar quantizer, so that y1 = −y2 = y. Furthermore, we simplify design additionally
by setting the absolute value of decision thresholds to a half value of the representative
levels’ absolute value, so that the final design is:

xt =


y x > y/2
0 −y/2 ≤ x ≤ y/2
−y x < −y/2

(10)

The optimal value of representative levels y strongly depends on the statistics of the neural
network weights, i.e., statistics of the data that should be quantized. In this paper, we
determine representative levels empirically, considering achieved classification accuracy
and signal-to-quantization noise ratio value of reconstructed weights. This is relatively
simple as we design a post-training quantization model and the total number of parameters
is relatively small. Some advanced statistical models can be found in [25].

4. Results and Discussion

The evaluation of the proposed method is performed on the new Serbian emotional
speech database, SEAC, which is soon to be made publicly available. This database is
recorded by amateur speakers using mobile phones. Each subject could perform recording
in up to five predefined emotional styles: neutral, anger, fear, sadness, and joy. Although
there are recordings of 55 different speakers in the database, we used recordings from
23 (11 male and 12 female) speakers, who recorded speech in all five emotional styles.
There are 60 sentences per recorded emotion. Commonly, sentences are 2–4 s long. All the
recordings are resampled to 44.1 kHz and represented with 16 bits. As the goal is to design
a robust model which can operate in various emotional styles and datasets consisting of
several different emotional styles that are rare, we only used a neutral emotional style for
training, whereas testing is done for each emotional state, separately. In order to minimize
the bias inherent in the evaluation, we performed k-fold cross validation. Since we decided
to use about 80% of the available spectrograms of neutral emotional style for training and
20% for validation, we performed five-fold cross validation. The number of spectrograms
in each fold is not precisely equal, as we considered an equal number of recorded sentences
per speaker in each fold, whereas the duration of recordings might vary. The precise
number of spectrograms per fold is presented in Table 2.

Table 2. The number of spectrograms in folds.

Fold Number of Spectrograms

1 607
2 587
3 593
4 583
5 684

Total 3054

To evaluate the performance of the proposed model, we consider average classification
accuracy, F1 score, precision, and recall. It should be noted that the last three metrics are
weighted. The results are shown in Table 3.
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Table 3. Cross-validation performance of the proposed full-precision model.

Fold Classification
Accuracy (%)

Weighted
F1

Weighted
Precision

Weighted
Recall

1 99.51 1.00 1.00 1.00
2 99.49 1.00 0.99 0.99
3 99.66 1.00 1.00 1.00
4 98.46 0.98 0.98 0.98
5 99.12 0.99 0.99 0.99

Average 99.248 0.994 0.992 0.992

By observing the results from Table 3, it can be concluded that all five folds pro-
vide similar performance. The largest difference among folds is only 1.05% in terms of
classification accuracy, and 0.02 in terms of weighted F1 score, precision, and recall. For
further consideration, we choose the fifth fold, as its performance is closest to the average
performance.

In Table 4, we summarize the number of spectrograms used for training and valida-
tion of the neutral emotional style (fifth fold) and testing of the other emotional styles.
Although the same number of sentences was used for each emotion within the testing
phase, the number of spectrograms per emotion is not the same, since different styles are
also correlated also with different temporal changes, which is partly reduced by deleting
silence from the recorded files in pre-processing, as is described in Section 2.

Table 4. The number of spectrograms used per emotion within the experiment.

Emotion Number of Spectrograms

Training Neutral 2370

Testing

Neutral 684
Anger 513

Joy 608
Fear 579

Sadness 635

It should be noted that there is no difference between the validation and testing
sets for neutral style, as we performed k-folds cross validation and chose the fold whose
performance is closest to the average performance. Figure 2 shows classification accuracy
and loss for the first 30 epochs of training and validation on neutral speaking style.

Table 5 shows model predictions performance in the case of the trained full-precision
model and after applying quantization methods described in Section 3. Predictions are
made on all five types of recorded emotions: neutral, anger, fear, sadness, and joy. Fur-
thermore, we present signal-to-quantization noise ratio (SQNR) between full-precision
and quantized weights as the second performance measure, which provides a deeper
understanding of applied quantization methods. SQNR is defined with:

SQNR = 10 log10

(
σ2

w
Dw

)
= 10 log10


1
N

N
∑

i=1
(wi − µ)2

1
N

N
∑

i=1

(
wi − wq

i

)2

 (11)

where Dw is weight distortion introduced during the quantization process, wq
i are quantized,

wi are the original values of weights, µ is the mean value of original weights, whereas N is
the total number of weights.



Entropy 2022, 24, 414 9 of 17

Entropy 2022, 24, x FOR PEER REVIEW 9 of 17 
 

 

where Dw is weight distortion introduced during the quantization process, q
iw  are quan-

tized, iw  are the original values of weights, μ is the mean value of original weights, 
whereas N is the total number of weights. 

 
(a) Classification accuracy 

 
(b) Loss 

Figure 2. Training and validation performance of the full-precision CNN model. 

As it was already demonstrated, the proposed full-precision model achieves an ac-
curacy of 99.12% on the validation dataset. The trained model is further used for the SR 
task in the case of emotional speech, and the results are shown in Table 5. It can be ob-
served that there is a degradation of the performance in the case of emotional speech, as 
could be expected. However, achieved accuracy in the case of anger, fear, and joy is about 
85%, which can be considered as a very good accuracy, taking into account that the model 
is not trained for such an environment. The largest degradation is noticed in the case of 
sadness. Such an observation can be explained by the fact that the speech rate of sadness 
is slower than in the other emotions [36], and that maybe even wider rectangular kernels 
should be used in this particular case. 

By observing the performance of constrained models, one can notice that there is only 
negligible degradation of achieved accuracy in the case of both FP8 configurations com-
pared with the full-precision model, whereas the required memory is reduced by almost 
four times. Considering minor differences among achieved classification accuracy results 
and SQNR values from Table 6, it could be seen that although the SQNR value for the 
FP8_v1 model with parameters (s, e, m) = (1, 4, 3) is higher compared with the FP8_v2 
model with parameters (s, e, m) = (1, 5, 2), the achieved classification accuracy is the same 
for neutral, fear, and sadness, and slightly worse in the case of anger and joy, achieving 
the same level of compression. By further observing precision, recall, and the F1 score for 

Figure 2. Training and validation performance of the full-precision CNN model.

Table 5. Classification accuracy of the proposed full-precision and quantized CNN models.

Classification Accuracy (%)

Emotion

Proposed Model Neutral Anger Fear Sadness Joy

Full-precision 99.12 86.16 84.46 79.84 85.69
FP8 (1, 4, 3) 99.12 86.35 84.46 79.84 85.69
FP8 (1, 5, 2) 99.12 86.55 84.46 79.84 85.86

Ternary quant. 97.22 86.35 83.07 76.54 84.54
Binary quant. 94.01 83.82 77.37 69.29 83.06

As it was already demonstrated, the proposed full-precision model achieves an accu-
racy of 99.12% on the validation dataset. The trained model is further used for the SR task
in the case of emotional speech, and the results are shown in Table 5. It can be observed
that there is a degradation of the performance in the case of emotional speech, as could
be expected. However, achieved accuracy in the case of anger, fear, and joy is about 85%,
which can be considered as a very good accuracy, taking into account that the model is not
trained for such an environment. The largest degradation is noticed in the case of sadness.
Such an observation can be explained by the fact that the speech rate of sadness is slower
than in the other emotions [36], and that maybe even wider rectangular kernels should be
used in this particular case.

By observing the performance of constrained models, one can notice that there is
only negligible degradation of achieved accuracy in the case of both FP8 configurations
compared with the full-precision model, whereas the required memory is reduced by
almost four times. Considering minor differences among achieved classification accuracy
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results and SQNR values from Table 6, it could be seen that although the SQNR value for
the FP8_v1 model with parameters (s, e, m) = (1, 4, 3) is higher compared with the FP8_v2
model with parameters (s, e, m) = (1, 5, 2), the achieved classification accuracy is the same
for neutral, fear, and sadness, and slightly worse in the case of anger and joy, achieving the
same level of compression. By further observing precision, recall, and the F1 score for these
two FP8 models from Tables 7–9, the difference is not noticeable. Additional interesting
observations can be noted for the results in the case of anger. It can be observed that both
the FP8 quantized models provide slightly higher classification accuracy compared with the
full-precision model in the case of anger, which could be considered as a contradiction as it
is expected that after quantizing weights and introducing degradation, accuracy should be
the same or reduced. Such unusual behavior can be explained by the fact that the model is
trained only for neutral speech and that such a model is not optimal for other emotions.
After applying FP8, we have introduced very small changes of weights, which coincided
with hypothetical model learning in this case. The fact that these are small changes is
reflected in high SQNR values for both FP8 configurations (Table 6). Similar observations
can also be noticed in the case of ternary quantization and anger style, although higher
distortion is introduced during the quantization process.

Table 6. SQNR for various quantization models.

SQNR (dB)

Proposed Model

FP8 (1, 4, 3) 30.98

FP8 (1, 5, 2) 25.58

Ternary quant. (1/16) 5.90

Binary quant. −31.483

Table 7. Weighted precision of the proposed full-precision and quantized CNN models.

Weighted Precision

Emotion

Proposed Model Neutral Anger Fear Sadness Joy

Full-precision 0.99 0.88 0.88 0.84 0.89
FP8 (1, 4, 3) 0.99 0.88 0.88 0.84 0.89
FP8 (1, 5, 2) 0.99 0.88 0.88 0.84 0.89

Ternary quant. 0.97 0.88 0.87 0.82 0.87
Binary quant. 0.95 0.86 0.84 0.72 0.87

Table 8. Weighted recall of the proposed full-precision and quantized CNN models.

Weighted Recall

Emotion

Proposed Model Neutral Anger Fear Sadness Joy

Full-precision 0.99 0.86 0.84 0.80 0.86
FP8 (1, 4, 3) 0.99 0.86 0.84 0.80 0.86
FP8 (1, 5, 2) 0.99 0.86 0.84 0.80 0.86

Ternary quant. 0.97 0.86 0.83 0.77 0.85
Binary quant. 0.94 0.84 0.77 0.69 0.83
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Table 9. Weighted F1 score of the proposed full-precision and quantized CNN models.

Weighted F1 Score

Emotion

Proposed Model Neutral Anger Fear Sadness Joy

Full-precision 0.99 0.86 0.85 0.79 0.86
FP8 (1, 4, 3) 0.99 0.86 0.85 0.79 0.86
FP8 (1, 5, 2) 0.99 0.86 0.85 0.79 0.86

Ternary quant. 0.97 0.86 0.83 0.75 0.85
Binary quant. 0.94 0.84 0.77 0.67 0.83

Ternary and binary quantization provide much higher compression ratios, reducing
storage requirements of the full-precision model for almost 16 and 32 times, respectively.
These compression-efficient techniques introduce the largest distortion, which can be seen
from Table 6, that leads to the further degradation of classification accuracy. However,
we underline that the average degradation of classification accuracy in the case of ternary
quantization is only 1.51% and that the differences are lesser in the case of emotional speech
not seen during the training phase, except sadness, highlighting the robustness of the
proposed model. After considering a set of representative levels y = {1, 1/2, 1/4, 1/8, 1/16,
1/32}, we have chosen y = 1/16 as a representative level for ternary quantization since it
provides the best accuracy and SQNR for our model.

In the case of binary quantization, the average degradation compared with the full-
precision model on the set of five emotions is 5.544%, which is in accordance with the
introduced degradation for other datasets [24].

Besides classification accuracy and SQNR, we observe weighted precision, recall, and
F1 score as performance measures. These results are presented in Tables 7–9. Similarly,
as in the case of classification accuracy, the full-precision model in the case of neutral
speaking style provides excellent results and there is a degradation for the other emotions.
The worst results can be noticed in the case of sadness for all three measures, which is
in accordance with classification accuracy results. In the end, it can be observed that the
performance of constrained models in the case of both FP8 versions is similar as in the case
of the full-precision model, whereas a certain performance degradation exists in the case of
ternary and binary quantization.

Comparison with Other Models

The aim of this section is to provide comparisons of the proposed constrained CNN
model with other state-of-the art CNN models and other machine learning techniques.

First of all, we analyzed the CNN model proposed in [17]. It can be seen that Lukic
et al. proposed the model which includes twice the number of kernels in both convolutional
layers, as well as an additional fully-connected layer. The summary of the model from [17],
prepared for processing the SEAC dataset, is provided in Table 10.

By comparing the total number of parameters of the proposed model (Table 1) with
the model from [17] (Table 10), it can be observed that the proposed model has 3.15 times
fewer parameters so that it is much less complex and it requires much less memory.

In order to provide a detailed and fair comparison and to explore the robustness of
rectangular kernels, we have also applied the proposed quantization methods to the model
from [17]. The results are presented in Tables 11 and 12.
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Table 10. The CNN model from [17].

Layer Arguments Number of Parameters

Convolution2D Filters = 32, kernel size = (4, 4),
input shape (128, 170, 1) 544

MaxPooling2D Pool size = (4, 4), strides = (2, 2)
Convolution2D Filters = 64, kernel size = (4, 4) 32,832
MaxPooling2D Pool size = (4, 4), strides = (2, 2)

Flatten
Dense_1 Nodes = 230 15,662,310
Dropout Rate = 0.5
Dense_2 Nodes = 115 26,565
Dense_3 Nodes = 23 2668

Total number of parameters 15,724,919

Table 11. Classification accuracy of the CNN model from [17]: full-precision and additionally
quantized scenarios.

Classification Accuracy (%)

Emotion

CNN Model
from [17] Neutral Anger Fear Sadness Joy

Full-precision 98.83 78.75 83.94 78.43 84.70

FP8 (1, 4, 3) 98.98 78.75 84.28 78.58 84.70

FP8 (1, 5, 2) 98.83 78.75 84.11 77.95 84.87

Ternary quant. 98.83 82.65 85.49 75.59 86.35

Binary quant. 95.47 76.41 81.17 72.91 83.39

Table 12. SQNR for various quantization models applied to the model from [17].

SQNR (dB)

CNN from [17]

FP8 (1, 4, 3) 30.94

FP8 (1, 5, 2) 25.54

Ternary quant. (1/16) 5.219

Binary quant. −33.94

By observing Tables 11 and 12, similar observations could be made as in the case of
the proposed model. In order to compare the achieved accuracy using the proposed model
and the model from [17] and later with the models from [10,37], we define classification
accuracy gain as an improvement of the proposed model over the compared model as:

CAG = acp − acc (12)

where acp represents the accuracy of the proposed model, whereas acc is the accuracy of
the compared model. The positive values of CAG indicate better model performance of the
proposed model. CAG values are given for all analyzed models and all emotional styles in
Figure 3, providing a detailed comparison with the model from [17]. We can highlight that
the proposed full-precision model provides better performance for all emotions, although
the proposed network has far fewer parameters, demonstrating the suitability of rectangu-
lar kernels. By analyzing quantized CNN models, it can be seen that the proposed model
would achieve better performance than the model from [17] for all emotional states in the
case of both FP8 formats. However, better results in the case of ternary quantization are
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achieved only in the case of anger and sadness, whereas anger is the only emotional style
for which better results are achieved in the case of binary quantization. Such behavior is not
unusual, as the model from [17] has more than three times more parameters and the perfor-
mance of low-precision models also rely on the model depth. However, more parameters
and larger depth lead to longer processing and higher storage capability demands.
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Although the model from [17] is a more complex CNN architecture than the proposed
one, there exist far more complex networks in the literature. On the other hand, the aim of
the paper is to propose a simple constrained solution, which could perform fast recognition
and which could find application in IoT systems. Nevertheless, we also performed a
comparison with a VGGish-based architecture, trained on the SEAC dataset. The VGGish-
based model uses mel-spectrograms as input, but for the purposes of comparison we
adjusted it to our usage scenario. The network is created following the descriptions
from [37,38] and is summarized in Table 13.

Table 13. The VGGish-based architecture.

Layer Arguments Number of Parameters

Convolution2D
Filters = 64, kernel size = (3, 3),

strides = (1, 1),
input shape (128, 170, 1)

640

MaxPooling2D Pool size = (2, 2), strides = (2, 2)

Convolution2D Filters = 128, kernel size = (3, 3),
strides = (1, 1) 73,856

MaxPooling2D Pool size = (2, 2), strides = (2, 2)

Convolution2D Filters = 256, kernel size = (3, 3),
strides = (1, 1) 295,168

Convolution2D Filters = 256, kernel size = (3, 3),
strides = (1, 1) 590,080

MaxPooling2D Pool size = (2, 2), strides = (2, 2)

Convolution2D Filters = 512, kernel size = (3, 3),
strides = (1, 1) 1,180,160

Convolution2D Filters = 512, kernel size = (3, 3),
strides = (1, 1) 2,359,808

MaxPooling2D Pool size = (2, 2), strides = (2, 2)
Flatten

Dense_1 Nodes = 4096 184,553,472
Dense_2 Nodes = 4096 16,781,312
Dense_3 Nodes = 23 94,231

Total number of parameters 205,928,727

It could be seen that the model consists of six convolutional layers, four max pooling
layers, two fully connected layers, and the output layer. The total number of parameters is
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more than 205 million, which is about 41 times more demanding than the proposed model
in terms of memory resources. The performance of the model is presented in Table 14.

Table 14. Classification accuracy of the full-precision VGGish-based architecture.

Classification Accuracy (%)

Emotion

VGGish-Based
Architecture Neutral Anger Fear Sadness Joy

Full-precision 98.83 79.93 85.84 79.21 85.03

By observing the results for the VGGish-based model and the proposed model, it could
be seen that the proposed model achieves better classification accuracy for all emotions
than the VGGish-based model, except fear. As the VGGish-based network has 41 times
more parameters than the proposed model, quantization of such network is not worth
analyzing for this research, as binary quantized VGGish-based architecture, obtained after
reducing full-precision weights 32 times, would require more memory than the proposed
full-precision model.

Besides comparing the proposed model with other CNN models, let us observe the
achieved performance of SVM, KNN, and multilayer perceptron (MLP) on the same dataset.
These results are already presented in [10]. By observing Table 3 from [10], it can be seen
that these methods provide great classification accuracy in the case of neutral speech, even
slightly better than the model we propose. However, when deploying such models trained
to the neutral speech on other emotional styles, there exists a huge degradation, much larger
than in the case of the proposed CNN model. The achieved classification accuracy gain of
the proposed full-precision model compared with the SVM, KNN, MLP, and full-precision
CNN model from [17] and VGGish-based architecture from [37] is presented in Figure 4.

Figure 4. Classification accuracy gain over the various models: SVM, kNN and MLP [10]; VGGish-
based architecture [37]; CNN model from [17].

5. Summary and Conclusions

In this paper, we proposed constrained convolutional neural network models for
speaker recognition tasks. The models were designed following two ideas. Firstly, we
wanted to design a robust model, which can operate in the case of an aroused emotional
state of speakers. For such a task, we exploited filters of a rectangular kernel shape unlike
common CNN models for speaker recognition, which exploit kernels of a square shape.
Secondly, the idea of simplicity was considered carefully in order to design a model that
can be implemented on small edge devices in IoT systems for real-time processing. The
proposed architecture considers spectrograms of a recorded speech, so that a short 1-s-long
utterance is enough for detection. Furthermore, we made constrained models by analyzing
several techniques for neural network weights’ quantization.
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The experiments were performed on the closed set of speakers provided in the SEAC
database, which consists of five different emotional styles, recorded in the Serbian language.
We demonstrated that the proposed unconstrained CNN model provides high classification
accuracy, averaging 99.248% in the case of neutral speech and about 85% in the case
of all other observed emotions except sadness, which is detected with 79.84% accuracy.
Furthermore, we analyzed the system performance in the case of constrained representation
of weights, using 1-bit, 2-bit, and 8-bit quantization. The achieved results suggest that the
proposed constrained models provide results very close to the one obtained using the full-
precision 32-bit model; there is only negligible difference in the case of 8-bit representation,
whereas the difference in the case of the ternary quantization model is up to 3.3%, while
degradation in the case of the binary quantization model is up to 10.55%. Unlike the
full-precision model and FP8 models, the performance of 1-bit and 2-bit quantized models
is more dependent on the model depth. For both ternary and binary quantization, the
worst results are achieved in the case of sadness, which turned out to be the emotional style
with the worst degradation.

In the end, we have compared the performance of the proposed model with the
performance of other state-of-the-art CNN-based speaker recognizers, which have about
three times more and 41 times more network parameters. We have concluded that these two
full-precision models provide similar or worse performance compared with the proposed
full-precision model, excepting the case of fear and the network from [37]. To highlight the
importance of the proposed solution, we also demonstrated the gain of the proposed model
over the SVM, KNN, and MLP solutions. As the proposed model performs classification
based on a single input spectrogram, i.e., on a 1-s-long utterance, we intend to analyze
compromising solutions in the future. It can be expected that the implementation of majority
voting techniques should increase classification accuracy, at the expense of increasing
complexity and processing time.
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