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Abstract: An Active Queue Management (AQM) mechanism, recommended by the Internet En-
gineering Task Force (IETF), increases the efficiency of network transmission. An example of this
type of algorithm can be the Random Early Detection (RED) algorithm. The behavior of the RED
algorithm strictly depends on the correct selection of its parameters. This selection may be performed
automatically depending on the network conditions. The mechanisms that adjust their parameters
to the network conditions are called the adaptive ones. The example can be the Adaptive RED
(ARED) mechanism, which adjusts its parameters taking into consideration the traffic intensity. In
our paper, we propose to use an additional traffic parameter to adjust the AQM parameters—degree
of self-similarity—expressed using the Hurst parameter. In our study, we propose the modifications
of the well-known AQM algorithms: ARED and fractional order PIαDβ and the algorithms based
on neural networks that are used to automatically adjust the AQM parameters using the traffic
intensity and its degree of self-similarity. We use the Fluid Flow approximation and the discrete event
simulation to evaluate the behavior of queues controlled by the proposed adaptive AQM mechanisms
and compare the results with those obtained with their basic counterparts. In our experiments, we
analyzed the average queue occupancies and packet delays in the communication node. The obtained
results show that considering the degree of self-similarity of network traffic in the process of AQM
parameters determination enabled us to decrease the average queue occupancy and the number of
rejected packets, as well as to reduce the transmission latency.

Keywords: neural networks; adaptive AQM; self similarity; PID; reinforcement learning

1. Introduction

To properly evaluate the performance of computer networks, it is necessary to develop
appropriate models of network mechanisms and a realistic model of packet traffic. Models
used for computer network evaluation can be analytical or, as an alternative, they can use
discrete event simulation. In the case of computer network modeling, analytical models
based on queueing theory are often found in the literature [1,2]. The obtained results
are then used in the design phase of network mechanisms to evaluate and compare the
created mechanisms with existing solutions, as well as in the operation phase to adjust
the configuration of network devices and parameters of network protocols to the required
objectives [3–6].

There are two basic principles for managing queue occupancy in the Internet transmis-
sion. The first one—a traditional approach—assumes that packets arriving in the buffer are
dropped only when the buffer is completely full. Active Queue Management (AQM) ap-
proaches are based on the idea of preemptively dropping packets even if there is still space
to store incoming packets. These packets are dropped randomly according to a calculated
probability function, which allows for increasing the network throughput and providing
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fair access to the link. It also eliminates the problem of global synchronization. The per-
formance of the TCP protocol is closely related to the AQM algorithm implemented in the
router. The first and still the most popular [7,8] AQM algorithm is Random Early Detection
(RED), proposed in 1993 by Sally Floyd and Van Jacobson [9]. A great number of works exist
in which the effect of changing its parameters has been studied, and which modifications
of this mechanism have been presented to improve transmission performance.

The RED mechanism maintains a reasonable queue length and acceptable transmission
latency. Nevertheless, it is necessary to choose its parameters properly [10]. Otherwise,
the TCP/RED system becomes unstable [11]. Research related to the attempts to increase
the performance of the RED mechanism has been presented in [12]. Our earlier work [13]
showed that a more detailed study of the previous queue occupancy and a change in
the implementation of the weighted average queue length can also improve the transmis-
sion performance.

Most of the RED type algorithms are based on preventive packet dropping when the
queue occupancy is between certain predetermined thresholds (Minth, Maxth). Its idea
is based on a dropping function yielding a probability of packet rejection. The existing
versions of the RED algorithm mostly differ in the way of defining the packet dropping
probability function [14–16]. Proper selection of the parameters of this function is extremely
important and should depend on network conditions. For the RED algorithm, the average
queue length oscillates around the minimum threshold Minth for a small load or when high
values of parameter Pmax (the maximum value of packet dropping probability function)
are used. For high load or low values of Pmax, the average queue length is close to or even
exceeds the threshold Maxth.

In an operating network, the traffic intensity is highly variable. Thus, the AQM
parameters should also change. Algorithms whose parameters change during operation
are called the adaptive ones. The first algorithm of this type was ARED (Adaptive RED).
For the ARED algorithm parameter, Pmax varies during the router operation, so that the
queue occupancy is maintained between values Minth and Maxth. Such approach reduces
the variability of the queue delays and minimizes the amount of rejected packets [17,18].

Unfortunately, in the first ARED algorithm, adaptation of Pmax is time-consuming;
therefore, matching queue parameters also takes a lot of time [19]. The existing types of the
ARED algorithm mostly differ in the method of parameter values estimation [20]. Ref. [21]
discusses the problem of real-time video transmission and its self-similar nature. The work
shows that such traffic characteristics cause large delays. They postulate the necessity of
creating new AQM mechanisms because traditional algorithms (such as RED or ARED) are
not recommended in this case.

Parameters of Adaptive AQM algorithms are set based on intensity of network traffic.
In our paper, we propose to set them not only based on intensity but also to incorporate
the degree of traffic self-similarity to the selection process. Many studies have shown
that the network traffic exhibits self-similarity (defined in Section 3), which has a large
impact on a network performance: enlarges the queue occupancy and increases the number
of the dropped packets in the nodes [22]. Unfortunately, the algorithms for calculating
the degree of traffic self-similarity are computationally complex. Long computation time
makes them unsuitable for this type of application. The paper proposes modifications of the
Hurst estimation method, in which some of the computation procedures (collecting traffic
information) are performed in a continuous manner, regardless of the Hurst estimation
process. The proposed modifications make it possible to use it in queue scheduling in the
router. In our paper, we examine how incorporation of Self-Similarity degree sensing into
different AQMs affects the queue behavior. In our experiments, we modify two families
of AQM mechanisms: ARED and non-integer order PIαDβ controller and compare the
performance with their basic equivalents. We apply artificial neural networks to tune the
AQM mechanisms’ parameters.

The remainder of the paper is organized as follows: In Section 2, we describe the
related works. Section 3 provides the background regarding LRD, self-similarity and
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Hurst parameter calculation. Section 4 and 5 describes different AQM mechanisms, neural
network tuning of their parameters and theoretical basis for non-integer PIαDβ controller.
Section 6 presents experiments and discusses numerical results. Conclusions can be found
in Section 7.

2. State of the Art

The original RED algorithm and its later modifications, such as Nonlinear RED
(NLRED) [23] or Double Slope RED (DSRED) [14]), tend to be very sensitive to the network
traffic properties (such as intensity or degree of self-similarity). When the network nodes
are overloaded [24], these mechanisms cannot be used to maintain the intended queue
length and frequently the maximum queue size is exceeded [13,23,25]. For this reason, they
are not suitable for the proposed solution.

To analyze the performance and dynamics of Internet connections, the control theory
methods can be used. They can contribute to the improvement of network stability and re-
duction of the reaction time. Some feedback control mechanisms have been proposed in the
literature. In work [26], a dynamic Fluid Flow TCP/RED network model based on stochas-
tic differential equations has been presented. This work contributed to the creation of
several AQM algorithms based on different control theory approaches. In ref. [27], a mecha-
nism based on a Proportional-Integral (PI) controller was proposed. In ref. [28], an adaptive
Proportional (P) and Proportional-Integral (PI) controller were created. The conclusion was
that the PI controller can easily adapt to the Internet traffic fluctuation. In ref. [29], a new
variant of the RED mechanism, Proportional-Derivative-RED (PD-RED), was proposed.
It was proven that the presented mechanism performed better than the Adaptive RED.
In ref. [30], a Proportional-Integral-Differential (PID) controller was presented. The aim
was to accelerate the responsiveness of the system. In the domain of control theory-based
AQMs, the PI controllers are frequently used due to their implementation and computation
simplicity [11]. In ref. [31], a self-tuning compensated PID controller was proposed, and the
authors put the emphasis on the simplicity of the method. In ref. [32], the authors have
proven that the key advantage of the Fractional–Order PID controller is its insensitivity to
the parameters of the systems. As a result, these methods can ensure a stable performance.

Ref. [33] compares AQM mechanisms based on a PID controller and RBF neural
networks. Less fluctuation in queue occupancy and faster steady-state time were observed
for the neural network approach.

The advantages of using new concepts to create AQM mechanisms based on the
reinforcement learning for network resource management have been described in [34].
This paper highlights that such mechanisms automatically adapt to changing network
conditions without using additional tuning parameters.

The issues of TCP/AQM congestion control along with the occurring UDP streams
have been addressed in [35]. The authors proposed a modification of the PID mechanism by
implementing the disturbance and the time delay compensation in an integrated manner.

In addition, the increased interest in the use of AQM mechanisms is due to their use
in 5G networks. Ref. [36] presents the problem of packet dropping and queuing delay
for mobile 5G networks. In this paper, the authors present a new CoDel-based AQM
mechanism that does not require information about the current network state.

3. Hurst Estimation Methods

Many studies, both theoretical and empirical, have shown that one of the important
problems that should be taken into account when network solutions are analyzed are the
traffic self-similarity and long-range dependence [37–41]. The occurrence of this phenom-
ena in network traffic increases the queue lengths and the number of dropped packets in the
routers [22]. Ignoring them may cause an underestimation of performance measures [42,43].
Our previous work has shown how the traffic self-similarity affects the behavior of the
AQM queues [44,45]. In addition, the selection of the optimal AQM parameters depends
on the degree of self-similarity [46].
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The term “self-similar” was first introduced by Benoit Mandelbrot in 1967 [47]. Self-
similarity means that a continuous stochastic process and the rescaled one have the same
distribution [48]. The condition that a continuous stochastic process Y(t) is self-similar can
be written as follows [48]:

Y(t) d
= a−HY(at), f or t ≥ 0, a ≥ 0 and 0 < H < 1, (1)

where H is the Hurst parameter—a measure used to estimate the degree of self-similarity
and a is any positive stretching factor. In the case of the network traffic, we usually represent
the data in a time series form and not a continuous process [49]. We measure the traffic in
specified time slots. Such an obtained discrete-time stochastic process X1, X2, . . . Xk, . . . is
self-similar when for the aggregated (the original series X is averaged over non-overlapping
blocks of size m) sequence X(m)

k [50]:

X(m)
k =

1
m
(Xkm−m+1 + . . . + Xkm), where m > 1 and k ≥ 1 (2)

and the variance equals [50]:

Var[X(m)] =
Var[X]

mβ
, where 0 < β < 1, H = 1− β/2 (3)

or
log Var (X(m)

k ) ≈ log Var (X)− β log m (4)

In the literature, the notions of self-similarity and long-range dependence (LRD)
are often used as equivalents. Its not true [51]. When the process exhibits LRD, it is
an asymptotically second-order self-similar process. The occurrence of LRD means that
the temporal similarities can be observed in data. The self-similar intensity of traffic in
computer networks is affected in periods of intensive traffic. During such periods, queue
occupancy increases. Therefore, we can observe increased waiting times and massive losses
of packets. The classical approach to the LRD analysis is based on statistical methods. They
are utilised to estimate the value of the Hurst exponent, denoted as H:

• H ∈ (0; 0.5)—the process is negatively correlated, which means that the Long-Range
Dependence does not occur;

• H = 0.5—the process is uncorrelated;
• H ∈ (0.5; 1)—the process is positively correlated, which means that the LRD occurs.

The traditional estimation methods are, among others, aggregated variance, R/S plot,
the periodogram-based method, detrended fluctuation analysis or local Whittle’s estimator.
These methods use different principles to estimate the Hurst parameter value, thus the
obtained values can significantly differ [37,41,52,53]. The big disadvantage of all mentioned
methods is their complexity. Due to time-consuming calculations, they cannot be used to
manage network traffic in real time. In this paper, we propose some modifications to one of
the algorithms that allows us to use it for an Adaptive AQM mechanism.

One of the most popular algorithms of Hurst estimation is the Aggregate Variance
method. This method is based on the formulas presented below. A stationary time series of
length N, which shows long-term dependencies, is characterized by an average variance
of samples of the order N2H−2 [48]. Hence, the following algorithm for determining the
Hurst parameter value can be used:

Step 1: Divide the time series into blocks of length m (where m takes the values
between 2 and N

2 ), and then compute the mean value for each k-th block [48]:

X(m)
(k) =

1
m

km

∑
t=(k−1)m+1

X(t) (5)
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for k = 1, 2, . . . , N
m

Step 2: Compute the variance of the averaged process X(m)
(k) (for every m) [48]:

σ2
m =

1
N
m − 1

N
m

∑
k=1

(X(m)
(k)− µ)2 (6)

Step 3: Using the least squares method, we determine the approximation line for the
values of logarithm of σ2

m as a function of the logarithm of m.
Step 4: We determine the Hurst parameter value from the expression below:

H = 1− ζ

2
, (7)

where ζ is the slope of the approximated straight line.
The input data of the described algorithm are the intervals between arrival times of

successive packets. As an output, we obtain the Hurst parameter value.
In this paper, we propose some modifications to this Hurst estimation method. Our

goal is to carry out some calculations in the background. To achieve this objective, we
changed the computation procedure in the first two steps of the above algorithm.

In the first step, instead of mean values, the sum for each k-th block is determined:

X(m)(k) =
km

∑
t=(k−1)m+1

X(t), f or k = 1, 2, . . . ,
N
m

(8)

This simple trick allows us to modify all k-blocks with each new packet arrival; see
Figure 1. We collect information about the number of packets that came in a single time
slot. Then, at the end of each time slot, a slot with information about the number of packets
from that time slot is added to the first block (2k for k = 1). If two new slots with packets
appear in the k-th block, a new slot is created in the k+1 block with the sum of the values
from these two new slots from the k-th block. With this modification, when more packets
arrive in the pessimistic case, k + 1 summations must be performed.

Additionally, we modify the formula of variance calculation:

σ2
m =

1
N
m − 1

N
m

∑
k=1

(X(m)(k)2)− µ2, (9)

where µ is a mean value. As can be observed, the first part of the formula can also be
calculated with block modification. Since most of the data are computed all the time (in
background) and the number of blocks is small, the rest of the calculations (calculation of
the mean value and approximation of obtained variances) are less time-consuming.

Table 1 compares the Hurst estimation results obtained using a standard Aggregate
Variance method and our proposition. The results are identical, which confirms that calcu-
lating the sum values instead of mean values does not affect the estimation of the degree of
self-similarity. Table 2 presents times of Hurst estimations depending on the length of the
sample. The first column (Method 1) presents times for the standard Aggregate Variance
method. Column 2 (method 2 (ver. 1)) presents results for our method. Presented times
are slightly larger (despite the profit which should be gained by resigning from calculating
average values in blocks). The increased time is caused by building the structures needed
to store information in blocks. The advantage of our solution is that modifications of blocks
and partial computation of variances can take place in the background. Column 3 (method
2 (ver. 2)) shows the computation times without operations possible in the background.
As can be seen, the presented results are small enough to use the proposed Hurst estimation
in the queuing mechanisms.
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Figure 1. Hurst calculation algorithm.

Table 1. Assumed and estimated Hurst parameter. Length of the sample 218.

H Method 1 Method 2

0.5 0.4975 0.4975

0.6 0.5918 0.5918

0.7 0.7124 0.7124

0.8 0.8098 0.8098

0.9 0.9108 0.9108

Table 2. Time of calculating Hurst estimation.

n Method 1 Method 2 (ver. 1) Method 2 (ver. 2)

210 0.000992 0.000995 0.000009

212 0.003968 0.004454 0.000010

214 0.015376 0.018848 0.000011

216 0.062462 0.076383 0.000013

218 0.262380 0.311451 0.000014

4. Adaptive AQM

In the case of the RED algorithm, the queue is divided into three areas. According
to this rule, Minth and Maxth values are the assumed queue size threshold values nec-
essary for the proper operation of the RED algorithm [17], whereas Avg is an average
queue occupancy.

The dropping probability P is growing linearly from 0 to Pmax:

P =


0 for Avg < Minth

avg−Minth
Maxth−Minth

Pmax for Minth <= Avg <= Maxth

1 for Avg > Maxth

(10)

The argument Avg is a weighted moving average queue length estimated based
on current and past queue lengths. Its value is calculated at the arrival of each packet.
The recommended value of Pmax is 0.1 [54].

The fixed setting of the RED algorithm parameters in the case of variable network
traffic may cause its instability (alternately empty and full queue). For the ARED algorithm,
the parameter Pmax changes adaptively (ranging from 0 to 0.5) according to the measured
traffic [55]. There are plenty of papers regarding the modification of RED that shows the
impact of changes in the determination of the packet rejection probability function on
the efficiency of these mechanisms and perform a comparison of efficiency of different
algorithms. Such a comparison can be found in [25].

In the algorithm, two parameters are defined: α and β. The first one defines how
much Pmax increases and the second one—how much Pmax decreases (Pmax = Pmax + α or
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Pmax = Pmax − β). The decision about a possible Pmax increase or decrease depends on the
Target parameter, where:

Target(t) ∈ [Minth + 0.4·(Maxth −Minth), Minth + 0.6·(Maxth −Minth)] (11)

If the average queue length exceeds the target value and Pmax is less or equal to 0.5,
the parameter Pmax is increased by a factor α defined as the lower value of 0.01 and Pmax/4;
otherwise, the Pmax is reduced by a factor β (authors of the ARED algorithm proposed 0.9).
The Pmax parameter changes between 0.01 and 0.5, which causes an increase in the packet
rejection rate in the case of the growing traffic intensity (when compared to traditional RED).
The disadvantage of the algorithm is a relatively slow correction of Pmax. The algorithm
needs 10 to 20 s to stabilise the parameter values. In the case of large variability in traffic,
the algorithm may have difficulty obtaining optimal performance.

Our modification of the ARED algorithm incorporates adjusting the changes of Pmax
parameter in accordance with the degree of self-similarity of the examined traffic. We
propose to change the Target parameter depending on the Hurst parameter value:

Target(t) ∈ [tmin + (0.4− (Hurst(k)− 0.5)) · (tmax − tmin),

tmin + (0.6− (Hurst(k)− 0.5)) · (tmax − tmin)]
(12)

The second AQM we present in this paper is based on the Fractional Order PIαDβ

controller. Fractional Order Derivatives and Integrals (FOD/FOI) are extensions of the well-
known integrals and derivatives. A proportional-integral-derivative controller (PID con-
troller) is a traditional mechanism used in many feedback control systems. The non-integer
order controllers can have better behavior than the classic controllers [56]. Refs. [57–60]
show the advantages of such a mechanism used for queue control. They also describe how
to use the PIαDβ(non-integer integral order) as an AQM mechanism. In our solution, we
use the controller response as the dropping packet probability function.

The probability of a packet loss is given by the following formula:

P = max{0,−(KPek + KI∆αek + KD∆βek)} (13)

where KP, KI and KD are the tuning parameters (they correspond to the proportional,
integral and derivative parameters, respectively), ek is the error in a current slot ek = Qk−Q,
i.e., the difference between current queue Qk and desired queue Q.

The dropping probability function depends on five parameters: the coefficients for the
proportional and integral terms (KP, KI , KD) and the integral and derivative orders (α, β).

In adaptive approaches, these parameters should change regardless of network inten-
sity and the value of the Hurst parameter. The computation of the PID parameters and
the packet loss probability is performed in the discrete moments (at the arrival of a new
packet). Such models can be considered as a discrete system. The most popular method of
the calculations of discrete differ-integrals of non-integer order is a solution based on the
generalization used in the Grünwald–Letnikov (GrLET) formula [61,62].

For a sequence f0, f1, ..., f j, ..., fk

4q fk =
k

∑
j=0

(−1)j
(

q
j

)
fk−j (14)

where q ∈ R is a non-integer fractional order, fk is a differentiated discrete function and (q
j)

is a generalized Newton (for real numbers) symbol defined in the following manner:

(
q
j

)
=

 1 for j = 0
q(q− 1)(q− 2)...(q− j + 1)

j!
for j = 1, 2, . . .

(15)
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5. Selection of the AQM Parameters with the Use of Neural Networks

This section presents the artificial intelligence algorithms used to select the proper
AQM parameters. In the presented methods, the neuron’s input data are queue and
network traffic parameters. The target of the mechanism is to select such AQM parameter
values in order to keep the assumed queue length.

Adaptive Neuron AQM

In ref. [63], a method to adjust the AQM parameters was proposed. This solution is
named Adaptive Neuron AQM (AN-AQM) and uses the single neuron to calculate the
probability of packet dropping. Based on this method, we propose the method of setting
the AQM parameters.

The new value of parameter A is calculated for each incoming packet and can be
obtained as follows:

A(k) = A(k− 1) + ∆A(k) (16)

where ∆A(k) reflects changes in parameter A. The value of A depends on state of neuron,
which can be described as:

∆A(k) = K
b

∑
i=a

wi(k)xi(k) (17)

where K is the proportional coefficient of the neuron. K has to take values greater than zero.
xi(k) for i = a, a + 1, . . . b) is the neuron’s input. Parameters a and b define the subset of
neuron inputs, which affects the parameter A. Weight wi(k) is a connection weight of xi(k).
The weights are set according to the learning rule.

With the arrival of each packet, the algorithms calculate the error e(k), which can be
presented as a difference between actual queue occupancy q(k) and the desired queue
length Q:

e(k) = q(k)−Q (18)

Paper presents two different types of Adaptive AQM mechanisms. The first one makes
the parameters dependent only on the intensity of the network traffic intensity. The second
one additionally takes into account the degree of self-similarity (expressed using the Hurst
parameter).

For the first type, the inputs of the neuron, we set the following input values: x1(k) =
e(k)− e(k− 1), x2(k) = e(k)− e(k− 2), x3(k) = e(k− 1)− e(k− 2), x4(k) = e(k), x5(k) =
e(k)− 2e(k− 1) + e(k− 2), x6(k) = γ(k), x7(k) = γ(k− 1) and x8(k) = γ(k− 2).

We use the following input values for the neuron in the case of the Hurst-depended
algorithm: x1(k) = e(k)− e(k − 1), x2(k) = e(k)− e(k − 2), x3(k) = e(k − 1)− e(k − 2),
x4(k) = e(k), x5(k) = e(k)− 2e(k− 1) + e(k− 2), x6(k) = γ(k), x7(k) = γ(k− 1), x8(k) =
γ(k− 2) and x9(k) = Hurst(k),

where: γ(k) is a normalized error rate:

γ(k) =
r(k)

C
− 1 (19)

where r(k) is the input rate of the buffer at the bottleneck link, and C is the capacity of the
bottleneck link.

The learning rule of a neuron can be presented using the following formula [64]:

wi(k + 1) = wi(k) + diyi(k) (20)

where di > 0 is the learning rate, and yi(k) is the learning strategy. Ref. [64] recommends
to use the following learning strategy:

yi(k) = e(k)p(k)xi(k). (21)

where e(k) is a teacher signal.
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Such strategy implies that an adaptive neuron self-organizes regardless of e(k) and
γ(k).

We propose two methods of mapping of the neuron response to the ARED Pmax
parameter. The first method does not consider self-similarity:

Pmax(k) = max(0, min(
b

∑
i=a

wi(k)xi(k), 0.5)), (22)

and the second one is sensitive to Hurst parameter values:

Pmax(k) = max(0, min(
b

∑
i=a

wi(k)xi(k), 0.5)) ∗ (0.5 + Hurst(k)) (23)

The neural mechanism of choosing the PI controller parameters for multi-plant models
has been presented in refs. [64,65]. Ref. [66] presents the adaptation of the previously
proposed solution to the problem of Active Queue Management.

Mapping of the neuron response to PIαDβ is similar to the Adaptive ARED solution.
The formulas below (24)–(33) show how to determine the values of the coefficients for
the proportional and integral terms (KP, KI , KD) and the integral and derivative orders (α,
β). As can be observed, these values are determined by the neuron weights selected for a
given parameter.

The solution for a mechanism that does not consider self-similarity of traffic can be
defined as follows:

KP(t) = k1
w1(t)w6(t)
∑n

i+1 wi(t)
(24)

KI(t) = k2
w4(t)w7(t)
∑n

i+1 wi(t)
(25)

KD(t) = k3
w5(t)w4(t)
∑n

i+1 wi(t)
(26)

λ(t) = k4
w2(t)w5(t)w8(t)

∑n
i+1 wi(t)

(27)

β(t) = k5
w3(t)w4(t)w6(t)

∑n
i+1 wi(t)

(28)

where k1 . . . k5 are the constant proportional coefficients and wi(k) for i = 1 . . . 8 are
connection weights that depend on corresponding neuron inputs and the learning rule.

For the second Hurst-sensitive solution, the terms and the derivative orders are
calculated as follows:

KP(t) = k1
w9(t)w1(t)w6(t)

∑n
i+1 wi(t)

(29)

KI(t) = k2
w9(t)w4(t)w7(t)

∑n
i+1 wi(t)

(30)

KD(t) = k3
w9(t)w5(t)w4(t)

∑n
i+1 wi(t)

(31)

λ(t) = k4
w9(t)w2(t)w5(t)w8(t)

∑n
i+1 wi(t)

(32)

β(t) = k5
w9(t)w3(t)w4(t)w6(t)

∑n
i+1 wi(t)

, (33)
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where k1 . . . k5 are the constant proportional coefficients and wi(k) for i = 1 . . . 9 are
connection weights. Weight w9 is associated with an input to which the self-similarity
degree of the network stream is specified.

6. Results

Paper presents the results for two different base AQM models. The simulation models
of ARED, PIα and PIαDβ AQM mechanisms allowed us to show the influence of traffic
self-similarity on the behavior of queue. The Fluid Flow approximation models allowed us
to show the cooperation of AQM with TCP transport protocol. We investigate the impact of
Adaptive AQM mechanisms on the transmission performance. We study how the degree
of self-similarity affects the queue behavior. In addition, we aim to show that adjusting
AQM parameters to the degree of self-similarity can improve the queue characteristics.
In addition, we want to show that adjusting AQM parameters to the degree of self-similarity
can improve network transmission.

In the simulation method, a self-similar source approximates a large number of TCP
sources. For the Fluid Flow approximation, the number of TCP/UDP streams was specified.
During the experiments, different AQM mechanisms implemented in the node were used.
In the simulation case, this source is equivalent to the TCP streams, for which we also
changed the value of the Hurst parameter. In the Fluid Flow analysis, we changed the
number of TCP/UDP senders.

6.1. Fluid Flow Analysis

A diagram of the Fluid Flow analytical model has been shown in Figure 2. In ref. [67],
we presented a Fluid Flow model that can be used to model multiple TCP/UDP streams.
The model created for the purpose of the current study considers a packet stream that can
consist of a single TCP stream. As shown in Figure 2, packet losses affect the TCP sender
and reduce its transmission intensity.

The fluid flow model [26] can be used to demonstrate the dynamics of the TCP protocol.
It ignores the TCP timeout mechanisms. The TCP NewReno model is based on the nonlinear
differential equation presented below [68]:

dWi(t)
dt

=
1

Ri(t)
− Wi(t)

2
Wi(t− R(t))
Ri(t− Ri(t))

p(t− Ri(t)) (34)

The equation describes the evolution of the congestion window size. The next equation is
related to the queue evolution of the congested router:

dq(t)
dt

=
N

∑
i=1

Wi(t)
Ri(t)

− C, (35)

where:

Wi is the expected TCP congestion window size (in packets) for the i-th flow. It defines
a number of packets that may be sent without waiting for the acknowledgements of
the reception of previous packets;
Ri is the round-trip time, Ri = q/C + Tp, the sum ∑ Wi

Ri
denotes the total input flow to

the congestion router;
q is queue length (in packets);
C is link capacity (packets/time unit), the constant output flow of the router;
Tp is propagation delay;
N is the number of TCP sessions passing through the router;
p is the packet drop probability.
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Figure 2. TCP/UDP streams in the adopted Fluid Flow approximation.

For numerical Fluid Flow computations, the software written in Python was used. The
detailed description of the methods can be found in [69]. The examined model considers the
independent TCP/UDP connections (such models were described in [70]. In experiments,
the following TCP/UDP connection parameters were considered:

• transmission capacity of AQM router: C = 0.075;
• propagation delay for i-th flow: Tpi = 2;
• starting time for i-th flow (TCP and UDP);
• the number of packets sent by i-th flow (TCP and UDP).

We used the following ARED parameters:

• Minth = 10;
• Maxth = 15;
• buffer size (measured in packets) = 20;
• Pmax = 0.1;
• eight parameter w = 0.007.

The PIαDβ setpoint equals = 10.
In our analysis, the TCP stream starts at time t = 0 and finishes at time t = 80.
Figure 3 presents the TCP and UDP intensity and queue lengths in the case of queue

controlled by ARED and ANRED algorithm. The figures on the left present the version
of algorithm which does not consider the value of the Hurst parameter. The figures on
the right show the results for the mechanism considering the degree of self-similarity. The
positioning of the figures described below is the same for all Fluid Flow results.

As can be observed, the ARED Hurst-sensitive algorithm version decreases the queue
occupancy. The obtained average queue length for this algorithm is 13.8. In the case of the
insensitive algorithm, the average queue size grows to the level of 17.6. Decreasing the
average queue size results in a decrease in packet delays.

The Fluid Flow approximation results for the ANRED algorithm controlled by a single
neuron are presented at the bottom of Figure 3. The desired queue length is set to 10 packets.
This algorithm is robust. Switching on the UDP streams causes changes in the node load,
resulting in the TCP congestion mechanism modifying the intensity of its stream. In the
figures, it can be observed as fluctuations in the queue occupancy. For both types of
algorithms (Hurst-sensitive and insensitive), the obtained average queue lengths are about
10. Nevertheless, it can be noticed that, for the Hurst-sensitive algorithm, stabilization of
the queue (reaching the desired queue size) is a little bit faster.
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Figure 3. Router average queue length values, Fluid Flow approximation, ARED Hurst-insensitive 1
TCP stream (left, top), ARED Hurst-sensitive 1 TCP stream (right, top) and ANRED Hurst-insensitive
1 TCP stream (left, bottom), ANRED with Hurst-sensitive 1 TCP stream (right, bottom).

Figure 4 presents the results obtained for AQM mechanisms based on fractional order
PIα and PIαDβ controllers. In the case of PIα, three parameters have been changed during
the operation of the mechanism (KP, KI and the fractional order α). In the case of PIαDβ,
the neuron sets two additional parameters (KD and the derivative order β). The queue
behavior for both controllers is quite similar (barely visible). However, a careful analysis of
the results shows that, in the case of a controller with the derivative term, the queue reaches
its final length a bit faster. For both types of controllers, their Hurst-sensitive versions
allowed us to reach a stable state faster and to obtain smaller queue occupancy.

Figure 4. Router average queue length values, Fluid Flow approximation, ANPIα Hurst-insensitive
1 TCP stream (left, top), ANPIα Hurst-sensitive 1 TCP stream (right, top) and ANPIαDβ Hurst-
insensitive 1 TCP stream (left, bottom), ANPIαDβ Hurst-sensitive 1 TCP stream (right, bottom).
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6.2. Simulation

The simulation model used for the purpose of the current study has been implemented
in Python. The Python module SimPy is based on Python generators and allows us to
prepare process-based discrete-event simulations [71]. SimPy is released under the MIT
License and is frequently used in the area of network simulation [72,73].

Figure 5 presents the simulation model used in the study. Using such a model, the be-
havior of a single node connected to a large network can be analyzed. A source of packets
with a given intensity and Hurst parameter replicates the Internet traffic corresponding to
the sum of multiple TCP and UDP streams.

Figure 5. Network node topology in the adopted simulation method.

We analyse the following parameters of a transmission with AQM: the length of the
queue and the number of rejected packets. The following parameters of simulations have
been used: input traffic intensities, service time and Hurst parameter of input traffic. Input
traffic intensity is λ = 0.5. We have been changing the degree of self-similarity. We used
the following values of the Hurst parameter: 0.5, 0.7, 0.8 and 0.9.

The distribution of service time is geometric. We consider three different values of its
parameter. We obtain a large node load for µ = 0.25 and medium for µ = 0.25.

The traffic is considered small when µ = 0.75. To improve the readability of the paper,
we present the results only for the largest network load case. The parameters µ and λ reflect
the load and the parameters of the input and output link. The case in which λ = 0.5 and
µ = 0.25 means that the output bandwidth is two times smaller. The parameters of queues
and AQM mechanisms are identical to those used in the Fluid Flow approximation. In
the simulation experiments, we analyze the following queue parameters: queue average
occupancy, queue average delay and minimum and maximum packet delays.

The top part of Figure 6 presents the queue behavior in the case of the standard ARED
algorithm and overloaded buffer. An increase in the Hurst parameter value significantly
changes the queue behavior. More detailed results have been presented in Table 3. Regard-
less of the load, the number of dropped packets increases with the Hurst parameter. In the
case of a heavily loaded system, the number of dropped packets may exceed 50%.
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Figure 6. Router queue length values, µ = 0.25, ARED Hurst-insensitive algorithm, α = 0.5, H = 0.5
(left, top), H = 0.9 (right, top) and ARED Hurst-sensitive algorithm, α = 0.5, H = 0.5 (left, bottom),
H = 0.9 (right, bottom).

Table 3. ARED Hurst-insensitive queue, µ = 0.25.

Hurst
Mean

Lost
No. of Dropped Packets Delay

Queue Length AQM Queue Average Min–Max

0.5 22.93 0.49% 19,261 266 0.092 2.04 · 10−2–0.18

0.6 23.05 0.49% 19,270 341 0.093 3.12 · 10−3–0.19

0.7 23.55 0.54% 22,950 605 0.089 3.14 · 10−4–0.18

0.8 23.31 0.57% 25,943 919 0.086 1.80 · 10−4–0.20

0.9 22.56 0.65% 34,040 717 0.081 1.46 · 10−6–0.18

Figure 6 shows that queue occupancy decreases. It is especially visible for the traffic
with a high degree of self-similarity. Even more interesting behavior has been presented
in Table 4. Regardless of the buffer load, the average queue lengths obtained are smaller
than those obtained for the standard ARED algorithm. These differences between standard
ARED and the Hurst-sensitive ARED become even more significant when the degree of
traffic self-similarity increases.

Table 4. Hurst-sensitive ARED queue, µ = 0.25.

Hurst
Mean

Lost
No. of Dropped Packets Delay

Queue Length AQM Queue Average Min–Max

0.5 22.30 0.49% 19,391 290 0.091 6.94 · 10−3–0.18

0.6 20.99 0.50% 19,306 359 0.082 5.49 · 10−3–0.18

0.7 19.92 0.54% 23,275 364 0.073 3.24 · 10−4–0.18

0.8 19.17 0.58% 26,873 268 0.072 2.21 · 10−5– 0.21

0.9 19.51 0.65% 34,873 47 0.068 2.52 · 10−6–0.16
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Figure 7 presents the queue behavior for the ANRED algorithm. The parameter
Pmax for this solution is set by a single neuron. In the case of a heavily loaded queue,
this parameter (regardless of the Hurst parameter value) quickly reaches its maximum
value. The detailed results (presented in Table 5) confirm the aggressive behavior of the
proposed mechanism.

In the case of a neuron-controlled Hurst-sensitive mechanism, the obtained mean
queue lengths are even more similar regardless of the degree of self-similarity of the traffic.
This dependence is the most visible for the heavily loaded system (bottom part of Figure 7
and Table 6). Contrary to the previous Hurst-insensitive method, this process is more
time-consuming and differs depending on the traffic self-similarity degree. The importance
of the additional Hurst-sensitive neuron input decreases the load of the system.

Figure 7. Router queue length values, µ = 0.25, ANRED Hurst-insensitive algorithm, α = 0.5, H = 0.5
(left, top), H = 0.9 (right, top) and ANRED Hurst-sensitive algorithm, α = 0.5, µ = 0.25, H = 0.5 (left,
bottom), H = 0.9 (right, bottom).

Table 5. ANRED Hurst-insensitive, µ = 0.25.

Hurst
Mean

Lost
No. of Dropped Packets Delay

Queue Length AQM Queue Average Min–Max

0.5 18.24 0.50% 19,498 297 0.073 7.47 · 10−3–0.16

0.6 18.14 0.50% 19,179 590 0.073 9.25 · 10−3–0.18

0.7 18.55 0.55% 22,865 944 0.070 1.33 · 10−4–0.18

0.8 18.64 0.58% 25,591 1409 0.068 8.04 · 10−5–0.16

0.9 19.19 0.65% 33,786 1272 0.067 2.05 · 10−5–0.18
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Table 6. ANRED Hurst-sensitive, µ = 0.25.

Hurst
Mean

Lost
No. of Dropped Packets Delay

Queue Length AQM Queue Average Min–Max

0.5 18.37 0.50% 19,290 476 0.073 5.39 · 10−2–0.17

0.6 18.06 0.49% 18,790 586 0.073 1.27 · 10−2–0.18

0.7 18.45 0.55% 22,964 916 0.070 2.08 · 10−4–0.18

0.8 18.09 0.58% 26,124 1247 0.069 1.46 · 10−5–0.19

0.9 18.49 0.65% 34,195 934 0.069 6.22 · 10−5–0.19

The previously discussed Adaptive AQM mechanisms based on the RED mechanism
modify a single parameter. In the case of AQM based on a PID controller, the number of
parameters increases. When we consider a PIα controller, we can modify three parameters.
The PIαDβ controller allows us to modify five parameters. The same as in the previous
part of the paper, we compare the Hurst-sensitive selection of the PID parameters results
with the non-sensitive ones. Additionally, the next part of our paper presents the impact of
the degree of the traffic self-similarity on the evolution of controller parameters.

The impact of the Hurst parameter value on the queue lengths is presented in Figure 8.
The figure presents the situation of an overloaded router. For all cases, the queue after a
certain period of instability is set to the desired level. The obtained average queue lengths
are similar regardless of the Hurst parameter value. By comparing the PI controller with
the ARED algorithm, it can be concluded that it leads to a smaller queue length with a
similar number of losses. Figure 9 presents changes in parameters KP, KI and λ. As can
be seen, the bursty nature of traffic causes greater variability in parameters. The detailed
results have been presented in Table 7.

Figure 8. Queue lengths, µ = 0.25, PIα Hurst-insensitive algorithm, α = 0.5, H = 0.5 (left, top), H = 0.9
(right, top) and PIα Hurst-sensitive algorithm, α = 0.5, H = 0.5 (left, bottom), H = 0.9 (right, bottom).
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Figure 9. Parameters evolution, µ = 0.25, PIα Hurst-insensitive algorithm, α = 0.5, H = 0.5 (left, top),
H=0.9 (right, top) and PIα Hurst-sensitive algorithm, α = 0.5, H = 0.5 (left, bottom), H = 0.9 (right,
bottom).

Table 7. PIα Hurst-insensitive algorithm, µ = 0.25.

Hurst
Mean

Lost
No. of Dropped Packets Delay

Queue Length AQM Queue Average Min–Max

0.5 14.40 0.49% 18942 655 0.048 3.77 · 10−3–0.12

0.6 14.45 0.49% 18655 705 0.048 4.38 · 10−4–0.11

0.7 14.57 0.54% 22628 1051 0.047 9.87 · 10−6–0.12

0.8 14.55 0.58% 25867 1147 0.044 1.33 · 10−5–0.10

0.9 14.41 0.66% 34215 1027 0.044 1.62 · 10−6–0.13

The bottom part of Figure 8 presents queue lengths in the case of the Hurst-sensitive
PIα controller. This controller needs less time to reach optimal queue occupancy. This is
achieved due to the high variability of the controller parameters (see the bottom part in
Figure 9). This variability is greater for the larger Hurst parameter values. By comparing
with the previous mechanism, it can be seen that the average queue lengths are smaller
with a similar rate of packet rejection (see Table 8).

Table 8. PIα Hurst-sensitive algorithm, µ = 0.25.

Hurst
Mean

Lost
No. of Dropped Packets Delay

Queue Length AQM Queue Average Min–Max

0.5 10.26 0.50% 19622 89 0.039 1.68 · 10−4–0.10
0.6 10.27 0.49% 19417 81 0.039 1.26 · 10−4–0.10
0.7 10.24 0.54% 23562 52 0.038 4.94 · 10−5–0.10
0.8 10.31 0.59% 27245 316 0.037 1.10 · 10−5–0.10
0.9 10.27 0.66% 35145 189 0.037 4.76 · 10−6–0.10

The last results obtained show the behavior of the fractional order PIαDβ controller
(see Figure 10).
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Figure 10. Queue length values, µ = 0.25, PIαDβ Hurst-insensitive algorithm, α = 0.5, H = 0.5 (left,
top), H = 0.9 (right, top) and PIαDβ Hurst-sensitive algorithm, α = 0.5, H = 0.5 (left, bottom), H = 0.9
(right, bottom).

In the case of this controller, we have been changing two additional parameters related
to the derivative term. Figure 10 compares the obtained queue length values in the case
of Hurst-insensitive PIαDβ and Hurst-sensitive PIαDβ controllers. For both versions of
the controller, the obtained differences (compared to the PIα controller) are not significant.
However, the detailed results presented in Tables 9 and 10 show advantages of the PIαDβ

controller. In the case of the controller with the derivative term, with the same number of
rejected packets, the number of packets dropped due to queue overflow has been reduced.

Table 9. PIαDβ Hurst-insensitive algorithm, µ = 0.25.

Hurst
Mean

Lost
No. of Dropped Packets Delay

Queue Length AQM Queue Average Min–Max

0.5 14.48 0.50% 19,163 772 0.049 5.29 · 10−3–0.13

0.6 14.52 0.50% 18,935 755 0.049 1.30 · 10−4–0.11

0.7 14.59 0.54% 22,590 1041 0.048 4.76 · 10−5–0.15

0.8 14.57 0.58% 25,870 1196 0.045 1.11 · 10−5–0.11

0.9 14.32 0.65% 34,000 867 0.043 2.51 · 10−5–0.13

Table 10. PIαDβ Hurst-sensitive algorithm, µ = 0.25.

Hurst
Mean

Lost
No. of Dropped Packets Delay

Queue Length AQM Queue Average Min–Max

0.5 10.28 0.50% 19,806 62 0.040 1.19 · 10−5–0.12

0.6 10.27 0.51% 20,096 55 0.039 1.97 · 10−4–0.10

0.7 10.25 0.54% 23,688 70 0.038 2.23 · 10−4–0.10

0.8 10.33 0.59% 27,212 355 0.037 2.04 · 10−5–0.10

0.9 10.23 0.65% 35,078 125 0.037 6.33 · 10−6–0.12
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7. Conclusions

The performance of the AQM mechanism depends on the selection of its parameters.
This selection may be difficult. Proper parameters depend on traffic intensity and degree of
traffic self-similarity (expressed in Hurst parameter) [46]. The problem of parameter value
search can be solved by an adaptive selection during the operation of the router. This paper
proposes Adaptive AQM mechanisms in which the parameter selection process depends
on the degree of self-similarity of the network traffic (expressed using the Hurst parame-
ter). The authors have proposed the modifications of the well-known AQM algorithms:
standard ARED, ARED with neuron tuning parameters and fractional order PIαDβ with
neuron tuning parameters and built into them an analysis of the degree of self-similarity of
network traffic.

The performance of the examined AQM mechanisms has been investigated with the
use of two methods: Fluid Flow approximation (closed-loop control) and simulation (open
loop scenario). The Fluid Flow approximation has allowed us to test the cooperation of the
TCP NewReno protocol with AQM mechanisms. The simulation has been used to verify
the operation of AQM mechanisms in the case of traffic of varying intensity and degree
of self-similarity. The experiments have been carried out for the four degrees of traffic
self-similarity and three different levels of router load.

The analytical results presented in this paper demonstrate how the AQM queues
evolve. It can be clearly seen that, for AQM mechanisms that adapt their parameters also
to the characteristics of the network traffic, the queues reach a certain steady state faster.

For the simulation results, the proposed model allows the evaluation of a router
used in the transmission of a large number of TCP and UDP streams. Experiments have
shown the advantages of Hurst-sensitive AQM mechanism. For all described algorithms,
Hurst-sensitive modifications led to a decrease in the average queue lengths and reduction
of the differences in queue sizes in the case of different levels of Hurst parameter of the
network traffic.

Depending on the chosen AQM solution (ARED, PIα lub PIαDβ) and the use of Hurst-
sensitive AQM, a reduction in transmission latency values between 11.8% and 18.7% has
been observed for traffic without LRD and for traffic characterized by a low degree of LRD
(for parameter values H = 0.5 and H = 0.6, respectively). On the other hand, for traffic
characterized by a high degree of LRD (H = 0.9), a decrease in delays between 14% and
16.1% was recorded. Similarly to the observed delays, the average queue occupancy has
also changed. The decreases between 2.7% and 29% for traffic without LRD (H = 0.5) and
between 13.5% and 28.7% for traffic with high LRD (H = 0.9) have been observed. In the
case of the PIα and PIαDβ, a significant reduction in the number of dropped packets can
also be observed. This number decreased for traffic without LRD (H = 0.5) by about 86% for
the first controller and by 92% for the second controller. For traffic characterized by a high
degree of LRD (H = 0.9), these decreases were 81.6% and 85.6%, respectively. The only case,
in which the use of the Hurst-sensitive mechanism did not significantly affect the results,
was the ANRED mechanism. This mechanism in all of the examined cases exhibited a high
severity of performance, resulting in a significant number of rejected packets.

The Hurst parameter calculating is computationally complex. The well-known meth-
ods of calculating this parameter are too slow to be used in actual routers. The authors of
the paper propose a modification of the aggregated variance method. We propose some
mathematical simplifications that allow us to perform a large part of the calculations in the
background. Information about each incoming packet is stored in a special structure which
stores information about the number of packets at different timescales. Such preliminary
data preparation significantly speeds up the Hurst parameter value calculation process.
Despite the simplifications made to limit the number of computationally-demanding oper-
ations, the AQM algorithms used in this paper are still undoubtedly more computationally
intensive than the simplest algorithms from the RED family, but at the same time offer
better queue management. We believe that, with further development of the technology
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and introduction of more powerful routers, it will be possible to fully use such solutions in
the near future.
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46. Domański, A.; Domańska, J.; Czachórski, T.; Klamka, J.; Marek, D.; Szyguła, J. The Influence of the Traffic Self-similarity on the
Choice of the Non-integer Order PIα Controller Parameters. In Proceedings of the 32nd International Symposium, ISCIS 2018,
Poznan, Poland, 20–21 September 2018; Volume 935, pp. 76–83. [CrossRef]

47. Mandelbrot, B. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science 1967, 156, 636–638.
[CrossRef] [PubMed]

48. Beran, J. Statistics for Long-Memory Processes, 1st ed.; Chapman Hall/Routledge: Boston, MA, USA, 1994, Volume 61. [CrossRef]
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58. Domańska, J.; Domański, A.; Czachórski, T.; Klamka, J. The use of a non-integer order PI controller with an Active Queue

Management Mechanism. Int. J. Appl. Math. Comput. Sci. 2016, 26, 777–789. [CrossRef]
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