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Abstract: The existing work has conducted in-depth research and analysis on global differential
privacy (GDP) and local differential privacy (LDP) based on information theory. However, the data
privacy preserving community does not systematically review and analyze GDP and LDP based on
the information-theoretic channel model. To this end, we systematically reviewed GDP and LDP
from the perspective of the information-theoretic channel in this survey. First, we presented the
privacy threat model under information-theoretic channel. Second, we described and compared
the information-theoretic channel models of GDP and LDP. Third, we summarized and analyzed
definitions, privacy-utility metrics, properties, and mechanisms of GDP and LDP under their channel
models. Finally, we discussed the open problems of GDP and LDP based on different types of
information-theoretic channel models according to the above systematic review. Our main contribu-
tion provides a systematic survey of channel models, definitions, privacy-utility metrics, properties,
and mechanisms for GDP and LDP from the perspective of information-theoretic channel and surveys
the differential privacy synthetic data generation application using generative adversarial network
and federated learning, respectively. Our work is helpful for systematically understanding the pri-
vacy threat model, definitions, privacy-utility metrics, properties, and mechanisms of GDP and LDP
from the perspective of information-theoretic channel and promotes in-depth research and analysis
of GDP and LDP based on different types of information-theoretic channel models.

Keywords: GDP vs. LDP; information-theoretic channel; Rényi divergence; mutual information;
expected distortion

1. Introduction

It is assumed that an attacker has background knowledge of name information about n
patients in a medical dataset with a certain disease. The attacker can statistically query the
sum of disease status of n− 1 patients except the i-th patient and the sum of disease status
with all n patients and then can infer whether the i-th patient has a disease by comparing
the two statistical query results. To mitigate the problem of individual privacy leakage
caused by the above statistical inference attack, Dwork et al. [1] proposed differential
privacy (DP) to protect individual privacy independent of the presence or absence of any
individual. Since DP requires that the data collector is trustworthy in a centralized setting,
it is called centralized DP. Moreover, because DP considers global sensitivity of adjacent
datasets, it is also known as global differential privacy (GDP). However, the data collector
is untrusted in real-world applications. Therefore, Kasiviswanathan et al. [2] proposed
that local differential privacy (LDP) allows an untrusted third party to perform statistical
analysis while achieving user’s privacy by random perturbation of local data. Both GDP
and LDP have privacy-utility monotonicity and can achieve privacy-utility tradeoff [3].
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GDP and LDP have become popular methods of data privacy preserving of the centralized
and local setting, respectively. However, GDP and LDP have different advantages and
disadvantages. In Table 1, we agree with Dobrota’s [4] comparative analysis results of the
advantages and disadvantages of GDP and LDP.

Table 1. Advantages and disadvantages of GDP and LDP.

Privacy Type Advantage Disadvantage

GDP
Better data utility

Needing trusted data collector
Suitable for dataset of any scale

LDP Without needing trusted data collector
Poor data utility

Not applicable to small scale dataset

Because of the advantages of using GDP and LDP in the centralized and local setting,
respectively, the data privacy community has widely studied GDP and LDP based on infor-
mation theory. The current work focuses on GDP and LDP from the following aspects based
on information theory, including privacy threat model, channel models and definitions of
GDP and LDP, privacy-utility metrics of GDP and LDP, properties of GDP and LDP, and
mechanisms satisfying GDP and LDP. Unless otherwise stated, the information-theoretic
channel model refers to the discrete single symbol information-theoretic channel in this
survey. However, there is no review work to systematically survey the above existing work
on GDP and LDP from the perspective of information-theoretic channel.

Therefore, this paper systematically surveyed GDP and LDP under the information-
theoretic channel model from the aspects of resisting privacy threat model, channel models,
definitions, privacy-utility metrics, properties, and achieving mechanisms. Our main
contributions are as follows.

(1) We summarized the privacy threat model under information-theoretic channel,
and we provided a systematic survey on channel models, definitions, privacy-utility met-
rics, properties, and mechanisms of GDP and LDP from the perspective of information-
theoretic channel.

(2) We presented a comparative analysis between GDP and LDP from the perspective
of information-theoretic channel. Then, we concluded the common channel models, defini-
tions, privacy-utility metrics, properties, and achieving mechanisms of GDP and LDP in
the existing work.

(3) We surveyed applications of GDP and LDP in synthetic data generation. Specifically,
we first presented the membership inference attack and model extraction attack against
generative adversarial network (GAN). Then, we reviewed the differential privacy synthetic
data generation with GAN and differential privacy synthetic data generation with federated
learning, respectively.

(4) Through analyzing the advantages and disadvantages of the existing work for
different application scenarios and data types, we also discussed the open problems of GDP
and LDP based on different types of information-theoretic channel models in the future.

This paper is organized as follows. Section 2 introduces the preliminaries. Section 3
summarizes the privacy threat model of centralized and local data setting under information-
theoretic channel. Section 4 describes the channel models of GDP and LDP and uniformly
states and analyzes the definitions of GDP and LDP under their channel models. Section 5
summarizes and compares the information-theoretic privacy-utility metrics of GDP and LDP.
In Section 6, we present and analyze the properties of GDP and LDP from the perspective of
information-theoretic channel. Section 7 summarizes and analyzes the mechanisms of GDP
and LDP from the perspective of information-theoretic channel. Section 8 discusses the open
problems of GDP and LDP from the perspective of different types of information-theoretic
channel on different application scenarios and data types. Section 9 concludes this paper.
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2. Preliminaries

In this section, we introduce the preliminaries of GDP [1], LDP [5], and the information-
theoretic channel model and metrics [5–11]. The commonly used mathematical symbols
are summarized in Table 2.

Table 2. Common mathematical symbols.

Symbol Description

x Dataset

M Randomized mechanism

ε Privacy budget

δ Probability without satisfying differential privacy

X Input random variable of information-theoretic channel

Y Output random variable of information-theoretic channel

p(y|x) Channel transition probability matrix

p(x) Probability distribution on source X

q(x) Another probability distribution on source X

Dα(p(x)||q(x)) Rényi divergence

Hα(X) Rényi entropy

H(X) Shannon entropy

H∞(X) Min-entropy

Hα(X|Y) Conditional Rényi entropy

H(X|Y) Conditional Shannon entropy

H∞(X|Y) Conditional min-entropy

I(X; Y) Mutual information

I∞(X; Y) Max-information

Iβ
∞(X; Y) β-approximate max-information

DKL(p(x)||q(x)) Kullback–Leibler divergence

∆ f (p(x), q(x)) f -divergence

||p(x)− q(x)||TV Total variation distance

D∞(p(x)||q(x)) Max-divergence

Dδ
∞(p(x)||q(x)) δ-approximate max-divergence

D Expected distortion

d(xi, yj) Single symbol distortion

pE Error probability

H A class of functions

Γ A divergence

DHΓ (p(x), q(x)) H-restricted Γ-divergence

DHf (p(x), q(x)) H-restricted f -divergence

DHR,α(p(x), q(x)) H-restricted Rényi divergence

2.1. GDP and LDP

A dataset x is collections of records coming from a universal set X, and each xi denotes
the i-th item or a subset in the dataset x. When two datasets are different in only one item,
the two datasets are adjacent datasets.
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Definition 1 (GDP). A randomized mechanismM with domain X is (ε, δ)-DP if for all S ⊆
Range(M) and for any two adjacent datasets x, x′ ∈ X, it holds

p(M(x) ∈ S) ≤ eε p(M(x′) ∈ S) + δ (1)

where the probability space is over the coin flips of the mechanismM. If δ = 0, thenM is ε-DP.

The coin flips of the mechanismMmean that a DP mechanismM inherently has only
equally likely outcomes with regard to each record of each individual. The equally likely to
occur means that the probability distribution of response to any query is the same independent
of any individual opting presence or absence in the dataset. IfM is (ε, δ)-DP, thenM is ε-DP
with probability at least 1− δ for all datasets x and x′ when x and x′ are adjacent datasets.
For the definition of LDP, the coin flips of mechanismM have the same meanings.

Definition 2 (LDP). A randomized mechanismM satisfies ε-LDP if and only if for any pairs
input values x and x′ in the domain of X, and for any possible output z ∈ Range(M), it holds

p(M(z|x)) ≤ eε p(M(z|x′)) + δ (2)

where the probability space is over the coin flips of the mechanismM. If δ = 0, thenM is ε-LDP.

2.2. Information-Theoretic Channel and Metrics

The mathematical model of an information-theoretic channel can be denoted by
(X, p(y|x), Y), where

(1) X is an input random variable, and its value set is x = {x1, x2, . . . , xn}.
(2) Y is an output random variable, and its value set is y = {y1, y2, . . . , ym}.
(3) p(y|x) is the channel transition probability matrix, and the sum of the probabilities

in each row satisfies ∑m
j=1 p(yj|xi) = 1.

In information-theoretic channel model, the Rényi divergence of a probability dis-
tribution p(x) = (p(x1), p(x2), . . . , p(xn)) on source X from another distribution q(x) =
(q(x1), q(x2), . . . , q(xn)) is Dα(p(x)||q(x)) = 1

α−1 log2 ∑n
i=1(p(xi))

α(q(xi))
1−α, where α > 0

and α 6= 1. When q(x) is the uniform distribution with q(x) = ( 1
n , . . . , 1

n ), the Rényi en-
tropy is Hα(X) = 1

1−α log2(∑
n
i=1 p(xi)

α) in terms of the Rényi divergence of p(x). When
α → 1, the Rényi entropy tends to the Shannon entropy H(X) = limα→1 Hα(X) =
−∑n

i=1 p(xi) log2 p(xi) of source X. When α → ∞, the Rényi entropy tends to the min-
entropy H∞(X) = limα→∞ Hα(X) = − log2 maxxi∈X p(xi). The conditional Rényi entropy

of X given Y is Hα(X|Y) = − log2(∑
m
j=1 p(yj)(∑n

i=1(p(xi|yj))
α)

1
α )

α
α−1 . When α → 1, the

conditional Rényi entropy is conditional Shannon entropy H(X|Y) = limα→1 Hα(X|Y) =
∑n

i=1 ∑m
j=1 p(xiyj) log2 p(xi|yj). When α→ ∞, the conditional Rényi entropy is conditional

min-entropy H∞(X|Y) = limα→∞ Hα(X|Y) = − log2 ∑m
j=1 p(yj)maxxi∈X p(xi|yj). The mu-

tual information I(X; Y) = H(X)− H(X|Y) is the average information measure of X con-
tained in random variable Y. Furthermore, the max-information is I∞(X; Y) = H∞(X)−
H∞(X|Y) = max log2

p(xi ,yj)

p(xi)p(yj)
, and the β-approximate max-information is Iβ

∞(X; Y) =

max log2
p(xi ,yj)−β

p(xi)p(yj)
.

Moreover, when α → 1, the Rényi divergence is Kullback–Leibler (KL) divergence
DKL(p(x)||q(x)) = limα→1 Dα(p(x)||q(x)) = ∑n

i=1 p(xi) log2
p(xi)
q(xi)

. The KL-divergence is

an instance of the family of f -divergence ∆ f (p(x), q(x)) = ∑n
i=1 q(xi) f ( p(xi)

q(xi)
) with non-

negative convex functions f (t) = t ln t − t + 1. The total variation distance is also an
instance of the family of f -divergence with f (t) = 1

2 |t− 1|, and the total variation distance
between distributions p(x) and q(x) is ||p(x)− q(x)||TV = 1

2 ||p(x)− q(x)||1. When α→ ∞,
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the Rényi divergence is is max-divergence D∞(p(x)||q(x)) = maxxi∈X log2
p(xi)
q(xi)

, and the

δ-approximate max-divergence is Dδ
∞(p(x)||q(x)) = maxxi∈X log2

p(xi)−δ
q(xi)

.
The expected distortion between input random variable X and output random variable Y is

D =
n

∑
i=1

m

∑
j=1

p(xiyj)d(xi, yj) =
n

∑
i=1

m

∑
j=1

p(xi)p(yj|xi)d(xi, yj) (3)

where the distance measurement d(xi, yj) is single symbol distortion. The average error
probability is

pE =
n

∑
i=1

p(xi)
m

∑
j=1

p(yj 6= xi|xi) (4)

Thus, the average error probability is expected Hamming distortion, when d(xi, yj) is
Hamming distortion in Equation (3).

3. Privacy Threat Model on Information-Theoretic Channel

To mitigate the statistical inference attack, the GDP has a strong adversary assumption in
which an adversary knows n− 1 dataset records and tries to identify the remaining one [12,13].
However, the adversary is usually computationally bounded. Thus, Mironov [11] and
Mir [14] assumed that the adversary has prior knowledge over the set of possible input
dataset X. Furthermore, Smith [15] proposed one-try attack, where an adversary is allowed
to ask exactly one question about form, “is X = xi?”. The Rényi min-entropy of X denotes
the probability of success for one-try attack with the best strategy, which chooses the xi
with maximum probability. The conditional Rényi min-entropy of X given Y captures
the probability of guessing the value of X in one single try when the output of Y is
known. Therefore, the privacy leakage of channel model is Rényi min-entropy leakage
I∞(X; Y) = H∞(X)− H∞(X|Y) under one-try attack [7]. The Rényi min-entropy leakage
is max-information, and it is the ratio of the probabilities of attack success with a priori
probability and a posterior probability. Thus, a Rényi min-entropy leakage corresponds to
the concept of Bayes risk, which can also be regarded as a measure of the effectiveness of
the attack. The maximal leakage maxp(x) I∞(X; Y) is the maximal reduction in uncertainty
about X when Y is observed [16]. The maximal leakage is taken by maximizing over all
input distributions.

When adversary possesses knowledge of a priori probability distribution of input, LDP
can lead to the risk of privacy leakage [2,17–22]. However, a better privacy-utility tradeoff can
be achieved by incorporating the attacker’s knowledge into the LDP. Therefore, data utility
can be improved by explicitly modeling the adversary’s prior knowledge of the LDP.

To sum up, the privacy threat of information-theoretic channel refers to the Bayes risk
on input X, when attack known output Y. Thus, GDP and LDP can be used to mitigate the
above privacy threat on information-theoretic channel for numerical data and categorical
data, respectively.

4. Information-Theoretic Channel Models and Definitions of GDP and LDP

In this section, we summarize and compare information-theoretic channel models of
GDP and LDP. Furthermore, we present the information-theoretic definitions of GDP and
LDP under their information-theoretic channel models and compare the definitions of GDP
(LDP) with other information-theoretic privacy definitions.

4.1. Information-Theoretic Channel Models of GDP and LDP

In Table 3, Alvim et al. [7] had constructed an information-theoretic channel model
(X, P(z|x), Z) of GDP to any query function f : X → Y of adjacent datasets, where P(z|x)
is DP mapping on input dataset X and random output Z of real output Y. Similarly,
we can also construct an information-theoretic channel model (X, p(z|x), Z) of LDP to
any different single input x and x′, where p(z|x) is LDP mapping on categorical dataset
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x = {0, 1, . . . , n− 1} of single input and categorical dataset z = {0, 1, . . . , n− 1} of single
random output. Next, we will survey and compare the information-theoretic definitions of
GDP and LDP under the above given information-theoretic channel models.

Table 3. Information-theoretic channel models of GDP and LDP.

Privacy Type Data Type Input GDP and LDP Mapping Real Output Random Output Adjacent Relationship

GDP [7] Numerical data Dataset X {p(z|x) : p(z|x) ≤ eε p(z|x′)} Y Z x and x′ are adjacent datasets.

LDP Categorical data Data item X {p(z|x) : p(z|x) ≤ eε p(z|x′)} X Z x and x′ are different.

4.2. Information-Theoretic Definitions of GDP and LDP

In Table 4, we summarize the current work on definitions of GDP using different
information-theoretic metrics under the information-theoretic channel model. Alvim
et al. [7] intuitively gave the definition of ε-DP using transition probability distribution
p(z|x) for all z ∈ Z, x, x′ ∈ X with adjacent datasets x and x′. Barthe and Olmedo [8]
defined (ε, δ)-DP based on f -divergence, which is a redefinition of DP. Dwork and Roth [9]
gave the definitions of ε-DP and (ε, δ)-DP based on max-divergence, which is an equivalent
definition of DP from the perspective of information-theoretic channel. Mironov [11]
defined the (α, ε)-Rényi DP (RDP) using Rényi divergence, and (α, ε)-RDP satisfies

(ε +
log 1

δ
α−1 , δ)-DP. When α → ∞, (α, ε)-RDP is ε-DP according to the max-divergence.

Conversely, ε-DP is (α, 1
2 ε2α)-RDP [23]. We can conclude that RDP is a generalization of

GDP. When α → 1, (1, ε)-RDP is the definitions of (ε, δ)-DP based on the KL-divergence
of Reference [8]. When α → ∞, (∞, ε)-RDP is the definitions of ε-DP and (ε, δ)-DP
based on the maximum divergence of Reference [9]. According to the f -divergence,
Asoodeh et al. [24] also established the optimal relationship between RDP and (ε, δ)-DP
to help to derive the optimal (ε, δ)-DP parameters of a mechanism for a given level of
RDP. Chaudhuri et al. [25] defined (H, Γ)-capacity bounded DP based on H-restricted
divergence, where H is a class of functions and Γ is a divergence. The (H, Γ)-capacity
bounded DP relaxes GDP by restricting the adversary to attack or post-process the
output of a privacy mechanism using functions drawn from a restricted function classH
and models adversaries of this form with restricted f -divergences between probability
distributions on datasets different from a single record. The H-restricted f -divergence
is DHf (p(x), q(x)) = suph∈H Ex∼p(x)[h(x)] − Ex∼q(x)[ f ∗(h(x))], where f ∗ is Fenchel
conjugate and f ∗(s) = supx∈R x · (s − f (x)). The H-restricted Rényi divergence is

DHR,α(p(x), q(x)) =
log(1+α(α−1)DHα (p(x),q(x)))

α−1 , where DHα is the H-restricted Rényi diver-
gence of order α. When H is the class of all functions and Γ is the Rényi divergence, this
definition reduced to RDP. Additionally, when Γ is the f -divergence, this definition is
(ε, δ)-DP of Reference [8]. Thus, capacity bounded DP is a generalization of RDP.
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Table 4. GDP definitions using different information-theoretic metrics.

Existing Work Privacy Type Information-Theoretic Metric Formula Description

DP [7] ε-DP Channel transition probability p(z|x) ≤ eε p(z|x′) The transition probability matrix is used as the GDP map-
ping.

DP [8] (ε, δ)-DP f -divergence
∆eε = max deε (p(z|x), p(z|x′))
deε = max{p(z|x)− eε p(z|x′), p(z|x′)− eε p(z|x), 0}
∆eε (p(z|x), p(z|x′)) ≤ δ

f -divergence includes KL-divergence.

DP [9]
ε-DP

Max-divergence

D∞(p(z|x)||p(z|x′)) ≤ ε
D∞(p(z|x′)||p(z|x)) ≤ ε Since the max-divergence is not symmetric and does not

satisfy triangular inequality, the reciprocal of equation
must be true.(ε, δ)-DP Dδ

∞(p(z|x)||p(z|x′)) ≤ ε
Dδ

∞(p(z|x′)||p(z|x)) ≤ ε

(α, ε)-RDP [11]
ε-DP

Rényi divergence
Dα(p(z|x)||p(z|x′)) ≤ ε

When α → ∞, (α, ε)-RDP is ε-DP according to max-
divergence.
IfM is ε-DP, thenM is (α, 1

2 ε2α)-RDP [23].

(ε +
log 1

δ
α−1 , δ)-DP IfM is (α, ε)-RDP, then it also satisfies (ε + log 1

δ
α−1 , δ)-DP.

Capacity bounded DP [25]

(ε, δ)-DP

H-restricted divergence
DHΓ (p(z|x), p(z|x′)) ≤ ε

An adversary cannot distinguish between p(z|x) and
p(z|x′) beyond ε in the function class H, where Γ is the
f -divergence .

(α, ε)-RDP
An adversary cannot distinguish between p(z|x) and
p(z|x′) beyond ε in the function class H, where Γ is the
Rényi divergence.
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We compare the other information-theoretic privacy definitions and GDP under
the information-theoretic channel model in Table 5. Calmon and Fawaz [26] provided
ε-information privacy, which is stronger than 2ε-DP. Makhdoumi and Fawaz [27] also
showed that ε-information privacy is much stronger than 2ε-DP, ε-strong DP is stronger
than ε-information privacy, and ε-DP is stronger than (ε, δ)-DP. Wang et al. [12] analyzed
the relation between identifiability, DP, and mutual-information privacy and demonstrated
that ε-identifiability is stronger than [ε −max ln p(x)

p(x′) , ε]-DP and ε-DP is stronger than

[ε, ε + 2 max ln p(x)
p(x′) ]-mutual-information privacy. Cuff and Yu [13] also proved that ε-DP

is stronger than ε-mutual-information DP and ε-mutual-information DP is stronger than
(ε, δ)-DP, where ε-mutual-information DP is ε-mutual-information privacy of Reference [12].

In the information-theoretic channel model of LDP of Table 3, we use the convex
polytope proposed by Holohan et al. [28] as the general definition of the LDP. Thus,
the definition of LDP for any different single input x and x′ and Hamming distance
∆(x, x′) = 1 is

{p(z|x) : eε = max{ p(z|x)
p(z|x′)}} (5)

where ∑z p(z|x) = 1 and p(z|x) ≥ 0.
In Table 6, we make the comparative analysis of other information-theoretic privacy

definitions and LDP under information-theoretic channel model. Jiang et al. [19] compared
LDP, mutual-information privacy [12], and local information privacy, where local informa-
tion privacy is information privacy of Reference [26]. When privacy budget is ε, ε-local
information privacy is stronger than ε-mutual-information privacy and 2ε-LDP, and ε-LDP
is stronger than ε-local information privacy. Lopuhaä-Zwakenberg et al. [21] also showed
the same conclusion above and also proved that ε-side-channel resistant local information
privacy (SRLIP) is stronger than ε-local information privacy when the privacy budget is ε.
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Table 5. Comparative analysis of GDP and other information-theoretic privacy definitions.

Existing Work Information-Theoretic Privacy Definition Formula Description Relationship to GDP Stronger or Weaker than GDP

[26] ε-information privacy e−ε ≤ p(x|z)
p(x) ≤ eε

When the output is given, the posterior and
prior probabilities of the input x do not change
significantly.

ε-information privacy⇒ 2ε-DP ε-information privacy is stronger than 2ε-DP.

[27]

ε-strong DP supz,x,x′
p(z|x)
p(z|x′) ≤ eε, ∀z, x, x′

ε-strong DP relaxes the adjacent datasets as-
sumption.

ε-strong DP⇒ ε-information privacy
ε-information privacy⇒ 2ε-strong DP
ε-information privacy ⇒ ε

H(X)
-worst-

case divergence privacy
ε

H(X)
-worst-case divergence privacy⇒

ε
H(X)

-divergence privacy
ε-DP⇒ (ε, δ)-DP

ε-strong DP is stronger than ε-information pri-
vacy.
ε-information privacy is stronger than 2ε-DP.
ε-DP is stronger than (ε, δ)-DP.

ε-information privacy The same as above. The same as above.

Worst-case divergence privacy H(S)−minz H(S|Z = z) = εH(S) Some private data S are correlated with some
non-private data X.

[12]

ε-identifiability p(x|z) ≤ eε p(x′|z)

Two adjacent datasets cannot be distinguished
from the posterior probabilities after observ-
ing the output dataset, which makes any indi-
vidual’s data hard to identify.

ε-identifiability ⇒ [ε −max ln p(x)
p(x′) , ε]-

DP
ε-DP ⇒ [ε, ε + 2 max ln p(x)

p(x′) ]-mutual-
information privacy

ε-identifiability is stronger than
[ε−max ln p(x)

p(x′) , ε]-DP.

ε-DP is stronger than [ε, ε + 2 max ln p(x)
p(x′) ]-

mutual-information privacy.ε-mutual-information privacy
I(X; Z) ≤ ε

Mutual-information privacy measures the av-
erage amount of information about X con-
tained in Z.

[13] ε-mutual-information DP supp(xi)
I(xi; Z|X−i) ≤ ε

The same as ε-mutual-information privacy in
work [12] above, and X−i represents the input
dataset except the i-th element.

ε-DP⇒ ε-mutual information DP ⇒
(ε, δ)-DP

ε-DP is stronger than ε-mutual-information
DP.
ε-mutual-information DP is stronger than
(ε, δ)-DP.

Table 6. Comparative analysis of LDP and other information-theoretic privacy definitions.

Existing Work Information-Theoretic Privacy Definition Formula Description Relationship to LDP Stronger or Weaker than LDP

[12,19] ε-mutual-information privacy
The same as Table 5 above. The same as Table 5 above.

ε-local information privacy ⇒ ε-mutual-
information privacy
ε-local information privacy⇒ 2ε-LDP
ε-LDP⇒ ε-local information privacy

ε-local information privacy is stronger
than 2ε-LDP.
ε-LDP is stronger than ε-local informa-
tion privacy.[19,26] ε-local information privacy

[21,26] ε-local information privacy The same as Table 5 above. The same as Table 5 above.
ε-LDP⇒ ε-local information privacy
ε-local information privacy⇒ 2ε-LDP
ε-SRLIP⇒ ε-local information privacy

ε-LDP is stronger than ε-local informa-
tion privacy.
ε-local information privacy is stronger
than 2ε-LDP.[21] ε-SRLIP e−ε ≤ p(z|s,x1,...,xm)

p(z|x1,...,xm)
≤ eε

SRLIP satisfies ε-LIP for the attacker accessing some
data {x1, . . . , xm} of a user and does not leak sensi-
tive data s beyond the knowledge the attacker gained
from the side channel.
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5. Privacy-Utility Metrics of GDP and LDP under Information-Theoretic
Channel Models

In Table 7, we summarize and analyze the information-theoretic privacy metrics of
GDP. When α → ∞, Rényi divergence is used as the privacy metric of GDP, which is a
natural relaxation of GDP based on the Rényi divergence [11]. Chaudhuri et al. [25] used
restricted divergences DHΓ (p(z|x), p(z|x′)) as privacy metric. When Γ is Rényi divergence,
the capacity bounded DP is a generalization of RDP. When Γ is f -divergence, the capacity
bounded DP is (ε, δ)-DP in [8]. In [14,29], mutual information is used as the privacy metric
of GDP, which is the amount of information leaked on X after observing Z. Cuff and Yu [13]
also used α-mutual-information as the privacy metric of GDP, which is the generalization
of mutual information using Rényi divergence of order α. Alvim et al. [7] used min-entropy
leakage as the privacy metric of GDP, which is the ratio of the probabilities of right guessing
a priori and a posterior. Furthermore, maximal leakage of channel p(z|x) is used as the
privacy metric of GDP, which is the maximal reduction in uncertainty of X when Z is
given [7,16]. According to the graph symmetrization, Edwards et al. [30] also regarded
min-entropy leakage as an important measure of differential privacy loss of information
channels under Blowfish privacy. Blowfish privacy is a generalization of global differential
privacy. Rogers et al. [31] defined the privacy metric of GDP using max-information and
β-approximate max-information, which are a correlation measure allowing to bound the
change in the conditional probability of an event relative to the prior probability. In [32,33],
the privacy budget is directly used as privacy metric. Therefore, we can conclude that
Rényi divergence is a more general privacy metric of GDP, since Rényi divergence is
a generalization of restricted divergences and it can deduce f -divergence, min-entropy
leakage, maximal leakage, and max-information. Moreover, mutual information can also
be used as a privacy metric of GDP.

We also summarize and analyze the information-theoretic utility metrics of GDP in
Table 8. In the information-theoretic channel model of GDP, expected distortion is mainly
the utility measurement method, which shows how much information about the real answer
can be obtained from the reported answer to average [7,33]. Padakandla et al. [32] used
fidelity as the utility metric, and the fidelity between transition probability distributions is
measured by L1-distortion metric. Mutual information is not only used as a privacy metric
but also as a utility metric of GDP, which captures the amount of information shared by
two variables [33].

In Table 9, we summarize and analyze existing work of information-theoretic privacy
metrics of LDP. In the information-theoretic channel model of LDP, Duchi et al. [17] defined
the privacy metric of LDP using KL-divergence, which bounds the KL-divergence between
distributions p(z|x) and p(z|x′) by a quantity dependent on the privacy budget ε and gives
the upper bound of KL-divergence by combining with the total variation distance between
p1(xi) and p2(xi) of the initial distributions of the xi. Of course, mutual information can
also be used as a privacy measure of LDP [34,35]. More generally, the existing work mainly
uses the definition of the LDP as the privacy metric [5,36–38]. In [39], Lopuhaä-Zwakenberg
et al. gave an average privacy metric based on the ratio of conditional entropy of sensitive
information X.

Next, we summarize and analyze the information-theoretic utility metric of LDP in
Table 10. In the information-theoretic channel model of LDP, f -divergence [5] and mutual
information [5,36,38] can also be used as utility measures of LDP. In most cases, expected
distortion is used as the utility measure of LDP [20,34–37]. In [39], Lopuhaä-Zwakenberg
et al. presented distribution utility and tally utility metrics based on the ratio of relevant
information.
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Table 7. Privacy metrics of GDP under information-theoretic channel model.

Existing Work Privacy Metric Formula Description Bound

[16] Maximal leakage ML(p(z|x)) = maxp(x)(H∞(X)− H∞(X|Z))
The maximal leakage of channel p(z|x) is the maxi-
mal reduction in uncertainty of X when Z is given,
which is taken by maximizing over all input distri-
butions of the attacker’s side information.

ML(p(z|x)) ≤ dε log2 e + log2 m with spheres
{x ∈ {0, 1}n|d(x, xi) ≤ d} of radius d and center xi.

[7] Min-entropy leakage I∞(X; Z) = H∞(X)− H∞(X|Z)
The min-entropy leakage corresponds to the ratio
between the probabilities of attack success with a
priori and a posterior. I∞(X; Z) ≤ n log2

υeε

υ−1+eε with υ ≥ 2

Worst-case leakage C∞ = maxp(x) I∞(X; Z) The same as maximal leakage above.

[29] Mutual information I(X; Z)
The mutual information denotes the amount of in-
formation leaked on X given Z.

I(X; Z) ≤ 3εn
I(X; Z) ≥ n(1− 2η) with δ ≥ 2−C(ε,η)n, 0 < ε, η < 1,
and a constant C(ε, η) > 0

[30] Min-entropy leakage The same as above. The same as above.

I∞(X; Z) ≤ log(∑
q
t=1 exp(εdt)), where q is the num-

ber of connected components of induced adjacency
graph, and dt is the diameter of the t-th connected
component.

[14] Mutual information I(X; Z) The same as above. –

[13] α-mutual-information Iα(X; Z) = minp(z) Dα(p(z|x)||p(z)p(x))
The notion of α-mutual-information is the generaliza-
tion of mutual information using Rényi information
measures.

supp(xi)
Iα(xi; Z|X−i) ≤ ε

[31]

Max-information I∞(X; Z) = log2 supx,z∈(X,Z)
p(x,z)

p(x)p(z) Maximum information is a correlation measure, sim-
ilar to mutual information, which allows to bound
the change of the conditional probability of an event
relative to prior probability.

I∞(X; Z) ≤ log2 e · εn and Iβ
∞(X; Z) ≤ log2 e · (εe n

2 +

ε

√
n ln 2

β

2 ) for ε-DP

Iβ
∞(X; Z) = O(nε2 + n

√
δ
ε ) for (ε, δ)-DPβ-approximate max-information Iβ

∞(X; Z) = log2 supO⊆(X×Z),p((x,z)∈O)>β
p((x,z)∈O)−β

p(x)p(z)

[11] Rényi divergence Dα(p(z|x)||p(z|x′)) A natural relaxation of GDP based on the Rényi di-
vergence. –

[25] H-restricted divergences DHΓ (p(z|x), p(z|x′))
The privacy loss is measured in terms of a divergence
Γ between output distributions of a mechanism on
datasets that differ by a single record restricted to
functions inH.

DHKL(p(z|x), p(z|x′)) ≤ 8
√

ε

[32,33] Privacy budget ε = ln p(z|x)
p(z|x′)

The privacy budget represents the level of privacy
preserving. –
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Table 8. Utility metrics of GDP under information-theoretic channel model.

Existing Work Utility Metric Formula Description Bound

[7] Expected distortion U(Y, Z) = ∑y ∑z p(y)p(z|y)d(y, z)
How much information about the real answer can
be obtained from the reported answer to average. U(Y, Z) ≤ eεn(1−eε)

eεn(1−eε)+c(1−eεn)
with |{z|d(y, z) = d}| = c

[14] Expected distortion ∑x ∑z p(x)p(z|x)d(x, z) The same as above. –

[32] Fidelity || · ||1
The fidelity of a pair of transition probability distri-
butions is L1-distortion metric.

–

[33] Mutual information I(X; Z)

Mutual information captures the amount of informa-
tion shared by two variables, that is to say, quantify-
ing how much information can be preserved when
releasing a private view of the data.

–

Table 9. Privacy metrics of LDP under information-theoretic channel model.

Existing Work Privacy Metric Formula Description Bound

[17] KL-divergence DKL(p(z|x)||p(z|x′))

The general result bounds the KL-divergence be-
tween distributions p(z|x) and p(z|x′) by the privacy
budget ε and the total variation distance between
p(x) and q(x) of the initial distributions of the X.

DKL(p(z|x)||p(z|x′)) + DKL(p(z|x′)||p(z|x)) ≤ 4(eε − 1)2||p(x)− q(x)||2TV

[34,35] Mutual information I(X; Z) The same as Table 7 above. –

[4,5,37,38] Privacy budget ε = ln p(z|x)
p(z|x′) The same as Table 7 above. –

Average privacy [39] Conditional entropy H(X|Z,P)
H(X|P)

Privacy metric is the fraction of sensitive informa-
tion that is retained from the aggregator with prior
knowledge P.

–
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Table 10. Utility metrics of LDP under information-theoretic channel model.

Existing Work Utility Metric Formula Description Bound

[34,35,37] Expected Hamming distortion E[d(x, z)] = p(x 6= z) = ∑x ∑z p(x)p(z 6= x|x)
Hamming distortion measures the utility of a channel
p(z|x) in terms of the worst-case Hamming distortion over
source distribution p(x).

–

[5]

f -divergence D f (p(z|x)||p(z|x′)) = ∑x p(z|x′) f ( p(z|x)
p(z|x′) )

f -divergence measures statistical discrimination between
distributions p(z|x) and p(z|x′) by the privacy budget ε
and the total variation distance between p(x) and q(x) of
the initial distributions of the X.

DKL(p(z|x)||p(z|x′)) + DKL(p(z|x′)||p(z|x)) ≤ 2(1+δ)(eε−1)2

eε+1 ||p(x)− q(x)||2TV

Mutual information I(X; Z) The same as Table 8 above.
I(X; Y) ≤ 1

2 (1 + δ)P(T)P(Tc)ε2 with T ∈ arg minA⊆X |P(A)− 1
2 | for a given

distribution P and partitioning X into two parties T and Tc

[36] Expected distortion ∑x ∑z p(x)p(z|x)d(x, z)
A channel p(z|x) yields a small distortion between input
and output sequences with respect to a given distortion
measure.

–

Average error probability [20] Expected Hamming distortion pE = ∑x p(x)∑x 6=z p(z|x)
The average error probability is defined to be the expected
Hamming distortion between the input and output data
based on maximum a posterior estimation.

pE = n−1
n−1+eε

[38] Mutual information I(X; Z) The same as Table 8 above. supp(z|x) I(X; Z) = maxdβek=bβc{
k·eε log m·eε

k·eε+m−k log m
k·eε+m−k

k·eε+m−k } with β = (εeε−eε+1)m
(eε−1)2

Distribution utility [39] Mutual information I(Z;P)
I(X;P) Utility metric is the fraction of relevant information after

accessing to prior knowledge P or tally vector T = (Tx)x∈X
and Tx = |{i : xi = x}|.

–

Tally utility [39] Entropy
Mutual information

I(Z;T)
H(T)
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6. Properties of GDP and LDP under Information-Theoretic Channel Models

In Table 11, we present and analyze the properties of GDP based on the information-
theoretic channel model. According to the Rényi divergence, Mironov [11] demonstrated
that the new definition shares many important properties with the standard definition of
GDP, including post-processing, group privacy, and sequential composition. Considering
H-restricted divergences including Rényi divergence, Chaudhuri et al. [25] showed that
capacity bounded DP has properties of post-processing, convexity, sequential composition,
and parallel composition. Barthe and Köpf [16] proved the sequential composition and
parallel composition of GDP based on maximal leakage under the information-theoretic
channel model. Barthe and Olmedo [8] also proved the parallel composition of GDP
using f -divergence. We know that Rényi divergence can deduce maximal leakage and
max-divergence. f -divergence of Reference [8] is actually max-divergence. Thus, we can
conclude that, such as post-processing, convexity, group privacy, and sequential compo-
sition, and parallel composition, the properties of GDP can be proved by using Rényi
divergence.

Similarly, GDP and LDP share the above properties under the information-theoretic
channel model. Therefore, LDP also has the properties of post-processing, convexity, group
privacy, and sequential composition, and parallel composition.

Moreover, we have showed that GDP and LDP have privacy-utility monotonicity [3].
In GDP, (ε, δ)-DP shows

p(z|x)− δ

p(z)
=

p(z|x)− δ

∑x′ p(z|x′)p(x′)
≤ p(z|x)− δ

∑x′(p(z|x)− δ)p(x′)e−ε
= eε (6)

We can obtain

∑
x

∑
z

p(xz) log
p(z|x)− δ

p(z)
≤ ε ≤ I(X; Z) (7)

When δ = 0, we have

I(X; Z) = ∑
x

∑
z

p(xz) log
p(z|x)
p(z)

≤ ε (8)

We can obtain I(X; Z) = ε. We use mutual information as the utility metric. We can
conclude that the mutual information of GDP decreases as the decreasing of the privacy
budget, and vice versa. Privacy preserving is stronger and the utility is worse, and vice
versa. Thus, GDP has privacy-utility monotonicity indicating the privacy-utility tradeoff.
Similarly, we can observe that LDP also has privacy-utility monotonicity indicating the
privacy-utility tradeoff.
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Table 11. Properties of GDP under information-theoretic channel model.

Existing Work Privacy Type Privacy Property Information-Theoretic Metric Formal Description

[16] GDP

Sequential composition

Maximal leakage

ML(C1 + C2) ≤ ML(C1) + ML(C2) for the sequential composition C1 + C2 of
channels C1 and C2. When C1 is ε1-DP and C2 is ε2-DP, C1 + C2 is ε1 + ε2-DP.

Parallel composition
ML(C1 × C2) = ML(C1) + ML(C2) for the parallel composition C1 × C2 of
channels C1 and C2. When C1 is ε1-DP and C2 is ε2-DP, C1 × C2 is max{ε1, ε2}-
DP.

[8] GDP Sequential composition f -divergence ∆αα′(p(z|x), p(z|x′)) ≤ ∆α(p(z|x), p(z|x′)) + maxx ∆α′(p(z|x), p(z|x′)), where
∆α, the same as Table 4 above.

[11] RDP

Post-processing

Rényi divergence

If there is a randomized mapping g : R → R′, then Dα(p(z|x)||p(z|x′)) ≥
Dα(g(p(z|x))||g(p(z|x′))).

Group privacy IfM : x → R is (α, ε)-RDP, g : x′ → x is 2c-stable and α ≥ 2c+1, thenM◦ g is
( α

2c , 3cε)-RDP.

Sequential composition IfM1 : x → R1 is (α, ε1)-RDP andM2 : R1 × x → R2 is (α, ε2)-RDP, then the
mechanism (M1,M2) satisfies (α, ε1 + ε2)-RDP.

[25] Capacity bounded DP

Post-processing

H-restricted divergences

H, G, and I are function classes such that for any g ∈ G and i ∈ I , i ◦ g ∈ H.
If mechanism M is (H, Γ)-capacity bounded DP with ε, then g ◦M is also
(I , Γ)-capacity bounded DP with ε for any g ∈ G.

Convexity

M1 and M2 are two mechanisms which have the same range and provide
(H, Γ)-capacity bounded DP with ε. If M is a mechanism which executes
mechanismM1 with probability π andM2 with probability 1− π, thenM is
(H, Γ)-capacity bounded DP with ε.

Sequential composition

H is the function class H = {H1 +H2|h1 ∈ H1, h2 ∈ H2}. If M1(x) and
M2(x) are (H1, Γ) and (H2, Γ) capacity bounded DP with ε1 and ε2, respec-
tively, then the combination (M1,M2) is (H, Γ) capacity bounded DP with
ε1 + ε2.

Parallel composition

H is the function class H = {H1 + H2|h1 ∈ H1, h2 ∈ H2}. If M1(x1)
and M2(x2) are (H1, Γ) and (H2, Γ) capacity bounded DP with ε1 and ε2
respectively, and the datasets x1 and x2 are disjoint, then the combination
(M1(x1),M2(x2)) is (H, Γ) capacity bounded DP with max{ε1, ε2}.

[3] GDP
LDP Privacy-utility monotonicity Mutual information The mutual information decreases as the decreasing of the privacy budget, and

vice versa
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7. GDP and LDP Mechanisms under Information-Theoretic Channel Models

In Table 12, we summarize and compare the GDP mechanisms from the perspective
of information-theoretic channel on uniform distribution of the source X. Alvim et al. [7]
maximized expected distortion under min-entropy leakage constraint and obtained the op-
timal randomization mechanism using graph symmetry caused by the adjacent relationship
between adjacent datasets. The optimal randomization mechanism can ensure better utility
while achieving ε-DP. According to the risk-distortion framework, Mir [14] minimized
mutual information when the constraint condition is expected distortion and obtain ε-DP
mechanism p(z|x) = p(z) exp(−εd(x,z))

Z(x,ε) by Lagrangian multipliers method, where Z(x, ε) is
a normalization function. GDP mechanism of [14] is corresponding to the exponential
mechanism [40]. The conditional probability distribution p(z|x) minimizes the privacy
leakage risk given a distortion constraint. Ayed et al. [33] maximized mutual information
when constraint condition is DP and solved the constrained maximization program to
obtain DP mapping under strongly symmetric channel.

In addition, Mironov [11] analyzed the RDP of three basic mechanisms and their
self-composition, including randomized response, Laplace mechanism, and Gaussian
mechanism, and gave the parameters of RDP of these mechanisms. Considering a linear
adversary and unrestricted adversary, Chaudhuri et al. [25] also discussed the capacity
bounded DP properties of Laplace mechanism, Gaussian mechanism, and matrix mecha-
nism and presented the bound of privacy budget ε of Laplace mechanism and Gaussian
mechanism under KL-divergence and Rényi divergence, respectively.

In Table 13, we summarize and compare the LDP mechanisms from the perspective of
information-theoretic channel under uniform distribution of the source X. According to
the rate-distortion function, References [34,35,37] maximized mutual information under
expected Hamming distortion D constraint and obtained privacy budget ε = log 1−D

D for
binary channel and privacy budget ε = log(m− 1) + 1−D

D for discrete alphabets. Kairouz
et al. [5] maximized KL-divergence and mutual information under LDP constraint and
obtained binary randomized response mechanism, multivariate randomized response
mechanism, and quaternary randomized response mechanism by solving the privacy-
utility maximization problem, which is equivalent to solving the finite-dimensional linear
program. Although Ayed et al. [33] maximized mutual information about GDP constraint,
they also obtained binary randomized response mechanism and multivariate randomized
response mechanism under a strongly symmetric channel. Wang et al. [38] maximized
mutual information on LDP constraint and obtained the k-subset mechanism with respect
to the uniform distribution on the source X. When k = 1, the 1-subset mechanism is the
multivariate randomized response mechanism. When n = 2 and k = 1, the multivariate
randomized response mechanism is the binary randomized response mechanism. Xiong
et al. [36] minimized privacy budget ε = maxx,x′ ,z

p(z|x)
p(z|x′) under expected distortion con-

straint, which is equivalent to solving a standard generalized linear-fractional program via
the bisection method. However, Xiong et al. [36] did not give a specific expression of the
optimal privacy channel p(z|x).
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Table 12. GDP mechanisms under information-theoretic channel model.

Existing Work Privacy Type Model Objective Function Constraint Condition Mechanism Solution Description

[7] GDP Maximal utility Expected distortion U(Y, Z) = ∑y ∑z p(y)p(z|y)d(y, z) Min-entropy leakage I∞(X; Z) = H∞(X)− H∞(X|Z)
p(z|y) = α

(eε)d , where d = d(y, z), α =

(eε)n(1−eε)
(eε)n(1−eε)+c(1−(eε)n)

, and c the same as
Table 8 above.

Graph symmetry induced by the
adjacent relationship of adjacent
datasets.

Optimal randomization mechanism provides the bet-
ter utility while guaranteeing ε-DP.

[14] GDP Risk-distortion Mutual information infp(z|x) I(X; Z) Expected distortion ∑ p(x)∑ p(z|x)d(x, z) ≤ D p(z|x) = p(z) exp(−εd(x,z))
Z(x,ε) , where Z(x, ε)

is a normalization function.
Lagrangian multipliers.

Conditional probability distribution is DP mapping,
which minimizes the privacy risk given a distortion
constraint.

[33] GDP Constrained maximization program Mutual information max I(X; Z) GDP sup p(z|x)
p(z|x′) ≤ exp(ε) p(z|x) =

{
p(z = x|x), x = z
1−p(z=x|x)

m−1 , x 6= z
Definition of GDP.

When x is transformed into z and z = x, the condi-
tional transition probability is p(z = x|x). When
z 6= x, the conditional transition probability is
1−p(z=x|x)

m−1 under strongly symmetric channel.

Table 13. LDP mechanisms under information-theoretic channel model.

Existing Work Privacy Type Model Objective Function Constraint Condition Mechanism Solution Description

[34,35,37] LDP Rate-distortion function Mutual information minp(z|x) I(X; Z) Expected Hamming distortion ∑x ∑z p(x)p(z|x)d(x, z) ≤ D
Binary channel ε = log 1−D

D
Memoryless symmetric channel.

LDP is just a function of the channel,
and the worst-case Hamming distor-
tion on source distribution p(x) mea-
sures the utility of a channel p(z|x).

Discrete alphabet ε = log(m− 1) + log 1−D
D

[5] LDP
Constraint maxi-
mization problem

KL-divergence
Mutual informa-
tion

maxp(z|x) DKL(p(z|x)||p(z|x′))
maxp(z|x) I(X; Z) LDP ε = ln p(z|x)

p(z|x′)

Binary randomized
response p(z|x) =

{
eε

1+eε , x = z
1

1+eε , x 6= z

Solving the privacy-utility maximiza-
tion problem is equivalent to solving
finite-dimensional linear program.

The binary and multivariate random-
ized response mechanisms are univer-
sally optimal in the low and high pri-
vacy regimes and well approximate the
intermediate regime.
The quaternary randomized mecha-
nism satisfies (ε, δ)-LDP.

Multivariate randomized
response p(z|x) =

{
eε

n−1+eε , x = z
1

n−1+eε , x 6= z

Quaternary randomized re-
sponse

( 0 1 2 3
0 δ 0 1−δ

1+eε
(1−δ)eε

1+eε

1 0 δ
(1−δ)eε

1+eε
1−δ
1+eε

)

[38] LDP Maximize utility Mutual information

supp(z|x) I(X; Z) ≤ Iβ

Ik =
k·eε log m·eε

k·eε+m−k log m
k·eε+m−k

k·eε+m−k

β = (εeε−eε+1)m
(eε−1)2

LDP ε = ln p(z|x)
p(z|x′) k-subset mechanism p(Z|x) =


neε

(n
k)(keε+n−k)

, |Z| = k, x ∈ Z

n
(n

k)(keε+n−k)
, |Z| = k, x /∈ Z

0, |Z| 6= k

This problem maximizes mutual infor-
mation when x is a sample according to
the uniform distribution with probabil-
ity 1

n .

The mutual information bound is used
as a universal statistical utility measure-
ment, and the k-subset mechanism is
the optimal ε-LDP mechanism.
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Furthermore, Duchi et al. [41] showed that randomized response is an optimal way to
perform survey sampling while maintaining privacy of the respondents. Holohan et al. [42]
proposed following optimal mechanism of randomized response satisfying (ε, δ)-DP under
uniform distribution of the source X, which is

p(z|x) =
{

eε+δ
1+eε , x = z
1−δ
1+eε , x 6= z

(9)

Erlingsson et al. [43] proposed randomized aggregatable privacy-preserving ordinal
response (RAPPOR) by applying randomized response in a novel manner. RAPPOR
provides privacy guarantee using permanent randomized response and instantaneous
randomized response and ensures high-utility analysis of the collected data. RAPPOR
encodes each value υ into a length-k binary bit vector B. For permanent randomized
response, RAPPOR generates B1 with the probability

p(B1[υ] = 1) =

{
1− 1

2 f , B[υ] = 1
1
2 f , B[υ] = 0

(10)

where f = 2
e

ε
2 +1

. With respect to instantaneous randomized response, RAPPOR perturbs

B1 with the probability

p(B∗[i] = 1) =

{
p, B1[i] = 1
q, B1[i] = 0

(11)

8. Differential Privacy Synthetic Data Generation

Data sharing facilitates training better models, decision making, and the reproducibil-
ity of scientific research. However, if the data are shared directly, it will face the risk of
privacy leakage and the problem of small training sample size. Thus, synthetic data are
often used to replace the sharing of real data. At present, one of the main methods for
synthetic data generation is generative adversarial network [44]. GAN consists of two
neural networks: one is a generator, and the other is a discriminator. The generator gener-
ates a realistic sample by inputting a noise obeying multivariable Gaussian distribution
or uniform distribution. The discriminator is a binary classifier (such as 0–1 classifier)
to judge whether the input sample is real or fake. In other words, the discriminator can
distinguish whether each input sample comes from the real sample set or the fake sample
set. However, the generator makes the ability of making samples as strong as possible so
that the discriminator cannot judge whether the input sample is a real sample or a fake
sample. According to this process, GAN can generate synthetic data to approximate the
real data. Because the synthetic data accurately reflect the distribution of training data,
it can avert privacy leakage by replacing real data sharing, augment small-scale training
data, and be generated as desired. Thus, GAN can generate synthetic data for time series,
continuous, and discrete data [45].

However, because the discriminator easily memorizes the training data, it brings the
risk of privacy leakage [46]. Therefore, GAN mainly faces the privacy threat of membership
inference attack and model extraction attack in Table 14. Hayes et al. [47] proposed a
membership inference attack against the generative models, which means that the attacker
can determine whether it is used to train the model given a data point. Liu et al. [48]
proposed a new membership inference attack, co-membership inference attack, which
checks whether the given n instances are in the training data, where the prior knowledge
is completely used or not at all in the training. Hilprecht et al. [49] proposed a Monte
Carlo attack on the membership inference against generative models, which yields high
membership inference accuracy. Chen et al. [50] systematically analyzed the potential
risk of privacy leakage caused by the generative models and proposed the classification
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of membership inference attacks, including not only the existing attacks but also the
proposed generic attack model based on reconstruction. Hu and Pang [51] studied the
model extraction attack against GAN by stealing the machine learning model whose
purpose is to copy the machine learning model through query access to the target model.
In order to mitigate the model extraction attack, Hu and Pang designed defenses based
on input and output perturbation by perturbing latent code and generating samples,
respectively.

However, the existing work mainly achieves the model protection of neural network
based on differential privacy. By using the `2 norm of the gradient and the clipping
threshold to clip the gradient, and using the Gaussian mechanism to randomly perturb
the clipping gradient, Abadi et al. [52] proposed differential privacy stochastic gradient
decent (DP-SGD) to protect the privacy of training data during the training process and
demonstrated the moment accountant of the privacy loss that provides a tighter bound
on the privacy loss compared to the generic strong composition theorem of differential
privacy [9].

Next, in Tables 15 and 16, we mainly review the work of synthetic data generation
based on differential privacy GAN and differential privacy GAN with federated learning
from the following aspects: gradient perturbation, weight perturbation, data perturbation,
label perturbation, and objective function perturbation. Thus, our work is different from
the existing surveys [53,54].

8.1. Differential Privacy Synthetic Data Generation with Generative Adversarial Network

Because the discriminator of GAN can easily remember the training samples, training
GAN with sensitive or private data samples breaches the privacy of the training data. Thus,
using gradient perturbation can protect the privacy of the sensitive training data by training
GAN models with differential privacy based on DP-SGD. Existing work protects the privacy
of the training dataset by adding carefully designed noise to clipping gradients during
the learning procedure of discriminator and uses moment accountant or RDP accountant
to better keep track of the privacy cost for improving the quality of synthetic data. RDP
accountant [11] provides a tighter bound for privacy loss in comparison with the moment
accountant. In gradient perturbation, clipping strategy and perturbation strategy improve
the performance of the model while preserving privacy of the training dataset.
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Table 14. Membership inference attack and model extraction attack against GAN.

Existing Work Attack Target Attack Type Attack Method Characteristic Attack Effect

[47] Generative models Membership inference

The discriminator can learn the
statistical difference of distribu-
tion, detect overfitting and rec-
ognize the input as part of the
training dataset.

The proposed attack has low run-
ning cost, does not need infor-
mation about the attacked model,
and has good generalization.

Defenses are either ineffective or
lead to a significant decline in
the performance of the genera-
tive models in terms of training
stability or sample quality.

[48] Generative models Co-membership inference

The membership inference of
the target data x is used as the
optimization of the attacker’s
network to search for potential
codes to reproduce x, and the fi-
nal reconstruction error is used
to judge whether x is in the train-
ing data.

When the generative models are
trained with large datasets, the
co-membership inference attack
is necessary to achieve success.

The performance of attacker’s
network is better than that of pre-
vious membership attacks, and
the power of co-membership at-
tack is much greater than that of
a single attack.

[49] Generative models Membership inference

The membership inference attack
based on Monte Carlo integra-
tion only considers the small dis-
tance samples in the model.

This attack allows membership
inference without assuming the
type of generative models.

The success rate of this attack is
better than that of previous stud-
ies on most datasets, and there
are only very mild assumptions.

[50] Generative models Membership inference

This work proposed a general at-
tack model based on reconstruc-
tion for which the model is suit-
able for all settings according to
the attacker’s knowledge about
the victim model.

This work provides a theoreti-
cally reliable attack calibration
technology, which can continu-
ously improve the attack perfor-
mance in different attack settings,
data modes, and training config-
urations in all cases.

This attack reveals the informa-
tion of the training data used for
the victim model.

[51] GAN Model extraction

This work studied the model ex-
traction attack based on target
and background knowledge from
the perspectives of fidelity extrac-
tion and accuracy extraction.

Model extraction based on trans-
fer learning can enable adver-
saries to improve the perfor-
mance of their GAN model
through transfer learning.

Attack model stealing the most
advanced target model can be
transferred to new fields to ex-
pand the application scope of ex-
traction model.
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Using gradient perturbation, Lu and Yu [55] proposed a unified framework for pub-
lishing differential privacy data based on GAN, such as tabular data and graphs, and
synthetic data with acceptable utility in differential privacy manner. Xie et al. [56] pro-
posed a differential privacy Wasserstein GAN (WGAN) [57] model, which adds carefully
designed noise to the clipping gradient in the learning process, generates high-quality
data points at a reasonable privacy level, and uses moment accountant to ensure the pri-
vacy in the iterative gradient descent process. Frigerio et al. [45] developed a differential
privacy framework for privacy protection data publishing using GAN, which can easily
adapt to the generation of continuous, time series, and discrete data and maintain the
original distribution of features and the correlation between them at a good level of privacy.
Torkzadehmahani et al. [58] introduced a differential privacy condition GAN (CGAN) [59]
training framework based on clipping and perturbation strategy, which generates synthetic
data and corresponding labels while preserving the privacy of training datasets and uses
RDP accountant to track the privacy budget of expenses. Liu et al. [60] proposed a GAN
model for privacy protection, which achieves differential privacy by adding carefully de-
signed noise to the clipping gradient in the process of model learning, uses the moment
accountant strategy to improve the stability and compatibility of the model by controlling
the loss of privacy, and generates high-quality synthetic data while retaining the required
available data under a reasonable privacy budget. Ha and Dang [61] proposed a local
differential privacy GAN model for noise data generation, which establishes a generative
model by clipping the gradient in the model and adding Gaussian noise to the gradient to
ensure the differential privacy. Chen et al. [62] proposed gradient-sanitized WGAN, which
allows the publication of sanitized sensitive data under strict privacy guarantee and can
more accurately distort gradient information so as to train deeper models and generate
more information samples. Yang et al. [63] proposed a differential privacy gradient penalty
WGAN (WGAN-GP) [64] to train a generative model with privacy protection function,
which can provide strong privacy protection for sensitive data and generate high-quality
synthetic data. Beaulieu-Jones et al. [65] used the auxiliary classifier GAN (AC-GAN) [66]
with different privacy to generate simulated synthetic participants very similar to Systolic
Blood Pressure Trial participants, which can generate synthetic participants and promote
secondary analysis and repeatability investigation of clinical datasets by strengthening
data sharing and protecting participants’ privacy. Fan and Pokkunuru [67] proposed a
differential privacy solution for generating high-quality synthetic network flow data, which
uses new clipping bound decay and privacy model selection to improve the quality of
synthetic data and protects the privacy of sensitive training data by training GAN model
with differential privacy. Zhang et al. [68] proposed a privacy publishing model based on
GAN for graphs (NetGAN) [69], which can maintain high data utility in degree distribution
and satisfy (ε, δ)-differential privacy.

Data perturbation can achieve privacy preserving by adding differential privacy noise
to training data when using GAN generated synthetic data. Li et al. [70] proposed a graph
data privacy protection method using GAN to perform an anonymization operation on
graph data, which makes it possible to fully learn the characteristics of graph without
specifying specific features and ensures the privacy performance of anonymous graph
by adding differential privacy noise to the probability adjacency matrix in the process of
graph generation. Neunhoeffer et al. [71] proposed differential privacy post-GAN boosting,
which combines the samples produced by the generator sequence obtained during GAN
training to create a high-quality synthetic dataset and reweights the generated samples
using the private multiplication weight method [72]. Indhumathi and Devi [73] proposed
healthcare Cramér GAN, which only adds differential privacy noise to the identified quasi
identifiers, and the final result is combined with sensitive attributes, where the anonymous
medical data are used as the real data for training Cramér GAN, Cramér distance is used
to improve the efficiency of the model, and the synthetic data generation by health care
GAN can provide high privacy and overcome various attacks. Imtiaz et al. [74] proposed
a GAN combined with differential privacy mechanism to generate a real privacy smart
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health care dataset by directly adding noise to the aggregated data record, which can
generate high-quality synthetic and differential privacy datasets and retain the statistical
characteristics of the original dataset.

Table 15. Differential privacy synthetic data generation with GAN.

Existing Work GAN Type Clipping Strategy Perturbation Strategy Privacy Loss Accountant

[55] GAN Clipping gradient Gradient perturbation Moment accountant

[56] WGAN Clipping weight Gradient perturbation Moment accountant

[45] GAN Clipping gradient Gradient perturbation Moment accountant

[58] CGAN Clipping gradient Gradient perturbation RDP accountant

[60] GAN Clipping gradient Gradient perturbation Moment accountant

[61] GAN Clipping gradient Gradient perturbation Moment accountant

[62] WGAN Clipping gradient Gradient perturbation RDP accountant

[63] WGAN-GP Clipping gradient Gradient perturbation Moment accountant

[65] AC-GAN Clipping gradient Gradient perturbation Moment accountant

[67] GAN Clipping gradient Gradient perturbation Moment accountant

[68] NetGAN Clipping gradient Gradient perturbation Privacy budget composition [9]

[70] GAN – Data perturbation –

[71] GAN – Data perturbation Advanced composition [9]

[73] GAN – Data perturbation –

[74] GAN – Data perturbation –

[75] GAN – Label perturbation Moment accountant

[76] GAN – Objective function perturbation Advanced composition

[77] GAN – Differential privacy identifier Privacy budget composition

By using label perturbation of differential privacy noise, Papernot et al. [78] con-
structed the private aggregation of teacher ensembles (PATE), which provides a strong
privacy guarantee for training data. The mechanism combines multiple models trained by
disjoint datasets in a black box way. Because these models rely directly on sensitive data,
they are not published but used as “teacher” of the “student” model. Because Laplace noise
will only add the output of teachers, the students can learn to predict the output chosen by
Laplace noisy voting among all teachers and cannot directly access a single teacher, basic
data, or parameters. PATE uses moment accountant to better track privacy costs. Building
on the GAN and PATE frameworks, Jordon et al. [75] replaced the GAN discriminator with
the PATE mechanism. Therefore, the discriminator satisfies differential privacy, needing a
differentiated student version to allow back propagation to the generator. However, this
mechanism requires the use of public data.

In objective function perturbation, existing work injects Laplace noise into the coeffi-
cients to construct differentially private loss function in GAN training. Zhang et al. [76]
proposed a new privacy protection GAN, which perturbs the coefficients of the objective
function by injecting Laplace noise into the latent space based on the function mecha-
nism to ensure the differential privacy of the training data, and it is reliable to generate
high-quality real synthetic data samples without divulging the sensitive information in the
training dataset.

In addition, the current research mainly focuses on publishing privacy-preserving
data in a statistical way rather than considering the dynamics and correlation of the context.
Thus, on the basis of triple-GAN [79], Ho et al. [77] proposed a generative adversarial game
framework with three players based on triple-GAN, which designed a new perceptron,
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namely differential privacy identifier, to enhance synthetic data in the way of differen-
tial privacy. This deep generative model can generate synthetic data while fulfilling the
differential privacy constraint.

8.2. Differential Privacy Synthetic Data Generation with Federated Learning

In order to achieve distributed collaborative data analysis, collecting large-scale data
is an important task. However, due to the privacy of sensitive data, it is difficult to collect
enough samples. Therefore, using GAN can generate synthetic data that can be shared
for data analysis. However, in the distributed setting, training GAN faces new challenges
of data privacy. Therefore, the existing work provides a solution for differential privacy
synthetic data collection by combining GAN and federated learning in a distributed setting.
According to the FedAvg training algorithm of model aggregation and averaging, federated
learning is achieved by coordinating distributed data with independent and identically
distributed and non-IID to perform collaborative learning [80].

Similar to the idea of gradient perturbation, using weight perturbation can achieve
differential privacy of a generative model by clipping weight and adding noise to weight
in GAN training with federated learning. Machine learning modeler workflow relies on
data checking, so it is excluded when direct checking is impossible in the private and
decentralized data paradigm. In order to overcome this limitation, Augenstein et al. [81]
proposed a differential privacy algorithm, which synthesizes examples representing private
data by adding Gaussian noise to the weighted average update.

Gradient perturbation can also be used to ensure the privacy protection of training
data in GAN training with federated learning. Chen et al. [62] extended the gradient-
sanitized WGAN to train GAN with differential privacy in federated setting and remarked
some subtle differences between their method and the method of [81]. Different hospitals
jointly train the model through data sharing to diagnose COVID-19 pneumonia, which will
also lead to privacy disclosure. In order to solve this problem, Zhang et al. [82] proposed
a federated differential privacy GAN for detecting COVID-19 pneumonia, which can ef-
fectively diagnose COVID-19 without compromising the privacy under IID and non-IID
settings. The distributed storage of data and the fact that data cannot be shared due to
privacy reasons for the federal learning environment bringing new challenges to training
GAN. Thus, Nguyen et al. [83] proposed a new federated learning scheme to generate
realistic COVID-19 images for facilitating enhanced COVID-19 detection with GAN in
edge cloud computing, and this scheme integrates a differential privacy solution at each
hospital institution to enhance the privacy in federated COVID-19 data analytics. By adding
Gaussian noise to the gradient update process of the discriminator, Xin et al. [84] proposed
a differential privacy GAN based on federated learning by strategically combining Lips-
chitz condition and differential privacy sensitivity, which uses a serialized model-training
paradigm to significantly reduce the communication cost. Considering that distributed
data are often non-IID in reality, which brings challenges to modeling, Xin et al. further
proposed universal private FL-GAN to solve this problem. These algorithms can provide
strict privacy guarantee using different privacy, but they can also generate satisfactory data
and protect the privacy of training data, even if the data is non-IID.

Furthermore, considering differential average-case privacy [18] enhancing privacy
protection of federated learning, Triastcyn and Faltings [85] proposed a privacy protection
data publishing framework using GAN in the federated learning environment for which
the generator component is trained by the FedAvg algorithm to draw private artificial data
samples and empirically evaluate the risk of information disclosure. It can generate high-
quality labeled data to successfully train and verify the supervision model, significantly
reducing the vulnerability of such models to model inversion attacks.
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Table 16. Differential privacy synthetic data generation with federated learning.

Existing Work GAN Type Clipping Strategy Perturbation Strategy Privacy Loss Accountant Training Method

[81] GAN Clipping weight Weight perturbation RDP accountant FedAvg algorithm

[62] WGAN Clipping gradient Gradient perturbation RDP accountant FedAvg algorithm

[82] GAN Clipping weight Gradient perturbation Moment accountant FedAvg algorithm

[83] GAN – Gradient perturbation – FedAvg algorithm

[84] GAN Clipping gradient Gradient perturbation RDP accountant Serial training

[85] GAN – Differential average-case privacy – FedAvg algorithm

9. Open Problems

We survey that the current work focuses on the definitions, privacy-utility metrics,
properties, and achieving mechanisms of GDP and LDP based on the information-theoretic
channel model. Mir [14] obtained the exponential mechanism achieving GDP by minimiz-
ing mutual information on the expected distortion constraint. We can intuitively obtain
binary randomized response mechanism, quaternary randomized response mechanism,
and multivariate randomized response mechanism under the binary symmetric channel,
quasi-symmetric channel, and strongly symmetric channel, respectively, in terms of the
Equation (5) of the LDP definition. Wang et al. [38] obtained the k-subset mechanism by
maximizing mutual information about LDP constraint. Although GDP and LDP have been
studied based on the information-theoretic channel model, there are some open problems
for different application scenarios and data types from the perspective of different types of
information-theoretic channel in Table 17.

(1) New LDP from the perspective of information-theoretic channel. Because local
users have different privacy preferences, Yang et al. [86] proposed personalized LDP.
However, it is necessary to study personalized LDP from the perspective of information-
theoretic channel and propose the corresponding achieving mechanism. Although LDP
does not require a trusted third party, it regards all local data equally sensitive, which
causes excessive protection resulting in utility disaster [87]. Thus, it is necessary to study
the utility-optimized mechanism for the setting where all users use the same random
perturbation mechanism. In addition, since the differences between sensitive and non-
sensitive data vary from user to user, it needs to propose a personalized utility-optimized
mechanism of individual data achieving high utility while maintaining privacy preserving
of sensitive data. Holohan et al. [42] proposed optimal mechanism satisfying (ε, δ)-LDP for
randomized response. The optimal mechanism of the randomized response needs to be
analyzed and obtained from the perspective of information-theoretic channel. Moreover, a
new LDP mechanism needs to be analyzed by using the average error probability [20] as
the utility metric under the rate-distortion framework of LDP.

(2) LDP from the perspective of discrete sequence information-theoretic channel.
Collecting multiuser high-dimensional data can produce rich knowledge. However, this
brings unprecedented privacy concerns to the participants [88,89]. In view of the privacy
leakage risk of high-dimensional data aggregation, using the existing LDP mechanism
brings poor data utility. Thus, it is necessary to study the optimal LDP mechanism of
aggregating high-dimensional data from the perspective of discrete sequence information-
theoretic channel. Furthermore, correlations exist between various attributes of high-
dimensional data. If the correlation is not modeled, then the high-dimensional correlated
data using LDP also leads to poor data utility [90,91]. By constructing the discrete sequence
information-theoretic channel model of high-dimensional correlated data aggregation
using LDP under joint probability or Markov chain, a LDP mechanism suitable for high-
dimensional correlated data aggregation needs to be provided.



Entropy 2022, 24, 430 25 of 31

Table 17. Open problems of GDP and LDP from the perspective of different types of information-theoretic channel.

Scenario Data Type Privacy Type Open Problem Method Information-Theoretic Foundation

Data collection Categorical data LDP

Personalized privacy demands

Rate-distortion framework Discrete single symbol information-theoretic channelPoor data utility

Information-theoretic analysis of existing LDP mech-
anisms

High-dimensional (correlated) data col-
lection

Categorical data LDP Poor data utility
Rate-distortion framework
Joint probability
Markov chain

Discrete sequence information-
theoretic channel

Continuous (correlated) data re-
leasing Numerical data GDP

Information-theoretic analysis of existing GDP mech-
anisms

Rate-distortion framework
Joint probability
Markov chain

Continuous information-theoretic chan-
nel

RDP mechanisms

Personalized privacy demands

Poor data utility

Multiuser (correlated) data col-
lection Numerical data

Categorical data
GDP
LDP Privacy leakage risk Rate-distortion framework

Multiple access channel
Multiuser channel with correlated
sources

Multi-party data releasing Broadcast channel

Synthetic data generation Numerical data
Categorical data

GDP
LDP

Poor data utility GAN
GAN with federated learning Information-theoretic metrics
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(3) GDP from the perspective of continuous information-theoretic channel. For GDP,
there is no work to show the direct relationship between GDP mechanisms and single sym-
bol continuous information-theoretic channel model, such as Laplace mechanism, discrete
Laplace mechanism, and Gaussian mechanism. RDP is a general privacy definition, but
existing work did not provide RDP mechanisms under continuous information-theoretic
channel model. Thus, RDP mechanisms need to be studied from the perspective of continu-
ous information-theoretic channel. The continuous releasing of correlated data and their
statistics has the potential for significant social benefits. However, privacy concerns hinder
the wider use of these continuous correlated data [92,93]. Therefore, the corresponding
GDP mechanism from the perspective of continuous multi-symbol information-theoretic
channel needs to be studied by combining the joint probability or Markov chain for con-
tinuous correlated data releasing with DP. However, it is common that the data curators
have different privacy preferences with their data. Thus, personalized DP [94] needs to be
studied based on continuous information-theoretic channel model. Existing GDP mecha-
nisms ignore the characteristics of data and directly perturb the data or query results, which
will inevitably lead to poor data utility. Therefore, it is necessary to study adaptive GDP
depending on characteristics of data [95] from the perspective of continuous information-
theoretic channel. Since users have different privacy demands, aggregate data analysis
with DP also has poor data utility. Thus, adaptive personalized DP [96] also needs to be
studied based on the type of query function, data distribution, and privacy settings from
the perspective of continuous information-theoretic channel.

(4) GDP and LDP from the perspective of multiuser information-theoretic channel. A
large amount of individual data have aggregated for computing various statistics, query
responses, classifiers, and other functions. However, these processes will release sensitive
information compromising individual privacy [97–100]. Thus, when considering the ag-
gregation of multiuser data, the GDP and LDP mechanisms need to be studied from the
multiple access channel. Data collection of GDP and LDP has been mostly studied for
homogeneous and independently distributed data. In real-world applications, data have an
inherent correlation which without harnessing will lead to poor data utility [101,102]. Thus,
when the multiuser data are correlated, the GDP and LDP mechanisms need to be studied
from the perspective of the multiuser channel with correlated sources. With the acceleration
of digitization, more and more high-dimensional data are collected and used for different
purposes. When these distributed data are aggregated, they can become valuable resources
to support better decision making or provide high-quality services. However, because
the data held by each party may contain highly sensitive information, simply integrating
local data and sharing the aggregation results will pose a serious threat to individual
privacy [103,104]. Therefore, GDP and LDP mechanisms need to be studied from the
perspective of the broadcast channel for data releasing and sharing of multi-party data.

(5) Adaptive differential privacy with GAN. Existing work can generate differential
privacy synthetic data using GAN. However, because of the differential privacy noise
introduced in the training, the convergence of GAN becomes even more difficult and leads
to the poor utility of output generator at the end of training. Therefore, it is necessary to
explore adaptive differential privacy synthetic data using GAN to generate high-quality
synthetic data according to the real data distribution. Combining differential privacy
definition and information-theoretic metrics, a new differential privacy loss function model
of GAN needed to be studied, and the differential privacy loss function model meets the
convergence and reaches the optimal solution. Based on differential privacy loss function
model, it is needed to construct adaptive differential privacy model. Using GAN and its
variants generates synthetic data under adaptive differential privacy model. To improve the
quality of the synthetic data using adaptive differential privacy model, GAN modeling is
achieved by more layers, more complex structures, or transfer learning. Moreover, speed of
GAN training can be accelerated by reducing the privacy budget. To resolve mode collapse
and non-convergence issues, it is necessary to conduct fine tuning of hyper parameters, such
as learning rate and number of discriminator epochs. Furthermore, the proposed adaptive
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differential privacy model with GAN should be extended to a distributed setting by using
federated learning, which explores data augmentation methods which can improve the
non-IID problem.

10. Conclusions

This survey has compared and analyzed the GDP and LDP from the perspective of
information-theoretic channel. We concluded that the one-try attack with prior knowledge
brings privacy concerns under information-theoretic channel. We described and compared
the information-theoretic channel models of GDP and LDP for different data types. We
summarized and compared the information-theoretic definitions of GDP and LDP under
their information-theoretic channel models and presented the unified information-theoretic
definitions of GDP and LDP, respectively. We also made a comparative analysis between
GDP (LDP) and other information-theoretic privacy definitions. We surveyed and com-
pared the privacy-utility metrics, properties, and achieving mechanisms of GDP and LDP
from the perspective of information-theoretic channel. Moreover, we reviewed the differ-
ential privacy synthetic data generation using GAN and GAN with federated learning,
respectively. Considering the problem of privacy threat to different real-world applications
of different data types, we discussed the open problems from the perspective of different
types of information-theoretic channel. We want that the survey can serve as a tutorial for
the reader grasping GDP and LDP based on the information-theoretic channel model, and
our survey can provide a reference to the reader to conduct in-depth research on GDP and
LDP based on different types of information-theoretic channel models.
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