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Abstract: Quantum key distribution (QKD) has attracted much attention due to its unconditional
security. High-dimensional quantum key distribution (HD-QKD) is a brand-new type of QKD
protocol that has many excellent advantages. Nonetheless, practical imperfections in realistic devices
that are not considered in the theoretical security proof may have an impact on the practical security
of realistic HD-QKD systems. In this paper, we research the influence of a realistic intensity modulator
on the practical security of HD-QKD systems with the decoy-state method and finite-key effects. We
demonstrate that there is a certain impact in the secret key rate and the transmission distance when
taking practical factors into security analysis.

Keywords: quantum key distribution; high-dimensional; practical security; intensity modulator
extinction

1. Introduction

Quantum key distribution (QKD) [1,2] initiates a novel routine of secret key sharing be-
tween two distant parties (usually called Alice and Bob) in the presence of an eavesdropper
(called Eve). Since the proposal of the first QKD protocol—BB84 protocol [1]—QKD has be-
come the focus point of quantum information technology [3,4]. The unconditional security
of QKD, which is guaranteed by the laws of quantum mechanics, has already been proved
via different methods [5–7]. After the traditional BB84 protocol, various types of new QKD
protocols have been proposed. Among these, high-dimensional quantum key distribution
(HD-QKD) has garnered much attention due to its excellent capacity of encoding multiple
bits on one single photon and strong tolerance to channel noise. In high-dimensional
quantum key distribution systems, information is encoded on high dimensional degree
of freedom of quantum state, such as time-energy entanglement [8–10], time-bin encod-
ing [11,12], path [13,14] and orbital angular momentum [15–17]. Security proof for the
HD-QKD protocol has also been established [18–20]. With the technological development
of high-dimensional quantum state preparation and measurement, different HD-QKD
schemes have achieved a number of record-breaking results in recent years [21–23]. There-
into, time-bin based HD-QKD scheme [11,23] has realized a record high secret key rate and
can offer security against general coherent attacks.

Unfortunately, practical devices in realistic QKD systems often present imperfec-
tions and rarely conform to theoretical security models [24,25]. Therefore, there is always
a gap between the theory and practice of QKD. During the past decades, the practical
security of QKD systems has been researched extensively. The eavesdropper can steal

Entropy 2022, 24, 460. https://doi.org/10.3390/e24040460 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24040460
https://doi.org/10.3390/e24040460
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0001-9774-1064
https://doi.org/10.3390/e24040460
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24040460?type=check_update&version=2


Entropy 2022, 24, 460 2 of 13

secret key information between Alice and Bob by seeking and utilizing side-channels
introduced by different imperfect devices. For example, an imperfect phase modulator
would introduce phase-remapping attacks [26], a realistic fiber beam splitter may provide
convenience to wavelength attacks [27], and practical single photon detectors (SPDs) could
be affected by time-shift attacks [28], faked state attacks [29] and detection blinding at-
tacks [30,31]. Fortunately, efforts have been focused on proposing corresponding feasible
countermeasures [32–34], and robust QKD protocols have been proposed, which are im-
mune against detection-side-channel attacks, e.g., measurement-device-independent QKD
(MDI-QKD) [35,36] and twin-field QKD (TF-QKD) [37–40]. On this account, it is of great
significance to analyze how imperfections in realistic transmitters influence the practical
security of QKD. Since the practical intensity modulators (IMs), which have been used in
practical transmitters, are band limited, electrical signal distortion may cause intensity fluc-
tuations of pulses and other phenomena [41,42]. Therefore, it is important to quantitatively
evaluate the imperfections in IMs for the security certification of practical QKD systems.

Analogously, there is also a deviation between theoretical security and practical perfor-
mance in HD-QKD systems. Although theoretical security analysis for HD-QKD protocol
is exhaustive, its practical feasibility is far from sufficient. Toward this end, research on
the practical security analysis of HD-QKD protocol is ongoing. In realistic experimental
implementations, the requirement for single photon sources is not easily satisfied, the weak
coherent source is employed instead. This kind of source contains multi-photon signals
and the eavesdropper can carry out the photon number-splitting (PNS) attack [43,44] to
steal secret keys. Zhang et al. [45] applied decoy-state methods [46–48] to the HD-QKD
protocol to defeat the PNS attack with an infinite number of decoy states and proved
its security against collective attacks. Afterwards, the security analysis of the HD-QKD
protocol employing a practical number of decoy states is followed [49]. In addition, the
number of transmitted signals is always finite in practical QKD processes. This would
bring in another practical issue: finite-key problem. There exists fluctuations between
practical measurement output and theoretical estimation and the secret key rate would be
calculated by mistake. Scarani et al. [50] and Tomamichel et al. [51] analyzed the practical
finite-key security of the BB84 protocol under collective attacks and coherent attacks at
the first step. Following the methods proposed in refs. [50,51], the practical security of
decoy-state HD-QKD protocol against collective attacks [52] and coherent attacks [53] in
the finite-key scenario is established. In decoy-state methods, the intensities of signal
state and decoy states should be stable and controllable. Nonetheless, an unstable source
would lead to intensity fluctuations in practical QKD systems. When there exist inten-
sity fluctuations, the original characterization of the decoy-state method needs further
improvement [54,55]. The effects of both intensity fluctuations of sources and statistical
fluctuations have been discussed [56], and the results on the secret key rate were then
further improved [57]. Following the approach to describing the intensity fluctuations
proposed by Wang et al. [55,56], tight finite-key analysis for practical decoy-state QKD
protocols with unstable sources is proposed [58–60]. To guarantee its practical performance,
the practical security analysis of HD-QKD protocol needs further investigations.

In realistic implementations, the intensity modulator on Alice’s side is used to attenu-
ate the light intensity and filter out some redundant light pulses. One important parameter
of IM is the extinction ratio, which appears as a fixed finite value (ranging from 20 dB
to 40 dB usually). In ref. [61], the finite extinction of imperfect intensity modulators in
the BB84 system was investigated. It is surprising that the extra noise caused by realistic
IM reduces Eve’s information. The secret key rate is increased and practical security is
enhanced. To investigate the practical security of the HD-QKD protocol, we focus our
attention on the impact of this realistic imperfection on practical HD-QKD systems in this
work. We characterize a model of extinction ratio and derive a new expression of quan-
tum bit error rates for HD-QKD. Then, the maximal tolerable quantum bit error rate and
secret key rate are calculated for HD-QKD with the single photon state and the decoy-state
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method, respectively. The combined effect of the finite extinctions of intensity modulator
and intensity fluctuations of the source in the finite-key scenario is analyzed as well.

The rest of this paper is organized as follows. In Section 2, we present a brief intro-
duction on the state preparation and transmission processes of the HD-QKD system and
establish the model characterization of the extinction ratio. In Section 3, we analyze the
practical security of HD-QKD system with the single-photon source and the decoy-state
method, respectively. Some further discussions on the combined influence of the finite
extinction and intensity fluctuations on the practical security of HD-QKD system were also
put forward. Simulation results are depicted in Section 4 and some conclusive comments
are summarized in Section 5.

2. Model Characterization of the Extinction Ratio

Without a loss of generality, we take the four-dimensional time-bin HD-QKD scheme [11]
for example. As illustrated in Figure 1, Alice employs two intensity modulators and one
phase modulator controlled by a field programmable gate array (FPGA) to fabricate time-
bin states |tn〉 and phase states | fn〉, which are the discrete Fourier transforms of time-bin
states where | fn〉 = 1

2 ∑3
m=0 exp(πinm

2 )|tm〉, n = 0, 1, 2, 3. Alice modulates a periodic chain
of optical pulses produced by the laser source with IM1 to determine these pulses for either
time-bin states or phase states. Each state consists of four time-bins and each time-bin
contains one light pluse. For time-bin states, three light pulses out of four that we do not
need are filtered out with IM1. Afterwards, IM2 is used to adjust the amplitude of phase
states relative to the primary time-bin states and the phase modulator is used to encode
different phase states. An attenuator is used to reduce the photon states to single-photon
levels. In a realistic setup, the extinction ratio of the intensity modulator is not infinite;
hence, light pulses cannot be attenuated to zero intensity and are filtered out thoroughly.
Because phase states are not required to be attenuated to zero intensity, only the finite
extinction of IM1 will have impact on the final security of the system.

(a)
0 0 0 0

0

0

0

(b)
time time

laser IM1 IM2 PM ATT

FPGAAlice

Figure 1. (Color online) Schematic diagram of the four-dimensional time-bin HD-QKD system.
(a) Representation of time-bin states (left) and phase states (right). (b) Diagram of producing time-bin
states and phase states on Alice’s side, where laser means Alice produces periodic light pluses with a
laser source, FPGA is the field-programmable gate array, IM1 and IM2 are intensity modulators, PM
is the phase modulator, and ATT is the attenuator. See more details in ref. [11].

Due to the electro-optic effect, we can apply different voltages on the intensity modu-
lator to control the intensity of the passing light. Then, we can define the state of IM1 as
“o f f ” when it has high attenuation and “on” when it has nearly no attenuation. The light
intensity is attenuated by a factor of

√
Po f f or

√
Pon when the state of IM1 is o f f or on, and

the intensity of the output light is Io f f = Po f f I0 or Ion = Pon I0, respectively, where I0 is the
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intensity of the input light. Therefore, we can define the extinction ratio of the intensity
modulator as follows.

r =
Ion

Io f f
. (1)

Supposing that Alice prepares the signal state |t0〉, high attenuation will be applied
to the second, third and fourth time-bins. Let a =

√
Pon and b =

√
Po f f , the signal state

transmitted out of IM1 can be written as follows:

ρ0 = a2|t0〉〈t0|+ b2(|t1〉〈t1|+ |t2〉〈t2|+ |t3〉〈t3|)

= (a2 − b2)|t0〉〈t0|+ 4b2 · |t0〉〈t0|+ |t1〉〈t1|+ |t2〉〈t2|+ |t3〉〈t3|
4

= (a2 + 3b2)(
a2 − b2

a2 + 3b2 |t0〉〈t0|+
4b2

a2 + 3b2 ·
Î
4
)

= (a2 + 3b2)(
a2 − b2

a2 + 3b2 ρideal +
4b2

a2 + 3b2 ρnoise) (2)

where ρideal denotes the pure signal state (|t0〉〈t0|, |t1〉〈t1|, |t2〉〈t2| or |t3〉〈t3|), and ρnoise =
Î
4

denotes the density matrix of the extra noise introduced by the finite extinction ratio of IM1.
After normalization, Equation (2) can be generally written as follows:

ρsignal =
r− 1
r + 3

ρideal +
4

r + 3
ρnoise (3)

since r = Ion
Io f f

= Pon
Po f f

= a2

b2 . Similarly, we can extend the discussion above to arbitrary
d-dimensional time-bin QKD systems. By calculation, the equation of state transmission
can be written as follows.

ρsignal =
r− 1

r + d− 1
ρideal +

d
r + d− 1

ρnoise. (4)

By using this method, we can notice that (3) is of the same form as Equation (3) in
ref. [61]. This is because, in the polarization coding BB84 protocol, X and Z basis states
are generated and detected in the same manner and can transform mutually into each
other. All four states are affected by the finite extinction of intensity modulators. On the
other hand, in the time-bin HD-QKD protocol, time-bin states |tn〉 and phase states | fn〉 are
neither generated nor detected in the same manner [11]. One basis cannot transform into
the other mutually either. More importantly, only four time-bin states are affected by the
finite extinction of intensity modulator in the state preparation process.

3. Security Analysis

In this section, we analyze the practical security of the time-bin HD-QKD system
described above. We firstly analyze the practical security in the case of the HD-QKD
system with the ideal single photon source. Then, we generalize our analysis to the HD-
QKD system combined with the decoy-state method. The combined effect of intensity
fluctuations in the laser source and the finite extinction of the intensity modulator is
discussed in the end.

3.1. HD-QKD with the Single Photon State

Here, we discuss the universal situation for arbitrary d-dimensional HD-QKD protocol.
The secret key rate of d-dimensional QKD system in asymptotic infinite-key scenario can
be written as follows:

R∞ = log2 d− H(e)− H(ep) (5)

where e is the quantum bit error rate (QBER) caused by noises and H(x) = −x log2(
x

d−1 )−
(1− x) log2(1− x) is the d-dimensional Shannon entropy [19]. After key sifting processes,
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Alice and Bob should perform classical post-processing, which consists of error correction
and privacy amplification. The fractions H(e) of the sifted key bits are sacrificed to perform
error correction, and the fractions H(ep) of the sifted key bits are sacrificed to perform
privacy amplification. [62].

Since the finite extinction of IM1 will bring in some extra noises, QBER can be modified
into the following.

e
′
=

r− 1
r + d− 1

e +
d

r + d− 1
· d− 1

d

= (1− d
r + d− 1

)e +
d− 1

r + d− 1
. (6)

The first term of the right hand side of (6) is caused by the noises introduced by
Eve when she attempts to steal secret key information on the quantum channel via some
attacking strategies. In addition, the second term of the right hand side is attributed
to a probability of d−1

d of an incorrect alphabet resulting from ρnoise. Since the identity
matrix remains unchanged under all unitary operations, Eve cannot achieve any useful
information by performing any operation on ρnoise. Therefore, the privacy amplification
process is not required for the part of ρnoise, and only a fraction (1− d

r+d−1 ) of sifted key
bits need to perform privacy amplification [62]. Certainly, all error bits should undergo
error correction process and the the QBER is e

′
now. Therefore, (5) turns into the following.

R
′
∞ = log2 d− H(e

′
)− (1− d

r + d− 1
)H(e)

= log2 d− H(e
′
)− (1− d

r + d− 1
)H(

e
′ − d−1

r+d−1

1− d
r+d−1

). (7)

3.2. HD-QKD with the Decoy-State Method

In this subsection, we only consider four-dimensional time-bin QKD systems with
finite-key analysis. Islam et al. [11] applied decoy state methods to a four-dimensional
time-bin QKD scheme and bounded the secret key length (denoted by l) as follows:

l ≤ maxb2s̃T,0 + s̃T,1[c− H(λU)]− leakEC + ∆FKc (8)

where s̃T,0 and s̃T,1 are the vacuum and single-photon detection counts in the temporal
basis, respectively. c is defined as c := − log2 maxi,j|〈 fi|tj〉|2, and λU is an upper bound
of the single-photon phase error rate. leakEC = 1.16H(x) is the number of secret key bits
sacrificed for error correction processes, and ∆FK is the finite-key estimation item. The
detailed expressions of s̃T,0, s̃T,1 and λU are given by the following:

s̃T,0 := max{b τ0

µ2 − µ3
(

µ2eµ3 n−T,µ3

pµ3

−
µ3eµ2 n+

T,µ2

pµ2

)c, 0},

s̃T,1 := max{ µ1τ1

µ1(µ2 − µ3)− (µ2
2 − µ2

3)
[
eµ2 n−T,µ2

pµ2

−
eµ3 n+

T,µ3

pµ3

+
µ2

2 − µ2
3

µ2
1

(
s̃T,0

τ0
−

eµ1 n+
T,µ1

pµ1

)], 0},

λU :=
ṽF,1

s̃F,1
+

√
(s̃T,1 + s̃F,1)(s̃F,1 + 1)

s̃T,1(s̃F,1)2 ln
2
β

(9)

where ṽF,1 = τ1
µ2−µ3

(
eµ2 m+

F,µ2
pµ2

−
eµ3 m−F,µ3

pµ3
) and τn = ∑k∈K e−k kn pk

n! , while s̃F,1 has a similar form

to s̃T,1. One signal state and two decoy states are denoted as K := {µ1, µ2, µ3} (chosen
with probabilities pµ1 , pµ2 and pµ3 := 1− pµ1 − pµ2 , respectively) where µ1 > µ2 + µ3 and
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µ1 ≥ µ2 ≥ µ3 ≥ 0. More details are depicted in ref. [11]. In the finite-key scenario, there
are statistical fluctuations in the parameter estimation procedure. Therefore, we employ
the improved Chernoff bound to estimate the upper and lower bounds for nT,k, which
represents the total number of detection events in the temporal basis. For the improved
Chernoff bound [63], the upper and lower bounds for the measurement outcome nT,k can
be expressed as follows:

nT,k 6
nT,k

1− δU
C (nT,k, εC)

= n+
T,k

nT,k >
nT,k

1 + δL
C(nT,k, εC)

= n−T,k (10)

with probability of at least 1− 2εC, where εC is the correctness parameter. For δU
C (x, y) and

δL
C(x, y), a simplified analytical approximation is given by [63] the following.

δU
C (x, y) = δL

C(x, y) =
−3ln( y

2 ) +
√
[ln( y

2 )]
2 − 8xln( y

2 )

2x + 2ln( y
2 )

. (11)

Substituting (10) and (11) into (9), we can derive a lower bound on the secret key’s
length.

Because only the imperfections of IM1 have an effect on the practical security of this
system and IM1 only acts on time-bin states, only error events in the temporal basis in (8)
should append the consideration of the finite extinction of the intensity modulator. As
discussed above, leakEC = 1.16H(x) = 1.16H(Et), where Et =

mT,µ1+mT,µ2+mT,µ3
nT,µ1+nT,µ2+nT,µ3

. In this

fraction, mT,k = pµk p2
T N(ed(1− e−ηµk ) + 0.75Pd) (K ∈ {µ1, µ2, µ3}) represents error events

in the temporal basis, while nT,k is defined as nT,k = pµk p2
T N(1− e−ηµk + Pd). Here, pT is

the preparation probability of time-bin states, η is the overall system transmittance and
Pd denotes the dark count rate of single photon detectors. ed is the error bit rate caused
by the misalignment of the system, which includes the error bit rate introduced by the
imperfect IM and can be obtained from the field test experiments. With another form of (6),

i.e., e =
e
′− d−1

r+d−1
1− d

r+d−1
, we can set d = 4 and transform ed into the following.

ed →
e
′
d −

3
r+3

1− 4
r+3

. (12)

Substituting (12) into (8), we can obtain a modified formula of secret key length while
considering the finite extinction of the practical intensity modulator. Taking the number of
transmitted signals N and state preparation rate into account, we can obtain the final secret
key rate.

3.3. HD-QKD with Both Intensity Fluctuations and the Finite Extinction

Last but not least, we should mention that we carry out our security analysis with
the assumption that there is no intensity fluctuations in the light exiting from the laser
source. In reality, intensity fluctuations in practical QKD systems always exist and have
deep influence on the performance of the HD-QKD system [58,59]. Taking both intensity
fluctuations resulted from the unstable source and finite extinction of intensity modulator
into consideration in the security analysis, we can figure out how these two issues affect the
practical performance of the HD-QKD system simultaneously in a realistic setup. When
conducting security analysis, we should employ Azuma’s inequality [64] instead of the
improved Chernoff bound to estimate the statistical fluctuations caused by intensity fluctu-
ations. This is because the intensity fluctuations would break the independent condition for
independent random samples and Azuma’s inequality can hold with dependent random
samples by the square. In greater detail, we use Azuma’s inequality to quantify the fluctua-
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tion ranges in s̃T,0, s̃T,1 and λU in (9). With Azuma’s inequality, the observed values of the
number of detection events and the observed number of errors for the case with intensity
fluctuations in the temporal basis n∗T,k and m∗T,k satisfy the following:

|n∗T,k − nT,k| ≤ δ(nT , β) (13)

and
|m∗T,k −mT,k| ≤ δ(mT , β) (14)

with probability of at least 1− 2β where δ(x, y) =
√

2xln( 1
y ). Then, we find the following:

n∗T,k ≤ nT,k + δ(nT , β) = n+
T,k,

n∗T,k ≥ nT,k − δ(nT , β) = n−T,k,

m∗T,k ≤ mT,k + δ(mT , β) = m+
T,k,

m∗T,k ≥ mT,k − δ(mT , β) = m−T,k (15)

and they are the upper and lower bounds of n∗T,k and m∗T,k for all values of k, which appear
in (9). Values for phase basis n∗F,k and m∗F,k hold a similar form to (13)–(15).

According to refs. [58,59], we assume that the fluctuation ranges of intensity k ∈ (k−, k+)
is known to Alice and Bob. We can present a detailed decoy-state analysis with intensity
fluctuations. For k ∈ µ1, µ2, µ3, we also assume that µ1 > µ2 + µ3 and µ1 ≥ µ2 ≥ µ3 ≥ 0.
When considering intensity fluctuations, we can obtain the lower bound for the number of
vacuum events, and it is given by the following:

s̃T,0 := max{b τ0

µ−2 − µ+
3
(

µ−2 eµ+
3 n−T,µ3

pµ3

−
µ+

3 eµ−2 n+
T,µ2

pµ2

)c, 0}, (16)

and the lower bound for the number of single-photon events can be expressed as follows.

s̃T,1 := max{
µ−1 τ1

µ−1 (µ
+
2 − µ−3 )− ((µ+

2 )
2 − (µ−3 )

2)
[
eµ+

2 n−T,µ2

pµ2

−
eµ−3 n+

T,µ3

pµ3

+
(µ+

2 )
2 − (µ−3 )

2

(µ−1 )
2

(
s̃T,0

τ0
−

eµ−1 n+
T,µ1

pµ1

)], 0}. (17)

Substituting (9) and (15)–(17) into (8), we can derive the modified secret key rate
formula by considering intensity fluctuations and the finite extinction of the intensity
modulator simultaneously.

4. Simulation Results

Figure 2 is the numerical simulation result of (7) where e
′

is the observed quantum
bit error rate. The extinction ratio r is selected as 500 (27 dB), which is a typical parameter
value of practical devices.

As illustrated in Figure 2 and Table 1, we find that there is an increase in the maximal
tolerable QBER when taking the finite extinction of the intensity modulator into account.
Furthermore, this increase is more obvious for higher dimension d. This is because system-
atic noises come from two parts: Eve’s attacking behaviour and the imperfection of the
practical intensity modulator, as illustrated in (6). When performing the error correction,
all errors are considered to be introduced by Eve and Eve will lose more information than
Alice and Bob. As a consequence, Alice and Bob can distill more secret keys, and the secret
key rate is increased. We should also notice that three full curves in Figure 2 do not start
from zero on the horizontal axis. This is because there exist intrinsic noises of d−1

r+d−1 caused
by the imperfection of the practical intensity modulator when setting e = 0 in (6).
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d=16 without considering the finite extinction of IM
d=16 with considering the finite extinction of IM

Figure 2. (Color online) The secret key rate vs. observed quantum bit error rate with and without
considering the finite extinction of intensity modulator.

Table 1. The maximal tolerable QBER with and without considering the finite extinction of intensity
modulator for different dimensions.

Dimension
Maximal Tolerable QBER

without Considering the
Finite Extinction of IM

with Considering the Finite
Extinction of IM

d = 4 18.93% 19.27%

d = 8 24.71% 25.47%

d = 16 28.97% 30.58%

Figure 3 shows the simulation results of the secret key rate with and without consider-
ing the finite extinction of the intensity modulator when Alice transmits different numbers
of signals N’s. The simulation parameters are selected as follows. The average intensities
of one signal state and two decoy states are selected to be 0.66, 0.16 and 0.002, respectively.
The probabilities of sending these three states are 0.8, 0.1 and 0.1, respectively. Time-bin
and phase states are prepared with probabilities of 0.90 and 0.10, which are pT and pF. The
quantum channel is described by a loss ηch = 10−αL/10, where α = 0.2 dB/km is the loss
coefficient of the fiber, and L (km) is the transmission distance. We also assume that the
dark count rate Pd = 10−8 and two correctness parameters β = 1.72× 10−10, εC = 10−12

from ref. [11]. As shown in Figure 3, we can see that when considering the finite extinction
of the intensity modulator, the transmission distance increases about 1km for different N’s.
For N = 6.25× 1011, there is an increase of 9-11% in the secret key rate, as illustrated in
Table 2.

Furthermore, the influence of different extinction ratios on the practical performance of
the HD-QKD system is investigated. We again employ the parameters of four-dimensional
time-bin QKD system mentioned above and the number of transmitted signals is set to be
N = 6.25× 1011. The secret key rate results when considering different extinction ratios
are depicted in Figure 4. It is beyond expectation that the lower extinction ratio can result
in a higher secret key rate. This is because that the quantum bit error rate results from
two parts: the imperfection of the practical intensity modulator and the channel noises.
Different extinction ratios will make error rates resulting from these two factors make
up different accounts for the total quantum bit error rate. For the HD-QKD system with
lower extinction ratios, the intrinsic noises caused by the imperfection of practical intensity
modulator appear higher. On the basis of the discussion above, Eve would lose more
information during classical data post-processing. Therefore, the secret key rate becomes
higher as a result. It should be noted that this conclusion can only be drawn when the total
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quantum bit error rate remains unchanged. HD-QKD systems with different quantum bit
error rate values cannot be compared with each other.
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Figure 3. (Color online) The final secret key rate vs. transmission distance with (blue curves) and
without (red curves) considering the finite extinction of intensity modulator for N = 6.25× 10x with
x = 9, 10, 11 (curves from bottom to top).

Table 2. The secret key rate calculated with and without considering the finite extinction of intensity
modulator in units of Mbps.

Transmission Distance (km) without Considering the
Finite Extinction of IM

with Considering the Finite
Extinction of IM

30 49.54 54.09

80 4.703 5.171

130 0.4417 0.4869

180 0.03927 0.04348

230 0.0027 0.00297

75 77 79 81 83 85
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Figure 4. (Color online) The secret key rate vs. transmission distance considering different extinc-
tion ratios.

The combined effect of finite extinction of intensity modulator and intensity fluctuation
in laser source is illustrated in Figure 5. The number of transmitted signals is set to be
N = 6.25× 1011. We find that there is always an increase in the secret key rate when taking
the finite extinction into consideration. Moreover, this improvement is more obvious when
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the intensity fluctuation increases. Table 3 shows different secret key rate results at a fixed
transmission distance when considering different intensity fluctuations with and without
considering the finite extinction of the intensity modulator.
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Figure 5. (Color online) The secret key rate vs. transmission distance when considering different
intensity fluctuations (δ = 0.01, 0.05, 0.1) with and without considering finite extinction of intensity
modulator.

Table 3. The secret key rate results calculated with and without considering the finite extinction of
intensity modulator for different intensity fluctuations when the transmission distance is 50 km in
units of Mbps.

Intensity Fluctuation 0.01 0.05 0.1

Secret key rate without considering the finite extinction of IM 17.87 16.22 14.13

Secret key rate with considering the finite extinction of IM 19.67 18.03 15.96

Improvement 10.07% 11.16% 12.96%

5. Conclusions

In summary, we analyze the influence of the realistic intensity modulator on the
practical security of high-dimensional quantum key distribution systems. We present
finite-key analysis of HD-QKD with extinction ratios and intensity fluctuations. In our
analysis, we improved the lower bounds of the secret key rate for the HD-QKD system
with both the single photon state and the decoy-state method. We should also mention that
different extinction ratios and intensity fluctuations have deep influences on the practical
security of the HD-QKD protocol, and these issues are worthy of deep consideration when
building realistic HD-QKD systems.

Furthermore, we should note that we conduct our analysis only in the time-bin HD-
QKD system, and our method can be extended to HD-QKD systems by employing other
different photonic degrees of freedom. Last but not least, our research has opened up a new
path for the security analysis of practical HD-QKD systems. Analysis on other practical
issues can follow the routine we proposed in this paper.
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