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Abstract: The spread of ideas is a fundamental concern of today’s news ecology. Understanding the
dynamics of the spread of information and its co-option by interested parties is of critical importance.
Research on this topic has shown that individuals tend to cluster in echo-chambers and are driven
by confirmation bias. In this paper, we leverage the active inference framework to provide an in
silico model of confirmation bias and its effect on echo-chamber formation. We build a model based
on active inference, where agents tend to sample information in order to justify their own view of
reality, which eventually leads to them to have a high degree of certainty about their own beliefs.
We show that, once agents have reached a certain level of certainty about their beliefs, it becomes
very difficult to get them to change their views. This system of self-confirming beliefs is upheld
and reinforced by the evolving relationship between an agent’s beliefs and observations, which over
time will continue to provide evidence for their ingrained ideas about the world. The epistemic
communities that are consolidated by these shared beliefs, in turn, tend to produce perceptions of
reality that reinforce those shared beliefs. We provide an active inference account of this community
formation mechanism. We postulate that agents are driven by the epistemic value that they obtain
from sampling or observing the behaviours of other agents. Inspired by digital social networks like
Twitter, we build a generative model in which agents generate observable social claims or posts (e.g.,
‘tweets’) while reading the socially observable claims of other agents that lend support to one of two
mutually exclusive abstract topics. Agents can choose which other agent they pay attention to at
each timestep, and crucially who they attend to and what they choose to read influences their beliefs
about the world. Agents also assess their local network’s perspective, influencing which kinds of
posts they expect to see other agents making. The model was built and simulated using the freely
available Python package pymdp. The proposed active inference model can reproduce the formation
of echo-chambers over social networks, and gives us insight into the cognitive processes that lead to
this phenomenon.

Keywords: epistemic community; social media; active inference; opinion dynamics

1. Introduction
1.1. Confirmation Bias and Conformity

The practice of exchanging ideas, sharing concepts and values between different
minds, is a fundamental process that allows humans and other living agents to coordinate
and operate socially. By sharing ideas, individuals and communities can better pursue their
pragmatic goals and improve their understanding of the world and each other. Humans
are compulsory cooperators [1]: human survival itself is predicated on the ability to access
and leverage bodies of accumulated cultural knowledge. Over the course of evolutionary
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history, humans have developed an exquisitely sensitive capacity to discriminate reliable
sources of information from unreliable ones, and to learn from other relevant human agents
to improve their understanding or model of their world [2,3].

This epistemic process is not, however, without its flaws. There is evidence that
humans process information by reasoning heuristically, which is hypothesised to limit
the consumption of energy and facilitate rapid decision-making [4,5]. One such heuristic
is confirmation bias, which implies that, all other things being equal, individuals prefer
sticking to their own beliefs over changing their minds [6]. There is an extensive literature
documenting the phenomenon of confirmation bias and its relation to cognitive dissonance.
Individuals faced with information that conflicts with their core beliefs may be prone to
cognitive dissonance, which is experienced as undesirable [7–9]. Tolerance for cognitive
dissonance varies across individuals, but in general, the phenomenon significantly influ-
ences decision-making [8,10]. To avoid such dissonance, individuals tend to selectively seek
information from ‘others like me’, others who they expect will share similar ideas, concepts,
and values [8]. Confirmation bias has a social influence; in particular, individuals prefer
sampling data from their in-group, and will seek to confirm their own ideas by foraging for
confirmatory information from their in-group [11,12]. To make sure that they have access to
other like-minded allies, agents are more likely to choose to belong to communities where
their deeply held beliefs are promoted and shared, which limits the cognitive effort that
is already expanded in the foraging of information [10]. In-group delivery of information
influences how strongly this information is integrated, especially if group membership is
important for the individual [13]. This sampling extends beyond other agents, to choice of
media and environment. For instance, individuals generally choose news sources that fit
their expectations [8].

This phenomenon of confirmation bias is echoed in another heuristic: conformity,
the need to cohere with the beliefs of one’s in-group [14,15]. It is adaptive for agents to
conform to the behaviours of others in their niche, in part for the very reasons highlighted
above [16]. Conformity limits how much information any given agent has to gather to act
appropriately, and the sources sampled from their in-group are generally trusted [17]. This
is partly due to the fact that members of an in-group can be most precisely predicted: their
behaviours are normed, and expected by the members of the group, in ways that generally
benefit its members [18,19]. However, conformity has other benefits as well. Being able
to sample from the group entails a continued relationship to other members. This will
also enable members to acquire pragmatic resources beyond information (e.g., food and
shelter), as the group generally provides for its members [20,21]. Being cut off from the
group can lead to existential difficulties [22,23]. Group members can be sanctioned if they
fail to conform to the norms, including epistemic norms [24,25].

1.2. The Spread of Ideas

These two heuristics—namely, confirmation bias and conformity—mutually reinforce
each other. Specifically, to save energy, confirmation bias leads to agents’ being drawn to
groups that validate their opinion, and thus increases the probability of behavioural and
epistemic conformity [26]. Importantly, these two heuristics form the basis for information
spread. Agents spread information through media and through connections to one another,
given a network structure [27]. The spread of ideas and behaviours from one agent to
another serves both local and larger-scale coordination [27,28].

The spread of ideas is facilitated when agents are already attuned to them. Individuals
are more likely to adopt ideas that they believe will have a positive effect on them, espe-
cially if the outcome of sharing that information will be positive [29]. According to Falk
and Scholz, this entails that sharing among group members of news that dovetails with
group norms is likely to lead to the adoption of these ideas among the other group mem-
bers, following the conformity heuristic mentioned earlier. One way to predict whether
information will be coherent with the group norms is to assess it with respect to one’s own
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value system. Naturally, similar individuals within a given group who share values will be
more likely to spread ideas [30,31].

This notion of attunement or synchronisation is fundamental. Synchronisation across
network nodes lowers the cost of information flow [32], and increases the certainty of the
message being spread, as well as the quality of its reception, even if the message itself
may be prone to errors [33,34]. Specifically, a message will be more intelligible to group
members who share a common set of codes, and agents are more likely to integrate new
information if it fits with their understanding of the world [35–37].

Hashtags have been shown to be heavy carriers of information in echo-chambers. They
tend to be used in partisan ways, to reach people of similar mindsets, as well as to signal
one’s own partisanship affiliation [38]. The spread of information is optimised through
hashtags as pseudo-meta-linguistic categorisation makers [39].

1.3. Communities Forming around Ideas

Thus, the beliefs and epistemic communities of agents develop together, synchronously.
We label communities formed in this process of belief sharing as ‘epistemic communities’.
Such communities share and spread a worldview, or a paradigm, and normalise sampling
behaviours (i.e., manners of observing and engaging with the shared social world) that
reinforce this view of the world [40]. Individuals in the community are tied together by
these epistemic practices, further reinforcing the social signals which act as evidence for
the shared model of the world [19].

One example of these communities is the echo-chamber, a phenomenon that has been
studied significantly in social media [38,41–47]. Echo-chambers are an extreme example
of epistemic communities, and they have components that enforce their formation and
maintenance [48–50]. Echo-chambers tie people with similar views together, and tend to
actively work against the engagement with, and assessment and evaluation of, external
sources (e.g., information provided by members of the outgroup) [42,48]. Echo-chambers
can become epistemically vulnerable when members can no longer assess whether a piece
of information is true or not [48,51]. Similarly, only having access to a few sources limits
how much information can be gathered, and relevant sources of evidence may fall through
the gaps [49,52]. According to [52], error will be propagated, and it will be difficult to check
errors against anything, as most minds in the echo-chamber are synchronised and therefore
poised to make the same mistakes.

1.4. Volatility and Habit Formation

Studies on the perception of environmental volatility range from economics to psycho-
education for the autism spectrum [53–55]. Optimal inference in a changing world requires
integrating incoming sensory data with beliefs about the intrinsic volatility of the environ-
ment. Intuitively, environments with higher volatility change more quickly and thus have a
shorter intrinsic timescale—and conversely for environments with lower volatility. For ex-
ample, autistic individuals tend to pay more attention to small changes in the environment,
giving them a better ability to track potentially important fluctuations in information [53].
On the other hand, this increased attention to environmental fluctuations may also lead
to increased sensitivity to random, non-informative changes in the environment, a phe-
nomenon that might be called (from a signal-detection perspective) a higher ‘false-positive’
rate [53].

When this type of precision dynamics [56] is applied to the social field at large, emer-
gent epistemic phenomena can be explained. For instance, during the COVID-19 pandemic,
the certainty around knowledge was very low, as information about the pandemic and the
biology of the virus was limited [57,58]. In addition, alternative sources of information (e.g.,
anti-vaccine conspiracies) had become more prevalent and more influential in some social
networks [59]. The gravity of the affliction, and the strength of the governmental response,
also made any information on the topic vitally important, and worth one’s attention [60].
This prompted an intensive use of information technology in order for individuals to



Entropy 2022, 24, 476 4 of 49

find answers (“doing one’s own research”). This excessive use points to the awareness
by laypeople of the high volatility of the topic. The authors of [61] measured emotional
volatility on social media in China during the pandemic, and explored the social dynamics
underlying the emotional volatility.

Individuals can deal with volatility by using various coping mechanisms. One such
mechanism is to constrain the uncertainty related to their own behaviours via habit forma-
tion [62–71]. In this paper, we model habit formation as a form of behavioural reinforce-
ment, where behaviours become more probable as a function of how often they are engaged
in [72,73]. If behaviour is initially goal- or information-driven, habit-learning can then
‘zero-in’ and isolate the invariant features of such (initially) goal-directed behaviour [74],
mirroring the so-called transition from ‘model-based’ to ‘model-free’ decision-making in
reinforcement learning [75,76]. After an agent has engaged in a given behaviour enough,
even if that behaviour is initially pursued in a goal-driven manner, a habit can then be
formed and become hard to ‘unlearn’ [77]. This view also supports the idea that, initially,
habit-formation can be goal-driven. In the current context of echo chamber formation,
confirmation bias may serve as the original ‘motivation’ that later underwrites preferential
sampling behaviour. In combination with habit learning, it may then become impossible to
stop enacting this peer-specific sampling, even in the face of changing information.

1.5. An Active Inference Model of Epistemic Communities

This paper introduces a computational model of epistemic communities, wherein
individual agents share information with one another and come to form beliefs not only
about their local environment, but also about the beliefs of other agents in their community.
To understand this phenomenon, we leverage the active inference framework, a first-
principles theory of cognition, which explains the manner in which agents select actions
based on their causal model or understanding of the world. Active inference says that
organisms act to minimise a quantity called variational free energy, which quantifies the
divergence between expected and sensed data. From this point of view, to select an action
is to infer ‘what I must be doing, given what I believe and what I sense’. Extensive work
has been done in the field of active inference to study social systems and the way in which
the minimisation of free energy could give rise to (eventually large-scale) behavioural
coordination [3,15,78–83]. However, much of this work is still theoretical.

At first glance, it might appear difficult to model a phenomenon like confirmation bias
using an active inference formulation, because action selection in active inference is guided
by the principle of maximising Bayesian surprise or salience, which requires constantly
seeking out information that is expected to ‘challenge’ one’s world model [84–86].

However, the key notion that allows ‘confirmation bias’ to nonetheless emerge under
active inference is ultimately the subjective nature of information gain, also known as
‘epistemic value’. Crucially, this Bayesian surprise or information gain term is always
an expected surprise—that is, what counts as an ‘information-maximising’ observation is
always defined in relation to agent’s set of beliefs or generative model. Due to this inherent
subjectivity, the true informativeness or epistemic value of an action can be arbitrarily far
from the agent’s expectation thereof. Taking advantage of this, in the model presented here,
we endow agents with what we refer to as epistemic confirmation bias. This is implemented
by building a prior belief into the generative model, namely that agents are more likely to
sample informative observations from agents with whom they agree a priori. Therefore,
agents will sample agents with whom they agree under the (not necessarily true) belief that
such agents are more likely to provide higher quality information.

We can make two important distinctions between the kind of polarisation that we
observe in traditional opinion dynamics and the kind achieved through multi-agent active
inference modelling. First, in traditional approaches, the implementation of bounded
confidence to motivate polarisation is essentially a hard-coded restriction on the agents’
ability to perceive and therefore update their beliefs [87–90]. By contrast, in the active
inference approach, polarisation is instead motivated by the positive effect of confirmation
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bias, which is integrated directly in the agents’ (likelihood) model of the world, which
allows agents to acquire more evidence about their environment if the information comes
from another agent that shares the same worldview. This means that agents are motivated
implicitly in their generative models to gain more evidence about the world if this evidence
confirms their preexisting beliefs. Second, in the traditional approaches, agents can directly
perceive the ‘belief state’ of other agents, and thus, the opinion of one agent directly
influences that of another [87,89]. This is an unrealistic assumption, since human agents
have to infer the belief states of others by interpreting their behaviour. This aspect of belief
inference is a cornerstone of the active inference approach: the belief of another agent is
modelled as a hidden state of the world—thus agents do not have direct access to each
others’ belief states. Instead, through inference, they come to hold beliefs about each others’
beliefs, in addition to a belief about some agent-independent ‘world states’ [19,91].

More recently, researchers have begun to build Bayesian models of opinion dynam-
ics, motivated by the Bayesian brain hypothesis and the notion that decision-making is
inherently probabilistic [92–96]. Generally, the active inference approach falls within the
theoretical umbrella of Bayesian agent-based modelling, because there is a deep assump-
tion that environmental states are inherently hidden (in our case, the belief states of other
agents) and need to be inferred on the basis of prior beliefs and sensory observations (i.e.,
observing the behaviour of other agents). However, as sketched above, a crucial point that
distinguishes approaches like active inference and planning as inference from the general
Bayesian approach is the notion that actions themselves are inferred [97,98] While there have
been models that use Bayesian inference for the inference of opinions (i.e., Bayesian belief
states about some particular idea), the process of action selection within these works is
still often added on after the fact using an arbitrary decision rule (e.g., a softmax function
of an arbitrary value vector). Action selection is often cast as a noisy signal of the true
belief state, such as in [96], which is then used to update neighbouring agents’ beliefs
through Bayesian inference. Crucially, in active inference, behaviour itself is cast as the
result of inference, specifically by sampling actions from a posterior distribution over
actions. The posterior over actions is obtained by minimising the expected free energy
of future beliefs, conditioned on actions. In other words, actions are selected in order to
achieve goals and minimise future uncertainty, i.e., to maximise a lower bound on Bayesian
model evidence.

Importantly for our purposes, one can supplement this goal-directed aspect of policy
inference, driven by the expected free energy, with inflexible ‘prior preferences over actions’,
i.e., habits. If this prior preference over actions is learned over time, then in the context
of the opinion dynamics model presented here, this can lead to a propensity to continue
sampling agents that have been sampled previously. The idea of choosing actions through
inference in accordance with the minimisation of uncertainty is powerful as a modelling
technique, because through the choice of policy preferences one can encode various social
behaviours, such as conformity, habit formation, hostility, or indifference, while in this
report, only habit formation, conformity, and polarisation are explored, we emphasise the
potential of augmenting the current model to capture a wider range of features observed in
human social behaviour.

1.6. Hypotheses

In this paper, we present a multi-agent model of opinion dynamics based on the active
inference formulation. Our simulated agents are situated in a social network where they
observe the behaviour of other agents and update their beliefs about a pair of abstract,
mutually exclusive “Ideas” (e.g., the truth values of two competing claims), as well as
the beliefs of their neighbours in the social network. Agents themselves have a prior
preference to announce their beliefs via an action that is observable by other agents (e.g.,
posting/tweeting a “hashtag”). We show that the proposed active inference model can
replicate confirmation bias, exposure effects, the formation of echo-chambers, and the
exacerbation of these phenomena via habit-learning. These effects can be modelled by
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changing the parameters of individual generative models, i.e., the cognitive features of
the individuals comprising the group. We also uncover interesting interactions between
individual-level cognitive features and the network architecture that constrains their social
interactions. The large-scale behaviour of the model can be used to test three hypotheses,
which are motivated by the existing literature. We formulate and test three hypotheses
as follows:

Hypothesis 1. We cast confirmation bias in active inference as a form of ‘biased curiosity,’ in
which agents selectively gather information from other agents with whom (they believe) they agree,
under the assumption that like-minded agents provide higher-quality, more reliable information.
We hypothesise that this ‘epistemic confirmation bias’ can mediate the formation of echo-chambers
and polarisation in social networks of active inference agents. However, we further hypothesise that
epistemic confirmation bias and network connectivity will bidirectionally modulate the formation of
polarised epistemic communities, tuning the collective trade-off between deadlock (polarisation) and
agreement (consensus).

Hypothesis 2. We also consider the effect of agents’ beliefs about the volatility of their social
environments. In particular, we examine how beliefs about social volatility impact exploratory
sampling of other agents’ perspectives, which itself may interact with epistemic confirmation bias
to determine the formation of echo-chambers. In particular, we hypothesise that beliefs about less
quickly changing social environments (a belief in lower social volatility) will increase the likelihood
of polarisation, as opposed to consensus.

Hypothesis 3. Finally, we also hypothesise that we can model selective exposure effects and
conformity through habit formation, which naturally emerges through Bayes-optimal learning of a
prior distribution over policies. We hypothesise that a greater learning rate for habit formation will
lead to clusters within the network, thus amplifying and quickening the formation of echo-chambers.

Using the multi-agent active inference model of opinion dynamics, we achieve simula-
tion outcomes that reproduce phenomena observed in the opinion dynamics literature, such
as polarisation and consensus. In the sections to follow, we first describe the generative
model that each agent uses to engage in active inference, and then discuss how we couple
the agents together in an opinion dynamics network. We conclude by presenting numerical
results that investigate each of the three hypotheses laid out above.

2. An Active Inference Model of Opinion Dynamics
2.1. Overview

We present a multi-agent active inference model of opinion dynamics on an idealised
social network. In the model, a group of agents simultaneously update their beliefs about
an abstract, binary hidden state (that represents two conflicting “Ideas”) and the opinion
states about these ideas, held by a limited set of neighbouring agents. Each agent also
generates an action that is observable to other agents. In the context of digital social
networks like Twitter, these observable actions could be analogised to ‘posts’, ‘tweets’ or
‘hashtags’, i.e., some abstract expression carrying information about the belief state of
the agent generating that expression. Hereafter we refer to these actions as ‘tweeting a
Hashtag’ and describe agents‘ behaviour as the decision to ‘tweet Hashtag 1 vs. Hashtag
2’, etc. Over time, each agent updates a posterior distribution (or belief) about which of
the two Ideas is true, as well as a belief about what a connected set of other agents in
the network believe (namely, those agents whom they ‘follow‘ or are ‘followed by’ in the
social network). Both of these inferences are achieved by observing the behaviour of other
agents, where, crucially, this behaviour depends on each agent’s beliefs (notably about
other agents). In our formulation, agents can only observe the behaviour of other agents to
whom they are specifically connected.
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It is worth emphasising that in this formulation, there is no true hidden state that
corresponds to the competing truth status of the two “Ideas.” Rather, this abstract binary
hidden state is only contained in the generative model or internal representation of each
agent. The only ‘real’ states of the system are the agents and their observable behaviour.

In the sections to follow, we first briefly summarise the previous literature on computa-
tional approaches to the study of opinion dynamics. We then review the formalism of active
inference, from the specification of the generative models that each agent uses to represent
their external world, to the update equations for state estimation and decision-making.
Finally, we describe the simulations of multi-agent dynamics by linking an ensemble of
such active inference agents into a network.

2.2. Opinion Dynamics Models

In previous models of opinion dynamics, individual agents are often characterised by
one or a few variables that encode the current belief or opinion held by that agent [99–101].
Collections of agents then update their respective opinion variables by ‘observing’ other
variables that (either deterministically or stochastically) depend on the opinions of other
agents in the ensemble. The nature of the inter-agent interactions varies across different
models, ranging from homogeneous, ‘mean-field’-like global potentials [102,103] to struc-
tured, heterogeneous networks with fixed or dynamic weights between agents [104,105].
The opinion variables can take scalar or vector-values [106,107], and have either discrete or
continuous support [108–111].

Bayesian variants of opinion dynamics models explicitly take into account the uncer-
tainty associated with the observations and decisions of agents, where now the updates to
opinion variables become (exact or approximate) Bayesian updates [95,96,112,113]. The ac-
tive inference model we present here is an example of such a Bayesian approach, with a few
crucial distinctions, such as the approximate (as opposed to exact) nature of the Bayesian
belief updating, and the fact that actions, in addition to opinions, are the result of inference.
We will detail these distinctions further in the sections below on active inference.

2.3. Active Inference

Active inference is a biologically motivated framework that rests on first principles of
self-organisation in complex, adaptive systems [86,97,114]. Particularly, it is premised on
the notion that the internal states of any biological system are statistically insulated from
the environment that generates sensory observations, and thus must engage in inference
(about the causes of its sensory states) to behave optimally [115]. Active inference finesses
this fundamental uncertainty by adding a Bayesian twist, proposing that biological systems
entertain or entail a generative model of the latent environmental causes of their sensory
inputs. Therefore, unlike classic reinforcement learning or reflexive behavioural algorithms
(e.g., state-action policy mapping [72,116]), actions taken under active inference are guided
by internal beliefs, which themselves are optimised with respect to an internal ‘world
model,’ or representation of the world’s causal and data-generating structure.

Crucially, active inference agents represent their own actions (and their typical sensory
consequences) in their generative model. By performing inference with respect to both
hidden environment states of the world and the consequences of their own actions, active
inference agents can evince behaviour that both (1) achieves their goals or fulfils preferences
and (2) actively reduces uncertainty in the agent’s world model [86,97,115]. An active
inference agent’s only imperative is to increase model evidence, or equivalently, to reduce
surprise. Processes such as learning, perception, planning, and goal-directed behaviour
emerge from this single drive to increase evidence for the agent’s generative model of
the world.

In active inference, the agents never act directly on sensory data, but rather change
their beliefs about what causes that data. Thus, the core step in active inference consists of
optimising these beliefs using a generative model. This process is also known as Bayesian
inference or Bayesian model inversion. Inference answers the question: “what is my best
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guess about the state of the world, given my sensory data and prior beliefs”? This can be
formalised using Bayes’ rule:

P(ϑ|y) = P(y|ϑ)P(ϑ)
∑ϑ P(y|ϑ)P(ϑ)

(1)

where the optimal belief about ‘hidden’ or latent variables ϑ, given some sensory data y, is
called the posterior distribution P(ϑ|y). Bayes’ rule yields an analytic relationship between
the generative model P(y, ϑ) and the posterior. Bayesian inference consists in calculating
(either analytically or approximately) P(ϑ|y). Active inference is no different: perception
(the generation of a best guess about the current hidden states of the world) is formalised as
the computation of a posterior distribution over hidden states s, and action (the active part
of active inference) is formalised as the computation of a posterior distribution over policies
π. In active inference, however, this problem is turned into one of approximate Bayesian
inference, where instead of finding the optimal posterior P(s|o), active inference agents
instead approximate this optimal posterior with a variational posterior Q(s; φ), i.e., a belief
over hidden states that is parameterised by variational parameters φ. The reason for this is
that the exact inference is often computationally intractable. The marginalisation problem
involved in exact Bayesian inference (expressed in Equation (1)) is often intractable for
many realistic generative models. Variational inference turns this intractable calculation of
the marginal into an optimisation problem, where a variational upper bound on surprise
known as variational free energy (also known as negative model evidence in statistics)
is minimised:

Q∗(s; φ) = argmin
φ

DKL(Q(s; φ) ‖ P(o, s))︸ ︷︷ ︸
surprise bound

DKL(Q(s; φ) ‖ P(o, s)) = DKL(Q(s; φ) ‖ P(s|o))− log P(o)︸ ︷︷ ︸
surprise

(2)

where DKL(q ‖ p) is the Kullback–Leibler divergence, a non-negative measure of difference
between probability distributions, where DKL(q ‖ p) = 0 when q = p. Variational inference
thus consists of optimising the variational parameters φ in order to minimise the free energy,
which itself renders the variational posterior a better approximation to the true posterior.
When variational inference is exact, the bound becomes exact and the free energy reduces
to the surprise or negative log evidence. The remaining (negative) surprise can be itself
used as a score for model averaging and model selection [117,118].

Active inference agents achieve perception and action by minimising the surprise
bound in Equation (2) with respect to variational beliefs about particular variables of their
generative model. Optimising beliefs about variables that represent latent environmental
states (often denoted s) is proposed as a formal model of perception, while optimising
beliefs about variables that correspond to policies or control of the environment (often
denoted by u or π) is the formal analogue of planning and action. Therefore, active
inference agents infer both hidden states (perception) and policies (action) through a
process of variational inference. The update equations used for perception and planning
under active inference are detailed in Sections 2.10–2.12.

Specifying a generative model P(o, s) is critical to determining the behaviour of active
inference agents. In the following sections we introduce the discrete state space model,
a partially observed Markov decision process or POMDP, with which we equip agents in
the multi-agent opinion dynamics setting.

2.4. Generative Model

Formally, the generative model is a joint probability distribution P(o, ϕ) over obser-
vations o and latent variables ϕ. Intuitively, one can think of the generative model as the
agent’s ‘representation’ of its environment, and specifically how that environment elicits
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observations [119]. In the discrete generative model described below, this generative model
comprises assumptions about how hidden states s and actions u are probabilistically related
to one another and to observations o.

In the current study, agents entertain partially observed Markov decision process generative
models, or POMDPs [120,121]. POMDPs are a class of decision-making models commonly
used to simulate planning and decision-making in environments where agents must at each
timestep select one of a discrete set of mutually exclusive options. This is often represented
using several random variables: a discrete set of actions u (also known as control states);
hidden states s, which evolve according to (action-dependent) Markovian dynamics; and
observations o, which probabilistically depend upon current hidden states. In most active
inference models using POMDP generative models, hidden states, observations, and actions
are discrete random variables—namely, they can take one of a finite set of values at a
given time.

We include an additional latent variable, policies π, in the generative model. Policies
are simply sequences of control states u. Using the terminology above, our generative
model can be written down as P(õ, ϕ̃) where ϕ̃ = {s̃, ũ, π}. The tilde notation x̃ denotes a
sequence of random variables over time, e.g., s̃ = s1,...,T .

We can now write down the Markovian generative model as follows:

P(õ, s̃, ũ, π) = P(s1)P(u1)P(π)
T

∏
τ=2

P(sτ |sτ−1, uτ)P(uτ |π)
T

∏
τ=1

P(oτ |sτ) (3)

The observation likelihood P(oτ |sτ) represents the agent’s probabilistic understanding
of the relationship between hidden states sτ and concurrent observations oτ . Because both
observations õ and states s̃ are discrete, this likelihood distribution will be represented
as a multidimensional array, which we hereafter denote by A. Similarly, the transition
distributions P(sτ |sτ−1, uτ), which are denoted by B, encode the agent’s beliefs about how
hidden states and control states determine subsequent hidden states. It is by changing
actions uτ that the agent can exert control on its environment, since the evolution of
hidden states depends both on the past state sτ−1 and on the concurrent action uτ . Finally,
the distribution P(uτ |πτ) represents the mapping between policies and actions.

In many POMDP models, we segregate observations õ and hidden states (and controls) s̃
(resp. ũ) into distinct modalities (for observations) and factors (for hidden states/control states):

õ =
{

õ(1), õ(2), . . . , õ(M)
}

s̃ =
{

s̃(1), s̃(2), . . . , s̃(F)
}

ũ =
{

ũ(1), ũ(2), . . . , ũ(F)
}

(4)

where the superscripts refer to the index of the modality or factor index, respectively.
Observation modalities can be thought of as sensory ‘channels’ that provide distinct

sorts of information. For example, in the context of human cognition, observation modalities
might correspond to the information originating in different sense organs, e.g., the ears,
eyes, or skin.

Hidden state factors may be thought of as the generative model’s latent representation
of different features of the external world. Each of these factors has its own dynamics
and can be thought of as statistically independent of other factors. For instance, an object
might be described by both its spatial location and its colour—‘location’ and ‘colour’ would
thus be candidates for distinct hidden state factors in a generative model of an object.
This factorisation is motivated by our intuition that something like an object’s colour and
location are independent. An additional, minor note is that control states (the agent’s
representation of its own actions or ability to intervene on hidden states) are also divided
into a set of control factors, with one control factor for every hidden state factor.

Given this factorisation, at any given time a single observation will thus comprise a set
of modality-specific observations, one from each sensory channel, and a hidden state will
comprise of a set of hidden states, one from each distinct hidden state factor.
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Now that we have introduced the class of discrete generative models with which
our active inference agents will be endowed, we are now in a position to articulate the
particular structure of the generative model for a single agent. From here, using active
inference to perform inference and action with respect to each single agent’s generative
model, we can then ‘link together’ ensembles of these agents to form a complete opinion
dynamics simulation.

2.5. An Individual Model of Opinion Formation

We describe a generative model of opinion formation for a single agent. Note that each
active inference agent in the multi-agent simulations described below will be equipped
with this same basic generative model. A single agent (hereafter: the ‘focal agent’) observes
the actions of other agents, forms beliefs about an abstract binary environmental state,
and chooses actions, which themselves are observable to other agents. The focal agent’s
action consists of two simultaneous choices: an ‘expression’ action (choosing which observ-
able expression to make) and an ‘observation’ action (choosing which other agent to attend
to). As mentioned above, we analogise the ‘expression’ actions to posts made by users on
online social networks (e.g., ‘tweets’, ‘re-tweets’, ‘shares’, ‘likes’), and the contents of these
actions we refer to as ‘Hashtags.’ Crucially, an agent can only observe one neighbouring
agent at a time. Therefore, at each timestep, a focal agent both tweets its own Hashtag and
chooses to read the Hashtag tweeted by another single agent. See Figure 1 and Table 1
for a summary of the distributions and random variables that comprise a single agent’s
generative model of opinion formation.

Figure 1. Bayesian network representation of the POMDP generative model. Squares represent priors,
likelihoods, or ‘factors’ that relate random variables to one another, and circles represent random
variables (stochastic nodes). Different hidden state factors are represented as state variables and the
different modality-specific A(m) arrays of the observation model shown are side by side, since they
lead independently to the observations generated in that modality, but are conjunctively dependent
on hidden state factors. Note that the B array can be similarly decomposed into different sub-arrays,
one per hidden state factor, but it is shown as a single square here for simplicity. The prior over
policies is parameterised by E , which has separate prior over control states (EWho and ET) for each
control state factor. The box at the top right contains mathematical descriptions of each component in
the generative mode. Note that while it is included in the graphical model, we left out the C vector
since it is not relevant for the current model.
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Table 1. Variables of the POMDP generative model of single-agent opinion formation. The abstract
name of each variable is written in the left column, its mathematical notation is in the middle column,
and the right column shows how these variables correspond to different components of the opinion
formation generative model. M is the total number of observation modalities and F is the number of
hidden state/control factors. The observation model is a categorical likelihood distribution encoded
by A, which comprises a collection of modality-specific A(m) arrays. The transition model is also
a likelihood, mapping each state to its successor in time, encoded by the B( f ) arrays. The initial
distribution over hidden states is encoded by the D vector, and the prior distribution over control
factors is encoded by the E and ε distributions.

Variable Name Notation Meaning

The focal agent’s tweets oST ∈ Z1×H

Observations o = {o(1), . . . , o(M)} Neighbour k’s tweets oNTk ∈ Z1×(H+1)

The sampled agent oWho ∈ Z1×K

The focal agent’s beliefs sIdea ∈ Z1×2

Hidden States s = {s(1), . . . , s(F)} Neighbour k’s beliefs sMBk ∈ Z1×2

The Hashtag tweeted by focal agent sT ∈ Z1×H

The neighbour sampled focal agent sWho ∈ Z1×n

Actions u = {u(1), . . . , u(F)} The Hashtag control state uT ∈ Z1×H

The neighbour attendance control state uWho ∈ Z1×n

Self tweet likelihood AST ∈ (R>0)
2×2×2K×H×K

Observation
model

P(o(m)
t = i|s(1)t = j, s(2)t =

k, . . .) = [A(m)]ijk...

Neighbour tweet likelihood ANTk ∈ (R>0)
2×2×2K×H×K

Neighbour attend likelihood AWho ∈ (R>0)
K×2×2K×H×K

Environmental dynamics and volatility BIdea ∈ R2×2
>0

Transition model P(s( f )
t+1 = i|s( f )

t = j, u( f )
t = k) =

[B( f )]ijk

Meta-belief dynamics and volatility BMBk ∈ (R>0)
2×2

Tweet control BT ∈ (R>0)
H×H×H

Neighbour attendance control BWho ∈ (R>0)
K×K×K

Initial State p(s( f )
0 = i) = [D( f )]i Initial state distribution D ∈ (R>0)

2×2K×H×K

Control State Prior P(uT
0 |sidea) = ET Empirical prior over Hashtag control state ET ∈ (R>0)

H×2

P(uWho
0 |EWho) = E[Dir(ε)] Dirichlet hyperparameters over neighbour attendance con-

trol state ε ∈ (R>0)
1×K

2.5.1. Hidden States

Each agent’s generative model comprises hidden states that fall into four categories—
however, the actual number of hidden state factors per agent depends on their local network
connectivity, so that a particular agent will usually have more than four hidden state factors.
Nevertheless, we classify each hidden state factor into one of these four categories:

1. sIdea: A binary random variable that encodes the agent’s beliefs about an abstract
environmental state that represents the truth value of two mutually exclusive Ideas or
claims. This binary variable can thus take a value of either 0 or 1, to which we assign
arbitrary labels of Idea 1 and Idea 2. If Idea 1 is true, then necessarily Idea 2 is false,
and vice versa.

2. sMetaBelief (shortened to: sMB): A set of binary random variables, each of which
corresponds to a particular neighbour’s belief about which of the two Ideas is true. As a
representation of another agent’s belief, we hereafter refer to this class of hidden state
factor (and corresponding posteriors) as ‘meta-beliefs’. The values of this variable we
label Believe Idea 1 and Believe Idea 2. Each agent will have one hidden state factor
belonging to this category for each of its K neighbours, e.g., sMB1, sMB2, . . . , sMBK.
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3. sSelfTweet (shortened to: sT): A binary random variable corresponding to what the
focal agent is currently doing. By analogy with Twitter and other digital social media
platforms, we refer to this action as ‘tweeting‘ or ‘posting’, and the variable can take a
value of either 0 or 1, representing one of two possible contents (’Hashtags’). These
two actions are thus labeled Tweet Hashtag 1 (sSelfTweet = 0) and Tweet Hashtag 2
(sSelfTweet = 1).

4. sWhoAttend (shortened to: sWho): A multinomial random variable with as many discrete
levels as the focal agent has neighbours, representing which of their neighbours’
actions the focal agent is currently attending to. For example, for an agent with three
neighbours, this variable could take three values: (0, 1, 2), which we label Attend
Neighbour 1, Attend Neighbour 2, and Attend Neighbour 3, respectively.

For a single agent’s generative model, the precise number of ‘meta-belief’ hidden state
factors (those belonging to the sMB class of factors) depends on how many neighbours
the focal agent has. For instance, if a given agent i has three neighbours, then that agent’s
generative model will have three meta-belief hidden state factors: sMB1, sMB2, and sMB3,
each representing the belief state of one of agent i’s three neighbours. Each agent has only
one hidden state factor belonging to the other categories: sIdea, sT, and sWho. However,
the cardinality (i.e., number of levels) for the sWho hidden state factor will be equal to the
focal agent’s number of neighbours. In the case of our agent i with three neighbours, there-
fore, the possible values of sWho will be (0, 1, 2), corresponding to the action of attending to
one of the three neighbours.

2.5.2. Control States

Each agent is also equipped with two control state factors. These state factors are the
agent’s representation of its own actions in the environment. Control factors interact with
hidden state factors to determine the next hidden state—thus, certain hidden state factors
are deemed ‘controllable’ if they are paired with a control factor. In the current model, these
two control state factors are paired with hidden state factors in Categories 3 and 4 above:

1. uT: A binary random variable corresponding to which ‘tweet action’ to take, i.e., Tweet
Hashtag 1 vs. Tweet Hashtag 2. This control factor interacts with the sT hidden
state factor.

2. uWho: A multinomial random variable corresponding to which neighbour to attend
to, e.g., Attend Neighbour 1, Attend Neighbour 2, and Attend Neighbour 3. This
control factor interacts with the sWho hidden state factor.

2.5.3. Observation Modalities

Just as we did for the hidden states, now we describe three categories of observation
modalities for a single agent’s generative model:

1. oSelfTweet or oST: A binary random variable representing the focal agent’s observation
of its own tweet actions—these ‘self-observations’ take the values of Hashtag 1 and
Hashtag 2.

2. oNeighbourTweet or oNT: A ternary random variable representing the observation of a
neighbour agent’s actions—these take the values of Null, Hashtag 1, and Hashtag
2. Each agent has one ‘tweet observation’ modality for each of its K neighbours:
oNT1, oNT2, oNT3, . . . , oNTK, in the same way that the number of sMB factors depends
on the number of neighbours. The purpose of the Null observation level will be
clarified later on.

3. oWhoAttend or oWho: A multinomial random variable representing the observation of
which neighbour the focal agent is attending to. This random variable has as many
discrete levels as the focal agent has neighbours. For example, for an agent with three
neighbours, this variable could take three values: (0, 1, 2), which we label Attend
Neighbour 1, Attend Neighbour 2, and Attend Neighbour 3.
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A focal agent receives a full multi-modality observation per timestep:

ot = {oST
t , oNT1

t , oNT2
t , . . . , oNTK

t , oWho
t } (5)

Each single observation is thus a collection of observations, one from each modality.
Because one observation is collected from each modality at every timestep, the cardinality
of some modalities is increased by 1, creating an additional observation level which we can
call the “Null” observation level. The Null observation is included to effectively ‘block’ the
focal agent from seeing the Hashtags of neighbours they are not actively attending to. This
observation level is designed to have maximal ambiguity with respect to hidden states—in
other words, seeing a Null observation affords no information about hidden states and
thus has no effect on inference. This will become more clear when the observation and
transition likelihoods of the generative model are described.

2.6. Likelihoods

Having specified the random variables that form the support of a single agent’s
POMDP generative model, we can now move onto describing the likelihoods that determine
how hidden states relate to observations, and how hidden states relate to each other over
time. The construction of these likelihoods is indispensable for understanding both the
belief updating and the choice behaviour of active inference agents.

We begin with the observation likelihood model P(ot|st). This is also known as the
‘sensory likelihood’ or observation model, and is parameterised by a series of categorical dis-
tributions whose parameters we collectively encode as the columns of a multidimensional
array called A. In other words:

P(ot|st) = Cat(A)

The entire A array is actually a set of tensors, with one sub-tensor per
observation modality:

A = {AST, ANT1, ANT2, . . . , ANTK, AWho}

Each modality-specific likelihood tensor Am is a potentially multidimensional array
that encodes the conditional dependencies between each combination of hidden states
st = {s1

t , s2
t , . . . , sF

t } and observations om
t for that modality. For example, in a likelihood

array with two hidden state factors, entry [Am]ijk encodes the conditional probability
P(om

t = i|s1
t = j, s2

t = k), i.e., with the probability of observing outcome i within observation
modality m under hidden state factor 1 being level j and hidden state factor 2 being level k.
In the case of the generative model for opinion formation, these likelihood arrays will be
of much higher dimensions than 3-D tensors; we will thus generally refer to the elements
of a modality-specific Am array with the notation [Am]ijk..., where the ellipses refer to an
indefinite number of indexable lagging dimensions.

Each agent in the opinion dynamic model will have one Am array per observation
modality. We will now step through them to describe their role in the generative model.

2.6.1. Self Tweet Likelihood

The array AST represents the agent’s beliefs about how hidden states relate to oST

(which content the agent is tweeting, either Hashtag 1 or Hashtag 2). By construction, AST

encodes an assumption that oST only depends on sT, the controllable hidden state factor
corresponding to the tweet action. This is an unambiguous or isomorphic mapping, which
we can express as follows:

AST = P(oST
t |sT

t ) = I2 =

[
1 0
0 1

]
(6)
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In other words, the agent believes that the sT factor unambiguously signals its true value
via the oST observation modality. Each column of the matrix in Equation (6) represents a
(conditioning) value of sT, and each row represents a (conditioned) value of oST. The value of
oST does not depend on any of the other hidden state factors, which means that this identity
matrix is uniformly ‘tiled’ across the other dimensions of the AST array that represent the
mapping between the remaining hidden state factors {s(1), s(2), . . .} /∈ sT and oST.

2.6.2. Neighbour Tweet Likelihood

The array ANTk represents the focal agent’s beliefs about how hidden states relate
to oNTk, the focal agent’s observation of neighbour k’s tweet content. ANTk encodes an
assumption that oNTk probabilistically depends on neighbour k’s belief about the two Ideas,
i.e., that oNTk depends on sMBk. This can be expressed as:

ANTk = P(oNTk
t |sMBk

t , sWho
t = k) =

[
0
h

]
(7)

where 0 represents a 1× 2 vector of 0s, and h is a 2× 2 matrix that represents the ‘Hashtag
semantics,’ i.e., the assumed relationship between neighbour k’s beliefs and what Hashtag
they are expected to tweet. Importantly, the first row of the likelihood matrix in Equation (7)
represents the probability of encountering the Null observation, for the various settings of
hidden states. This observation always has probability 0 when the focal agent is sampling
neighbour k, as represented by the condition sWho

t = k. Otherwise, when sWho
t 6= k, the Null

value will be expected with certainty. This can be expressed as:

ANTk = P(oNTk
t |sMBk

t , sWho
t 6= k) =

1 1
0 0
0 0

 (8)

This inclusion of the Null is necessary to ensure that a focal agent only expects to
read one of neighbour k’s tweet, if they are actively attending to neighbour k—otherwise,
they receive a ‘blank’ observation that affords no information about hidden states (as
represented by a maximally ambiguous likelihood over hidden states, i.e., a row of 1s).
The lower two rows of the likelihood matrix in Equation (7) are occupied by the Hashtag
semantics h, which we stipulatively define with a ‘Hashtag reliability’ parameter ph:

h =

[
ph 1− ph

1− ph ph

]
(9)

Here, ph parameterises two Bernoulli distributions that, respectively, map between
the two levels of sIdea and the two levels of oNTk. In the limiting case of ph = 1, this means
that the focal agent believes that neighbour i’s tweet content is unambiguous evidence for
what Idea neighbour k believes in. On the other hand, as ph → 0, h comes to resemble
a maximum entropy distribution, in this case, according to the focal agent’s generative
model, neighbour k’s tweet activity provides no information about its beliefs.

This basic conditional relationship outlined in Equations (7)–(9) enables agents to
update their beliefs about the beliefs of their neighbours sMB according what they observe
their neighbours tweeting. Intuitively, this mapping captures the focal agents’ beliefs
that what their neighbours tweet is representative of what they believe. The accuracy
of this mapping (the value of ph) determines how strongly Hashtags reflect opinions or
the strength of beliefs. However, in order to allow agents to update their beliefs about
the truth-values of the Ideas per se (i.e., update a posterior distribution over sIdea), we
also construct ANTk such that agents believe that the validity or truth-values of the Ideas
themselves sIdea probabilistically relate to oNTk. Importantly, we make this conditional
relationship ‘biased’ in the sense that, according to ANTk, tweet observations are more
precisely related to a particular setting of the sMBk factor, if and only if sIdea is aligned with
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that belief, i.e., when sMBk = sIdea. This can be formalised as an increased precision γ
for subsets of those conditional distributions encoded by P(oNTk

t |sMBk
t , sIdea), importantly

those subsets when sMBk
t = sIdea. As we will describe later, in the context of action, this

leads to an ‘epistemic’ drive for the focal agent to attend to neighbours who (are believed to)
share their opinions, leading to a confirmation bias effect. We therefore refer to this ‘biased
precision’ γ as the epistemic confirmation bias (ECB).

P(oNTk
t = i|sMBk

t = j, sIdea = j, sWho
t = k, γ) =

eγhij

∑l eγhl j
(10)

Note that this additional precision term γ exponentiates the Hashtag semantics matrix
h, which is already parameterised by the ‘Hashtag reliability’ parameter ph. In the con-
text of inference, an increasing value of γ means that the focal agent believes that tweet
observations oNTk

t will provide more information about hidden states, only in the case that
the neighbour k generating that tweet has ‘correct’ beliefs, i.e., their beliefs are aligned
with the true Idea. In the context of decision-making, this means that agents believe that
most informative observations come from those neighbours that have the ‘correct’ beliefs.
Under active inference, actions that evince informative observations (i.e., observations that
resolve the most uncertainty) are preferred. This drive is known as the ‘epistemic value’ or
‘salience’ [86]. Therefore, higher levels of γ will lead to increased epistemic value associated
with sampling only those neighbours that the focal agent believes have veridical beliefs,
according to its own beliefs about sIdea.

2.6.3. Neighbour Attend Likelihood

The array AWho represents the agent’s beliefs about how hidden states relate to oWho.
This observation model is constructed such that oWho only depends on sWho, and specifically
that agents can always unambiguously infer who they are currently attending to, based on
oWho. This can be expressed succinctly as a K-dimensional identity matrix:

AWho = P(oWho
t |sWho

t ) = IK (11)

where K is the number of the focal agent’s neighbours. Since the value of oWho does
not depend on any hidden state factors besides sWho, IK is ‘tiled’ across the remaining
dimensions of the AWho array.

2.6.4. Transition Model

Now we move onto the transition likelihood model P(st|st−1, ut−1). This is also
known as the ‘dynamical likelihood’ and it is parameterised by a series of categorical
distributions whose parameters are stored in a tensor B:

P(st|st−1) = Cat(B)

As there are multiple hidden state factors in our generative model, the full B array is
actually split into a collection of sub-arrays, one for each hidden state factor:

B = {BIdea, BMB1, BMB2, . . . , BMBK, BT, BWho}

Each sub-array B f contains the categorical parameters of the factor-specific transition
likelihood P(s f

t |s
f
t−1|u

f
t−1). Note that this construction means that hidden state factors are

assumed to be independent by the generative model. In the context of the opinion dynamics
model, this means that a single agent assumes that the hidden state sIdea both does not
affect and is not affected by the belief states of neighbouring agents sMBk, and furthermore
that the belief states of neighbours do not affect one another. In the following sections, we
summarise the transition models for each hidden state factor.
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2.6.5. Environmental Dynamics and Volatility

The dynamics of sIdea according a focal agent’s generative model are described by
BIdea. Since this is an uncontrollable hidden state factor, it can be expressed as a simple
2× 2 matrix, which expresses the focal agent’s beliefs about the probability that sIdea (which
Idea is “true”) switches over time. We parameterise this matrix with a precision parameter
that we call ‘inverse environmental volatility’ ωIdea:

BIdea = P(sIdea
t = i|sIdea

t−1 = j, ωIdea) =
eωIdea Iij

∑l eωIdea Il j
(12)

where I is the 2× 2 identity matrix. The higher the value of ωIdea, the more the focal agent
believes that the same Idea remains valid over time (e.g., Idea 1 is likely to remain the
‘valid’ idea from one timestep to the next). Consequently, a lower value of ωIdea (and thus
a higher value of ‘environmental volatility’) means that the focal agent believes that the
truth value of the two Ideas changes less predictably over time (the hidden state is likely to
oscillate between Idea 1 and Idea 2).

2.6.6. Meta-Belief Dynamics and Volatility

The dynamics of sMBk, or the meta-belief associated with neighbour k according to a
focal agent’s generative model, is described by BMBk. Like sIdea, sMBk is an an uncontrollable
hidden state factor, and the BMBk array can thus be expressed as a 2× 2 matrix. Like BIdea,
we parameterise BMBk with a precision parameter that we term ‘inverse social volatility’ ωSoc:

BMBk = P(sMBk
t = i|sMBk

t−1 = j, ωSoc) =
eωSoc Iij

∑l eωSoc Il j
(13)

The interpretation of ωSoc is similar to that of ωIdea: a higher value of ωSoc implies
that the focal agent assumes that its neighbours have ‘stubborn’ opinions and are not likely
to change over time. A lower value means that the focal agent assumes that its neighbours‘
opinions can easily change over time, or that its neighbours are ‘fickle’.

2.6.7. Tweet Control

Now we discuss the controllable dynamics of the hidden state factor corresponding to
the Hashtag that the focal agent is tweeting: sSelfTweet or sT. Under the focal agent’s gener-
ative model, this factor only depends on the control state factor uT, and the corresponding
BT array can thus be expressed as an identity matrix that maps from the action (Tweet
Hashtag 1 vs. Tweet Hashtag 1) at timestep t− 1 to the next tweet value at timestep t:

BT = P(sT
t |uT

t−1) = I2 =

[
1 0
0 1

]
(14)

This means that the agent can unambiguously determine what it tweets next (the
value of sT

t+1) by means of actions uT
t .

2.6.8. Neighbour Attendance Control

Similarly for the dynamics of sWho, under the focal agent’s generative model, this
factor only depends on the control state factor uWho, and the corresponding BWho array
can thus be expressed as an identity matrix that maps from the action of which of K
neighbours to attend to at timestep t− 1, to the next value of sWho at timestep t, namely
which neighbour is being attended to:

BWho = P(sWho
t |uWho

t−1 ) = IK (15)
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Just like the dynamics of sT, sWho is thus fully controllable by the agent, i.e., determined
by the value of uWho.

2.7. Priors

The next component of the generative model is the priors over observations P(o),
hidden states P(s0), and actions P(u). In discrete active inference models, we represent
these as vectors C, D, and E, respectively.

2.7.1. Observation Prior C

In active inference, goal-directed action is often motivated by appealing to a baseline
prior over observations P(o|C) that specifies the agent’s preferences to encounter particular
outcomes over others. This caches out value in terms of log probabilities or information,
rather than classical constructs like ‘reward.’ Interestingly, this prior over observations
does not come into play when performing inference about hidden states (i.e., it is not part
of the generative model in Equation (3)), but only during decision-making and action.
Under active inference, actions are selected to minimise a quantity called the expected
free energy, a quasi-value function that scores policies by their ability to bring expected
observations in alignment with preferred observations, while also maximising information
gain (see the Section 2.11 for more details). In the current model, we do not rely on this C
vector to encode goals, but rather motivate action through a conditional action prior (see
the section on the E vector below). For this reason, in our model the C is a flat distribution
over observations and does not contribute to decision-making in this context.

2.7.2. State Prior D

The prior over hidden states at the initial timestep is encoded by the so-called D
vector, P(s0|D). The D vector encodes the agent’s beliefs about the initial state of the world,
prior to having made any observations. In the context of the opinion formation generative
model, it encodes baseline beliefs about which Idea is true, the meta-beliefs of the focal
agent’s neighbours, as well as the initial tweet that the focal agent is making and the initial
neighbour to whom the focal agent is attending.

2.7.3. Empirical Prior over Hashtag Control State: ET

We furnish the generative model with a special conditional prior over Hashtag control
states P(uT

0 |sIdea), parameterised by a mapping denoted by ET. This quasi-likelihood or link
function renders the prior over Hashtag control states uT

0 an empirical prior, because of an
explicit dependence on sIdea

t . Under active inference, the final posterior over control states
Q(ut) becomes a Bayesian average of the ‘value’ of each control state, as determined by the
(negative) expected free energy (see the corresponding Section 2.11 below), as well as the
prior probability of each control state as encoded by P(u0). In the current model, we make
the prior over control states an empirical prior parameterised by a ‘link function’ denoted
by the ET vector. This makes the prior over the Hashtag control state uT

0 conditionally
dependent on the sIdea hidden state factor of the generative model. In practice, this implies
that the prior over those control states corresponding to tweet actions P(uT

0 ) depends on
the posterior over sIdea

t , the hidden state corresponding to which Idea is true. This can be
expressed as follows:

P(uT
0 |sIdea

t ) = Cat(ET)

where the mapping encoded by the entries of Cat(ET) is an identity matrix that maps
each value of sIdea to a single Hashtag control state (value of uT

0 ). At each timestep we
approximate the prior at timestep t over sIdea with the agent’s current posterior belief
Q(sIdea

t ). The following sections on belief updating explain how one optimises the varia-



Entropy 2022, 24, 476 18 of 49

tional posterior over hidden states Q(st) using observations. Once approximated in this
way, we can re-express the empirical prior over Hashtag control states P(uT

0 ) as:

P(uT
0 ) = EQ(st)[P(u

T
0 |sIdea

t )]

Agents are therefore more likely to take the action uT = Tweet Hashtag 1 if they
believe more in Idea 1 than in Idea 2 (as reflected in the value of Q(sIdea

t )), and likewise are
more likely to take the action uT = Tweet Hashtag 2 if they believe more in Idea 1 than in
Idea 2. This empirical prior formulation thus renders the probability of taking a particular
Tweet Hashtag action directly proportional to the agent’s belief in one of the two Ideas,
as encoded in the variational posterior Q(sIdea

t ).

2.7.4. Prior over Neighbour Attendance Control State: EWho

In addition to the prior over Hashtag control states P(uT
0 ), the generative model also

contains a prior over the Neighbour Attendance control state uWho
0 . We parameterise this

prior over control states using a categorical distribution EWho, whose probability itself is
given by a Dirichlet distribution with parameters ε:

P(uWho
0 |EWho) = E[Dir(ε)]

The Dirichlet parameters ε, unlike the parameters of categorical distributions, are
positive but not constrained to integrate to 1.0. As hyperparameters of a conjugate prior
distribution, they are often analogised to ‘pseudo-counts’ that score the prior number of
times a given action has been taken (in this case, sampling a particular neighbour via
the control state uWho

0 ). For instance, if the ε vector for an agent with three neighbours is
initialised to have the values (5, 2, 1), this means that the focal agent has a built-in propensity
to take the action Attend Neighbour 1 rather than the actions Attend Neighbour 2 or
Attend Neighbour 3. Furthermore, in turn, taking the action Attend Neighbour 2 is twice
as probable as taking the action Attend Neighbour 3. As we will see in the following
sections, this ‘habit vector’ ε can be learned over time by optimising a variational beliefs
over EWho, which involves incrementing a Dirichlet ε vector that parameterises the posterior
Q(EWho).

2.8. Summary

This concludes the specification of a single agent’s generative model for opinion
formation. Now that we have specified this generative model, we move on to define the
family of the approximate posteriors (the agent’s beliefs) over hidden states and policies
Q(s, π; φ) as well as the variational free energy. In conjunction with the generative model,
these can be used to derive the update equations used to perform active inference.

2.9. Approximate Posteriors and Free Energy

Under active inference, both perception and decision-making are cast as approximate
inference problems, wherein the variational free energy (or bound on surprise) is minimised
in order to optimise beliefs about hidden states (perception) and beliefs about policies
(decision-making/action). In order to derive the equations that perform this optimisation,
we therefore have to define the variational free energy. This free energy, equivalent to the
bound defined in Equation (2), requires both an approximate posterior and a generative
model. We defined a POMDP generative model for our active inference agents in the
previous section; the remaining step before writing out the free energy is then to define
an approximate posterior distribution. For compatibility with the categorical prior and
likelihood distributions of the generative model defined in Equation (3), we will also define
the approximate posterior as categorical distributions. Additionally, we will invoke a par-
ticular factorisation of the approximate posterior, also known as a mean-field approximation,
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that allows us to factorise the approximate posterior over hidden states across timesteps.
We define the approximate posterior over hidden states and policies as follows:

Q(sτ |π) = Cat(sπτ)

Q(π) = Cat(π)

Q(s1:T , π) = Q(π)
T

∏
τ=1

Q(sτ |π) (16)

where the notation P(x) = Cat(φ) denotes a categorical distribution over some random
variable x with parameters φ. While this simplification assumes that posterior beliefs at
subsequent timesteps are statistically independent, as we will see below, the Markovian
temporal structure of the generative model means that, in practice, beliefs about hidden
states at one timestep are contextualised by empirical priors from past timesteps (posterior
beliefs from earlier timesteps).

The full free energy for the POMDP generative model and the approximate posterior
specified in Equation (16) can be written as follows:

F1:T = EQ(s1:T ,π)[ln Q(s1:T , π)− ln P(o1:T , s1:T , π)]

Equipped with the free energy, we can now derive update equations for hidden state
estimation and policy inference that involve minimising F1:T .

2.10. State Estimation

Under active inference, hidden state estimation is analogised to perception—this
is achieved by optimising the variational posterior Q(s1:T |π) over hidden states, given
policies. Because our approximate posterior and generative models are defined using
categorical distributions, the problem of state estimation becomes minimising free en-
ergy gradients of the form ∂F

∂s , where s are the parameters of the approximate posterior
distribution over hidden states, Q(s) = Cat(s).

At each timestep, the agent can take advantage of the mean-field factorisation of the
posterior and the Markovian structure of the generative model to update only its beliefs
about the current state of the world: Q(st). The optimal posterior at timestep t is then
found by finding the solution to Q(st) that minimises the timestep-specific free energy Ft:

Ft = EQ(st)Q(π)[ln Q(st)− ln P(ot, st|st−1, π)]

=⇒ ∂Ft

∂Q(st)
= 0 ⇐⇒ Q∗(st) = σ(ln P(ot|st) + ln(P(st|st−1, ut−1)P(st−1))) (17)

This furnishes a simple belief update scheme for perception, where the optimal
posterior Q∗(st) is a Bayesian integration of a likelihood term P(ot|st) and a prior term
P(st|st−1, ut−1)P(st−1).

Further details on the form of the approximate posterior and the derivation of the
time-dependent free energy can be found in Appendix A.

2.11. Policy Inference

Under active inference, policies π are also a latent variable of the generative model
and thus must be inferred. Accordingly, planning and action also emerge as results of
(approximate) Bayesian inference, where now the inference is achieved by optimising a
variational posterior over policies Q(π).
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The optimal posterior that minimises the full variational free energy F1:T is found by
taking the derivative of F1:T with respect to Q(π) and setting this gradient to 0, yielding
the following free-energy-minimising solution for Q(π):

Q∗(π) = argmin
Q(π)

F = σ(ln P(π)− F(π)) (18)

Therefore, in the same way that state estimation or optimisation of Q(s) in Equation (17)
resembles a Bayesian average of a likelihood and a prior term, policy inference also becomes
an average of the policy prior P(π) and the ‘evidence’ afforded to each policy, scored by
F(π). See Appendix A for a more detailed derivation of the optimal policy posterior Q∗(π).

The crucial component in understanding the behaviour of active inference agents
lies in the specification of the policy prior, P(π). Under the standard construct of active
inference (However, see alternative derivations as in [122,123]), the probability of a policy
is defined a priori to be proportional to the negative expected free energy of that policy:

P(π) = σ(−G(π)) (19)

The expected free energy or EFE is denoted by G(π), and it measures the free energy
expected under pursuit of a policy. This expected or predictive nature of the EFE is crucial:
although the standard free energy is typically a direct function of observations (and func-
tional of beliefs), when evaluating the consequences of a policy in the future, observations
are not known—therefore, the expected free energy must deal with predicted observations
or predictive densities over observations. As we will see below, this counterfactual nature of
the expected free energy is what endows action selection with inherently both goal-directed
and information-seeking components.

The expected free energy is defined mathematically as:

G(π) = DKL[Q(s1:T , π)||P̃(o1:T , s1:T , π)] (20)

where P̃ represents a generative model ‘biased’ towards the preferences of the agent. We
can write this biased generative model at a single timestep as P̃(oτ , sτ , π) = P(sτ |oτ)P̃(oτ),
where P̃(oτ) represents a ‘biased prior’ over observations. Given the factorisation of the
approximate posterior Q(s, π) over time as defined in (16), the EFE for a single timestep
can also be defined as follows:

G(π)τ = DKL[Q(sτ |π) ‖ P̃(oτ , sτ)]

≈ −EQ(oτ |π)[DKL[Q(sτ |oτ , π) ‖ Q(sτ |π)]]︸ ︷︷ ︸
Epistemic Value

−EQ(oτ |π)[ln P̃(oτ)]︸ ︷︷ ︸
Utility

(21)

where the first term, the epistemic value, scores policies according to how much information
observations oτ expected under that policy provide about hidden states. This term is
expressed here as the divergence between the states predicted under a policy, with and
without conditioning on observations. The second term represents the degree to which
expected outcomes under a policy will align with the biased prior over observations in
the generative model. Since the prior over policies minimises expected free energy, policies
with thus favoured states resolve uncertainty (maximise epistemic value) and satisfy prior
preferences (maximise utility).

Having specified the prior over policies in terms of the (negative) expected free energy,
we can now rewrite Equation (18) by expanding the prior in terms of G(π):

Q∗(π) = σ(−G(π)− F(π)) (22)

Additionally, in extensions introduced in [72], one has the option of augmenting the
prior over policies with a ‘baseline policy’ or ‘habit vector’ P(π0), also referred to as the E
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distribution. This means that the full expression for the optimal posterior can be written as
(expanding ln P(π) as ln P(π0)−G):

Q∗(π) = σ(−G(π) + ln P(π0)− F(π)) (23)

We introduce this ‘habit vector’ P(π0) explicitly here, because it will be one of the
parameters we explore in the multi-agent model. Note that in the Section 2.13 below, we
reformulate the prior over policies in terms of two separate priors over control states in
order to disentangle the prior over policies that include particular Hashtag control states uT

from the prior over policies that are specific to neighbour-attendance control states uWho.

2.12. Action Selection

Action selection results from sampling from the marginal posterior over actions,
or ‘control states’. The marginal posterior over actions can be computed by marginalising
out the posterior probability of policies using the policy-to-control mapping P(ut|π):

Q(ut) = ∑
π

P(ut|π)Q(π) (24)

This marginalisation is necessary because the mapping between policies and actions is
not necessarily one-to-one: in the case of multi-timestep policies or multi-factor generative
models, a particular control state ut might be entailed by more than one policy. Therefore,
this marginalisation effectively computes the value of each action by summing together the
posterior probabilities of all policies that include it. This entailment relation is encoded in
the likelihood P(ut|π).

Once the posterior over control states Q(ut) has been computed, an action a is simply
sampled from this posterior marginal—this is then the action that the agent takes at timestep t:

at ∼ Q(ut) (25)

2.13. Habit Learning

Under active inference, learning also emerges as a form of variational inference. How-
ever, this inference is not over hidden states, but rather over model parameters [72]. Such
parameter inference is referred to as ‘learning’ because it is often assumed to occur on a
fundamentally slower timescale than hidden state and policy inference. However, the up-
date equations for model parameters follow the exact same principles as hidden state
inference—namely, we optimise a variational posterior over model parameters Q(φ) by
minimising the variational free energy F .

In the current model, we use ‘habit learning’ as originally described in [72] to model the
development of so-called ‘epistemic habits,’ or the tendency for an originally epistemically
motivated behaviour to become habitually driven, mimicking the transfer from model-
based to model-free learning in the context of behavioural conditioning [75,76]. Technically,
habit-learning reduces to updating a variational posterior over the categorical vector EWho,
which parameterises the prior over the neighbour-attendance control state uWho.

Recall from the Section 2.7 that EWho is a vector of categorical parameters whose prior
probability is given as a Dirichlet distribution:

P(uWho
0 |EWho) = E[Dir(ε)] (26)

The Dirichlet distribution is a conjugate prior for categorical distributions, meaning
that the resulting posterior will also be Dirichlet distributed. Motivated by this conjugacy,
we can define a variational posterior over the ‘habits’ Q(EWho) parameterised by variational
Dirichlet parameters ε. One then simply augments the generative model from Equation (3)
with the prior over the categorical EWho parameters, which then allows one to define a new
variational free energy, supplemented with the approximate posterior over EWho. Solving
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for the free-energy minimising solution with respect to the variational Dirichlet parameters
ε leads to the following fixed-point solution for Q(EWho) [124]:

Q(EWho) = Dir(ε)

ε∗ = ε + η ·Q(uWho
t ) (27)

where η is a so-called ‘learning rate’ and Q(uWho
t ) are current posterior beliefs about uWho

controls states. In other words, agents will update their posterior over actions or ‘habit
vector’ according to how often they attend to a particular neighbour, as measured by the
probability of each uWho action. In the current work, we eschew the usual ‘separation
of timescales’ assumption used in learning simulations (e.g., in [72,125]) and update the
posterior habit vector ε at every timestep, i.e., after every action. This means that agents in
this context simultaneously infer which neighbour to attend to, based on the prerogative
to minimise expected free energy, while also incorporating a continuously learned ‘habit’
based on the frequencies with which they attend to different neighbours.

2.14. Multi-Agent Simulations

Now that we have introduced the generative model used by single agents and the
ensuing inference, action, and learning rules that each agent will use to update its beliefs
over time, we proceed to describe the multi-agent simulation itself.

A single multi-agent opinion dynamics simulation consists of a group of N active
inference agents, where in the current work N ranged from 12–30 agents. Each agent
is equipped with the single generative model of opinion formation, as described in the
previous sections. All simulations described below were conducted using pymdp, a freely
available Python package for performing active inference in discrete state spaces [126].

At each timestep, all agents simultaneously (1) update their beliefs as a function of
observations and then (2) take an action (i.e., selecting which Hashtag to tweet and which
neighbour to attend to). Crucially, each agent’s observations are a function of its own
actions at the previous timestep, as well as the actions of a select set of neighbours at
the previous timestep. Each agent has a fixed set of neighbours, where the particular
neighbours are determined by a randomly chosen network topology. In the current study,
we set the neighbour-to-neighbour connectivity for all simulations using Erdős-Rényi (ER)
networks with some connection parameter p, meaning that agents are connected with
fixed probability p [127]. For the current purposes, we make these networks undirected
or symmetric, so that any agents that share an edge can both observe each other’s tweet
actions and choose to read each other’s tweets. The components of each agent’s generative
model (i.e., the number of observation modalities, number of hidden state factors) is a
function of its local connectivity and the number of neighbours that it has. For example,
a random agent in the network that was initialised to have three other neighbours will have
three hidden state factors corresponding to the ‘meta-beliefs’ of these three neighbours:
sMB1, sMB2, and sMB3 as well as three observation modalities that it will use to read each of
those neighbours’ tweets: oNT1, oNT2, and oNT3. Each of those neighbouring active inference
agents’ actions (which Hashtag they tweet) will thus feed into the focal agent’s various
Neighbour Tweet modalities at every timestep. Because edges are bidirectional, each of the
neighbouring agents themselves will have a hidden state factor and observation modality,
in their respective generative models, that represent the beliefs and Tweet Hashtag X
actions of the focal agent.

In the results section to follow, we investigate the opinion dynamics under active
inference by testing the hypotheses stated in the Section 1.6. We do this by systematically
varying both the network connectivity p and the parameters of individual generative
models, in an effort to investigate the extent to which ‘epistemic communities’ depend on
both network properties and the cognitive features of individuals.
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3. Model Parameterisation
3.1. Fixed Parameters

It is worth mentioning the vast parameter space one encounters when simulating multi-
agent active inference models. In the current work, each active inference agent is equipped
with an entire POMDP generative model that contains hundreds of individual parameters
(consider, for example, all the categorical parameters that comprise the observation model
P(oτ |sτ)). Importantly, this parameter explosion is exacerbated in the multi-agent setting,
since not only does the number of total parameters scale simply in the size of the network
N, but connections between agents render this scaling supra-linear in N, since each agent
is equipped with Ki + 2 hidden state factors and observation modalities, where Ki is the
number of neighbours that agent i is connected to.

This means that the possible parameter space that one must explore in order to under-
stand the behaviour of the model is combinatorially explosive. To enable transparency and
efficient parameter exploration, we employ several simplifications and low-dimensional
parameterisations of every agent’s generative model, which render the resulting space
easier to explore.

First of all, we assume that every agent’s observation model relating the tweet content
of others to their beliefs has the same basic form. Recall from Equation (7) the ‘Hashtag
semantics’ matrix h that comprises the observation model for the observation of neighbour
k’s tweet content: P(oNTk|s), parameterised with a ‘Hashtag reliability’ parameter ph. We
fix this matrix to have the same parameter ph = 0.73 for all agents:

h =

[
0.73 0.27
0.27 0.73

]
(28)

The choice of ph = 0.73 was simply chosen since it is the setting of a two-element
one-hot vector that is softmax-transformed using a precision parameter of 1.0. The choice
of this particular parameter was not motivated by realism, or by construct- or ecological-
validity. Instead, we chose it because it intuitively represents a “medium” level of precision,
between the limits of precision→ −∞ and precision→ +∞, where the values of ph will
converge to 0.5 and 1.0, respectively. When the precision is 1.0, the value of ph occupies a
relative average of these extreme values at a value of 0.73. A focal agent believes that if it
sees some neighbour k tweeting Hashtag 1, then the likelihood that neighbour k believes
in Idea 1 is 73%, and the likelihood that they believe in Idea 2 is 27%. The relationship
is inverted in case the focal agent sees neighbour k tweeting Hashtag 2. In the current
study we assume that this basic Hashtag semantics matrix in Equation (28) is common
to all agents, and for all neighbours (relative to some focal agent). This enables us to
selectively explore the effect of epistemic confirmation bias, a single (scalar) precision γ that
can be used to up- or down-weight columns of the Hashtag semantics matrix, according to
whether a given neighbouring agent’s belief aligns with (the focal agent’s belief about) the
environmental hidden state factor sIdea (see the section on Neighbour Tweet Likelihood for
a more detailed explanation).

Another restriction is in space of network architectures we explore; for the present
study, we constrain the connectivity to be defined by random graphs (also known as
Erdős–Rényi or ER networks) that are characterised by two parameters: the network
size N and the connectivity p. We render the simulations computationally tractable by
exploring small networks (in the range of N = 12–30 agents) while systematically varying
the connection probability p. We also assume that all agents’ transition models (those for
both the environmental hidden state factor sIdea and meta-belief factors sMB) are a scaled
version of the 2× 2 identity matrix I2. This further enables their systematic exploration in
terms of single scalar (the precision), rather than exploring all possible parameterisations of
2× 2 transition matrices. In addition, while we systematically explore the inverse volatility
parameter ωSoc and epistemic confirmation bias precision γ, we fix the value of ωIdea to
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be 9.0 for all simulations. We leave the full combinatorial exploration of all parameters,
including ωIdea, to future work.

Finally, while parametrically exploring the dependence of collective outcomes on indi-
vidual parameters, we usually restricted parameter sweeps to vary at most two parameters
at a time. We did this in order to simulate a sufficient number of trials for each condition
while also investigating each parameter with as fine a resolution as possible. Under both
these constraints, the computation time would explode when varying more than just two
parameters simultaneously; we thus fix the values of the non-varied parameters to limit
computational burden (e.g., fix ωSoc while varying γ and η). In practice, we clamped the
value of the fixed parameters to ‘insensitive’ regions of parameter space where we know
that the collective measure of interest (e.g., polarisation) did not depend on small changes
in that parameter.

3.2. Parameters of Interest

In the following results section we describe four sets of parameters that we systemati-
cally varied to investigate their role in determining emergent phenomena in the multi-agent
simulations. Below we briefly step through each parameter and rehearse its interpretation,
and our motivation for investigating it.

3.2.1. Epistemic Confirmation Bias

Recall from Section Neighbour Tweet Likelihood that epistemic confirmation bias or
ECB is a precision parameter γ that selectively scales the Hashtag semantics matrix of
the agent’s observation model, linking sIdea and sMBk to oNTk. The ECB precision γ scales
the Hashtag semantics matrix in such a way that some focal agent i receives evidence for
the sIdea hidden state factor’s value (Idea 1 vs. Idea 2) from the tweet output of some
neighbour k, in proportion to how much neighbour k agrees with agent i.

This means that a focal agent with a higher γ believes that tweets more reliable if they
come from neighbouring agents that are believed to share the opinion of the focal agent.
The consequence of this is an ironically named ‘epistemic’ sort of confirmation bias, where
agents believe that more reliable information about sIdea comes from neighbours who are
believed to be ‘like-minded’ to themselves. This can be revealed by recalling the expected
free energy, the key determinant in action selection under active inference. As decomposed
in Equation (21), this comprises an information gain term and a utility term. By means of
the ECB parameter, the epistemic value term is preferentially higher for those actions that
entail attending to a neighbour who the focal believes is like-minded. This can be analysed
more quantitatively by inspecting the ‘negative ambiguity’ term of the epistemic value,H,
which we show to be directly proportional to epistemic confirmation bias:

H = EQ(sIdea,sMBk)

[
1
C
[
pγ

h log pγ
h + (1− ph)

γ log(1− ph)
γ − 2 log C

]
+ [ph log ph + (1− ph) log(1− ph)]

]

See Appendix B for a complete derivation of the relationship between γ and epis-
temic value.

Given this relationship, we expect that higher epistemic confirmation bias will drive
agents to preferentially attend to the actions of agents that share their beliefs. On a collective
level, we hypothesise that ECB will increase the probability of both polarisation (two
clusters of oppositely minded agents) and consensus (all agents have the same or similar
beliefs about the Idea).

3.2.2. Inverse Social Volatility

Recall the inverse temperature parameter introduced in Section 2.4, where we parame-
terised a focal agent’s beliefs about the stochasticity of the social dynamics using precision
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parameters ωSoc (following the notation used in [84]). The inverse social volatility scales
the transition model that describes the dynamics of sMBk, such that a higher ωSoc induces
an assumption of less stochasticity in the belief evolution of neighbours’ ‘meta-beliefs.’ This
relationship also implies that the inverse social volatility is related to the epistemic value
of actions that involve attending to particular neighbours. In particular, higher volatility
(i.e., more entropy in the columns of the BMBk matrices) leads to higher overall uncertainty
in beliefs about hidden states. In other words, for lower values of ωSoc the uncertainty
of the posterior marginal Q(sMBk) will accumulate faster, as long as the focal agent is not
attending to neighbour k. Actions that entail attending to these unattended neighbours will
therefore grow in epistemic value, the more time elapses during which those neighbours
remain unattended. Importantly, the growth in epistemic value will scale inversely with
ωSoc (see Appendix B for details). This means that the particular value of ωSoc sets an
effective ‘refresh rate’ for how often a neighbour should be re-attended to, in order to
resolve uncertainty about their beliefs.

Given this relationship, we hypothesise that high ‘meta-belief’ volatility (low ωSoc)
will lead agents to re-read their neighbours’ tweet content with a higher rate—whether
or not they (believe they) agree with them—in order to resolve uncertainty about their
beliefs. We expect that this continuous, epistemically driven ‘re-sampling’ will counteract
the tendency of the group to polarise and thus favour collective agreement or consensus.
An interesting question will be whether the inverse social volatility parameters directly
‘reverse’ the effect of γ, where the two jointly determine a collective trade-off between
consensus and polarisation.

3.2.3. Learning Rate

The learning rate η associated with updating the habit vector over neighbour-attendance
control states uWho represents the degree to which agents will preferentially sample those
neighbours that they have attended to in the past. In the presence of a higher learning
rate, the Dirichlet hyperparameters over the habit vector EWho will be “bumped up" by a
larger amount after choosing to attend to any particular agent, such that a focal agent will
form preferences to attend to those agents whose Hashtags they habitually read. We expect
therefore that a higher value of η will lead to increasingly preferential neighbour-attendance
patterns among agents, and eventually to a change in the overall collective belief distribu-
tion of the group. Specifically, we hypothesise that ‘echo-chamber’-like dynamics will be
exacerbated by a higher value of η, such that it will be harder to ‘escape’ from polarised
dynamics in the presence of a large habit-learning rate η.

3.2.4. Network Connectivity

In addition to individual generative model parameters like γ, ωSoc, and η, we also
quantitatively investigate whether and how the topology of agent-to-agent communication
determines emergent behaviour. To quantitatively investigate this using a simple, one-
dimensional parameterisation, we initialised the agent-to-agent communication network
(i.e., which agents can read with other agents’ Hashtags) using a fixed random graph
with connection probability p. For random graphs, p encodes the probability that any
two agents have an edge between them. In the current context, an edge between any
two agents determines whether they can view each other’s Hashtags, and thus form
beliefs about one another’s beliefs). We hypothesise that denser communication topologies,
represented by random graphs with increasing connection probability p, will obviate the
risk of polarisation and lead to consensus with higher probability. In investigating this
network effect, we also hope to reveal interactions between γ (which we hypothesise will
induce polarisation) and connection probability p.

In the following sections, we describe the results of numerical experiments wherein
we systematically vary the parameters discussed above, and reveal how they modulate
the collective formation of ‘epistemic communities’ (e.g., echo-chambers, polarisation,
and consensus).
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4. Results

In the following sections we summarise the results of numerical experiments that vali-
date the basic dynamics of the opinion formation generative model and then systematically
investigate each of our three hypotheses. The results sections are organised as follows.

First, we demonstrate the basic dynamics of an active inference agent engaged in
opinion formation. Over time, we show how a single focal agent updates its beliefs about
the world in the face of conflicting Hashtag observations from two neighbours. In this
process, the agent simultaneously forms beliefs about the abstract, environmental hidden
state (Idea 1 vs. Idea 2) as well as beliefs about the meta-beliefs of two neighbouring
agents to whose Hashtags it is exposed. We examine the dependence of a single agent’s
belief-updating dynamics on different settings of the epistemic confirmation bias γ and the
inverse social volatility ωSoc under a fixed value of ωIdea = 9.0.

Next, we demonstrate the emergent formation of epistemic communities and the
diverse dynamics that can be observed under the current active inference model. These are
meant as proof-of-principle validation of the opinion dynamics model and the rich sorts of
collective behaviours it can give rise to.

Finally, in order to test the three hypotheses that frame our study of epistemic commu-
nities under active inference, we systematic vary parameters such as γ, ωSoc, η, and p to
investigate how they determine collective dynamics. In these collective dynamics experi-
ments, we link groups of active inference agents together and simulate their multi-agent
dynamics for up to T = 100 timesteps. We then study collective outcomes by averaging the
results of hundreds of independent realisations.

When systematically varying parameter configurations, we define a single condition
as a combination of the parameters of interest. This includes the network connectivity p
and a vector of generative model parameters, e.g., γ = 3.5, ωSoc = 0.5, η = 1.5. For each
condition, we ran 100 independent multi-agent simulations with a network size N = 15
agents. We chose relatively small networks in order to limit the computational burden of
each simulation.

4.1. Opinion Formation in a Single Agent

Figure 2 visualises opinion formation in a single active inference agent, and sheds light
on the relationship between ωSoc and γ in determining the rate of belief updating and action
selection. We investigate this using a simplified three-agent set-up, where one focal agent
is exposed to a sequence of conflicting information from two neighbours. At each timestep,
the focal agent chooses to read a Hashtag from one of its two neighbours, and the two
neighbours are not actually active inference agents, but are simply sources of a sequence of
discrete Hashtag observations (Hashtag 1 issue from Neighbour 1, Hashtag 2 issue from
Neighbour 2). We can see anecdotally how belief updating and sampling behaviours are
bidirectionally modulated by different combinations of ωSoc and γ. In general, Figure 2
shows that beliefs in more meta-belief volatility (lower ωSoc) lead to higher posterior
uncertainty about the sIdea hidden state, as is shown by the red lines in subplots (a) and (c).
Higher epistemic confirmation bias γ, on the other hand, induces a positive feedback effect,
wherein the focal agent comes to agree with one of its two neighbours with high certainty,
most likely whichever neighbour it happens to attend to at the first timestep.

With high enough γ or high enough ωSoc, the focal agent’s beliefs, faced with these
two conflicting sources of information, converge to one Idea. This choice is consistently
reinforced by the focal agent’s continuing to sample the agent it agrees with (lower insets in
each subplot of Figure 2). There is also an interesting interaction between γ and ωSoc, such
that ωSoc drives down posterior uncertainty in the focal agent’s beliefs about its neighbour
Q(sMBk). This in turn decreases the information gain term in the expected free energy,
such that the agent has stronger prior beliefs about its neighbour’s beliefs and there is less
information gain afforded to attending to that neighbour. On the other hand, higher γ
drives up epistemic value, even in the face of precise beliefs about the neighbour’s belief
state, making the agent expect to artificially resolve more uncertainty from its observations.
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Figure 2. Belief dynamics and actions of a single agent in response to a sequence of Hashtag
observations from two fictive neighbours. Shown are the history of Bernoulli parameters defin-
ing three marginal posterior beliefs of the focal agent: the belief about the truth value of Idea 1
(Q(sIdea

t = Idea 1), in red), and its beliefs about the beliefs of its two neighbours regarding Idea 1
(Q(sMB1

t = Idea 1) and Q(sMB2
t = Idea 1), shown in two shades of blue). Through its generative

model, the focal agent believes that its Hashtag observations are caused by two neighbour ‘meta-belief’
states. The focal agent is exposed to a sequence of Hashtag observations for 100 timesteps, where in
case of attending to the first neighbour (uWho

t = 0), the agent receives observation oNT1
t = Hashtag 1,

oNT2
t = Null, and in case of sampling the other neighbour (uWho

t = 0), the agent receives observation
oNT1

t = Null, oNT2
t = Hashtag 2. Due to the ‘Hashtag semantics’ matrix in its generative model,

these two Hashtags, respectively, lend evidence for the two levels of sIdea. At each timestep the
focal agent performs inferences with respect to hidden states Q(st) as well as policies (control states)
Q(ut), and then samples a Neighbour Attendance action from the posterior over control states
Q(uWho = 0, uWho = 1). Below each subplot is a heatmap showing the temporal evolution of the
probability of sampling Neighbour 1 vs. Neighbour 2 over time. Subfigure (a) shows an agent with
low γ (3.0) and low ωSoc (3.0). The agent’s beliefs about both of their neighbors does not lead it to
converge on an idea being true or not. Subfigure (b) shows an agent shows an agent with low γ (3.0)
and high ωSoc (9.0). The agent will be more certain about the beliefs of their neighbors, attend less
often to their neighbors, quickly converging to neighbour 2. Subfigure (c) shows an agent shows an
agent with high γ (9.0) and low ωSoc (3.0). This agent believes in high volatility and will be driven to
continue sampling their neighbors, which will lead them to take longer to converge towards an idea.
However, given their γ, the agent does converge towards the first sampled idea. Subfigure (d) shows
an agent shows an agent with high γ (9.0) and high ωSoc (9.0). This agent believes in low volatility
and will be driven to sample the same neighbor very quickly, which will lead them to converge
towards an idea quickly.
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It is clear that for configurations with high inverse social volatility, as the focal agent’s
beliefs converge toward the beliefs of Neighbour 1, it also begins to attend to Neighbour
1 more often than Neighbour 2 (subplot (d)). However, with low inverse social volatility,
the focal agent is driven to periodically attend to both neighbours, due to the increasing
epistemic value associated with neighbours that are unattended to. Interestingly, when
ωSoc is low and γ is high (Figure 2c), the focal agent continues to periodically re-attend to
the neighbour it disagrees with, due to increasing uncertainty about that neighbour’s belief,
induced by high volatility associated with it. Note, however, that the total probability of
attending to the like-minded neighbour is still higher due to the presence of high epistemic
confirmation bias. In the presence of both low epistemic confirmation bias and low inverse
social volatility, posterior uncertainty is high all-around and the focal agent is ‘ambivalent’
between both Idea 1 and Idea 2. Nonetheless, the focal agent succeeds in inferring the
belief-states of its two neighbours as it repeatedly alternates between sampling them.

4.2. Epistemic Community Dynamics

Figure 3 shows examples of the collective opinion dynamics (i.e., ‘epistemic communi-
ties’) that emerge when simulating networks of active inference. Unlike in Figure 2, in these
simulations the observations for every agent are generated by the actions of other active
inference agents, who are all collectively reading the Hashtag actions of other agents while
and generating their own. We include this to showcase the rich phenomenology displayed
by collectives of active inference agents, validating our model alongside known opinion
dynamics models that can capture phenomena like consensus and polarisation. In the
following sections we investigate the dependence of these dynamics on the parameters of
generative models and network density quantitatively.

4.3. The Dependence of Epistemic Communities on γ and p

We first investigated Hypothesis 1, or how epistemic confirmation bias γ and network
connectivity p determine the collective formation of epistemic communities. We systemat-
ically varied both epistemic confirmation bias (15 values of γ tiling the range (3, 9)) and
network connectivity (15 values of p tiling the range (0.2, 0.8)) in networks of N = 15 agents,
and simulated S = 100 independent realisations of each condition for T = 100 timesteps.
Other parameters were fixed to constant values (ωSoc = 0.6, ωIdea = 9.0, η = 0.0). Note
that here, habit-learning was intentionally disabled (η = 0.0) to selectively investigate the
effect of γ while excluding the effect of habit learning on epistemic community formation.
Within each parameter configuration, every independent realisation and every agent had
the same average value of epistemic confirmation bias γ, but for each agent, we sampled
a vector of epistemic confirmation bias values from a normal distribution centred at the
parameter setting with a variance of 0.1. Note that there are k different ECB parameters
per agent because each agent has a collection of ANTk arrays, each corresponding to the
observation model from a particular neighbour. Each of these k likelihood arrays is param-
eterised by a single γ. By sampling γ across ANTk arrays within each agent’s generative
model, we implicitly gave each agent a particular bias to believe that certain neighbours
were more ‘reliable’ than others—some neighbours contribute more or less to the focal
agent’s confirmation bias tendency. Note that this same sort of across-neighbour sampling
was performed for the inverse social volatility ωSoc = 0.6—in other words, 0.6 served as
the mean of a normal distribution, from which each agent’s vector of neighbour-specific
ωSoc parameters was sampled, one for each BMBk.

The aim was to investigate how higher epistemic confirmation bias, particularly in
a sparse network, might drive the emergence of epistemic communities through the for-
mation of belief clusters that are both dense and far apart in ‘belief-space.’ In general, it
is known in the literature that clusters are more easily formed in sparsely connected net-
works, but less so in densely connected networks where all agents communicate with each
other [94]. Therefore, one interesting hypothesis for this experiment was that increasing
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the value of γ could achieve the opposite effect: namely, a high degree of polarisation or
belief-clustering behaviour in a densely connected network.

Figure 3. Collective belief dynamics of multi-agent active inference simulations under different
generative model parameterisations. Above each panel are listed the parameter values of γ, ωSoc,
and η used in the simulation. Other parameters were fixed with T = 50 timesteps, N = 30, network
connectivity p = 0.2, and inverse environmental volatility ωIdea = 9.0. At the beginning of each
simulation, every agent’s beliefs about Idea 1 were sampled from a uniform distribution over the
interval Q(sIdea = Idea 1) ∈ (0.4, 0.6). Each panel displays the evolving beliefs of all agents about
Idea 1 (the Bernoulli parameter of each agent’s respective posterior over sIdea), with proximity
of the belief to 1.0 indicated by colouring along the green-to-blue spectrum (blue beliefs indicate
Q(sIdea = Idea 1) > 0.5). Panels (A,D) demonstrate polarisation, where two subsets of agents end
up believing in two different levels of the Idea hidden state with high certainty. Panels (B,C) on the
other hand show examples of consensus, where the whole network converges to the same opinion by
the end of the simulation.

To assess the emergence of epistemic communities or clusters of like-minded individu-
als, we defined the polarisation index ρ, which measures the degree of ‘epistemic spread’
in a system. It is defined as the difference between the highest and the lowest values of
the Bernoulli parameter defining Q(sIdea = Idea 1) across all agents at the final timestep of
the simulation (where the choice of one ‘side’ of the belief Q(sIdea = Idea 1) is arbitrary).
This final difference is then averaged across S independent realisations or trials to give the
average value 〈ρ〉 for a particular condition. This is directly proportional to the ratio of
the number of trials in any configuration in which the simulation ends with two opposing
clusters, as opposed to consensus, where consensus is defined at the final timestep when
all agents’ posterior beliefs about sIdea are on the same side of 0.5.

ρs = max
i

[Q(sIdea
i = Idea 1)−min

i
Q(sIdea

i = Idea 1)]|T=100 ∈ [0, 1]

〈ρ〉 = 1
S

S

∑
s=1

ρs (29)

where S indicates the number of total trials (here, S = 100).
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A high value of ρ (close to 1) indicates more spread-out beliefs and implies clustering,
i.e., echo-chamber formation, whereas a low ρ implies that the network of agents have
similar beliefs about sIdea (i.e., consensus).

Figure 4 shows the effects of varying γ and p on polarisation as measured by 〈ρ〉.
It is clear from the first column of the heatmap that highly spread out beliefs can occur
at all values of the epistemic confirmation bias in the presence of sparse connectivity.
Denser networks in general reduce the risk of polarisation, as seen by a drop-off in 〈ρ〉 as p
increases. However, epistemic confirmation bias can ‘counteract’ this effect to some extent
by marginally bumping up the risk of polarisation, even in the presence of denser networks
(high γ and high p). The lower subplots of Figure 4 demonstrate this counteractive effect,
where even at high connectivities (e.g., p = 0.8) the epistemic confirmation bias can lead to
the majority of trials resulting in polarised dynamics.

Figure 4. The interaction between epistemic confirmation bias and network connectivity in determin-
ing collective outcomes. (Top) a heatmap of the mean polarisation index across S = 100 independent
realisations of the multi-agent opinion dynamics simulations, for unique combinations of network
connectivity p and epistemic confirmation bias precision γ. (Bottom) selected line plots show extreme
settings of p (p = 0.2 and p = 0.8) and γ (γ = 3.5 and γ = 9.0). Shaded areas around each line
represent the standard deviation of the polarisation index across independent realisations.

Why, one might wonder, does polarisation still occur with some probability even
when γ is small? When network connections are sparse, polarisation can still occur by
virtue of the agents lacking access to a variety of neighbours—this forces them to attend
to one of a limited set of neighbours that they start out connected to. Since all agents are
initialised with flat prior beliefs about sIdea, this leads to the formation of two clusters,
since there is nothing correlating the beliefs of agents who are disconnected. Because there
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are two beliefs (Idea 1 and Idea 2), this means that on average this fragmentation leads
to distinct sub-clusters of connected agents that will believe in one of the two Ideas with
approximately 50% probability.

As γ increases, even in the presence of increasing connectivity, agents are driven by
epistemic value to preferentially attend to the neighbours that (they believe) share their
beliefs. This accounts for the slower decrease in polarisation with increasing connectivity
p at higher levels of γ shown in Figure 4. This can be compared to the faster decrease in
polarisation induced by p when γ is low (compare the first few rows of the heatmap in
Figure 4 to the last few rows).

However, network connectivity seems to be a stronger effect than γ in enforcing
consensus or at least the lack of polarisation. This is because the exploration entailed by γ
encourages agents to attend to a larger group of neighbours, leading to a higher average
spread of beliefs and the ability for agents to serendipitously encounter other agents they
agree with. However, because of the density of the network, it is much more difficult for
agents to become polarised as they will more frequently be exposed to new information,
despite their propensity towards confirmation bias.

4.4. Effect of Inverse Social Volatility on Neighbour Attendance and Polarisation

Next, we explored Hypothesis 2, modelling behaviour under different values of inverse
social volatility ωSoc to see how it would interact with γ. We swept over γ (15 values tiling
the range (3, 9)) and ωSoc (15 values tiling the range (0.05, 1.0)) in networks of N = 15
agents with p = 0.4 connection probability. As explained before, each agent’s generative
model was parameterised by a vector of k distinct γ and ωSoc parameters, which were
sampled from a normal distribution centred around the parameter value characterising the
condition. In this case, each sampled value parameterised the different neighbour-specific
observation (ANTk) and transition models (BMBk) for a particular focal agent.

To assess the extent to which social attendance changes as a function of γ and ωSoc, we
defined the re-attendance rate r. It scores the maximum number of times an agent samples
the same neighbour throughout a parameter configuration, averaged over trials.

rs = max
i

∑
t

1i(uWho
t )

〈r〉 = 1
S

S

∑
s=1

rs

where 1 is the indicator function.
We measured the re-attendance rate and polarisation index for each configuration,

averaged across trials. Figure 5 portrays a complex picture on the relationship between
γ and ωSoc. In the case of high volatility over meta-beliefs (low inverse social volatility),
agents are driven to periodically re-attend to neighbours in order to resolve growing
uncertainty about their beliefs. This is indicated by a higher average re-attendance rate
〈r〉 (top right heatmap). Interestingly, there is an interaction between re-attendance rate
and epistemic confirmation bias, such that in the presence of low volatility (high inverse
social volatility) and low epistemic confirmation bias, the re-attendance rate is minimised.
We speculate that a low value of ECB (γ = 3.5) makes the epistemic value of attending to
every neighbour equally high purely a function of ωSoc. In this case, agents will continually
revisit neighbours sequentially, with the attendance-preference for any given neighbour
solely dependent on the time elapsed since the last time they were attended to. In the
absence of confirmation bias (which normally accelerates the focal agent’s beliefs not only
about sIdea but also about sMBk (cf. Figure 2), this means that uncertainty about neighbours’
beliefs will on average be higher. This will lead to diverse social attendance patterns, such
that agents will prefer to constantly sample new neighbours, with no particular neighbour
excluded from this uncertainty-driven re-sampling. There seems to be a stark threshold
around ωSoc = 0.4 above which the re-attendance rate drops off quite rapidly, as long
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as γ < 6.64. This threshold probably represents the level at which the epistemic value
induced by posterior uncertainty (which is a function of ωSoc) surpasses the contribution
to epistemic value induced by γ. For higher values of γ (> 6.64), the drop off in re-
attendance rate with increasing ωSoc is countered due to the increased contribution of γ to
the epistemic value of repeatedly sampling neighbours who are believed to be like-minded.
Finally, at high enough values of γ (≈9.0), the drop-off of re-attendance rate with increasing
ωSoc is re-established. This is likely due to the ‘self-inhibiting’ effect of increasing γ on
epistemic value. When γ is high enough, agents come to form very precise beliefs about
their neighbours’ beliefs (the entropy of Q(sMBk) decreases), which in turn decreases the
resolvable uncertainty about those neighbours’ beliefs. We refer the reader to Appendix B
for a more quantitative exploration of this effect that exposes the epistemic value in terms
of an entropy term and a negative ambiguity term.

In terms of polarisation, it seems that for γ < 6.64, high volatility (low ωSoc) en-
courages polarisation more than low volatility, since agents are driven to re-sample their
neighbours (with whom they are likely to agree, due to epistemic confirmation bias),
and will end up forming distinct belief clusters. However, for γ > 6.64 the effect of ωSoc

seems to disappear and we see high polarisation for all values of ωSoc. We originally
hypothesised that if agents are uncertain about the beliefs of their neighbours (low ωSoc),
it will become more difficult to induce polarisation and purposefully sample those who
are thought to agree, due to the competing epistemic value induced by high posterior
uncertainty about one’s neighbours’ beliefs, regardless of whether (a focal agent believes)
those neighbours to be like-minded. However there is no clear difference between polarisa-
tion levels when γ is high. Nevertheless it is clear that higher γ induces polarisation for
non-volatile networks. A more robust effect is how social volatility induces the tendency to
re-attend to neighbours (cf. right panels).

Figure 5. (Above left) a heatmap of the polarisation index for all 225 combinations of inverse belief
volatility and epistemic confirmation bias precision. (Above right) a heatmap of the re-attendance
rate for all 225 combinations of inverse belief volatility and epistemic confirmation bias precision.
(Below left) a line plot of the most extreme rows of the polarisation heatmap. (Below right) a line
plot of the most extreme columns of the re-attendance rate heatmap.
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4.5. Habit Formation and Network Initialisation

For the final experiment, we explored Hypothesis 3, regarding the polarisation of
networks via habit formation. We swept over γ (15 values tiling the range (3, 9)) and η
(15 values tiling the range (0.0, 0.9)) in networks of N = 15 agents with p = 0.4 connection
probability, where ωSoc = 0.6 and as before ωIdea = 9.0. Here, γ was again normally
distributed with a fixed mean (which varied by condition) and variance 0.1 across the k
neighbours of each focal agent, but the learning rate η was fixed to the condition-dependent
value across all trials and agents.

The learning rate η incentivises agents to re-attend to the same neighbour by form-
ing a habit, which competes with the epistemic value of attending to a new neighbour
with unknown beliefs. This experiment tested the hypothesis that a higher learning rate,
i.e., stronger habit-formation, will increase polarisation.

Figure 6 demonstrates how learning rate η and epistemic confirmation bias γ interact
to influence outcomes at the collective level. Indeed, a higher learning rate induces more
polarisation, implying the formation of more ‘stubborn’ epistemic communities in the
network. This effect appears at both low and high levels of epistemic confirmation bias,
with on average a higher 〈ρ〉 observed with increasing learning rate, even at low levels
of γ. However, it seems the effect is most pronounced at the highest levels of γ and η.
Examining the average re-attendance 〈r〉 (right column of Figure 6) reveals a clear effect
of η on neighbour re-attendance, with the rate seemingly maximised when the learning
rate surpasses a value of η ≈ 0.3. Interestingly, the effect of ECB on re-attendance is
not very strong here, although it seems to have a mild negative effect. Namely, as ECB
increases, the re-attendance rate tends to decrease. One counterintuitive explanation for
this effect (which is similar to the effect observed in Figure 5) is the general increase in
the epistemic value of attending to neighbours with unknown beliefs that is caused by
increasing γ. Although by design γ is intended to ‘boost’ the epistemic value of only those
actions that involve attending to neighbours that the focal agent believes it agrees with,
there is still an overall ‘exploration bonus’ that scales with γ, even for actions that entail
attending to neighbours with whom the focal agent disagrees. This is because in addition to
the ambiguity term of the epistemic value, which captures the ‘confirmation bias’ effect
encoded by γ, there is also a maximum-entropy component H[Q(oτ |π)] (see Appendix B
for details). This term is maximised when the posterior uncertainty over meta-beliefs
Q(sMB) is high (maximal when (sMB) = (0.5, 0.5)). Therefore, although ECB ‘bends’ the
epistemic value landscape towards sampling like-minded neighbours (see Figure A1 in
Appendix B for a visualisation of this effect), when compared to neighbours with differing
beliefs, the inherently uncertainty-resolving nature of the epistemic value as a whole means
that higher γ still increases the value of actions that involve attending to any neighbours
whose beliefs the focal agent is uncertain about. This may in fact counteract the polarising
effects we originally intended to capture by including the ECB parameter. This across-the-
board ‘exploration bonus’ conferred by ECB may explain the mild effect we observe here,
where increasing γ ends up decreasing average re-attendance 〈r〉. This may indeed explain
the decrease observed in Figures 5 and 6.
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Figure 6. (Above left) a heatmap of the polarisation index for all 225 combinations of learning rate
and epistemic confirmation bias precision. (Above right) a heatmap of the re-attendance rate for
all 225 combinations of learning rate and epistemic confirmation bias precision. The parameters
represent the centres of the normal distribution sampled from across trials for each configuration.
(Below left) the most extreme row of the polarisation index heatmap. (Below right) the most extreme
column of the re-attendance rate heatmap.

5. Discussion

In this paper, we focused on the way communities form around shared beliefs about
abstract entities or meanings, symbolised by an abstract discrete hidden state: an ‘Idea’.
Shared belief around a particular ‘Idea’ emerges through coordination, which itself is
individually driven by the desire to form accurate (Bayesian beliefs) about the world
and the beliefs of one’s community. In particular, we modelled confirmation bias as an
‘epistemic’ phenomenon wherein agents have a biased belief that agents with whom they
believe they agree are more likely to provide uncertainty-resolving (information-availing)
data—hence the proposed terminology of epistemic confirmation bias.

Twitter provides fertile ground for the academic study of the spread of ideas. The plat-
form is extremely popular, easy to access, and has an API that enables researchers to collect
and analyse data. It has also been one of the major vectors for misinformation, leading to
large-scale events, like the tensions around the 2016 election results [128] or the vaccine
for SARS-CoV-19 [129]. With its effective network structure in terms of follower-, like-,
and retweet-networks, Twitter provides an ideal environment for the empirical study of
the spread of ideas.

The formation of echo-chambers has been well studied on Twitter and Facebook.
Echo-chambers tend to reinforce like-mindedness in users, and tend as well to enable the
crafting of a shared narrative [41]. The authors of [41] analysed the different ways in which
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different social media platforms’ algorithms influence the mechanisms of formation. They
defined the echo-chambers based on the distributions of leanings towards polar attitudes.
These attitude distributions were found to range from monomodal to bimodal or more
complex. Regardless, polarisation is rarely neutral, and tends to favour opposition between
extreme opinions. According to their results, Twitter and Facebook showed the most
striking echo-chambers. Using virality models, they also measured information spread.
In Twitter and Facebook, information was most likely to be spread to other users sharing
similar leanings. Similar findings were shown by [130] by following the online debates
surrounding vaccination hesitancy in Italy. Despite the formation of distinct echo-chambers,
they found that community structure within echo-chambers also differed between vaccine
advocates and sceptics and influenced information flow. Findings like these and others
on polarised social network dynamics inspired us to analogise the model explored in the
current work to online digital social media like Twitter, as well as to study how network
structures influence echo-chamber formation. Alongside this, we chose to embrace an
underlying active inference model as a cognitively inspired, Bayesian model for single
agents’ belief formation.

To formalise confirmation bias as a fundamentally Bayesian phenomenon, we con-
structed our generative model to include a precision parameter that we named epistemic
conformation bias or ECB. Specifically, ECB confers a higher weight to information that
comes from peers that the reader (focal agent) believes are like-minded. This in turns
leads an agent with higher ECB to selectively sample information that justifies what they
already believe. We were able to replicate the formation of epistemic communities in sil-
ico, e.g., echo-chambers, on social networks such as Twitter. This unique formulation of
confirmation bias as an epistemic phenomenon helps explain how individuals continu-
ously forage their environment for information, but may become stuck in a so-called ‘bad
bootstrap’ that simply reinforces existing beliefs about the world, which in the face of new
information may lead to sub-optimal behaviour [131].

In agreement with previous work studying the relationship between synchronisation
and network structure, we found that opinion dynamics depend heavily on network den-
sity. Our formalism allowed us to systematically vary the parameters of individual agents
(e.g., cognitive biases or beliefs) as well as collective properties such as network struc-
ture. We found that the density of inter-agent connections, parameterised by connection
probability of random graphs, determined the transition between echo-chamber formation
(polarisation) and consensus. However, we found that in the presence of high ECB, one
could observe polarisation even in the presence of dense connectivity (cf. Figure 4). This
result seems counterintuitive, as we might think that network clustering is a necessary
condition for more polarisation. However, clearly defined clusters and group boundaries
can sometimes act as buffers [132–136]. Sub-clusters exchanging information are likely
to average towards their local centre [137–139], which entails a form of opinion stability
within the group. They are generally sheltered from other opinions since they cut ties to
other agents not part of their group, and have been selected out [140]. However, in net-
works without clusters, opinions can have a high degree of volatility and reach very polar
tendencies even without being entirely clustered. By means of epistemic confirmation bias,
agents were likely to give more weight to information that was similar to their own, even
in the presence of network neighbours with different opinions.

The clustering phenomenon is exacerbated by adding the capacity to form habits.
Specifically, we allowed agents to increase their likelihood of resampling the same agents
based on how often they attended to them in the past. Since neighbour-attendance is driven
by epistemic value (resolving uncertainty about the sIdea and sMB hidden state factors), this
tendency to revisit previously sampled neighbours is a form of ‘epistemic habit formation,’
where actions that are initially undertaken based on information gain become solidified
over time due to a Pavlovian, model-free mechanism that simply reinforces past behaviour.
We found that in addition to ECB, the presence of habit formation exacerbated polarisation,
presumably due to the formation of echo-chambers or tight communities of agents that
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read only the Hashtag content of their like-minded peers. On the other hand, we found
that beliefs about social volatility (represented by our ωSoc parameter) pushed the agents
to sample their social environments more frequently and diversely, counteracting the
effect of confirmation bias and habit formation in driving polarisation. We speculate that
increased social volatility increases each agent’s incentive to sample a diverse array of
network neighbours, which in turns lessens their susceptibility to believing in one Idea
with high certainty. In other words, increased social volatility (low ωSoc) makes agents
more ‘curious’ about the beliefs of (potentially non-like-minded) neighbours, which in
turns increases their exposure to conflicting information and ‘protects’ them from falling
into one or another echo-chamber.

The contributing influence of beliefs about social volatility to exploratory social sam-
pling leads us to consider the role of norms in social settings. If an agent is incentivised
(via, e.g., epistemic value or curiosity) to pay attention to neighbours about whom they
are uncertain, their social group could be a source of constant surprise, as long as their
beliefs about their neighbours are constantly fickle (“I’m not sure what members of my
social group believe from one time to the next”). In other words, even in the presence of a
group of like-minded peers, we would expect that increased beliefs about social volatility
leads to repeated attendance of peers among one another, even if those peers all agree (and
believe as much about each other).

6. Conclusions

Our simulation showcased a novel opinion dynamics model based on multi-agent
active inference, and highlights many interesting possibilities for future research. We
introduced a new parameter, the epistemic confirmation bias, which can modulate the
formation of epistemic communities by changing epistemic value in a biased way, namely
towards attending preferentially to like-minded agents. In addition to the ECB, we also
showed the importance of other features such as network structure and habit formation in
contributing to polarised dynamics. However, there are several limitations to this work
which warrant further discussion. While we systematised our study design to explore
several parameters simultaneously, this search was not exhaustive and vast regions of
parameter space remain unexplored. Particular parameters such as the size of the network
and the ‘inverse environmental volatility’ ωIdea remained unexplored (we mainly explored
networks with size N = 30 and always fixed ωIdea = 9.0), and for computational efficiency
we restricted both the resolution and the combinatorics of the parameter combinations
explored. Network size is a major computational bottleneck, and thus our results are
not guaranteed to generalise to larger networks. In future work, we could leverage dis-
tributed computing or GPU-accelerated operations to explore both larger network sizes
and parameter combinations. However, in model spaces with high enough dimensions,
computational acceleration alone will not suffice; one could thus also reduce the sampled
region of parameter space by leveraging efficient search techniques (e.g., optimal experi-
mental design [141]) or higher-order learning methods such as Bayesian hyperparameter
optimisation [142]. The ‘inverse environmental volatility’ parameter ωIdea deserves further
mention: as explained in Section 2.5, ωIdea encodes the precision of the transition model
BIdea. This can be understood as the the agent’s beliefs about the uncertainty characterising
the truth status of the ‘Idea‘ itself. We intentionally fixed this parameter to a constant value
of ωIdea = 9.0 for all simulations. In other words, all agents believed that the sIdea hidden
state changed very slowly or with low uncertainty. As mentioned above, we made this
simplification for the current study to limit the volume of the parameter space explored.
Additionally, exploring beliefs about the dynamics of sIdea was not particularly relevant to
the current study, because we did not include any true hidden environmental dynamics in
the simulations. In fact, the agents only observe the behaviour of other agents, and never
observe any true signal from the environment itself. Including a veridical, non-social signal
from the environment, however, would be an interesting extension for future work.
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The generative model used by the single agents was also limited, in the sense that
we only modelled beliefs in one of two mutually exclusive Ideas. Previous research into
opinion or collective dynamics has shown that such binarity may strongly determine the
dynamics of the system [104,143]. From a construct-validity standpoint, such binarity also
vastly simplifies the semantic complexity found in real epistemic communities. For example,
the semantic expression of a particular idea or claim heavily depends on the community in
which it circulates. In future designs, we should strive to make the ideas more complex
and more porous. By porosity we mean ‘semantic cross-over’, in the sense that multiple
ideas may entail more or less similar behavioural consequences, or indeed entail the truth
value of one another. This porosity may give rise to groups that believe in the same
idea from an inference standpoint, but have a different interpretation of it. Starting from
there, we can begin to envisage a specific semantic embedding which leads us to social
scripts [144]. These conceptual embeddings would lead to two different conceptions with
distinct causal relations to the environment. The weak conception of the script corresponds
to an embedding, linking the observation of an event to the belief in a particular idea.
The strong conception of the script leads to a sequencing of the beliefs, such as an entailment
relation (e.g., ‘if I believe X, this entails a belief in Y’). This type of conceptual entailment
possible under a strong conception of social scripts, combined with the ability to express
one’s beliefs, could engender a capacity to act and coordinate through language with
other actors.

Future work could explicitly model these entailment relationships among semantic
entities by violating the typical independence assumption used to factorise the generative
model’s hidden state factors—for instance, instead of having each hidden state factor s( f )

being conditionally dependent on only other states/control states within that factor, we
could ‘mix’ hidden state factors to make states of factor i depend on states of factor j.

Another notable feature to include is the variation of prior beliefs about different
ideas or claims. In the current model, agents were often initialised to have uniformly
distributed beliefs about sIdea around the ‘ambivalence’ line of [0.5, 0.5]. Future studies
could quantitatively investigate the dependence of epistemic community formation on
the initial distribution of prior beliefs and how that distribution intersects with structural
features such as network position (e.g., ‘is a very confident agent more influential in
determining information spread, when it’s a peripheral vs. central node in the network?’).
In this way, we could study ‘historical effects’ such as whether pre-existing echo-chambers
or belief distributions influence the susceptibility of the network to incoming information
or environmental fluctuations.

Another limitation of this work is the relative simplicity of the dependent measure-
ments we used to characterise collective outcomes. For instance, we measured the degree
of collective consensus vs. polarisation through the polarisation metric. This metric is a
scalar which quantifies the degree to which the entire network believes in one Idea vs.
is split into believing in two Ideas. However, this one-dimensional metric is ambiguous
with respect to exactly how beliefs are spread throughout the network, in the case of low
consensus—for instance, a low polarisation metric does not disambiguate whether all the
agents that believe in one Idea have network connections to each other, or whether they are
isolated and only ‘by chance’ believe in the same Idea. Future investigations should thus
develop more sensitive metrics, depending on the hypothesis, that take into consideration
how individual beliefs correlate with the network topology. In addition, we could calculate
polarisation-style metrics using other dimensions of the agents’ beliefs—for example, we
could measure polarisation using the so-called ‘meta-beliefs,’ in addition to just the agents’
beliefs about the Idea itself.

In future studies, we hope to investigate individual cognitive differences more quanti-
tatively using the active inference framework. Under active inference, ‘individual differ-
ences’ can be formalised as variance among the parameters of generative models across
agents—e.g., different settings of the inverse volatility parameters for different agents. An-
other interesting possibility that is accommodated within the active inference framework
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is the idea that agents may learn the parameters of their generative models, as opposed
to keeping them fixed over time. For example, one could imagine that the epistemic
confirmation bias associated with a particular neighbour k could change over time as a
function of the reliability of Hashtags observed by the focal agent. This is easily cast as
another form of inference under the Bayesian framework. All one would need to do is
define appropriate priors and approximate posteriors over γ, from which an additional
free energy term and appropriate belief updating scheme could be derived. Learning the
parameters may add ecological validity to the model as well; for example, agents might
become accustomed to their social environment and seek out an epistemic community in
order to increase the predictability of their sensory information, thus requiring them to
sample their social environment less frequently. This is the kind of phenomenon that could
be modelled by letting the inverse social volatilities ωSoc become free, learnable parameters.
With larger networks, we may be able to simulate the emergence of similar but distant
sub-communities, which become epistemically similar without coming into direct contact,
or only through very distant contact with one another. This leads us to the possibility
of simulating the way epistemic and pragmatic practices become cemented, giving way
to social meaning semantics and scripts, which seem to separate cultures. Simulating
the emergence of similar semantics and scripts across different communities may help
us further understand their common underlying processes. Finally, in future studies, we
could model an explicit state of conformity, by modelling the agent’s assumptions about
the groups they can identify around themselves, and be driven to model their behaviour
after the group they feel most kinship to.
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Appendix A

In this appendix we provide additional mathematical details on the update equations
for perception and action (policy inference) under active inference.

We begin by recalling the POMDP generative model and the approximate posterior
over hidden states and policies:

P(õ, s̃, ũ, π) = P(s1)P(π)
T

∏
τ=2

P(sτ |sτ−1, uτ)P(uτ |π)
T

∏
τ=1

P(oτ |sτ)

Q(sτ |π) = Cat(sπτ)

Q(π) = Cat(π)

Q(s1:T , π) = Q(π)
T

∏
τ=1

Q(sτ |π) (A1)

Given this generative model and approximate posterior, we can now write down the
variational free energy over time:

F1:T = EQ(s1:T ,π)[ln Q(s1:T , π)− ln P(o1:T , s1:T , π)]
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Due to the Markovian nature of the POMDP generative model and the factorised form
of the posterior, the free energy over trajectories can be factorised into a per-timestep free
energy Fτ , which has the following simple form:

Fτ = EQ(sτ |π)Q(π)[ln Q(sτ |π)− ln P(oτ , sτ |sτ−1, π)] (A2)

In the following subsections we show how state estimation (perception) and policy
inference (decision-making/planning) are derived by minimising the variational free energy
functionals with respect to the parameters of the posterior Q(s1:T , π).

Appendix A.1. State Estimation

State state estimation consists of optimising the Q(s1:T |π) over hidden states under
different policies. Because our approximate posterior and generative model are defined
using categorical distributions, the problem of state estimation becomes minimising free
energy gradients of the form ∂F

∂s , where s are the parameters of the approximate posterior
distribution over hidden states, Q(s) = Cat(s), where the notation P(x) = Cat(φ) denotes
a categorical distribution over some random variable x with parameters φ.

In the ‘full construct’ version of active inference (see, e.g., [86]), the full joint posterior
Q(s1:T , π) is optimised simultaneously, meaning that the posterior over hidden states is
conditioned on policies. This means that the full posterior beliefs at any timestep t include
a separate Q(st|π) under each policy, where the beliefs about a given timestep under a
given policy are often denoted by the sufficient statistics sπτ . For the current model, we
have simplified posterior inference to rely on an approximate posterior where hidden states
are independent of policies. This move is justified because the practical differences between
the ‘full construct’ and simplified versions are negligible, in the limit of small policy spaces
and short time horizons (such as in the current work). Therefore in the current study we
amended the variational posterior to have the following form:

Q(s1:T , π) = Q(π)
T

∏
τ=1

Q(sτ)

Given this simplified posterior, state estimation proceeds by optimising the posterior
belief about hidden states at the current timestep Q∗(st) using the current observation ot.
This can be found using the gradients of the variational free energy from Equation (A2),
now using the simplified form of the posterior:

Ft = EQ(st)Q(π)[ln Q(st)− ln P(ot, st|st−1, π)]

=⇒ ∂Ft

∂Q(st)
= 0 ⇐⇒ Q∗(st) = σ

(
ln P(ot|st) + ln

(
EP(st−1,ut−1)

[P(st|st−1, ut−1)P(st−1)]
))

(A3)

where σ(x) = ex

∑x ex is the normalised exponential or softmax function. Equation (A3) is
a type of ‘fixed-point solution’ for the posterior, where the beliefs about hidden states
are directly set to the solution of minimal free energy (where ∂Ft

∂Q(st)
= 0). Note that

this differs with the classic ‘gradient descent’ scheme used to optimise the variational
posterior with marginal message passing or variational message passing, as proposed
in [86], which was originally invoked as a biologically plausible update scheme that
could be implemented by neuronal population dynamics. Since we are not interested
in simulating neurophysiological responses and the belief updating is simpler, for the
simulations presented in this paper, we used this simpler update rule.

The functional form of (A3) invites a straightforward Bayesian interpretation: the ‘best’
posterior belief Q∗(st) is proportional to the product of a likelihood term P(ot|st) and a
prior term P(st|st−1, ut−1)P(st−1)—the definition of Bayes rule. In practice, we use a ‘mov-
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ing empirical prior’ rule, where the posterior from last timestep’s optimisation Q∗(st−1)
becomes the prior P(st−1). This means the update rule can be re-written as follows:

P(st−1) ≈ Q(st−1)

=⇒ Q∗(st) = σ(ln P(ot|st) + lnEQ(st−1)
[P(st|st−1, ut−1)]) (A4)

This means that at each timestep, the current posterior is a Bayesian average between
the likelihood term and the previous timestep’s posterior belief, passed through the action-
conditioned transition dynamics P(st|st−1, ut−1) of the generative model. Note that this
update rule can be extended to generative models with factorised observations o and
hidden states s by rewriting Equation (A4) for a particular marginal Q∗(s f

t ) as follows:

Q∗(s f
t ) = σ

(
EQi\ f [ln P(ot|st)] + lnE

Q(s f
t−1)

[P(s f
t |s

f
t−1, ut−1)]

)
(A5)

where the expectation EQi\ f denotes an expectation with respect to all posterior marginals

Q(si
t) besides the marginal Q(s f

t ) currently being optimised. To find the full, multi-factor
posterior Q∗(st), this equation is iterated across marginals, holding the existing solutions
for all other marginals fixed while a particular one is updated [126].

Appendix A.2. Policy Inference

Under active inference, policies π inferred, i.e., the agent optimises a variational
posterior over policies denoted by Q(π). The optimal posterior over policies Q∗(π) is
obtained by minimising the free energy with respect to the categorical parameters π (cf.
Equation (A1)). This can be shown by rewriting the full variational free energy over time
F1:T as the sum of a complexity term that measures the divergence between the posterior
and prior over policies, and an expected ‘accuracy’-like term:

F1:T = EQ(s1:T ,π)[ln Q(s1:T , π)− ln P(o1:T , s1:T , π)]

= EQ(s1:T ,π)[ln Q(π) +
T

∑
τ=1

ln Q(sτ |π)− ln P(π)− ln P(o1:T , s1:T |π)]

= DKL[Q(π) ‖ P(π)] +EQ(π)[F(π)] (A6)

where the second term is the expected variational free energy of policies F(π), which is
defined as follows:

F(π) = −EQ(s1:T |π)[ln P(o1:T , s1:T |π)−H[Q(s1:T |π)] (A7)

The optimal posterior that minimises the full variational free energy F is found by
taking the derivative of F with respect to Q(π) and setting this gradient to 0, yielding the
following free-energy-minimising solution for Q(π):

Q∗(π) = argmin
π

F = σ(ln P(π)− F(π)) (A8)

Therefore in the same way that state estimation or optimisation of Q(s) in Equation (A4)
resembles a Bayesian average of a likelihood and a prior term, policy inference also becomes
an average of the policy prior P(π) and the ‘evidence’ afforded to each policy, scored by
F(π). Recall here that the policy prior P(π) is itself decomposed as a combination of the
expected free energy prior and the ‘habit vector’: P(π) = P(π0)−G.
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Appendix B

In this appendix derive a quantitative relationship between the epistemic confirmation
bias γ and the negative ambiguity term of the epistemic value. Recall the definition of the
epistemic value:

EQ(oτ |π)[DKL(Q(sτ |oτ , π) ‖ Q(sτ |π)] = −EQ(sτ |π)[H[P(oτ |sτ)]] + H[Q(oτ |π)]

We define the first term on the RHS of the decomposition as the negative ambiguity
H = −EQ(sτ |π)[H[P(oτ |sτ)]]. We drop the τ subscript hereafter for simplicity, and restrict
ourselves only to the computation of this term for the neighbour k tweet observation
modality oNTk and the hidden states that it depends on, sIdea and sMBk. We further condition
our analysis only on those policies that entail sampling neighbour k, i.e., those policies
where sWho = uWho = k. Therefore we redefine Q(s) here as Q(sIdea, sMBk).

Theorem A1. The negative ambiguity is proportional to the epistemic confirmation bias parameter γ.

H ∝ kγ log kγ

Proof. WLOG, we simplify the state space to only consider the states sIdea and sMBk and
the observation of neighbour k’s Hashtag oNTk. Recall that observation likelihood for oNTk,
in the case that sIdea = sMBk is as a softmax transformation of (certain columns of) the base
likelihood P(oNTk|sIdea, sMBk) and the epistemic confirmation bias parameter γ:

P(oNTk|sIdea = sMBk, γ) =
eγP(oNTk |sIdea=sMBk))

∑ eγP(oNTk |sIdea=sMBk))
(A9)

In this case, the likelihood P(oNTk|sMBk) is comprised of two Bernoulli
distributions, where

P(oNTk|sMBk) = {Bern(ph), Bern(1− ph)}

where ph is the ‘Hashtag reliability’ parameter of the matrix h:

h =

[
ph 1− ph

1− ph ph

]
where this matrix is ‘copied‘ across the dimension of the likelihood corresponding to the
two settings of sIdea.

Note also that the posterior over hidden states is factorised into two independent
marginal posteriors.

Q(sIdea, sMBk) = Q(sIdea)Q(sMBk) (A10)

The definition of negative ambiguity is

H = −EQ(s|π)[H[P(oNTk|s)]] (A11)

Furthermore, we can write the negative entropy of the given likelihood as

−H[P(oNTk|sMBk)] = ph log ph + (1− ph) log(1− ph)

Using Equation (A9) we have

−H[P(oNTk|sMBk = sIdea)] =
pγ

h
C

log
pγ

h
C

+
(1− ph)

γ

C
log

(1− ph)
γ

C

where C = pγ + (1− p)γ
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The negative entropy can be decomposed into a sum of negative entropies:

−H[P(oNTk|sMBk)] = −H[P(oNTk|sMBk = sIdea)]−H[P(oNTk|sMBk 6= sIdea)]

which then means the total negative ambiguity can be written as follows, expanding the
expressions for the entropies in terms of the Bernoulli parameter ph:

H = EQ(sIdea,sMBk)

[
1
C
[pγ

h log pγ
h + (1− ph)

γ log(1− ph)
γ − 2 log C]

+[ph log ph + (1− ph) log(1− ph)]

]
(A12)

Since all terms in Equation (A12) are increasing in γ insofar as ph ≥ 0, then negative
ambiguity is directly proportional to γ.

Theorem A2. For any γ > 1, and for any realisation of the posterior Q(sIdea, sMBk) the negative
ambiguity will be maximised in the case that the posterior beliefs about sIdea and the posterior beliefs
about sMBk are either both greater than 0.5 or both less than 0.5.

∀γ > 1

maxH ∈ {H : sgn(Q((sIdea)− 0.5) = sgn(Q(sMBk)− 0.5)}

Proof. We now use the fact that Q(sIdea) and Q(sMBk) are also Bernoulli probability distri-
butions, such that

Q(sIdea) = Bern(p)

Q(sMBk) = Bern(q)

We also note that since the γ parameter only scaled the likelihood in the case that
sIdea = sMBk, the values of the posterior that these correspond to are only those along
the diagonal of the joint probability distribution of Q(sIdea, sMBk), namely the joint line of
solutions through p and q connected by the points qp and (1− q)(1− p).

Expanding the expectation in Equation (A12), we can write the negative ambiguity as

−qp(H[P(oNTk|sMBk = sIdea)])− (1− q)(1− p)(H[P(oNTk|sMBk = sIdea)])

−q(1− p)(H[P(oNTk|sMBk 6= sIdea)])− p(1− q)(H[P(oNTk|sMBk 6= sIdea)]) (A13)

Suppose that γ > 1. This means that for nonzero ph, the entropy terms in Equation (A13)
will be exponentiated by a power greater than 1, which implies that

H[P(oNTk|sMBk = sIdea)]) < H[P(oNTk|sMBk 6= sIdea)]) (A14)

Now take the case that Q(sIdea) > 0.5 and Q(sMBk) > 0.5. This means that the
largest coefficient scaling the entropy of the likelihood will necessarily be qp, which scales
−H[P(oNTk|sMBk = sIdea)]).

Similarly, if Q(sIdea) < 0.5 and Q(sMBk) < 0.5, the largest coefficient scaling
the entropy of the likelihood will necessarily be (1 − p)(1 − q), which also scales
−H[P(oNTk|sMBk = sIdea)]).

However, if sgn(Q((sIdea)− 0.5) 6= sgn(Q(sMBk)− 0.5), the largest coefficients will
be either (1− p)q or p(1− q) which will be scaling −H[P(oNTk|sMBk 6= sIdea)].

Therefore, because of Equations (A13) and (A14), the maximum negative ambiguity for any
value of γ > 1 will always be reached when sgn(Q((sIdea)− 0.5) = sgn(Q(sMBk)− 0.5).
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Figure A1 provides a visual intuition for the relationship between the two marginal
posteriors (defined by Bernoulli parameters p and q), the epistemic confirmation bias γ
and the components of the epistemic value, decomposed here as the negative ambiguity
H = EQ(s|π)[H[P(o|s)]] and the entropy of the predictive distribution over observations
Q(o|π).

Figure A1. Exploration of the relationship between ‘agreement’ between an agent and one of its
neighbours, the epistemic confirmation bias parameter γ, and the epistemic value of reading that
neighbour’s tweet content. Here, the two marginal posteriors Q(sIdea) and Q(sMBk) are expressed
as two Bernoulli distributions with respective parameters p and q, where ‘agreement’ is the case
when p = q and hence (1− p) = (1− q). The top row shows heatmaps of the negative ambiguity
H, entropy H[Q(o)], and the full epistemic value EV = H+ H[Q(o)] for a fixed value of γ = 15.0,
under all possible values of p and q. The ‘epistemic confirmation bias‘ effect is seen in the negative
ambiguity surfaceH (upper left plot), which is maximised when posterior beliefs about the validity
of Idea 1, measured by p, are aligned with posterior beliefs about a neighbour’s meta-belief about
Idea 1, q. The bottom row of plots shows a complementary perspective, demonstrating the effect
of increasing γ on the epistemic value and its components, for different settings of q when p = 0.0.
The subplot on furthest to the right of the bottom row shows that increasing γ increases epistemic
value most when q is on the same side of 0.5 as p (q = 0.2, q = 0.4), and the effect of γ on epistemic
value deceases once q passes 0.5. Note that the epistemic value is 0 when p = q = 0, because although
the negative ambiguity is maximised in this case, it is counteracted by the entropy term which is 0
since both posteriors are certain.

Theorem A3. The inverse social volatility ωSoc is inversely related to the epistemic value of policies
that entail sampling a particular neighbour-in other words EV ∝ 1

ωSoc .

Proof. Recall the decomposition of the expected free energy in the Section 2.11 for a
policy π into the negative instrumental value and the negative salience or epistemic value.
For convenience, we define a pseudo-‘value’ function for policies as the negative of the
expected free energy V(π) ≡ −G(π):

V(π) = EQ(oτ |π)

[
ln P̃(oτ)

]︸ ︷︷ ︸
Instrumental value

+ EQ(oτ |π)[DKL[Q(sτ |oτ , π)‖Q(sτ |π)]]︸ ︷︷ ︸
Epistemic value

(A15)
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It is straightforward to show the positive relationship between the entropy of the
policy-conditioned beliefs H[Q(sτ |π)] and the epistemic value. We begin by isolating
further analysis only to the meta-belief hidden state factor sMBk for a particular neighbour
k and the corresponding observation modality: oNTk. For notational convenience, we let
s = sMBk and o = oNTk. Using this notation, we can then rewrite the epistemic value as
the predictive mutual information between states and observations, using the predictive
distributions Q(oτ |π) and Q(sτ |π):

EQ(oτ |π)[DKL[Q(sτ |oτ , π)‖Q(sτ |π)]] = DKL[Q(oτ , sτ |π)‖Q(sτ |π)Q(oτ |π)] ≡ Ipred(O; S)

= ∑
oτ ,sτ

Q(oτ , sτ |π) ln
Q(oτ , sτ |π)

Q(sτ |π)Q(oτ |π)

= −H[Q(oτ , sτ |π)] + HQ(oτ ,sτ |π)[Q(oτ |π)] (A16)

− ∑
oτ ,sτ

Q(oτ , sτ |π) ln Q(sτ |π) (A17)

Using the factorisation of the joint posterior predictive density Q(oτ , sτ |π) = P(oτ |sτ)
Q(sτ |π), the final term on the RHS of Equation (A17) can be rewritten:

− ∑
oτ ,sτ

Q(oτ , sτ |π) ln Q(sτ |π) = − ∑
oτ ,sτ

P(oτ |sτ)Q(sτ |π) ln Q(sτ |π) (A18)

≥ H[Q(sτ |π)] + EQ(sτ |π)[ln P(oτ |sτ)] (A19)

where the inequality going from (A18) to (A19) follows from Jensen’s inequality.
Equation (A19) demonstrates that uncertainty about hidden states (as quantified by
H[Q(sτ |π)]) is directly proportional to the drive to reduce that uncertainty, subject to
the log probability of observations expected under hidden states EQ(sτ |π)[ln P(oτ |sτ)].

We can then use the dependence of P(sτ |sτ−1, π) on ωSoc to relate the inverse social
volatility to the posterior entropy H[Q(sτ |π)].

Q(sτ |π) = P(sτ |sτ−1, π, ωSoc)Q(sτ−1|π) =
eωSocP(sτ |sτ−1,π)

∑sτ
eωSocP(sτ |sτ−1,π)

Q(sτ−1|π) (A20)

ln Q(sτ |π) = ωSocP(sτ |sτ−1, π)− ln ∑
s

eωSocP(sτ |sτ−1,π) + ln Q(sτ−1|π) (A21)

ln Q(sτ |π) = ωSocP(sτ |sτ−1, π)− C + ln Q(sτ−1) (A22)

EQ(sτ |π)[ln Q(sτ |π)] = ωSocEQ(sτ |π)[P(sτ |sτ−1, π)] +EQ(sτ |π)[ln Q(sτ−1)− C] (A23)

=⇒ H[Q(sτ |π)] ∝ −ωSocEQ(sτ |π)[P(sτ |sτ−1, π)] (A24)

The final line demonstrates that the entropy of the predictive posterior is inversely
proportional to the inverse social volatility ωSoc, and thus controls the rate at which the
focal agent’s uncertainty about their neighbours‘ belief-states increases, and therefore also
determines the epistemic value of policies that entail reading that neighbour’s tweets. Intu-
itively, if an agent believes their social world is volatile (the beliefs of neighbouring agents
quickly grow uncertain), the agent will become incentivised to sample those neighbours
more frequently, in order to resolve rapidly growing uncertainty about sMB. Importantly,
this epistemic value will grow over time for a particular neighbour as long as that neigh-
bour’s tweets are not read, so a particular value of ωSoc entails a characteristic ‘social
re-attendance rate’ for each neighbour.
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