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Abstract: The development of display technology has continuously increased the requirements for
image resolution. However, the imaging systems of many cameras are limited by their physical
conditions, and the image resolution is often restrictive. Recently, several models based on deep
convolutional neural network (CNN) have gained significant performance for image super-resolution
(SR), while extensive memory consumption and computation overhead hinder practical applications.
For this purpose, we present a lightweight network that automatically searches dense connection
(ASDCN) for image super-resolution (SR), which effectively reduces redundancy in dense connection
and focuses on more valuable features. We employ neural architecture search (NAS) to model the
searching of dense connections. Qualitative and quantitative experiments on five public datasets
show that our derived model achieves superior performance over the state-of-the-art models.

Keywords: single image super-resolution; neural architecture search; dense connection

1. Introduction

Since it is difficult for the current visual effects of images to meet people’s needs, single
image super-resolution (SISR) [1] and its related technologies have attracted widespread
attention [2]. SISR is a low-level computer vision task for reconstructing high-resolution
images from low-resolution images. Due to the rapid development of deep convolutional
neural networks (CNNs), deep CNN-based approaches have gained better reconstruction
results against traditional methods in the field of SISR [3,4].

Super-resolution convolutional neural network (SRCNN) [5] was the pioneer of deep
CNN in super-resolution (SR) problems, and an end-to-end nonlinear mapping through
only a three-layer convolutional network was established. Since then, numerous CNN-
based algorithms have emerged and made remarkable progress. Very deep convolutional
networks super-resolution (VDSR) [6] deepen the network to 20 layers by exploiting
residual learning [7], which alleviated the training difficulty. Deep recursive residual
network (DRRN) [8] equipped recursive blocks to obtain promising results with deeper
network structures. However, these methods used the interpolated low-resolution (LR)
images as input in the network, which undoubtedly led to computational and time burdens.
Shi et al. [9] devised an efficient sub-pixel convolution to tackle this problem, which directly
extracted feature maps from the LR images. Subsequently, Lim et al. [10] extended the
depth and width of the network, and achieved significant performance gains by eliminating
batch normalization modules in residual networks.

As mentioned above, deep CNN-based SISR architectures have yielded great success
but have not fully leveraged the multiscale representation and the intermediate features [11].
Then, Lan et al. [12] explored a model that combines multi-scale residuals with attention
mechanism, which can not only extract multi-level features, but also exploits the discrim-
inative information of different channels. A one-shot aggregation network (OAN) [13]
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employed diverse features with multiple receptive fields by aggregating all previous fea-
tures into subsequent layers. Inspired by DenseNet [14], Zhang et al. [15] further integrated
the dense structure and the residual structure to form a residual dense network (RDN)
to exploit the hierarchical features. DenseNet proposed dense connectivity to improve
computational efficiency via encouraging feature reuse. However, Huang et al. [16] pointed
out that abusing dense connectivity led to redundancies. Each layer did not need to receive
information from all the previous layers. This could take up large amounts of memory,
which largely restricted the applications on resource-constrained mobile platforms. Hence,
Huang et al. [16] introduced CondenseNet, which adopted learned group convolution
(LGC) to prune these redundant connections. This produced an efficient, lightweight dense
connection network.

Motivated by this, we remove the less important connections from a different view-
point in this paper. We present a novel method automatic search dense connection network
(ASDCN), which utilizes gradient-based neural architecture search (NAS) models [17] to
cut superfluous connections automatically. Our entire network has two training proce-
dures. In the first stage, our network selects the right connections through efficient dense
connection search. In the second stage, the appropriate structure is trained according to
the architecture parameters learned in the first stage. We observe that connection values
greater than 0.1 contribute significantly to network performance, and these connections
are considered essential to derive the final architecture. Our search space is only for the
densely connected joint patterns, without search operations, which can effectively get rid
of redundancy. Meanwhile, our proposed method achieves promising results with few
parameters. The main contributions of this paper are summarized as follows:

• We introduce a novel lightweight ASDCN model for single image super-resolution,
selecting key connection paths effectively, and suppressing redundant information.

• We equip a softmax function to relax the dense connection paths into a continuous
space and integrate the architecture search into the model for training. According to
the weights of the paths, the appropriate connections are screened out. Selecting the
essential features from intermediate layers enables the network to be more compact
and efficient.

• Comprehensive experiments on five public benchmark datasets have demonstrated
that our derived model achieves comparable performance to the most advanced
methods. Our proposed method strikes a trade-off between reconstruction results and
model sizes.

2. Related Work
2.1. Deep CNN-Based Super-Resolution

Due to the emergence of large-scale labeled data and the rapid improvements of
GPU [18], CNN-based methods have developed rapidly and obtained state-of-the-art
results in a variety of studies[19,20].

Dong et al. [5] first explored a three-layer CNN for SR reconstruction and made a
huge improvement compared to traditional methods. Thanks to residual learning, the
vanishing gradient problem in deep networks was alleviated. Then, a deeply-recursive
convolutional network (DRCN) [21] deployed a deep network by combining residual
and recursive ideas, increasing the receptive fields and improving performance. Multi-
scale deep super-resolution (MDSR) [10] was devised for simultaneous multi-scale image
learning at different magnifications, giving the network sufficient mapping capability and
winning the NTIRE2017 challenge. A densely residual Laplacian network (DRLN) [22]
utilized dense connections between residual blocks to promote Laplacian attention to assign
weights at different scales, resulting in considerable performance gains. Although these
networks produce state-of-the-art results, they require large amounts of memory, powerful
computing ability and long inference times, and are not suitable for deployment on mobile
devices with constrained resources.
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Some researchers focused on developing lightweight, but efficient models for SISR [23]
without reducing accuracy. A cascading residual network (CARN) [24] constructed a
lightweight cascaded residual network through a cascaded scheme with group convolution.
Not only did it maintain the most advanced performance but it was faster. An adaptive
weighted super-Resolution network (AWSRN) [25] provided an adaptive weighted residual
unit to automatically calculate the total residual and initial mapping parameters, achieving
better reconstruction quality with lower complexity. In addition, Tian et al. [26] developed
a coarse-to-fine CNN for SISR (CFSRCNN), which cascaded multiple hierarchical features
to prevent possible training instability and performance degradation, and remarkably
improved the computational efficiency. These efficient CNN based models are hand-crafted
super-resolution networks. The following section will introduce the NAS-based approaches
for SR to achieve optimal performance in an automated manner.

2.2. Neural Architecture Search

Neural architecture search (NAS) is an algorithm that automatically learns the appro-
priate deep neural structure for a specific task with minimal human involvement. The
pioneering work of NAS was conducted by [27], who employed the reinforcement learn-
ing (RL) method to produce higher accuracy in image classification tasks. Subsequently,
evolutionary algorithms [28,29] were introduced to solve NAS problems and achieved
considerable classification accuracy on a large scale. Nevertheless, these methods bear
hundreds of GPU days. Hence, researchers began to wonder how to reduce the amount
of computation and speed up the search for neural structures. An example of this is
efficient-NAS (ENAS) [30], which proposed a weight-sharing strategy to improve search
efficiency. Compared with NAS, ENAS [30] could shorten GPU computing time by more
than 1000 times. Differentiable architecture search (DARTS) [31], another variant of NAS,
relaxed a given discrete search space into a continuous space by conducting architecture
searches in a differentiable way, and is orders of magnitude faster than the most advanced
non-differentiable algorithms. In this paper, we adopt the DARTS algorithm to search the
connection pattern of dense connections.

Most of the existing super-resolution models are designed manually and are difficult to
compress or fine-tune. At the same time, the neural architecture search algorithm has been
highly influential in classification tasks. According to this trend, Chu et al. [32,33] presented
fast, accurate, and lightweight SR (FALSR) and multi-objective reinforced evolution in
mobile NAS (MoreMNAS), which dealt with super-resolution utilizing a multi-objective
method. FALSR-C [32] (a more lightweight version of FALSR) indicated that unwanted
features from lower layers could cause problems for high layers to reconstruct SR results.
Song et al. [34] built three efficient residual dense blocks to search lightweight SR networks
with the evolutionary approach. In addition, these based NAS methods for SR produced
brilliant results.

3. Proposed Method
3.1. Network Architecture

In this section, we introduce our proposed approach. With RDN [15] architecture as the
backbone, our proposed network named “automatic search dense connection” (ASDCN)
mainly consists of three parts: shallow feature extraction, a nonlinear mapping module
with several automatic search dense connection blocks (ASDCBs), and a reconstruction part,
as shown in Figure 1. ILR and ISR represent the input raw image and the corresponding
high-resolution output of the network, respectively.
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Figure 1. An overview of our ASDCN architecture.

Firstly, we leverage one convolution layer to extract low-level features from the original
input image, which can be denoted as

X0 = fext(ILR) (1)

where fext is a convolution layer with a kernel size of 3× 3 to extract the primitive features
from the LR image ILR.

Afterwards, the output feature maps x0 are fed into the following nonlinear map-
ping module consisting of a series of stacked multiple ASDCBs to gradually obtain the
hierarchical features, which can be represented as

Xt = f t
B(Xt−1) = f t

B( f t−1
B (· · · f 0

B(X0) · · · )) (2)

where Xt−1 and Xt are the input feature maps and output feature maps of the t-th ASDCB,
respectively. After obtaining the multi-level powerful feature representations, the generated
features are concatenated through global feature fusion, which can be denoted as

Xoutput = Foutput(Cat(X1, · · · , Xn)) (3)

where Foutput denotes a convolution layer with a kernel size of 1× 1. Then, the features
Xoutput are up-sampled to the HR image size via an upscaling module. Moreover, two
up-sampling modules are required when the scaling factor is ×4. The upscaling module is
made up of the nearest neighbor (NN) layer and a pixel attention [35] with two convolution
layers interleaved. Each convolution layer is followed by an LReLU [36] activation function
while the pixel attention layer contains a 1× 1 convolution layer and a sigmoid function.
Finally, the interpolated ILR is added to the upsampled Xoutput by global residual connection
to obtain the final predicted SR image of the network as follows:

ISR = frec(Xoutput) + fup(ILR) (4)

where frec represents the reconstruction module, and fup stands for the bilinear interpolation.
Following previous works [15,24], our network is optimized by L1 loss function to

measure the difference between the predicted SR image and the ground truth HR image.
Given a training set {Ii

LR, Ii
HR}N

i=1, where N is the number of LR-HR training patches, the
loss function of our SR network can be expressed as

L(Θ) =
1
N

N

∑
k=1
||HASDCN(Ii

LR)− Ii
HR||1 (5)

where HASDCN denotes our proposed model while Θ indicates the parameters set within it.
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3.2. Automatic Search Dense Connection Module

This section describes how to search for dense connections using the gradient-based
NAS method. As is common knowldge, DenseNet allows feature maps from all previous
layers entering into the subsequent layers to make the most use of the features. However,
there remain some redundant connections which will affect the efficiency of the network.
It is difficult to determine which remaining features are unnecessary. To this end, we
devise an adaptive structure to prune unimportant connections while retaining useful ones
during training.

Figure 2 shows our proposed automatic search dense connection block (ASDCB). Our
search space is composed of dense connections between distinct layers of each block. The
key idea of the proposed method is to relax the discrete densely connected space into a
continuous representation, which allows us to choose the candidate paths with significant
contributions in a differentiable manner. To this end, we exploit a softmax function for the
continuous relaxation of the search space. We assign an initial probability parameter to each
path of dense connection between various layers in one block. During the search process,
the probability parameters are optimized. We further sort all the candidate paths, which
can help us to screen out the path with a more outstanding contribution and eliminate
the path with less of a contribution. By doing so, superior candidate architectures can be
searched for further experiments to obtain better results.

Figure 2. The automatic dense connection module.

We relax dense connections into continuous representations and assign an architecture
parameter α to each output path of the layer. Let o be the set of candidate connection paths,
and α

(i,j)
o be the weight of each output path of the layer. We employ a softmax function to

compute the probability of each input path over all paths in one layer as follows:

P(α(i,j)o ) =
exp(α(i,j)o )

∑o′∈O exp(α(i,j)o′ )
(6)

The output of each layer is computed based on all of its previous layer in one block, and
can be expressed as

xn+1 = ∑
o∈O

P(α(i,j)o ) · o(xn) (7)

where xi represents the input tensor of layer n, and o stands for the convolution operation.
Hence, the architecture search can be treated as an optimization problem for a set of
continuous variables α = α

(i,j)
o .
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Through an automatic searching strategy, the connection paths that contribute most
are selected, while other paths are discarded. Then, the final architecture is derived from
the learned parameters. The search process is described in the next section.

3.3. Search Procedure

Based on the continuous relaxation of the search space, we can leverage the gradient
descent strategy to optimize the architecture parameters and network weights jointly. Let α
be the parameters of the proposed module and ω be the parameters of the whole network,
and the training process can be described as:

min
α
Lval(ω

∗(α), α) (8)

s.t. ω∗(α) = arg min
ω
Ltrain(ω, α) (9)

where Ltrain and Lval indicate the training and validation loss, respectively.
We aim to jointly optimize the architecture parameters α and weights ω of the network,

so that the architecture finds the minimum training and validation loss. First, we optimize
the network weights ω by descending ∇ω Ltrain(ω, α) for enough epochs to warm up on
the training dataset. After warming up ω, we update the architecture parameters by
descending ∇ω Ltrain(ω

∗(α), α) into validation datasets. The architecture parameters α

are randomly initialized. Then, P(α(i,j)o ) is defined as the importance of all input paths.
A particular layer can be calculated by formula (6) to determine which paths are retained.
We set a threshold of 0.1 (the paths will be discarded when P(α(i,j)o ) < 0.1). According to
these learned parameters, we choose the most appropriate candidate paths to derive the
final architecture for experiments. The whole search procedure is shown in Algorithm 1.

Our proposed algorithm shows that dense connections are not always the best way
to transmit information. Features with small contributions from lower layers can cause
problems in reconstructing super-resolution results at the high-level layer. We discard
input paths that contribute little to each layer in the block during the search process,
while reserving input paths with high weights. Compared with the pruning weights in a
pre-trained network, our method is lighter and more efficient. It not only restricts the front-
end redundancy of DenseNet and reduces the number of parameters, but also achieves
competitive performance.

Algorithm 1 Training process.

Require: epoch, architecture parameter α(i,j)

1: network weight ω
2: initialize α and ω
3: for epoch ≤ 20 do
4: update ω
5: end for
6: for not converged do
7: update 1 α←− ∇αLval(ω− ε∇ω Ltrain(ω, α), α)
8: update 2 ω ←− ∇ω Ltrain(ω, α)
9: end for

10: Derive the final architecture and retrain.

4. Experiments
4.1. Datasets and Metrics

In order to make fair comparisons with the state-of-the-art SR algorithms, we follow
previous works. DIV2K [37] is a recent high-resolution dataset, which includes 800 training
images, 100 validation images, and 100 test images. We adopt 800 pairs of LR and HR
training images from DIV2K to train our model, and the LR images are obtained via the
bicubic downsampling of the corresponding HR images. In addition, Set5 [38] is adopted
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for validation after each epoch. In the testing phase, we employ several public benchmark
datasets (Set14 [39], BSD100 [40], Urban100 [41], and Manga109 [42]) to evaluate the
performance of our proposed algorithm under three upscaling factors (×2, ×3, and ×4).
The peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) [43] on the
Y channel of transformed YCbCr space are treated as quantitative evaluation metrics.

Given a ground-truth image IHR and a predicted image ISR, the PSNR is formulated
as:

PSNR(IHR, ISR) = 10log10(
Max2

I
MSE

) (10)

where

MSE =
1

H ×W

H

∑
i=1

W

∑
j=1

(IHR(i, j)− ISR(i, j))2 (11)

MaxI is the maximum pixel value of an image. H and W are the height and width of a
image, respectively. SSIM is defined as:

SSIM(IHR, ISR) = l(IHR, ISR)c(IHR, ISR)s(IHR, ISR), (12)

where 
l(IHR, ISR) =

2µIHR µISR+C1

µ2
IHR+µ2

ISR+C1

c(IHR, ISR) =
2σIHR σISR+C2

σ2
IHR+σ2

ISR+C2

s(IHR, ISR) =
2σIHR ISR+C3
σIHR σISR+C3

(13)

µIHR , σIHR , and σIHR ISR are the mean values, variance, and covariance of an image, respec-
tively. C1, C2 and C3 are set to positive constants to avoid instability when the denominator
is close to zero.

Moreover, we calculate Multi-Adds and the number of parameters to assess the
complexity of our model. Multi-Adds are computed on HR images with a spatial resolution
of 720p at all scales.

4.2. Implementation Details

The whole training process is split into the searching and retraining phases. The
MATLAB function is applied to the bicubic downsampling of the counterpart HR images
to obtain the corresponding LR images. We randomly crop image patches with the size of
96× 96 for the searching phase (144× 144 for the retraining phase) from the LR images,
and 16 patches are utilized as input for each training minibatch. Data augmentation is
conducted by random rotations of 90◦, 180◦, 270◦, and horizontal flips for each training
iteration. The searching stage and retraining stage contain 200 and 1000 epochs, respectively.
We update only network weights for the first 20 epochs in the searching stage. Then, the
architecture parameters are updated using the early stop strategy. We set 1000 iterations as
an epoch.

In our model, except for feature fusion parts equipped with 1× 1 convolution, the
other parts all use a 3× 3 convolution layer. Furthermore, we employ a padding strategy
to keep the size of the output feature maps the same for each layer. Our ASDCN model
consists of ten automatic search dense connection blocks (ASDCBs). Each block has six
3× 3 convolution layers and a 1× 1 convolution layer. A convolution layer with a kernel
size of 1× 1 is employed to match the channels and preserve more useful information. The
channel of the intermediate layer within each block is fixed to 16.

Our network is optimized using the Adam [44] optimizer by setting β1 = 0.9 and
β1 = 0.999. We leverage cosine annealing to reduce the learning rate. The maximum
learning rate is initialized as 10−4, and the target minimum learning rate is fixed as 10−6.
The learning rate of the architecture parameter is set to 0.002. Additionally, different from
reference [45] using dynamic differential evolution, for the hyperparameters of network
search, the best ones are selected through repeated experiments on the search process.
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For the hyperparameters of the network structure, several combinations of the number of
blocks and convolutional layers are repeatedly tested to choose the optimal ones under
a specific parameter amount. The other hyperparameters are provided by the reference
image super-resolution methods without trial and error. Our model is trained using the
PyTorch framework with an NVIDIA RTX 2080Ti GPU.

4.3. Ablation Study
4.3.1. Comparison with RDN with the Same Setup

In this section, we make a comparison with RDN [15] under the same setup. We
employ the same training dataset to train these two models. The two models have six
blocks, and the channel number of intermediate layers is set to 16. The experimental results
with a scaling factor of ×2 in five available datasets are shown in Table 1. It can be seen that
our proposed algorithm is slightly better than RDN with PSNR and SSIM, but Multi-Adds
and the number of parameters are significantly fewer than RDN. This indicates that dense
connections are not always the best way to transmit information. There are still redundant
connections, and it is not necessary to feed each previous layer into the next layer. Our
designed strategy for automatically searching dense connection patterns can selectively
use the essential features from previous layers, which can reduce redundancy and improve
network efficiency. It is further shown that the adaptive dense network improvement
method can obtain a lightweight model with comparable performance.

Table 1. Comparison with RDN on five benchmark datasets. All the other settings are strictly the
same. The best performance is highlighted by red.

Method
Params Multi-Adds Set5 Set10 BSD100 Urban100 Manga109

(K) (G) PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

RDN 520 119.9 37.90/0.9601 33.45/0.9165 32.12/0.8990 31.87/0.9259 38.28/0.9764
ASDCN (ours) 364 83.8 37.91/0.9603 33.48/0.9176 32.12/0.8990 31.87/0.9261 38.30/0.9765

4.3.2. Searched Architectures

This section shows the internal connection patterns for the first, fifth, and tenth ASDCB
architecture. It is clear from Figure 3 that not every intermediate layer accepts the output of
each previous layer. Thus, the adaptive selection of connection paths can effectively reduce
redundancy and boost the efficiency of the network without degrading performance.

(a) Searched architecture of the first block

Figure 3. Cont.
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(b) Searched architecture of the fifth block

(c) Searched architecture of the tenth block

Figure 3. The searched architectures of different blocks.

4.4. Comparison with State-of-the-Art Methods

To demonstrate the effectiveness of our proposed architecture, we compared ASDCN
with other state-of-the-art models, including SRCNN [5], VDSR [6], DRCN [21], Lapla-
cian pyramid super-resolution network (LapSRN) [3], CARN-M [24], MoreMNAS-A [33],
FALSR-C [32], AWSRN-S [25], efficient super-resolution network (ESRN-V) [34], multiscale
attention dual network (MADNet-L1) [12], OAN-S [13], and weighted multi-scale residual
network (WMRN) [4]. These are lightweight models within the number of parameters 2.0 M
or Multi-Adds 100 G. Parameters (space complexity) and Multi-Adds (time complexity) are
used to reflect the complexity of our model. The quantitative comparisons for ×2, ×3, and
×4 are depicted in Table 2 on the five datasets.

As can be seen from Table 2, the proposed model is superior to the most advanced
models at different scaling factors with less than 2 M parameters. Under comparable
computational complexity, our ASDCN achieves higher PSNR values than hand-designed
CARN-M. Compared with the manually constructed WMRN, our derived architecture
obtains a better reconstruction result, but the number of parameters and Multi-Adds are
reduced by about 53%. Compared with MADNet-L1, ASDCN achieves higher reconstruc-
tion accuracy with fewer parameters and Multi-Add. Moreover, our searched model also
outperforms the three most advanced NAS-based approaches (FALSR-C, ESRN-V, and
MoreMNAS-A) for ×2 SR on all the benchmark datasets. Specifically, MoreMNAS-A has
three times as large as ours in terms of parameters and Multi-Adds, but our PSNR value
has a considerable margin of 0.63 dB PSNR that of Urban100.
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Table 2. Quantitative results of several state-of-the-art SR models at scaling factors of ×2, ×3 and ×4
(average PSNR/SSIM). The best performance is highlighted by red.

Method Scale
Params Multi-Adds Set5 Set10 BSD100 Urban100 Manga109

(K) (G) PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

SRCNN [5] ×2 57 52.7 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946 35.60/0.9663
VDSR [6] ×2 665 612.6 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9729

LapSRN [3] ×2 813 29.9 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100 37.27/0.9740
IDN [23] ×2 590 174.1 37.83/0.9600 33.30/0.9148 32.08/0.8950 31.27/0.9196 -

CARN-M [24] ×2 412 91.2 37.53/0.9583 33.26/0.9141 31.92/0.8960 31.23/0.9193 -
MoreMNAS-A [33] ×2 1039 238.6 37.63/0.9584 33.23/0.9138 31.95/0.8961 31.24/0.9187 -

FALSR-C [32] ×2 408 93.7 37.66/0.9586 33.26/0.9140 31.96/0.8965 31.24/0.9187 -
AWSRN-S [25] ×2 397 91.2 37.75/0.9596 33.31/0.9151 32.00/0.8974 31.39/0.9207 37.90/0.9755
ESRN-V [34] ×2 324 73.4 37.85/0.9600 33.42/0.9161 32.10/0.8987 31.79/0.9248 -

MADNet-L1 [12] ×2 878 187.1 37.85/0.9600 33.38/0.9161 32.04/0.8979 31.62/0.9233 -
OAN-S [13] ×2 450 104.9 37.85/0.9600 33.41/0.9162 32.06/0.8983 31.61/0.9230 38.16/0.9761
WMRN [4] ×2 452 103 37.83/0.9599 33.41/0.9162 32.08/0.8984 31.68/0.9241 38.27/0.9763

ASDCN(ours) ×2 364 83.8 37.91/0.9603 33.48/0.9176 32.12/0.8990 31.87/0.9261 38.30/0.9765

SRCNN [5] ×3 57 52.7 32.75/0.9090 29.28/0.8209 28.41/0.7863 26.24/0.7989 30.59/0.9107
VDSR [6] ×3 665 612.6 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9310

CARN-M [24] ×3 412 46.1 33.99/0.9236 30.08/0.8367 28.91/0.8000 26.86/0.8263 -
IDN [23] ×2 590 105.6 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 -

AWSRN-S [25] ×3 447 48.6 34.02/0.9240 30.09/0.8376 28.92/0.8009 27.57/0.8391 32.82/0.9393
ESRN-V [34] ×3 324 36.2 34.23/0.9262 30.27/0.8400 29.03/0.8039 27.95/0.8481 -

MADNet-L1 [12] ×3 930 88.4 34.16/0.9253 30.21/0.8398 28.98/0.8023 27.77/0.8439 -
OAN-S [13] ×3 490 51.2 34.17/0.9255 30.20/0.8395 28.99/0.8023 27.80/0.8438 33.06/0.9144
WMRN [4] ×3 556 57 34.11/0.9251 30.17/0.8390 28.98/0.8021 27.80/0.8448 33.07/0.9413

ASDCN(ours) ×3 364 37.28 34.27/0.9266 30.27/0.8413 29.06/0.8041 28.03/0.8499 33.28/0.9430

SRCNN [5] ×4 57 52.7 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221 27.66/0.8505
VDSR [6] ×4 665 612.6 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8809

LapSRN [3] ×4 813 149.4 31.54/0.8850 28.19/0.7720 27.32/0.7280 25.21/0.7560 29.09/0.8845
IDN [23] ×4 590 81.8 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 -

CARN-M [24] ×4 412 32.5 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.63/0.7688 -
AWSRN-S [25] ×4 588 33.7 31.77/0.8893 28.35/0.7761 27.41/0.7304 25.56/0.7678 29.74/0.8982
ESRN-V [34] ×4 324 20.7 31.99/0.8919 28.49/0.7779 27.50/0.7331 25.87/0.7782 -

MADNet-L1 [12] ×4 1002 54.1 31.95/0.8917 28.44/0.7780 27.47/0.7327 25.76/0.7746 -
OAN-S [13] ×4 520 42.5 31.99/0.8926 28.49/0.7975 27.49/0.7332 25.81/0.7760 30.10/0.9036
WMRN [4] ×4 536 45.7 32.00/0.8952 28.47/0.7786 27.49/0.7328 25.89/0.7789 30.11/0.9040

ASDCN(ours) ×4 375 21.59 32.06/0.8937 28.53/0.7806 27.54/0.7351 25.98/0.7831 30.23/0.9063

In addition, Table 2 also provides the complexity (the amount of parameters and
Muti-Adds) of the different models for a more intuitive comparison. The parameters
and Muti-Adds of SRCNN and VDSR do not change at the all scales because the bicubic
interpolation images are required as input, and other methods have inconsistent changes.
Since our model has relatively few parameters and Multi-Adds is also not high, it is a
lightweight model.

Figure 4 further compares the number of parameters and performance of different
approaches. The results show that our method exceeds other methods in both parameters
and performance, which fully proves that we have achieved a better balance between
model size and performance.
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Figure 4. Comparison of the performance and parameters between our ASDCN model and other
models on Urban100 with a scale factor of 2.

In addition to quantitative evaluation, we also visually compare our model with other
models. Figure 5 shows the subjective visual quality on three datasets with×4 the upscaling
factor. For the “img_024” and “img_076” from Urban100, only our method can restore the
correct lines and suppress the distortions, whereas other methods cannot reconstruct the
proper structure. For “HighschoolKimengumi_vol20” from Manga109, our network has
more precise texture information and edges with less blurring and artifacts. Furthermore,
for “0823” from BSD100, we can also notice that our derived architecture produces the best
reconstruction effect, whereas VDSR has checkerboard artifacts, and CARN-M has more
blurring and noise.

4.5. Visualization on Real-World Images

To verify the effectiveness and robustness of the proposed algorithm, we further
compare it with other methods on real-world images. There is no high-quality ground
truth in these cases, and the degradation model is unknown.

Figure 6 shows that our method can precisely recover more image details and more
apparent contours. The better perceptual quality further indicates that our derived archi-
tecture can search for more convincing SR models.
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“img_024” from Urban100 dataset

VDSR
(17.82/0.6617)

LapSRN
(17.97/0.6583)

CARN-M
(20.14/0.7830)

HR
(PSRN/SSIM)

Bicubic
(16.26/0.5150)

SRCNN
(17.44/0.6275)

ASDCN (ours)
(23.32/0.8751)

“img_076” from Urban100 dataset

VDSR
(18.15/0.6262)

LapSRN
(18.69/0.4969)

CARN-M
(20.26/0.6151)

HR
(PNSR/SSIM)

Bicubic
(18.82/0.4434)

SRCNN
(19.37/0.5307)

ASDCN (ours)
(24.38/0.8701)

“8023” from BSD100 dataset

VDSR
(16.10/0.6054)

LapSRN
(17.64/0.7205)

CARN-M
(18.21/0.7392)

HR
(PSNR/SSIM)

Bicubic
(14.88/0.3377)

SRCNN
(16.11/0.5762)

ASDCN (ours)
(19.79/0.8379)

“HighschoolKimengumi_vol20”
from Manga109 dataset

VDSR
(21.23/0.6694)

LapSRN
(21.95/0.7115)

CARN-M
(25.77/0.8790)

HR
(PSNR/SSIM)

Bicubic
(20.89/0.5708)

SRCNN
(23.84/0.9001)

ASDCN (ours)
(27.40/0.9185)

Figure 5. Visual comparison of ×4 super-resolution images on the Urban100, BSD100, and Manga109
datasets. The best results are highlighted by red.
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(a) "pattern" (b) bicubic (c) SRCNN

(d) VDSR (e) CARN-M (f) ASDCN(ours)

(g) "computer" (h) bicubic (i) SRCNN

(j) VDSR (k) CARN-M (l) ASDCN(ours)

Figure 6. Visual comparison with a scale factor ×4 on real-world images. .

5. Conclusions

In this paper, we propose a framework for automatically searching dense connection
modules for single image super-resolution. The NAS-based method used to search dense
connection paths can adaptively select the key connection paths and effectively reduce the
redundant information of the network. Moreover, it is more efficient than manual pruning.
The lightweight image super-resolution is realized by efficient residual dense connection
blocks and multi-layer information fusion. Extensive quantitative and qualitative experi-
ments demonstrate that our derived model is superior to most state-of-the-art approaches
with comparable parameters and Multi-Adds.

Our model only searches the intermediate nodes of the dense block, and only searches
which pre-nodes need to be used and which can be discarded. Our future work will extend
to search the operation of the model, and even search the block level of the entire model
synchronously. Of course, we can also study non-NAS methods later, such as permuting
and combining more basic operations (multiplication, addition, etc.).
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