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Abstract: A dynamical system defined by a metriplectic structure is a dissipative model characterized
by a specific pair of tensors, which defines a Leibniz bracket; and a free energy, formed by a “Hamil-
tonian” and an entropy, playing the role of dynamics generator. Generally, these tensors are a Poisson
bracket tensor, describing the Hamiltonian part of the dynamics, and a symmetric metric tensor, that
models purely dissipative dynamics. In this paper, the metriplectic system describing a simplified
two-photon absorption by a two-level atom is disclosed. The Hamiltonian component is sufficient
to describe the free electromagnetic radiation. The metric component encodes the radiation–matter
coupling, driving the system to an asymptotically stable state in which the excited level of the atom is
populated due to absorption, and the radiation has disappeared. First, a description of the system is
used, based on the real–imaginary decomposition of the electromagnetic field phasor; then, the whole
metriplectic system is re-written in terms of the phase–amplitude pair, named Madelung variables.
This work is intended as a first result to pave the way for applying the metriplectic formalism to
many other irreversible processes in nonlinear optics.

Keywords: two-photon absorption; metriplectic systems; dissipative systems; asymptotically stable
equilibrium; Madelung variables

1. Introduction

The modeling of irreversible systems is a fundamental issue in every physical field.
Even though in quantum mechanics this is a still debated topic, and many efforts have
been made both in cases of intrinsic irreversibility [1] and in open systems [2], classical
mechanics boasts many more tools and much more established and recognized theories to
describe time-asymmetric phenomena.

Even if the paramount majority of space physics, geophysical, ecological and biological
processes are of dissipative nature, the strongest formalism in theoretical physics, namely
the Hamiltonian formalism, is not able to describe dissipation. In Hamiltonian formalism,
the structure of a physical system and its interactions are all encoded in the quantity H
named “Hamiltonian”, so that many statements about the dynamics are possible by the
simple inspection of this quantity. Moreover, the system physics is “algebrized”, and any
transformation of the system description is implemented in the simple language of Poisson
brackets, defined via a Jacobi tensor. All these powerful tools of analytical mechanics fail
for dissipative systems. An extension of the Hamiltonian formalism may be defined for
dissipative systems, the so-called metriplectic formalism [3]. The role of the Hamiltonian H is
played by the free energy F of the system, while the Poisson bracket is generalized by the
metriplectic bracket, defined via two tensors. Metriplectic structures represent dissipative
systems with a simple theory based on linear algebraic tools, that have immediate thermody-
namical translation, both in classical [4] and in quantum [5] systems. In particular, the
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energy F extends the Hamiltonian H combining it with an entropic quantity S; the two
tensors forming the metriplectic bracket are a Jacobi tensor J, and a semimetric tensor G
related to the Onsager coefficients [6]. Metriplectic formalism is perfectly analogous to
what is referred to as General Equation for Non-Equilibrium Reversible-Irreversible Coupling
(GENERIC), described in [6], in which the role of the tensors J and G is strongly stressed.

In the literature, there are several examples of irreversible dynamics represented as
metriplectic systems, from very simple systems in Newton’s mechanics [7], to hydrody-
namics [8] and magneto-hydrodynamics [9]; more delicate, but extremely interesting, are
the cases of kinetic equations, the collisional terms of which may be written as a semi-
metric term, or that of a free rotator driven to a stable rotation axis by a suitably designed
servo-engine [3,10]. In all the cases mentioned, the non-Hamiltonian system is gifted of
the transparency of motions generated by Leibniz algebrae [11], even if proper symplectic
formalism is not applicable; moreover, the energy landscape becomes tractable as the free
energy of the system is explicitly written.

In the present paper, the metriplectic formalism is used to describe a process in
which electromagnetic radiation is absorbed by the atoms of a medium. As the radiation
disappears, the medium electrons go to a higher energy level, so that the final state of the
system is an excited state of matter with no radiation. This process may be regarded as the
irreversible sink of an ordered form of energy, contained in the incident electromagnetic
field, into the many atoms of the medium, represented with the collective variable of the
excited population. This pictorial view of the radiation absorption as a dissipative process
is physically supported by the fact that the terms describing absorption in the equations of
electromagnetism are time-asymmetric terms, isomorphic to those ones describing friction
in mechanics.

The process of two-photon absorption (TPA) by a two-level atom is here described
through a classical dynamical system, in which the energy initially located in the radia-
tion variables is irreversibly converted into the energy pertaining to the population of
the excited level. The final state, in which no free radiation exists any more while the
excited state is populated, is the asymptotic equilibrium state of the system. The existence
of asymptotically stable equilibrium makes the TPA similar to a dissipative process, such
as macroscopic friction, where an “ordered” form of energy is “consumed” in favour of
the “internal energy” of some medium. This attitude describes the matter absorbing the
electromagnetic wave energy as the environment of a system that would be Hamiltonian per
se; the presence of the environment, with the matter–radiation interaction that “destroys”
the radiation, breaks the Hamiltonian nature of the radiation dynamics. Such a scenario
is described by the extension of the symplectic algebra of the Hamiltonian system to a
metriplectic algebra of brackets [3], where the Hamiltonian component of the motion is still
given by the original Poisson bracket, while a suitable semi-defined metric bracket generates
the non-Hamiltonian component. An extension of the Hamiltonian, namely the free energy
of the system, represents the metriplectic generator of the motion. The foregoing program
interprets the dynamics of classical dissipative systems as flows generated by a new kind
of Leibniz algebrae of brackets [11], namely the metriplectic bracket.

It is important to state that the metriplectic formalism does not necessarily describe
any possible dissipative system, and a wide class of dissipative systems might not be cast
into this form. Yet, as mentioned above and in the following Section 2, many important
dissipative systems are indeed of metriplectic nature.

This paper is organized as follows.
In Section 2, we review the metriplectic formalism from a very general point of view.

In Section 3, radiation is described by the real and imaginary parts of a complex phasor
ψ, namely the q and p, while the atomic population is described by a real variable n. The
ODEs describing the evolution of q, p and n in the presence of the dissipative interaction
are presented. Then, the dissipationless, i.e., Hamiltonian, limit is recovered, in which the
expression of the free radiation energy H0(q, p) works as a Hamiltonian and the population
n does not evolve. In Section 4, the metriplectic algebra generating the non-Hamiltonian
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component of the dynamics is constructed. First of all, equations are composed to define
the semi-metric tensor through which the metric bracket (·, ·) is defined; then, a completion
energy U(n) is constructed in order for H(q, p, n) = H0(q, p) + U(n) to be constant along
the non-Hamiltonian motion of the full system (q, p, n). Finally, the framework is completed
by defining the proper conditions on the entropy S(n) and writing down the expression
of the free energy F(q, p, n) = H(q, p, n) + χS(n). Equilibrium points are determined as a
consequence of this construction (in the sense that, choosing different expressions for S(n),
i.e., for F(q, p, n), different equilibria neq are found). Section 5 is devoted to the translation
of the metriplectic system from the variable set (q, p, n) to the Madelung set (φ, ρ, n), with
φ and ρ being the phase–amplitude variables for the electromagnetic field. In Section 6,
we summarize the results of our analysis and indicate some future possible developments.
Details on the computation of the metric tensor G are added in the Appendix A, while
in Appendix B a point is clarified about the particular form the tensor G assumes in this
specific problem.

2. General Metriplectic Formalism

Before describing how the metriplectic formalism is applied to the TPA, it is useful to
sketch briefly the construction of a metriplectic system.

Typically, one starts from a Hamiltonian system described by a set of variables X, the
dynamics of which are generated by some Hamiltonian H0(X) and some Poisson bracket
{·, ·} so that Ẋ = {X, H0(X)}. Then, some quantity S is defined, with the property of being
in involution with any possible function of X, {S, A} = 0 ∀ A(X), i.e., to be a Casimir of
{·, ·}. This quantity S may either depend on the original variables X only (as for the kinetic
theories or for the rigid body mentioned before), or on some “environmental” variable Y
too (as in the case of a particle motion with friction, or those of non-ideal hydrodynamics
or magneto-hydrodynamics; this will be the case here too). The Casimir S becomes the
generator of a new non-Hamiltonian component of the motion through the introduction of
a new bracket, (·, ·), with properties of symmetry and semi-definiteness [3]. The extended
system, based on the old Hamiltonian one, now has new dynamics in which the variables
X evolve according to

Ẋ = {X, H(X, Y)}+ χ(X, S(X, Y)), (1)

while the motion of the environmental variables, if any, is typically influenced by S and the
metric bracket only:

Ẏ = χ(Y, S(X, Y)). (2)

Metriplectic systems describe the evolution of dissipative dynamics to asymptoti-
cally stable equilibria, so in general, with Z = (X, Y), there will exist some Zeq to which
Z(t) converges for t → +∞. The state Zeq is the equilibrium towards which the system
“thermalizes”.

In Equation (1), the Hamiltonian H(X, Y) may be different from the original H0(X), as
it may include a term depending on Y in order to close the system energetically, and may
take into account of the irreversible consumption of H0(X) (dissipation); the difference
U = H − H0 is the internal energy of the environment. In Equations (1) and (2), the factor
χ is a coefficient representing a coupling condition between X and Y, and characterizing
the asymptotically stable equilibrium (this χ is related to the thermodynamic temperature,
when dissipation is due to some thermal bath); the strength of the dissipative interaction,
defining the non-dissipative (Hamiltonian) regime in some suitable limit of its, is some α
included in the definition of (·, ·), so that α → 0 turns off dissipation. The mathematical
expressions (1), (2) of Ẋ and Ẏ depend on this α, so one may well say:

lim
α→0

Ẋ(α) = {X, H0(X, Y)}, lim
α→0

Ẏ(α) = 0. (3)
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From Equations (1) and (2) it appears that the limit for χ→ 0 also gives the ODEs in Equa-
tion (3); however, this does not switch off dissipation, but simply describes a condition in
which it is uneffective as in the condition of zero absolute temperature, see Sections 4 and 6.

As far as the bracket (·, ·) and the Casimir S are concerned, the semi-definiteness of
the first one, (A, B) ≤ 0 ∀ A, B, and a suitable choice of the sign of χ, i.e., χ < 0, implies
that S will grow monotonically along the system motion Ṡ ≥ 0, until some asymptotically
stable equilibrium Zeq = (Xeq, Yeq) is reached, so that Ṡ(Zeq) = 0 [3]. In other words, the
Casimir S turns out to be a Lyapunov function around Zeq, and it can be understood as a
form of entropy [12] (of course, all the reasoning just presented is rephrased “without Y” for
those metriplectic systems in which no “environment” needs to be defined, as in the case of
kinetic theories).

In order to complete the picture, the property (H, A) = 0 ∀ A is requested for the
metric bracket and the total Hamiltonian H, in order for dissipation not to “delete” the
total energy, but just transform it.

Regarding metripletcic systems, one further thing must be highlighted. Given the
expression of the Poisson bracket (·, ·), many Casimir functions S may exist; choosing
different forms of S, the dynamics in Equations (1) and (2) will converge to different specific
equilibria Zeq. It must be underlined that this construction does not include “all” the
dynamical systems referred to as “metriplectic” in literature: this is the construction of a
complete metriplectic system (CMS), while incomplete metriplectic systems (IMS) may be
defined too, with the two brackets but the Hamiltonian as the only generator. IMS can be
suitable tools to describe energetically open systems [4].

The development presented here makes the TPA process tractable in a very transparent
way as a CMS, and points towards the systematic algebrization of non-linear optics.

The system we introduce here in order to turn the TPA process into a CMS has three
degrees of freedom: two real variables describe the electromagnetic radiation, one real
variable describes the matter. Radiation is represented either via a complex phasor ψ, or a
couple of real variables, that in turn can be either the couple (q, p) of the real and imaginary
part of ψ, or the couple (φ, ρ) of its phase and (square root) amplitude; the population
of the excited level is given by some real positive variable n. As mentioned before, the
electromagnetic variable ψ, or (q, p) or (φ, ρ), are conceived as “mechanical variables”,
representing the “exact” state of the electromagnetic wave, while the excited population n is
more a thermodynamic variable. During the irreversible process, the electromagnetic energy
H0(ψ) is converted into some energy U(n) associated with n 6= 0. In our “metriplectization”
scheme, one starts from the equations of motion of the state Z = (q, p, n) and observes
that a suitable limit of them reduces the system to a Hamiltonian one. In this Hamiltonian
limit, a Poisson bracket is defined, so that q and p are canonically conjugated {q, p} = 1,
while n remains apparently outside the play as {n, q} = {n, p} = 0. As the population
of the excited level is in involution with q and p, any function S(n) will be a Casimir for
{·, ·}. The program then is to find a suitable function H0(q, p) that may play the role of
Hamiltonian in the Hamiltonian limit. This represents the radiation energy, to be extended
as H(q, p, n) = H0(q, p) + U(n) to include the energy pertaining to the filling of the excited
state, namely the internal energy of the environment “atoms”. In order to complete the
metriplectic framework, suitable forms for S(n) and for the metric bracket (·, ·) must be
constructed, and this is essentially what is achieved in the present work. As anticipated,
field variables (q, p) may be replaced by some (φ, ρ) in which ρ̇ = 0 in the Hamiltonian
limit and φ evolves linearly with time. Then, the whole CMS can be re-expressed in the
new variables (φ, ρ, n).

3. Two-Photon Absorption Toy Model

Nonlinear optical systems such as those mediated by two-photon absorptions are
described by a generalized nonlinear Schödinger equation including effects such as linear
dispersion, dispersion of nonlinearity, and higher order nonlinear processes [12]. In our toy
model, we limit it to consider only nonlinear effects that are the core of our metriplectic
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analysis and that can be cast in the simplest formulations. Specifically, we consider an
electromagnetic field described by a complex envelope A (I = |A|2 is the optical intensity)
that undergoes a self-phase modulation due to the optical Kerr effect. We also include
absorption as a multiphoton process, such that we have a two-level system that absorbs
two photons (see Figure 1).

Figure 1. Pictorial sketch of absorbtion of two photons in a two-level atom. In our system, Equation (6)
does not have terms of spontaneous emission, considered negligible. This is here represented by the
dashed blue line, not present in our model.

Writing the complex refractive index nonlinear optical perturbation as ∆n = n2|A|2 +
iαPn with n2 the Kerr coefficient, and assuming the optical beam propagating in the z
direction, with vacuum wavenumber k0 = 2π/λ, with λ the wavelength, the dynamic
equation for the field envelope is

∂A
∂z

= ik0
∆n
n

A =
2π

λ
(in2|A|2 − αPn)A. (4)

Seemingly, the equation for the level inversion reads

∂n
∂z

= kP|A|4 (5)

and the multiphoton coefficient is kP.
Equations (4) and (5) can be cast in dimensionless units by scaling the evolution

coordinate z with z0, and letting A = A0ψ, with A2
0 = λ/(2πn2z0), and defining the

dimensionless absorption coefficient α = 2παpz0/λ and the dimensionless multiphoton
coefficient as k = 2kPz0 A4

0.
Hence, we consider a very simplified toy model for the two-level atomic system [13,14].

The TPA, sketched in Figure 1, is expressed by the following differential equations:{
ψ̇ = ı|ψ|2ψ− αnψ,
ṅ = k

2 |ψ|4,
(6)

where ψ is the complex field amplitude, n the population of the second level, k > 0 and
α > 0. This system is directly derived by the multi-photon absorption model [15–17],
when neglecting several physical phenomena, e.g., the spontaneous emission. Moving to
real-valued functions, we define

ψ =
q− ıp√

2
, (7)
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so that in terms of the variables q and p, the system (6) reads:
q̇ = 1

2 p(q2 + p2)− αnq,
ṗ = − 1

2 q(q2 + p2)− αnp,
ṅ = k

8 (q
2 + p2)2.

(8)

The phasor ψ may be also represented by Madelung variables (φ, ρ, n), as:

ψ =
√

ρeıφ. (9)

These canonically conjugated φ and ρ describe the system as reported in Section 5.
It is useful to observe that in the limit

α→ 0, k→ 0 (10)

Equation (8) become a Hamiltonian system, so that the conditions (10) will be referred to as
non-dissipative limit (NDL); under these conditions, the ODEs in q, p and n read:

q̇ = 1
2 p(q2 + p2),

ṗ = − 1
2 q(q2 + p2),

ṅ = 0.
(11)

As one defines the Hamiltonian

H0 =
1
2

(
q2 + p2

2

)2

. (12)

and the Poisson bracket

{q, p} = 1, {q, n} = 0, {p, n} = 0, (13)

any quantity f (q, p, n) evolves according to:

ḟ = { f , H0}

along the motion (11). The quantity defined in Equation (12) turns out to be the energy that
can be attributed to the free radiation, as it is not interacting with matter.

The dissipative nature of the dynamical system emerges as one sees that the following
relationships hold

Ḣ0 = −4αnH0, ṅ = kH0 (14)

along the motions (8). As α and k are positive constants, and as long as n ≥ 0, this
means that Ḣ0 ≤ 0 and ṅ ≥ 0. All in all, system (14), that is equivalent to Equation (8),
simply describes the consumption of H0 in favour of the quantity n. System (8) has energy
dynamics similar to classical dissipation, which points towards the formulation of it as a
complete metriplectic system [12].

4. Metriplectic Formulation

In order to recognize a CMS equivalent to Equations (8), let us put those ODEs in the
general form of a Hamiltonian system “perturbed” by dissipative terms, the most general
form of which reads: 

q̇ = {q, H}+ ψq,
ṗ = {p, H}+ ψp,
ṅ = {n, H}+ ψn,

(15)
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with H(p, q, n) the total Hamiltonian and { f , g} = Jij∂i f ∂jg the Poisson brackets (PB) with

Jij =

 0 1 0
−1 0 0
0 0 0

 (16)

(here we have used i, j = q, p, n). Seeing that {n, A} = 0 for any observable A(q, p, n)
is straightforward from Equation (16). This implies that any function C(n) is a Casimir;
indeed, {C(n), H} = C ′(n){n, H} = 0, with C ′ = dC

dn , so that one has:

(10)⇒ Ċ(n) = 0.

In order to express Equation (15) as a metriplectic system [12,18], we define the metric
brackets ( f , g) = Gij∂i f ∂jg, constructing

Gij =

 Gqq Gqp Gqn

Gqp Gpp Gpn

Gqn Gpn Gnn

 (17)

as a symmetric, positive semi-definite matrix.
Equation (15) will be put in the form of

q̇ = {q, H}+ χ(q, S),
ṗ = {p, H}+ χ(p, S),
ṅ = χ(n, S),

(18)

where χ is a constant to be calculated once the desired Zeq is defined. Indeed, once defined,
the metriplectic Leibniz brackets

<< f , g >>:= { f , g}+ ( f , g), (19)

the entropy S(q, p, n) and the free energy F = H + χS, if ∇S ∈ Ker(J) and ∇H ∈ Ker(G),
namely,

Jij∂jS = Gij∂j H = 0, (20)

then, one has
ġ =<< g, F >>= {g, H}+ χ(g, S). (21)

Equation (20) implies that the CMS entropy must be a mere function of n.

4.1. The Metric Brackets Tensor

Thanks to Equation (20), the system in Equation (18) becomes
q̇ = ∂p H + χGqnS′(n),
ṗ = −∂q H + χGpnS′(n),
ṅ = χGnnS′(n),

(22)

therefore, our overriding concern is to determine the tensor G. In order to obtain such a
result, we follow a linear algebraic procedure. Calculations are illustrated item-by-item in
the Appendix A. The final result is:

Gqq
E =

∂qH∂n H
[
b∂qH∂n H + 2c∂p H

√
(∂q H)2 + (∂p H)2 + (∂n H)2

]
[
(∂qH)2 + (∂pH)2

][
(∂q H)2 + (∂pH)2 + (∂n H)2

] ,

Gqp
E =

∂n H
[
b∂q H∂p H∂nH + c

[
(∂pH)2 − (∂q H)2]√(∂qH)2 + (∂pH)2 + (∂n H)2

]
[
(∂q H)2 + (∂p H)2

][
(∂qH)2 + (∂p H)2 + (∂nH)2

] ,
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Gqn
E = −

b∂q H∂nH + c∂p H
√
(∂qH)2 + (∂p H)2 + (∂nH)2

(∂q H)2 + (∂pH)2 + (∂n H)2 ,

Gpp
E =

b(∂p H)2(∂n H)2 − 2c∂q H∂p H∂n H
√
(∂q H)2 + (∂pH)2 + (∂n H)2[

(∂qH)2 + (∂p H)2
][
(∂qH)2 + (∂p H)2 + (∂n H)2

] ,

Gpn
E =

−b∂p H∂nH + c∂qH
√
(∂qH)2 + (∂pH)2 + (∂n H)2

(∂qH)2 + (∂pH)2 + (∂n H)2 ,

Gnn
E =

b
[
(∂qH)2 + (∂pH)2]

(∂qH)2 + (∂pH)2 + (∂n H)2 ,

with 
b = ψn

χS′(n)
(∂q H)2+(∂p H)2+(∂n H)2

(∂q H)2+(∂p H)2 ,

c = ψp∂q H−ψq∂p H
χS′(n)

√
(∂q H)2+(∂p H)2+(∂n H)2

(∂q H)2+(∂p H)2 .
(23)

In the system at hand, due to the nature of the dissipation terms ψq and ψp in (8) and
(15), it is easy to see that ψq∂p H − ψp∂qH = 0, so that the term c in (23) simply vanishes.
This is definitely not a general condition, rather it requires the two variables q and p to
be dissipated formally in the same way, and the Hamiltonian H to be symmetric under
the exchange of q and p. A simple counterexample for which c 6= 0 is illustrated in the
Appendix, with the result (A7).

The set of components of the metric tensor GE may be finally expressed in a much
more compact, and yet explicit form: putting together the expression H(q, p, n), the values
of b in (23), and c = 0, after some algebra, the expressions

Gqq
E =

8α2

χkS′(n)
q2n2

(q2 + p2)
2 , Gqp

E =
8α2

χkS′(n)
qpn2

(q2 + p2)
2 , Gpp

E =
8α2

χkS′(n)
p2n2

(q2 + p2)
2 ,

Gqn
E = −α

nq
χS′(n)

, Gpn
E = −α

np
χS′(n)

, Gnn
E =

k
8χS′(n)

(
q2 + p2)2

(24)

are written.
With reference to the Appendix, one attains a third equation from Equation (A5),

namely,
ψq∂q H + ψp∂p H + ψn∂nH = 0. (25)

This last condition expresses the conservation of the total Hamiltonian H when the relation-
ships (A5) are enforced, which is precisely what is required by theory (namely, dissipation
does not alter the whole amount of energy).

4.2. The Total Hamiltonian

Considering Equation (8), we fix
ψq = −αnq,
ψp = −αnp,
ψn = k

8 (q
2 + p2)2

(26)

therefore, ∂qH = 1
2 q(q2 + p2) and ∂p H = 1

2 p(q2 + p2), which imply that the total Hamilto-
nian reads:

H(q, p, n) = H0(q2 + p2) + U(n), (27)
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with H0(q2 + p2) being the free radiation Hamiltonian defined in Equation (12). In order to
determine U(n), we need to take into account Equation (25):

− αnq
1
2

q(q2 + p2)− αnp
1
2

p(q2 + p2) +
k
8
(q2 + p2)2U′(n) = 0, (28)

whence
U(n) =

2α

k
n2 + U0. (29)

4.3. Entropy and Equilibrium States

We are now in the position to explicitly write the free energy F

F(q2 + p2, n) = H0(q2 + p2) + U(n) + χS(n) :

as the expression (29) is used, one has

F
(

q2 + p2, n
)
=

1
8

(
q2 + p2

)2
+

2α

k
n2 + U0 + χS(n). (30)

Equilibrium states of the system must satisfy the condition

δF = ∂qFδq + ∂pFδp + ∂nFδn = 0, (31)

that is:
qeq = peq = 0, S′(n)|neq = −χ

4α

k
neq. (32)

As expected, different forms of entropy function correspond to different equilibrium points.
Some lines ago we anticipated that χ→ 0 suppresses the metric part of the dynamics.

This means putting oneself in the condition of an equilibrium reached without populating
the atomic excited level (e.g., at 0 ◦K temperature), which does not mean turning off the
matter–radiation coupling.

Before going to the conclusions, it is important to note that α and k appear everywhere
as a ratio. It would make sense to introduce an always finite constant κ so that k = κα. This
would reduce the non-dissipative condition (10) to the much simpler α→ 0, that is, again,
a statement about interactions, while χ→ 0 would be a statement about the equilibrium
around which we are working.

5. The CMS in Madelung Variables

In this Section, we are going to present the same CMS as before, but describing the
electromagnetic phasor ψ via its square-root amplitude and phase variables ρ and φ as
defined in (9), instead of the two quantities q and p. The variables (φ, ρ) are related to the
(q, p) ones via the transformation:{

q =
√

2ρ cos φ,
p = −

√
2ρ sin φ,

{
φ = − arctan

(
p
q

)
,

ρ = 1
2
(
q2 + p2). (33)

These are invertible and smooth, except for ρ = 0, that is, the singular point at which no
radiation exists at all.

It is easy to see that the new set of variables (φ, ρ, n) evolves according to the ODEs
φ̇ = ρ,
ρ̇ = −2αnρ,

ṅ =
k
2

ρ2,

(34)
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as the system (q, p, n) undergoes (8). The α → 0 and k → 0 limit of (34) gives the non-
dissipative approximation of those equations:{

φ̇ = ρ, ρ̇ = 0,
ṅ = 0.

(35)

Equation (35) suggest the angle–frequency nature of the variables φ and ρ in the
Hamiltonian limit. According to them, ρ is a constant of motion, while φ(t) = ρt + φ(0)
evolves linearly with time. Dissipation, as in (34), slows down the run of φ(t) as it consumes
ρ in favour of the population n. Equations (35) form a Hamiltonian system, provided one
uses the symplectic tensor

J′(φ, ρ, n) =

 0 1 0
−1 0 0
0 0 0

 (36)

and the Hamiltonian
H0(ρ) =

1
2

ρ2. (37)

This H0(ρ) is not conserved under the motion (34): the extension

H(φ, ρ, n) =
1
2

ρ2 +
2α

k
n2 + U0 (38)

of (37) closes the system energetically, because H(φ, ρ, n) is conserved under the motion (34)
(moreover, this H does not truely depend on φ). Nonetheless, it is not possible to generate
the whole dynamics (34) via just the Hamiltonian (38) and the PB given by (36): the system
(34) can be rather represented as a complete metriplectic system by adding to {·, H(φ, ρ, n)} a
metric bracket expressed in terms of φ, ρ and n.

In order to complete the system (34) as a CMS, one may either re-formulate ex novo
the whole problem, as achieved in the (q, p, n) variables, repeating everything in the new
(φ, ρ, n), through the Equation (34), the Hamiltonian (38) and the PB given by the Jacobi
tensor (36); or, as will be the case here, by appreciating the tensor nature of the metriplectic
laws [6]

ẋµ = Jµν(x)∂ν H(x) + χGµν(x)∂νS(x) (39)

under any diffeomorphic change of variables x 7→ y(x). Indeed, provided H and S are
scalar quantities under the transformations x 7→ y(x), one may perform the variable change,
and obtain:

ẏρ =
∂yρ

∂xµ

∂yσ

∂xν
Jµν(x(y))

∂H(y)
∂yσ

+ χ
∂yρ

∂xµ

∂yσ

∂xν
Gµν(x)

∂S(y)
∂yσ

. (40)

This (40) is equivalent to the initial system (39), and it may be put into an explicitly CMS-like
form

ẏρ = J
′ρσ(y)

∂H(y)
∂yσ

+ χG′ρσ(x)
∂S(y)
∂yσ

, (41)

provided the identifications
J
′ρσ(y) =

∂yρ

∂xµ (x(y))
∂yσ

∂xν
(x(y))Jµν(x(y)),

G
′ρσ(y) =

∂yρ

∂xµ (x(y))
∂yσ

∂xν
(x(y))Gµν(x(y))

(42)

are achieved. Equation (42) state precisely that the Jacobi matrix J and the semimetric
matrix G transform into the matrices J′ and G′, respectively, as rank-2 tensors under any
change of variables x 7→ y(x).
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As the change of variables (q, p, n) 7→ (φ, ρ, n) in (33) is applied to the calculation of
J
′ρσ = ∂yρ

∂xµ
∂yσ

∂xν Jµν, the matrix J in (16) is transformed into the matrix J′ in (36), meaning that
(33) is a canonical change of variables.

In order to find the semimetric matrix G′ completing the CMS that represents the

system (34), one applies the law G
′ρσ = ∂yρ

∂xµ
∂yσ

∂xν Gµν to the matrix G def
= GE(q, p, n) in (24)

with the gradients of (33), obtaining:

G′φφ = 2∂qφ∂pφGqp +
(
∂qφ
)2Gqq +

(
∂pφ

)2Gpp,
G′φρ = ∂qφ∂qρGqq + ∂pφ∂pρGpp +

(
∂qφ∂pρ + ∂pφ∂qρ

)
Gqp,

G′φn = ∂qφ∂nnGqn + ∂pφ∂nnGpn,
G′ρρ =

(
∂qρ
)2Gqq +

(
∂pρ
)2Gpp + 2∂qρ∂pρGqp,

G′ρn = ∂qρ∂nnGqn + ∂pρ∂nnGpn,
G′nn = (∂nn)2Gnn,

that is 

G′φφ = 0, G′φρ = 0, G′φn = 0,

G′ρρ = 8α2n2

χkS′(n) ,

G′ρn = − 2αnρ
χS′(n) ,

G′nn = kρ2

2χS′(n) .

(43)

This is the matrix to be used in the composition of the symmetric bracket χ(·, S(n)) to
obtain the dissipative terms

ηφ = 0, ηρ = −2αnρ, ηn =
k
2

ρ2 (44)

to be added to the nondissipative ODEs (35) in order to obtain the dissipative ones (34). In
particular, it is straightforward to check:

ηφ = χG′φnS′(n), ηρ = χG′ρnS′(n), ηn = χG′nnS′(n), (45)

expressions to which χ(φ, S(n)), χ(ρ, S(n)) and χ(n, S(n)) reduce, respectively. Last but
not least, one observes that the Hamiltonian compatibility condition G′ · ∇′H(φ, ρ, n) = 0
is satisfied, considering the expression (38) for the Hamiltonian, as G′ in (43) is used, and
∇′ is the gradient with respect to φ, ρ and n.

Wrapping up what has been found in the present Section, we may state that the TPA
system can also be regarded as a CMS when the radiation is represented via the phase–
amplitude variables φ and ρ, defined in (9), and that the new expression of the semimetric
matrix G′(φ, ρ, n) is obtained by trasforming the matrix GE(q, p, n) as a rank-2 tensor under
the transformations (33).

6. Conclusions

This work applies metriplectic theory and the technique of Leibniz algebrae to a
dissipative nonlinear optical phenomenon: the two-photon absorption by a two-level
atom with negligible spontaneous emission. Once the physical problem was formulated
in terms of the conservative part H0 of the total Hamiltonian H, the metric tensor G and
the metriplectic brackets << ·, · >>, we found the mathematical expression of H as
function of the dynamical variables q, p and n, representing the electric phasor ψ via its real
components. In particular, we have found the internal part U of H, which depends only on
the second-level population n. We have also found the free energy F and the equilibrium
states, varying with the definition of entropy, as expected.

Use was then made of the rank-2 tensor nature of the Jacobi matrix J and of the
semimetric matrix G to offer another representation of the CMS, in which the electric
phasor ψ is assigned by the real couple (φ, ρ) of its phase φ and square-rooted amplitude ρ.
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We believe that this manuscript opens the way to an ambitious research program
in which the metriplectic formalism is used to explore irreversibility in nonlinear optics.
Applications may be envisaged in regimes including an interplay between interaction
and absorptions, including multi-modal regimes in lasers and fibers and systems with
topologically non-trivial features, arising from engineered distributions of gain and loss,
such as those supporting P-T symmetry or disorder. In all these cases, finding Casimir as
generators of non-Hamiltonian motions may unveil novel regimes and phase transitions
which are not tackled by conventional methods.
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Appendix A. Calculation of G

Here, we determine the tensor G as a function of the variables (q, p, n). We start
from Equation (20) and look for an orthornormal basis B := (n̂1, n̂2, n̂3), with n̂3 = ∇H

||∇H|| ,
through a standard Gram–Schmidt process. We find

n̂1 =


− ∂p H√

(∂q H)2+(∂p H)2

∂q H√
(∂q H)2+(∂p H)2

0

, n̂2 =


− ∂q H∂n H√

(∂q H)2+(∂p H)2
√

(∂q H)2+(∂p H)2+(∂n H)2

− ∂p H∂n H√
(∂q H)2+(∂p H)2

√
(∂q H)2+(∂p H)2+(∂n H)2√

(∂q H)2+(∂p H)2

(∂q H)2+(∂p H)2+(∂n H)2

, n̂3 =


∂q H√

(∂q H)2+(∂p H)2+(∂n H)2

∂p H√
(∂q H)2+(∂p H)2+(∂n H)2

∂n H√
(∂q H)2+(∂p H)2+(∂n H)2

. (A1)

Then, we move from basis B to the canonical basis E = (ê1, ê2, ê3), êj = (δij)
t
i=1,2,3, by

defining the unitary change in basis matrix

C =


− ∂p H√

(∂q H)2+(∂p H)2 − ∂q H∂n H√
(∂q H)2+(∂p H)2

√
(∂q H)2+(∂p H)2+(∂n H)2

∂q H√
(∂q H)2+(∂p H)2+(∂n H)2

∂q H√
(∂q H)2+(∂p H)2 − ∂p H∂n H√

(∂q H)2+(∂p H)2
√

(∂q H)2+(∂p H)2+(∂n H)2

∂p H√
(∂q H)2+(∂p H)2+(∂n H)2

0
√

(∂q H)2+(∂p H)2

(∂q H)2+(∂p H)2+(∂n H)2
∂n H√

(∂q H)2+(∂p H)2+(∂n H)2

, (A2)

whence
C−1 = Ct and B = EC.

On E, the tensor G is expressed in Equation (17), but, in order to obey Equation (20), on B it
must be ∇H-transverse, that is

GB =

 a c 0
c b 0
0 0 0

, (A3)

with a, b, c ∈ R. Since GE = CGBCt, it turns out that

Gqq
E =

a(∂p H)2[(∂qH)2 + (∂pH)2 + (∂n H)2]+ ∂qH∂n H
[
b∂q H∂nH + 2c∂pH

√
(∂qH)2 + (∂pH)2 + (∂n H)2

]
[
(∂q H)2 + (∂p H)2

][
(∂qH)2 + (∂p H)2 + (∂nH)2

] ,
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Gqp
E =

−a∂q H∂p H[(∂q H)2+(∂p H)2+(∂n H)2]+∂n H
[
b∂q H∂p H∂n H+c[(∂p H)2−(∂q H)2]

√
(∂q H)2+(∂p H)2+(∂n H)2

]
[(∂q H)2+(∂p H)2][(∂q H)2+(∂p H)2+(∂n H)2]

, (A4)

Gqn
E = −

b∂qH∂n H + c∂pH
√
(∂qH)2 + (∂pH)2 + (∂n H)2

(∂qH)2 + (∂p H)2 + (∂nH)2 ,

Gpp
E =

b(∂p H)2(∂n H)2 + ∂q H
{
−2c∂p H∂nH

√
(∂qH)2 + (∂pH)2 + (∂n H)2 + a∂q H

[
(∂q H)2 + (∂p H)2 + (∂n H)2]}[

(∂qH)2 + (∂pH)2
][
(∂q H)2 + (∂pH)2 + (∂n H)2

] ,

Gpn
E =

−b∂p H∂n H + c∂q H
√
(∂q H)2 + (∂p H)2 + (∂n H)2

(∂q H)2 + (∂p H)2 + (∂nH)2 ,

Gnn
E =

b
[
(∂q H)2 + (∂p H)2]

(∂q H)2 + (∂p H)2 + (∂n H)2 .

By comparing Equations (15) and (22), we obtain
Gqn =

ψq
χS′(n) ,

Gpn =
ψp

χS′(n) ,

Gnn =
ψq

χS′(n) .

(A5)

These are the components of G directly entering the dynamics of the system, and they are
indepedent of a: this means that the role G plays in the dynamics will not be influenced
by the value chosen for a, so that one may fix a = 0 without loss of generality. Finally, we
solve Equation (A5) for the parameters b and c, and obtain Equation (23).

Note that when ψp∂q H − ψq∂p H is calculated from the equations of motion, the quan-
tity c is found to be zero: some comment on this fact will be made in the following
Appendix B.

Appendix B. The Strange Case of c = 0

It may look strange that the algebraic method employed here to find GE(q, p, n) has
lead to the condition c = 0, so that all-in-all there exists a basis B along the space tangent to
the phase space in which

GB =

 0 0 0
0 b 0
0 0 0

.

In order to show how this is not a general, and wrong, feature of the solid method used
here, we consider the case of a pointlike mass m moving along a line of position q and
momentum p, undergoing the conservative force −∂qV(q) and the viscous force − λ

m p
exerted by a medium described by some (set of) thermodynamic coordinate(s) n. Such a
system is a CMS with Hamiltonian, reading

H(q, p, S) =
p2

2m
+ V(q) + U(n)

and a set of ODEs, reading:

q̇ =
p
m

, ṗ = −∂qV(q)− λ

m
p, ... (A6)

(suspension points are for the dynamic equation ṅ = ... of the medium). From the ODEs
(A6), the dissipative addenda

ψq = 0, ψp = − λ

m
p,

determining c, are easily extracted.
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A possible construction of the CMS describing this system was worked out in [7]; the
most important thing here is that, applying the present algebraic method of finding G to
this problem, one is able to write:

c = −
λp∂qV

mχS′(n)

√(
∂qV

)2
+ p2

m2 + (U′(n))2(
∂qV

)2
+ p2

m2

6= 0. (A7)

As announced, the condition c = 0 is not necessarily met in general, but just due to the
condition ψp∂q H = ψq∂pH, exceptionally met in the TPA studied in this paper, where the
two real components q and p of the radiation phasor ψ happen to be absorbed in the same
way by the two-level atoms. In the case of the pointlike particle moving through a viscous
medium, this condition is not met, as no dissipative term exists for the ODE of q in (A6), so
that the non-zero value (A7) is found for c.
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