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Abstract: Functional load (FL) quantifies the contributions by phonological contrasts to distinctions
made across the lexicon. Previous research has linked particularly low values of FL to sound change.
Here, we broaden the scope of enquiry into FL to its evolution at higher values also. We apply
phylogenetic methods to examine the diachronic evolution of FL across 90 languages of the Pama—
Nyungan (PN) family of Australia. We find a high degree of phylogenetic signal in FL, indicating that
FL values covary closely with genealogical structure across the family. Though phylogenetic signals
have been reported for phonological structures, such as phonotactics, their detection in measures
of phonological function is novel. We also find a significant, negative correlation between the FL
of vowel length and of the following consonant—that is, a time-depth historical trade-off dynamic,
which we relate to known allophony in modern PN languages and compensatory sound changes
in their past. The findings reveal a historical dynamic, similar to transphonologization, which we
characterize as a flow of contrastiveness between subsystems of the phonology. Recurring across
ﬁ:edcgtfg a language family that spans a whole continent and many millennia of time depth, our findings
Citation: Round, E; Dockum, R provide one of the most compelling examples yet of Sapir’s ‘drift” hypothesis of non-accidental
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1. Introduction

Received: 15 December 2021 Functional load (FL) quantifies the contribution of specific phonological contrasts to
Accepted: 1 April 2022 distinctions made in the lexicon of a language [1-3]. In English for example, the phonemes
Published: 5 April 2022 /t/ and /d/ contrast, and thus there exist phonological strings in English, including conso-
Publisher’s Note: MDPI stays neutral NNt clusters, syllables, and whole words, which differ only by virtue of one containing /t/
with regard to jurisdictional claimsin il @ position where the other contains /d/. Examples within word-length strings include
published maps and institutional affil-  titme/dime, welter/welder, and hit/hid. At a conceptual level, the FL of the {/t/,/d/} contrast
iations. in English is the degree to which that contrast supports the distinctiveness of phonological

strings in the English lexicon, or conversely, the degree to which those strings would be
conflated if /t/ and /d/ were merged into a single category.

At A classic operationalization of FL by Hockett [2] is in terms of entropy [4]. Hockett’s
definition makes reference to domains, D, which could be words, morphemes, syllables,
or any kind of substring composed of phonemes. In a language ., the lexicon A will
contain a set Sp 5 of unique phonological string types, s, which comprise a domain of type
D. The entropy of domain D in lexicon A is:
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Following Hockett [2], the FL of a phonological contrast ¢ in lexicon A and domain
D is the difference between two entropy measures: the entropy of domain D in lexicon A,
and of domain D in an altered lexicon A;b, created by collapsing the contrast ¢ in A:

f(D,A,¢) = Hpa — HD,A;P )

A related metric is a normalized functional load, which states the FL of a contrast
relative to the entropy of domain D in lexicon A [3]:

Hp,n = Hp,,

fnorm(DIA/(P) = (3)

Hp,A

A phonological contrast, ¢, may refer to distinctions between the members of a single
set of phonemes, such as between two phonemes {/t/, /d/} or between four phonemes {/t/,
/d/, /s/, /z/}. Alternatively, it may refer to a collection of multiple, parallel distinctions,
defined by a collection of sets and the distinctions within each of them. For instance,
a contrast between voiced and voiceless stop consonants could refer to the distinctions
within each of the three sets in the collection {{/p/, /b/}, {/t/, /d/}, {/k/, /g/}}, and a
contrast between the places of articulation of stop consonants could refer to the distinctions
within each of the two sets in the collection {{/p/, /t/, /k/}, {/b/, /d/, /g/}}. In all cases,
the altered lexicon A, is obtained by taking each individual set and replacing the phonemes
within it with a single phonemic symbol that is distinct from all other phonemic symbols
in%Z.

As FL is a frequency measure calculated from empirical datasets, the results that one
obtains will vary according to the corpus used [3,5]. Accordingly, when investigating FL, it
is important to bear in mind how the properties of a dataset might relate to the research
question and to any assumptions relevant to the interpretation of results.

1.1. Functional Load and Explanation in Linguistics

Human linguistic communication is a highly complex cultural and cognitive phe-
nomenon. One of its key traits is that every language contains an inventory of thousands
of distinctive symbolic units termed morphemes, which in turn, comprise smaller, distinc-
tive phonological elements [6]. In spoken languages, these include phonemes (found in all
languages) and lexically distinctive prosodic elements, such as tones, accent and stress
patterns (found in around half of all languages [7-9]). Of equal significance is that, al-
though the existence of morphemes and phonemes is universal, the actual inventories are
language-specific. In linguistics, this specificity of individual languages gives rise to fields
of enquiry, such as linguistic typology, studying the range and distribution of variation
across languages, and historical linguistics, studying the evolution of distributions over
time. Both subfields contribute to the scientific understanding of human language in
general by generalizing across the variation of individual language systems.

To better understand how linguistic systems provide and organize the distinctiveness
that makes linguistic communication possible, investigations of FL play a valuable role in
shedding light on how distinctions in phonological modules function to support distinc-
tiveness in larger strings. Currently, in both typology and historical linguistics, the study of
FL is in its infancy with much of the potential scope of FL research still to be explored. Most
studies of FL, for instance, have focused on words as the strings of interest (see Section 1.2
below). However, words are only one kind of string known to be significant in the struc-
ture and use of linguistic systems. Systems of phonological structure exhibit well-known
organizational principles at levels above the phoneme and below the word [10,11], while
psycholinguistic research shows that listeners also use multi-phonemic strings smaller than
the word or morpheme, to gain efficiencies in speech processing [12]. The study we present
here illustrates some of the potential of studying strings other than words.

FL research to date has focused either on a small number of related languages (e.g., [5])
or on surveys across very distantly related languages (e.g., [3]). These are useful for pro-
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ducing highly detailed case-studies of well-understood systems or for evaluating the outer
bounds of variation across languages in general. However, insights into historical dynamics
at a statistically significant level are most readily obtained through phylogenetic analysis of
large sets of related languages. Here, we fill a gap in the FL research by presenting the first
phylogenetic study of FL and thereby produce the first results for historical dynamics that
are supported at a statistical level across a large language family.

Research on FL has focused particularly on phonological contrasts whose FL is
very low, for reasons related to a prominent conjecture in historical linguistics [1] (see
Section 1.2). However, contrasts in human languages have a range of different functional
loads, from very low to very high, and important questions include why this range exists
and how FL values evolve over time. In terms of the evolutionary question, we can ask:
(1) What kinds of changes to FL values appear to occur? (2) How do those changes pattern
more broadly, for instance, does their distribution follow some well-described stochastic
process? (3) What might the possible causes of change be that give rise to the distributions
we see?

Answering these questions will ultimately require fitting together the pieces of a
large puzzle. In this study, we contribute some central pieces. We produce some striking
findings regarding the phylogenetic signal of FL. A phylogenetic signal is a measure of
how close the match is—at the level of a whole language family—between (1) actual FL
values and (2) what would be expected if FL. was inherited from ancestor languages to
their descendants while undergoing fluctuations according to a stochastic process termed
Brownian motion (more on this in Section 2.2).

Naturally, we would not suppose that the real evolution of FL is so simplistic, rather
the questions are: how close to such a scenario does the evolution of FL appear to come,
and how does this compare to the evolution of other properties of language? Answering
these questions provides insights into the kinds of explanations for FL evolution that could
be consistent with the data. We also examine the correlation, or trade-off relationship, that
can exist between the FL of two different contrasts in a linguistic system. Understanding
how multiple, individual changes to FL are linked (or not) provides new insights into the
historical dynamics of contrastiveness in linguistic systems.

1.2. Functional Load and Sound Change

Languages undergo mutational changes, known as sound changes, in which sounds
may change from one phonemic category to another [13]. The term unconditioned merger
refers to sound changes that cause two or more previously distinct phonemic categories to
become conflated into one. Conditioned mergers are when conflation affects the phonemes
only in certain contexts. FL has attracted attention as a possible explanatory factor in
the incidence of mergers; it has long been conjectured [1] that contrasts with low FL
are more prone to merge than contrasts with high FL, and recent results support that
conjecture [5,14-16]. Debate is ongoing over which operationalizations of FL provide the
greatest predictive power [5] and what kinds of mergers FL predicts [17]. Whether it used
entropy-based definitions of FL or not, most research to date has focused on domains D
that are words.

When a contrast undergoes an unconditional merger, its FL falls to zero. The fact that
contrasts with low FL values are more likely to fall to zero than contrasts with higher FL
values, is an observation that can be described in several ways, and each way of describing
it can have different implications for what we believe is in need of explanation. For instance,
taken by itself, it is consistent with a description in which (1) only falls to zero FL show a
tendency for small changes in FL to be more likely than larger changes; (2) all falls in FL,
whether the fall is to zero or otherwise, show the tendency; or (3) all changes to FL, whether
they are falls or rises, show the tendency.

Since prior research has focused its attention on falls to zero, it has not yet been
established whether or not current observations will generalize to support strictly case (1),
the slightly broader case (2), or the general case (3). The study we present here will consider
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evidence for case (3). If it turns out that case (3) is supported, then this may recast how we
think about recent results in sound change, since the phenomenon requiring explanation
will not be only mergers but all changes in FL.

1.3. Contrastiveness in Pama—Nyungan VC Strings

In this paper, we examine FL from a phylogenetic perspective, investigating how FL
evolves over time. Our empirical focus is in the large, Pama—-Nyungan (PN) language
family of Australia. PN languages extend across 90% of the Australian mainland and the
time depth of the family is estimated at around 5000-6000 years before present [18-20].

In many PN languages, an inverse correlation has been observed between phonemic
vowel length and the phonetic duration of a following consonant [21-25]. This is partic-
ularly so for vowels in the first syllable of words, referred to as tonic vowels. Here, we
focus on tonic vowels and single, intervocalic consonants that follow them. Post-tonic
single consonants that follow phonemically short vowels and that have phonetically longer
durations in some languages also exhibit additional phonetic properties associated with
long duration, such as more complete closure and passive devoicing of stops as well
as pre-stopping of nasals and laterals.

Conversely, post-tonic single consonants that follow phonemically long vowels and
that have phonetically shorter durations may exhibit more voicing and lenition of stops,
and the absence of pre-stopping in laterals and nasals [21,22,26-28]. Examples of allophonic
conditioning of this kind are cited in Table 1.

Table 1. Examples of allophony in post-tonic consonants conditioned by the phonemic length of the
tonic vowel. Key: V_ after a phonemically short vowel, VV_ after a phonemically long vowel. See
references for additional details in the conditioning of allophony.

Language (Subgroup) Consonants V_ VV_
Djambarrpuyngu (Yolngu) [25] Consonants longer shorter
Wik (Middle Paman) [29] Stops tenser laxer
Kugu Nganhcara (Middle Paman) [30] Voiced stops stop fricative
Nukunu (Thura—Yura) [31] Nasals, Laterals prestopped plain
Yadhaykenu (Nothern Paman) [32] Laterals plain flapped

A general fact about sound change is that when two phonemes merge, it is possible
for phonetic correlates of the original contrast, which are manifested in other segments,
to remain in place and become contrastive. This has occurred in multiple branches of PN,
as phonemic vowel length is lost while its erstwhile phonetic correlates on the following
consonant remain and become distinctive. Examples are cited in Table 2.

In the cases cited in Table 2, the complete merger of the length contrast in the tonic
vowel is associated with an increase in contrastiveness in following consonants. In such
cases, the FL of the length contrast in tonic vowels falls (to zero) while the FL of manner
of articulation contrasts (including voicing and fortition) in the following consonant rises.
Consequently, there is a trade-off relationship between FLy, the FL of tonic vowel length,
and FLc, the FL of post-tonic consonantal manner of articulation.

This trade-off is of a very specific kind, in which the complete merger of all short/long
vowel pairs reduces FLy to zero. We will refer to this as a trade-off with contrast collapse.
Other trade-offs are possible, however. If a length contrast is lost only in certain vowels,
and/or only in certain contexts, then FLy would fall (though not to zero), and in such cases,
FL¢ could be expected to rise if the consonants become more contrastive when they follow
the vowels that do merge. This scenario would give rise to a second kind of trade-off. We
will refer to this second kind as a trade-off with contrast maintenance.

The two studies that we present below examine the evolution of the FL of tonic vowel
length contrasts and of contrasts in the following consonant in PN.

Study 1 establishes that these FL variables contain significant phylogenetic signals.
One implication of this is that our data are consistent with an evolutionary process in which



Entropy 2022, 24, 507

50f17

smaller changes in FL—both falls and rises—have been more common than larger changes.
More detail is given in Section 2.2 below.

Study 2 examines FL trade-offs with contrast maintenance. We test the hypothesis that
FLy and FL¢ are negatively correlated in PN. FL¢ is defined in terms of the manner of
articulation of post-tonic consonants, and we expect FL¢ to correlate negatively with FLy
for the phonetic and historical reasons introduced above. We also examine FLp, the FL of
place of articulation of post-tonic consonants. As research on PN languages has identified
no particular association between vowel length and consonant place, our hypothesis is that
FLp will show no significant correlation with FLy.

Table 2. Examples of post-tonic consonant contrasts created upon the merger of length distinctions in
tonic vowels of Pama-Nyungan languages. Key: T short stop, TT long stop, D voiced stop, Z spirant,
N nasal, NN long nasal, DN prestopped nasal, ND nasal+stop, L lateral, DL prestopped lateral, V_
after erstwhile short vowel, and VV_ after erstwhile long vowel. See the references for additional
details and conditioning of the tabulated sound changes.

Language (Subgroup) Original C V_ Vv_
Warumungu (Warunmungic) [33] T TT T
Wik-Muminh (Middle Paman) [29] T (non-apical) T D
Northern Paman subgroup [32,34,35] T (non-apical) T Z
Lamalama, Umbuygamu (Lamalamic) [36] /k/ /k/ /h/
Kugu Mumminh (Middle Paman) [33] N NN N
Arandic subgroup [37,38] N DN N
Walangama (Norman Paman) [39] N DN N
Olgolo (Southwest Paman) [40] N DN N
Lamalama (Lamalamic) [36] N ND N
Rimanggudinhma (Lamalamic) [36] N D N
Thura-Yura subgroup [31] L DL L

2. Materials and Methods
2.1. Functional Load Data in Pama—Nyungan

We estimated the FL for vowel length (FLy), consonant manner (FL¢), and consonant
place (FLp) in domains comprised of a tonic vowel followed by a single, intervocalic
consonant in a set of 90 Pama-Nyungan languages listed in Appendix A. To calculate
the FL, we used both the unnormalized formula in (2) and the normalized formula in (3).
In cases where we intended to be specific, we refer to the unnormalized values as FL{;, FL{.,
FL} and the normalized values as FLY,, FL#, FL}. In most cases though, when the point
under discussion applies equally to both, we write FLy, FL¢, FLp.

At the current stage of documentation of global linguistic diversity, every major
language family contains many low-resource languages for which data are scarce [41].
As a consequence, studies of FL, such as ours, which aim for a coverage that spans whole
families, will face limits on the data available. This is true in the case of Pama—-Nyungan.
For most languages in our dataset, the available corpora are lexical lists. As we will see in
Section 3, this does not prevent clear results from emerging, and we return to discuss the
reasons why in Section 4.1.

Correspondingly, our FL estimates were based on lexical datasets from which we
extracted instances of the domain of interest. The lexicons contained between 208 and 3215
domain instances (mean 774 and median 605). The 90 languages studied were selected by
taking the 112 PN lexicons studied in [42] and keeping only those that (1) have some degree
of tonic vowel length contrast (since we want to study changes in FL that do not involve
complete mergers) and (2) that have greater than 200 domain instances. A representative
tree of these 90 languages is shown in Figure 1.
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Figure 1. Pama-Nyungan tree containing the 90 languages used in this study, inferred from lexical
cognacy judgements. Displayed here is a single, maximum clade credibility tree, i.e., the one tree within
the 1000-tree sample that most adequately represents the most frequently recurring subgroups in all
of the trees of the sample.

When classifying vowels as short or long, we regarded sequences of two adjacent
short vowels as one long vowel, and sequences of /uwu/ and /iji/ as long vowels, since a
tradition followed in some Australianist analysis is to represent long high vowels [u:] and
[i:] as phonemic vowel-glide-vowel sequences (e.g., ([43], p. 24), ([44], p. 91)).

Phonemically long or geminate consonants, and phonemically pre-stopped sonorants,
have been analysed as both mono- and bi-segmental units in the Australianist literature [45].
Here, we were guided by the kinds of historical developments that we wish to study, and we
classed them as single segments.

The FL data obtained for the 90 PN languages are reported in Appendix A.

2.2. Phylogenetic Analysis

As languages are related to one another, it is not statistically valid to treat cross-
linguistic observations as independent [46]. Quantitative phylogenetic methods [47] take
genealogical relatedness into account in a principled and statistically sound manner. Our
two studies use phylogenetic techniques in order to make valid inferences from the cross-
linguistic FL data in PN.

Study 1 assesses the degree of phylogenetic signal in FLy, FLc, and FLp. The phy-
logenetic signal is a measure that compares the variation in an observed variable against
its expected variation if it evolved along a phylogenetic tree, ¢, according to a Brownian
motion process. In Brownian motion, the value of a variable is in constant flux. Positive and
negative changes are equally likely at all times, and small changes are more likely than large
ones. A phylogenetic signal will be stronger when the variable in question actually did
evolve along the tree, and less strong if it was influenced by lateral transfer as in borrowing,
especially borrowing among languages that are only distantly genealogically related.

The phylogenetic signal will be stronger when the variable evolved along the specific
tree t, to which the data are being compared and not some other tree, t'. Furthermore, it
will be stronger when evolution was similar to Brownian motion, so that the value of the
variable had equal probabilities of shifting up or down at any point, as opposed to (for
example) being constrained within some tight range, so that at extreme outer values, there
was a greater chance for the variable to evolve back towards the central value than further
outwards. For a more technical description of phylogenetic signals written for a linguistic
readership, see [42,46].

Here, we measure the phylogenetic signal, using the picante package in R [48], accord-
ing to a standard two-step procedure described in Blomberg et al. [49]. First, the variation
in the data is compared to a randomized baseline in which the shape of a previously
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determined tree t plays no role in structuring the data. The null hypothesis is that, relative
to the structure implied by the tree, the data are simply random; the alternative hypothesis
suggests patterns like the tree.

For example, a phylogenetic signal is considered to be evident at a p = 0.05 level if the
variation in the real data matches the tree better than 95% of the randomized datasets. Next,
if the data has been confirmed as significantly differing from randomness, then we use the
statistic, Blomberg’s K to measure the strength of phylogenetic signal. (For mathematical
details of the calculation of K, see [42,49].) Blomberg’s K takes a value of 1 if the variation in
the data accords perfectly with the tree ¢, and a minimum value of 0 if the data are perfectly
randomly distributed relative to t. Values in excess of 1 are possible if FL data values are
highly clumped within subgroups of the family.

When calculating a phylogenetic signal, reference must be made to a tree, ¢. In our case,
the aim is to compare FL data to the PN family tree. However in linguistics, there is uncer-
tainty regarding the details of this tree. Uncertainty about the details of trees is common in
phylogenetic research and is termed phylogenetic uncertainty. Here, we employ a standard
approach to account for phylogenetic uncertainty, by measuring the phylogenetic signal
with respect to not one tree f but a sample of 1000 highly-likely family trees t1, ¢, . . ., f1000-
This generates 1000 tests against randomness, followed by 1000 estimates of K, which
provide a distribution describing its likely value. Our tree sample t1, 5, ..., t1g00 comprises
1000 dated phylogenetic trees from the posterior distribution inferred by Bowern [50] and
described further in Macklin-Cordes et al. [42]. The trees were inferred from cognate data
from which known borrowings were excluded [19,20].

Study 2 examined the phylogenetic Pearson’s correlation [51] between FLy and FL¢
and between FLy and FLp. This test is conceptually parallel to a regular Pearson’s corre-
lation; however, it also takes into account the specific kinds of non-independence caused
by genealogical relationships between languages. As a consequence, the results reflect
correlations not only between the values of traits in individual modern languages but also
between values characteristic of subgroups at all levels in the tree. As such, the results for
a pair of variables can inform us about the strength and direction of linked relationships
that characterize the language family as a whole, through its history. When we calcu-
late the statistics, as with our estimate of the phylogenetic signal, we take phylogenetic
uncertainty into account by performing the correlation test in reference to the sample of
1000 highly-likely trees.

Most statistical tests require assumptions to be made about the data. The test we use
in study 2 assumes that FLy, FLc, and FL, evolve along a phylogeny following Brownian
motion. Given the results that we obtained in Study 1 for Blomberg’s K (see Section 3),
the assumption is well motivated. We used the phytools R package [52] to estimate the
covariance matrix of the Brownian motion on each tree in the sample, giving a sample from
the posterior distribution of Pearson’s r correlation. The p-values reported were computed
using the posterior mean estimates and correspond to testing the null hypothesis that the
correlation is zero against the alternate hypothesis that the correlation is non-zero.

3. Results

Study 1 The statistical significance of the presence of phylogenetic signal was mea-
sured to three digits of accuracy, and for all FL variables and all trees, the highest p-value
was p = 0.001, indicating that a phylogenetic signal was significantly present. The strength
of the phylogenetic signal as measured by Blomberg’s K was very close to 1 for FLy, FLc,
and FLp, as shown in Table 3, both for the normalized and unnormalized versions of the
FL measure.
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Table 3. Phylogenetic signal in FLy, FL¢, and FLp, measured using Blomberg’s K and a sample of
1000 reference PN trees.

Functional Load Measure Mean K std.dev of K
UNNORMALIZED FL

FL of tonic vowel length (FLY,) 0.972 0.036

FL of post-tonic consonant manner (FL{.) 0.956 0.038

FL of post-tonic consonant place (FL}) 0.960 0.030
NORMALIZED FL

FL of tonic vowel length (FLY,) 0.997 0.039

FL of post-tonic consonant manner (FL{.) 1.181 0.035

FL of post-tonic consonant place (FL}) 1.010 0.033

To place these K values in context, Macklin-Cordes et al. [42] examined the lexi-
cal Markov chain transition probabilities of biphones (two-segment sequences) in PN
and found mean K values of 0.54 or mean K of 0.59 when segments were binned into
groups by place or manner of articulation. Macklin-Cordes and Round [46] examined the
relative frequencies of dental versus palatal consonants in word initial and intervocalic
positions in PN and found mean K values from 0.78 to 1.32 word-initially and from 0.34 to
0.70 intervocalically.

Dockum [53] examined phoneme frequencies and biphone Markov chain transition
probabilities in languages of the Tai family and found mean K values of 0.71 and 0.68,
respectively. Further afield, Blomberg et al. [49] examined 121 biological traits of a wide
variety of plant and animal organisms, finding mean K values of 0.35 for behavioural traits,
0.54 for physiology, and 0.83 for traits related to body size. Taken in this context, our results
suggest that the evolution of FL is very well described by Brownian motion process along
the PN tree.

Study 2 One consequence of the high levels of phylogenetic signal found in FL, is that
statistical analysis, such as the measurement of correlations should be carried out using
phylogenetic comparative methods [46]. Phylogenetic Pearson’s correlation (Table 4) was
significant and negative between FLy and FL¢ but did not reach significance between FLy,
and FLp, in accordance with our hypotheses. This was true for both for the normalized
and unnormalized versions of FL.

Table 4. Phylogenetic Pearson’s correlation between FLy, FLc, and FLp.

Functional Load Measures r 95% Interval 2
UNNORMALIZED FL

FLY, versus FL{ —0.28 [-0.46 —0.08] 0.006
FLY, versus FL} 0.03 [—0.18 0.23] 0.78
NORMALIZED FL

FLY, versus FL{ —0.50 [-0.64 —0.33] 5x1077
FLY, versus FL} —0.19 [—0.38 0.02] 0.08

4. Discussion

The studies in this paper have examined language diachrony at a statistical level.
In doing so, we contribute to a more precise, quantitative characterization of diachronic
typology. Specifically, we studied the historical dynamics of FL, which is a quantitative
characterization of the contribution of specific contrasts to distinctiveness in the lexicon.

We established that the FL of certain variables evolves according to non-independent
stochastic processes: they were found to change in a linked, statistically correlated fashion across
almost a hundred languages and thousands of years of history. Moreover, we demonstrated
that FL exhibited interesting historical dynamics that are deserving of further investigation not
only at values close to zero, which have been the focus of prior work but at higher values as well.
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Recent research has confirmed a long-standing conjecture that contrasts with low FL
are particularly prone to merger [5,14-16], which is to say that FL is more likely to fall to
zero from a lower value than from a higher one. Efforts at explaining this phenomenon
have focused on homophony avoidance, an account that is specific to FL falling to zero and
doing so in the domain of whole words [5,17]. However, our findings suggest that there
may be nothing special about FL falls as opposed to rises, and changes to zero as opposed
to other values. In addition, the word is not the only domain in which causally interesting
effects of FL. may be active.

Consequently, although it was not our primary focus here, our findings suggest
that recent efforts may be focusing on too narrow a research question and consequently
entertaining a set of explanatory accounts that will generalize only poorly to other, related
phenomena. Future research will benefit from broadening its scope beyond the recent,
more narrow focus on FL, which falls to zero in whole words.

We now take up three additional topics for expansion and emphasis.

4.1. High Degree of Phylogenetic Signal in FL

Phylogenetic signals have recently been shown to be present in phonotactic biphone fre-
quencies, phoneme frequencies, and contextual ratios of places of articulation [42,46,53-55].
These studies reveal that the frequencies of phonological structures pattern with genealogy.
Here, we find a high level of phylogenetic signals also in FL—that is, in the contrastive
function that phonological structures serve. Interestingly, we find that the phylogenetic sig-
nal in the FL measures examined here was very close to 1 and closer than the values found
in studies of phonological structures. Two questions can be posed in response: why did we
find a strong phylogenetic signal in FL, and why is it even stronger than in structural traits?
Any answer at this stage of research is necessarily speculative; however, the observations
we offer here may point to useful lines of future inquiry.

Why did we find a strong phylogenetic signal in FL in the data that we used, bearing
in mind that our data (1) are sourced from lexical lists of word types, not tokens; (2) are
sourced from lists that are short, mostly numbering in the hundreds of items, not thousands
or tens of thousands; and (3) examine FL in domains comprised of a tonic vowel and
following consonant, not whole words. One prior expectation might have been that since
the datasets are so small and since they do not examine the full words that are the focus of
much recent research, they would be awash in statistical noise and exhibit little patterning
of significance. Evidently, this is not the case, however, and we believe there may be reasons
why not.

Much research on FL has focused on the hypothesis that FL exerts an influence
on sound change through a mechanism of homophony avoidance [1,5,15,17]. Since ho-
mophony is a relationship that holds between words, the effect of such a mechanism may
be to promote FL within the domain of whole words. Furthermore, as a consequence of
that mechanism, sound changes would be less likely to occur, the more they altered the
FL within words. However, whether this hypothesis is correct or not, other mechanisms
should not be ruled out.

For instance, during speech processing, words become activated cognitively well
before the listener hears the entire word [56]. Consequently, any sound change that caused
a loss of a contrastiveness early in a word could potentially impair the ease of processing,
even if it did not result in homophony. Accordingly, if we are prepared to entertain the
existence of homophony avoidance as a causal factor in sound change, it is not unreasonable
to entertain the existence of an avoidance of loss of contrastiveness early in the word as an
additional factor in sound change (for supporting evidence, see [57,58]).

By this line of reasoning, since our data focuses on the first vowel and following
consonant of PN words, i.e., contrastiveness early in the word, it is not altogether sur-
prising that our results were significant despite the fact that we did not examine whole
words. (PN roots are typically disyllabic and affixation is suffixal [59]; the initial consonant
position, before the tonic vowel, permits only a subset of the contrastive consonants found



Entropy 2022, 24, 507

10 of 17

elsewhere [45,60], which potentially increases the importance placed on maintaining the
subsequent VC contrasts.)

Our data come from short word lists, which might be expected to supply FL values
that are, at best, a noisy approximation of the more precise FL values obtainable from larger
lists or from token-based corpus data [61,62]. However, the words that appear in short
wordlists are heavily skewed towards the most frequent words of a language, and these
are the words that listeners would process most often and would have learned the earliest
during acquisition. If we grant that words of higher frequency and earlier acquisition are
likely to play an especially significant role in the mechanisms behind sound change, then it
follows that even short wordlists will plausibly contain rich evidence of the contrastiveness
that matters most.

Our results also align with the findings of [61] in that, above a minimum threshold
for wordlist length, even lists of only a few hundred words contained phonemic distri-
butions that conformed closely to the full lexicon, when randomly sampled from a larger
lexicon containing thousands of items. Thus, it is not as surprising as it might first seem
that we obtained clear results and a strong phylogenetic signal from the limited data we
had available.

Our second question was, why does the phylogenetic signal appear higher in FL than
in structural traits of phonology, such as phonotactics? To answer this, we return to the two
causes of stronger/weaker phylogenetic signals described in Section 2.2.

First, a phylogenetic signal is stronger when computed relative to the truest tree and
lower otherwise. However, the trees we used here for PN while studying FL are the same
as those used by Macklin-Cordes et al. [42] for phonotactics, and thus a difference in the
trees used is unlikely to be the cause of the differences in phylogenetic signal.

Second, a phylogenetic signal is stronger if the change process has the properties of
Brownian motion. In Brownian motion, small changes are more likely than large changes,
and positive and negative changes are equally likely. We take these aspects in turn.

Both FL and structural traits—as with phonotactic frequencies—change as the lexicon
changes. Any lexicon is constantly affected in small ways by neologisms and the obso-
lescence of words. Additionally, they may be affected by borrowing, which can occur at
various rates, and by sound changes, which can occur in highly specific contexts or more
sweeping ones. This mixture of factors supports an expectation that small changes will be
frequent and larger changes less so, and it is not obvious that there would be significant
differences in this regard between FL or traits, such as phonotactic frequencies.

It now remains to consider whether positive and negative changes in values are equally
likely. For FL, positive /negative changes in values entail that a contrast becomes more/less
central in supporting the distinctiveness of strings in the lexicon. There is a lower bound
at zero; however, in our study, we did not include that lower bound. Aside from that
lower bound, we are not aware of constraints that would make the likelihood of positive
or negative changes uneven at any point, and consequently the stochastic process that
describes changes in FL could genuinely be quite close to Brownian motion. For structural
aspects of phonology, however, the situation is different.

Structural features are subject to constraints: there are less likely and more likely
structures, both in universal and in lineage-specific terms [45,63]. Consequently, for in-
stance, the frequency of a highly marked structure should be more likely to decrease than
to increase. This kind of inequality in the likelihood of positive and negative changes to
values—irrespective of the actual sources, such as production, perception, and cognition—
entails a departure from Brownian motion, which ought to weaken the phylogenetic signal.
This, we suggest, may be why structural traits appear to have a lower phylogenetic signal
compared with FL. If this line of reasoning is correct, we would expect similar results to
emerge from studies of other language families beyond PN.
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4.2. Transphonologization and the Flow of Contrastiveness

Transphonologization [64] (cf. rephonologization [65] and cheshirization [66]) is a term
given to sound changes in which a contrastive function is preserved; however, the locus
of the contrast—the segments or features that instantiate it—changes. Here, we studied a
closely related phenomenon in which contrasts do not necessarily disappear or emerge in
their entirety, but the relative contrastive workload of them (their FL) does shift from one to
another. One way to view this phenomenon is in terms of a diachronic flow of FL from one
contrast to another (cf. [67]). The fact that we are able to quantitatively detect the presence
of this flow of contrastiveness through a language family as large and old as PN suggests
the potential of new avenues for investigating the dynamic flow of contrastiveness through
phonological systems as they evolve over time.

One question that arises is whether our findings in PN might reflect some strong
preference in language for the conservation of contrastiveness in which case, the flow of
FL from one contrast to another might be regarded as an automatic consequence of one
contrast undergoing a significant decrease in FL. Although our results alone cannot answer
this question, we doubt that such a principle exists in any strong form. Certainly, in many
mergers, the overall contrastive capacity of a language is simply reduced, as the FL of one
contrast falls but no other FL rises to balance it.

In the case of PN tonic vowels and post-tonic consonants, we suggest that the cause of
recurrent historical flow of FL lies in particular phonetic factors that are common across PN
languages: a synchronic correlation between phonetic tonic vowel duration and phonetic
post-tonic consonant manner, even in systems in which only the vowel-durational aspect is
tied to a synchronic phonemic contrast; when the phonetic vowel-durational differences
are neutralized diachronically, causing the phonemic vowel length contrasts to collapse,
the phonetic manner differences—which still correlate with the same lexical distinctions
that vowel length had signalled—become phonemic. On this view, it is the phonetics of the
vowel-consonant strings that furnish the conditions for a natural flow of FL from vowel
to consonant.

4.3. On Sapir’s ‘Drift’: The Non-Accidental, Parallel Evolution of Related Languages

It is a century now since the appearance in print of Edward Sapir’s hypothesis that
languages undergo parallel grammatical evolution for several centuries after they split [68].
Providing anything more than anecdotal evidence in support of Sapir’s hypothesis has long
been difficult [69-71], and some apparent cases may be due to language contact [72,73].
Dunn et al. [74] used phylogenetic methods to examine patterns of word order evolution in
different language families; however, the study did not produce an identifiable cause for
those patterns.

Ideally, evidence in support of Sapir’s drift should not be anecdotal but rather be
statistically significant across a language family; it should not be reducible to the effects
of language contact, and it should be relatable to an identifiable cause. The current study
meets these three criteria. It detects parallel changes in FL that are instantiated statisti-
cally across 90 languages within the PN family whose time depth is estimated at around
5000-6000 years [18-20]; thus, the evidence is not anecdotal.

The data pattern fits tightly with phylogeny, and thus is unlikely to be due to contact
(cf. our note in the next paragraph). Furthermore, we identified a causal basis for this, in the
common phonetics of PN tonic vowel-consonant sequences. Thus, we believe our results
to be one of the fullest confirmations yet that Sapir’s conjecture was essentially correct: that
under the right circumstances, linguistic systems can undergo parallel evolution after they
split, not merely for centuries but for millennia.

A reviewer asks about the situation in which language contact closely mimics the
pattern of phylogeny. If contact did pattern perfectly with phylogeny (such that languages
only borrowed from their very closest relatives), then its effects would be indistinguishable.
However, languages also borrow from geographic neighbours that are less closely related.
It is hard to conceive of borrowing of lexical items whose impact on contrastiveness has the
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phylogenetic signal we find here in the absence of vertical inheritance. At the very least,
the burden of proof is on the advocate of a language-contact account, given that the data
pattern is in very close accord with expectations from vertical inheritance, and there is an
accompanying explanation in terms of phonetics and sound change for why this should
be so.

It has been suggested by Joseph [75] that drift in phonology may be due to a narrowing
of the range of variation inherited from a proto-language. In the PN changes described
here, however, the flow of FL from vowel length to consonant manner is not due to
any narrowing of variation in FL in proto-PN (indeed it is not entirely clear what it
should mean for FL to have a range of variation). Nor, when the PN developments are
viewed in terms of phonological substance are they a matter merely of narrowing variation.
Although contrasts in vowel length are lost, new variation is introduced in the inventory of
contrastive consonant manners and into the set of relationships that can hold between the
length of a tonic vowel and the manner of post-tonic consonants.

In reality, Joseph’s proposal would appear to reduce to a fact, well-recognised in
evolutionary biology, that incomplete lineage sorting (i.e., the inheritance of variation from
a proto-taxon into its descendant) can result in the appearance of convergent evolution [76].
However, this does not entail that all convergent evolution is due to incomplete lineage
sorting (see also [77]).

Another important source can be the existence of dependencies within a system that
are inherited along with its substance [78], which will favour certain outcomes over others
in descendent systems as has been observed in protein evolution; for example, ref. [79].
In PN, certain phonetic dependencies between tonic vowel length and post-tonic consonant
manners were inherited alongside the phonological substance itself. In the descendent
systems, in the event that vowel length was lost, the inherited dependencies favoured the
rise of new, contrastive consonant manners.

5. Conclusions

This paper joins a growing body of work regarding the application of computational
phylogenetic methods to phonological data. It also represents the first phylogenetic study
of FL.

We showed that there was a significant phylogenetic signal in FL, which has impli-
cations for a better understanding of the dynamics of sound change. Further, we showed
that the FL of tonic vowels and post-tonic consonants were negatively correlated in PN
and that this maps closely to a sample of highly probable PN family trees. We also introduce
the idea of the flow of contrastiveness between subsystems of the phonology in different
languages, which is connected to the concept of transphonologization, and we claim that
this represents a concrete example of Sapir’s drift.

Setting our gaze beyond PN, while not all sound changes are associated with the
phonetic conditions that promote the flow of FL, there are many that appear to be, and it
will be valuable to apply the methods we introduced here to study them. In time, this may
lead to a more general understanding of how FL can flow within phonological systems over
long time horizons. Promising future applications of our approach include the investigation
of other suspected diachronic trade-offs, such as the rise of phonemic tone and register
(such as contrastive phonation) in Southeast Asia tied to losses of consonantal laryngeal
distinctions [3,80-82].

Author Contributions: Conceptualization, methodology, project administration, supervision, and
investigation, E.R., R.D. and R.J.R,; software and formal analysis, E.R. and R.J.R.; resources and data
curation, E.R.; writing—original draft preparation, E.R.; review and editing, E.R., R.D. and RJ.R.;
visualization, E.R.; and funding acquisition, E.R. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Max Planck Institute for the Science of Human History
and British Academy grant number GP300169 to E.R.



Entropy 2022, 24, 507

13 of 17

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: FL data are supplied in Appendix A. PN trees were published with [42]
and are available at https:/ /zenodo.org/record /3988775 (accessed on 15 December 2021).

Acknowledgments: We are grateful to the editors and three anonymous reviewers for their insightful
and helpful comments. Versions of this paper were presented at the Edinburgh Symposium on
Historical Phonology 2021 and the Annual Meeting of the Australian Linguistics Society 2021, and
we are grateful to the audiences at these meetings for their valuable comments. This research was
initiated at the workshop, An evolutionary science of word and sound systems, hosted by the Max
Planck Institute for the Science of Human History, Jena, in November 2019.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

FL  Functional load
PN Pama-Nyungan

Appendix A. Functional Load Data

Table A1. Functional load estimates and the number of observations on which they are based in
Pama-Nyungan languages A-M.

Language FLY, FLY FL} FLY, FL} FL} N
Adnyamathanha 0.00728 229877 1.69328 0.00119 0.37569 0.27673 1424
Anguthimri 0.15786 0.89040 0.94600 0.02788 0.15725 0.16707 255
Bakanh 048216 0.75675 1.70156 0.08106 0.12723 028607 379
Bidyara 0.02048 1.04399 1.43908 0.00418 0.21327 0.29397 466
Bilinarra 0.02401 1.60119 1.38537 0.00454 0.30258 0.26180 1071
Biri 0.01129 1.04712 1.30791 0.00225 0.20869 0.26067 387
Bularnu 0.01029 1.81420 1.53169 0.00182 0.32136 027131 514
Butchulla 0.15259 1.20493 0.83980 0.03047 0.24058 0.16768 303
Dhangu 0.53689 1.30565 1.20428 0.09303 0.22623 0.20866 222
Dhay’yi 0.61997 1.33455 1.35632 0.10625 0.22872 0.23245 636
Djabugay 0.05108 1.26909 1.16098 0.01032 0.25636 0.23452 641
Djapu 0.55242 1.42580 1.45573 0.09347 0.24125 024632 563
Djinang 0.00835 1.75735 1.27597 0.00153 0.32242 0.23410 1459
Duungidjawu 0.35925 0.93156 0.91288 0.06575 0.17050 0.16709 340
Dyirbal 0.01899 1.20677 1.22623 0.00394 025013 0.25416 339
Gamilaraay 0.47639 1.09200 0.66671 0.09232 021161 0.12920 619
Gidabal 0.38315 1.20855 0.84965 0.07695 0.24271 0.17063 863
Gumbaynggir 0.68190 1.14161 0.56069 0.12949 021678 0.10647 260
Gunya 0.08592 1.67525 1.87928 0.01492 0.29087 0.32629 421
Gupapuyngu 0.70325 1.65965 1.38970 0.11275 0.26610 0.22281 1426
Gurindji 0.14136  1.68390 1.40002 0.02591 0.30864 0.25661 2783
Guwamu 0.15154 097184 1.28326 0.03000 0.19238 0.25402 284
Jaru 0.14610 1.65095 1.23854 0.02741 0.30974 0.23237 1459
Jiwarli 0.10655 1.49967 1.54472 0.01963 0.27631 0.28460 747
Kalkatungu 0.17358 1.45094 1.66749 0.03086 0.25799 0.29650 937

Karajarri 0.01130 1.58514 1.37181 0.00220 0.30850 0.26698 1217



https://zenodo.org/record/3988775

Entropy 2022, 24, 507 14 of 17

Table Al. Cont.

Language FLY, FLY FL} FLY, FL% FL} N
Kariyarra 0.00794 1.51189 1.34208 0.00153 0.29066 0.25802 252
Kartujarra 0.10259 1.59830 1.62878 0.01872 0.29170 0.29726 526
Kok Nar 0.02440 1.02459 1.03786 0.00447 0.18781 0.19024 213
Koko Bera 0.00760 1.12514 1.14449 0.00139 0.20631 0.20985 428
Kugu Nganhcara 0.23071 1.20115 1.52446 0.03814 0.19859 0.25204 359
Kukatj 0.49247 137132 1.26212 0.08151 0.22696 0.20888 422
Kukatja 0.17702 1.69195 1.55646 0.03164 0.30243 0.27821 2339
Kuku Yalanji 0.00555 1.20557 1.06402 0.00113 0.24462 0.21590 1070
Kurrama 0.15740 1.47509 1.33256 0.02918 0.27348 0.24705 495
Kurtjar 0.35694 1.09790 0.90245 0.05715 0.17579 0.14450 405
Kuugu Ya'u 0.82180 0.96787 1.82687 0.14159 0.16676 0.31476 672
Malkana 0.09060 1.35974 1.51980 0.01719 0.25805 0.28843 208
Mangala 0.06827 1.58519 1.31169 0.01312 0.30471 0.25214 749
Martuthunira 0.12168 1.59684 1.41252 0.02230 0.29269 0.25891 633
Mirniny 0.05723 1.49353 1.64556 0.01071 0.27940 0.30784 259
Mudburra 0.12114 1.57266 1.36196 0.02255 0.29269 0.25347 509
Muruwari 0.29888 1.30293 1.23929 0.05555 0.24215 0.23032 873

Table A2. Functional load estimates and the number of observations on which they are based in
Pama-Nyungan languages N-Z.

Language FLY, FL% FL} FLY, FL?{ FLY N

Ngaanyatjarra  0.30847 1.65731 1.54372 0.05400 0.29015 0.27026 1125
Ngadjunmaya 0.27871 1.58111 1.52464 0.05123 0.29060  0.28022 512

Ngamini 0.00859 1.65769 1.62787 0.00167 0.32135 0.31556 453
Ngardily 0.04398 1.54071 1.41918 0.00838 0.29355 0.27040 274
Ngarinyman 0.04977 1.60920 1.37125 0.00949 0.30687 0.26150 870
Ngarla 0.05433 1.65036 1.52167 0.01026 0.31151 0.28721 940
Ngarluma 0.00949 154984 1.51068 0.00179 0.29179 0.28442 633
Nhanda 022128 1.61692 198274 0.03762 0.27491 0.33710 427
Nhangu 0.52706  1.62134 1.35121 0.08822 0.27137 0.22616 952
Nukunu 022996 1.88475 157220 0.03797 0.31122  0.25961 282
Nyamal 0.01096 1.66757 1.58458 0.00210 0.31958 0.30368 574
Nyangumarta  0.05591 1.63689 1.53035 0.01040 0.30451 0.28469 1002
Nyawaygi 0.44779 091693 0.84704 0.08627 0.17665  0.16318 339
Olkol 0.00913 1.89732 1.52545 0.00140 0.29102  0.23398 992
Panyjima 0.03319 1.52554 1.53691 0.00621 0.28545 0.28758 327
Payungu 0.12035 1.44293 1.48710 0.02226 0.26693  0.27510 514
Pintupi 0.25729  1.62037 1.49798 0.04605 0.29003 0.26812 3065
Purduna 0.18607 1.48411 1.64113 0.03364 0.26835 0.29675 540
Ritharrngu 0.52798 1.59391 1.28479 0.08893 0.26846  0.21640 841
Sth. Paakintyi  0.48182 1.31033 1.58642 0.08352 0.22713  0.27499 748
Thaayorre 0.39795 094581 1.29668 0.06750 0.16043  0.21995 873
Thalanyji 0.11295 1.41200 1.63985 0.02083 0.26037  0.30239 467
Tharrkari 0.10105 1.80780 1.46815 0.01760 0.31484 0.25569 371
Umpila 0.72633 0.89534 1.79211 0.12688 0.15640 0.31305 473
Waalubal 0.38811 1.21112 0.84641 0.07790 0.24309  0.16989 864
Walmajarri 0.07529  1.69469 1.53069 0.01387 0.31216 0.28195 2361
Wangkatja 024288 1.64652 1.54871 0.04329 0.29345 0.27602 1290

Wangkumara 0.03737 1.78415 1.49204 0.00662 0.31614 0.26438 480




Entropy 2022, 24, 507 15 0f 17

Table A2. Cont.

Language FLY, FLY FL} FLY, FL} FL} N
Warlmanpa 0.03193 1.76883 1.54636 0.00582 0.32218 0.28166 603
Warlpiri 0.07788 1.71719 1.54913 0.01416 0.31215 0.28160 3215
Warluwarra 0.06211 1.62498 1.60851 0.01112 0.29084 0.28789 731
Warnman 0.03387 1.61920 1.55705 0.00628 0.30022 0.28870 607
Warrgamay 0.46606 1.16642 1.22445 0.08702 0.21779 0.22862 470
Warriyangga 0.04881 1.46336 1.55668 0.00925 0.27739 029508 273
Watjarri 0.09550 1.55502 1.58478 0.01742 0.28363 0.28906 787
Wayilwan 0.44092 1.11222 0.69925 0.08697 0.21937 0.13792 489

Western Wakaya 0.02551 1.47790 1.34683 0.00473 0.27429 0.24996 696
Wik Mungkan 0.57906 0.91075 1.73335 0.09237 0.14529 0.27651 1411

Yadhaykenu 0.11810 1.39036 1.47400 0.02185 0.25730 0.27278 385
Yalarnnga 0.01281 1.47869 1.59614 0.00239 0.27589 0.29780 397
Yanyuwa 0.02768 1.53369 1.47708 0.00521 0.28837 0.27773 1351
Yaygir 0.62734 1.49029 1.00410 0.11443 0.27184 0.18315 658
Yidiny 0.01376  1.24001 1.08403 0.00278 0.25063 0.21910 964
Yindjibarndi 0.12691 147608 1.21215 0.02391 0.27804 0.22833 492
Yinhawangka 0.08024 1.65358 1.67820 0.01442 0.29713 0.30155 773
Yulparija 0.07799 1.65715 1.58184 0.01426 0.30302 0.28925 1234
Yuwaalaraay 0.61024 1.18542 0.80690 0.11517 0.22373 0.15229 1109
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