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Abstract: Chromosome karyotype analysis is of great clinical importance in the diagnosis and treat-
ment of diseases. Since manual analysis is highly time and effort consuming, computer-assisted
automatic chromosome karyotype analysis based on images is routinely used to improve the effi-
ciency and accuracy of the analysis. However, the strip-shaped chromosomes easily overlap each
other when imaged, significantly affecting the accuracy of the subsequent analysis and hindering
the development of chromosome analysis instruments. In this paper, we present an adversarial,
multiscale feature learning framework to improve the accuracy and adaptability of overlapping
chromosome segmentation. We first adopt the nested U-shaped network with dense skip connections
as the generator to explore the optimal representation of the chromosome images by exploiting
multiscale features. Then we use the conditional generative adversarial network (cGAN) to generate
images similar to the original ones; the training stability of the network is enhanced by applying the
least-square GAN objective. Finally, we replace the common cross-entropy loss with the advanced
Lovász-Softmax loss to improve the model’s optimization and accelerate the model’s convergence.
Comparing with the established algorithms, the performance of our framework is proven superior
by using public datasets in eight evaluation criteria, showing its great potential in overlapping
chromosome segmentation.

Keywords: overlapping chromosome segmentation; conditional generative adversarial network;
nested U-shaped network; multiscale feature learning; Lovász-Softmax

1. Introduction

Human chromosome karyotype analysis is of great diagnostic and prognostic value in
diseases. It is usually performed in clinical diagnosis, cancer cytogenetics, and the detection
of genetic abnormalities such as Edwards syndrome and Down syndrome [1,2]. The mor-
phology of chromosomes, such as extra or missing chromosomes, or the structural defects
of specific chromosomes can be directly linked to corresponding diseases; hence, chromo-
some karyotype analysis based on images plays a critical role in routine disease diagnosis
and treatment [3]. Figure 1 illustrates the process of chromosome karyotype analysis,
which consists of two main steps: segmentation and classification. The performance of the
segmentation can directly influence the accuracy of the classification afterward. Although
single chromosome classification could achieve high accuracy [4]. However, as shown in
the red circles in Figure 1a,b, for the overlapping chromosome segmentation is even more
challenging due to the ambiguity in the overlapping regions, which can greatly influence
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the accuracy of the chromosome karyotype analysis. Hence, in this study we mainly focus
on pushing the limit removing the restrictions of overlapping chromosome segmentation
and designing a highly efficient and accurate overlapping-chromosome segmentation
method to enhance the overall performance of the chromosome karyotype analysis.
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Figure 1. Chromosome karyotype analysis process. (a) The image of meta chromosome. (b) Segmen-
tation map of the chromosome image. (c) The sorted karyotype. The red circles mark the overlapping
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Since manual segmentation is both time and effort consuming and the accuracy highly
depends on the experience level of the analyst, over the past few decades, many algo-
rithms have been proposed to automatically segment the chromosome from the images
on computers [5]. Based on their principles, these segmentation methods can be roughly
classified into two categories: heuristic methods and learning-based methods. Heuristic
methods utilize manually tagged features, such as contour, pixels, and geometric features,
to perform segmentation [6–8]. Specifically, Ritter et al. utilized shape analysis and classi-
fication for chromosome segmentation and adopted global context and variant analysis
methods to solve complex and ambiguous cases [9]. However, it consists of two phases
and is somewhat cumbersome. Madian et al. used the contour analysis method and
constructed reasonable hypotheses for segmentation and separation [10]. Saiyod et al.
proposed an edge detection method that consisted of the flood fill, erosion, and canny
methods [11]; however, it only solved the touching chromosomes and not the overlap-
ping chromosomes. Some researchers usually use thresholding strategies for chromosome
segmentation [12–14], adopting a local adaptive histogram equalization technique to ob-
tain the appropriate threshold, to further enhance chromosome segments by reducing
the chances of pixel misclassification. However, these methods are susceptible to noise,
contrast, and poor resolution of the image. Gawande et al. applied a fuzzy C-means
clustering algorithm and watershed algorithm for chromosome segmentation, but it also
did not effectively separate overlapping chromosomes [15]. Sharma et al. adopted a combi-
nation of crowdsourcing for segmentation, but it required considerable effort and time to
separate chromosomes manually [16]. Lin et al. proposed a geometric feature to separate
chromosomes [17]; however, it could not automate chromosome segmentation well due to
the irregular shape of chromosomes. These methods can achieve impressive segmentation
results when manual features are properly tagged; however, they are very sensitive to the
shape and overlapping regions of the chromosomes. Moreover, since they do not consider
the untagged features, the performance and applicability of these methods are limited,
and it is difficult to implement them on large datasets. Meanwhile, Learning-based meth-
ods usually applied machine learning techniques to mine potential information from the
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images to perform chromosome segmentation and medical image analysis [18,19]. Some
representative examples include Pardo et al., who applied the fully convolutional network
(FCN) method for karyotype analysis [20,21]. However, it does not contain overlapping
chromosomes, therefore it was difficult to meet the clinical practice. Other researchers use
a U-shaped Network (UNet) for overlapping chromosome segmentation [22,23]. Chen et al.
proposed the shape learning method to segment both non-overlapped and overlapped
regions [24]. Altinsoy et al. proposed a raw G-band chromosome image segmentation
method using convolution network [25], but it did not work for overlapping chromosomes.
These methods can independently conduct chromosome segmentation when being trained.
However, limited by the architecture of the network, current learning-based methods only
utilize several layers’ features, and they do not take advantage of multiscale features to
adapt different chromosome scales. Hence, they do not perform well in overlapping chro-
mosome segmentation. Recently, Chen et al. proposed a multiscale adversarial network [26]
for fine-grained image categorization and achieved good classification performance. This
provides a new way of thinking about our work.

In this paper, considering the various scales and overlapping regions of chromosome
images, we demonstrate an adversarial multiscale feature learning (AMFL) framework that
employs a nested U-shaped convolutional neural network (NestedUNet) [27], conditional
generative adversarial network (cGAN) [28], and Lovász-Softmax [29] for overlapping
chromosome segmentation. Specifically, NestedUNet consists of UNets [30] of varying
depths and owns dense skip connectivity, making it capable of synthesizing multiscale
feature maps for segmentation. Hence, our AMFL framework utilizes NestedUNet to
explore the optimal representation of chromosome images by exploiting multiscale features
and fused features. Moreover, we consider the overlapping chromosome image segmenta-
tion as an images-to-image task, in which the source overlapping chromosome images are
translated to a confidence map to indicate the category information in the source images;
we, therefore, use cGAN to push the output distributions close to the ground truth for its
success in computer vision tasks, such as image deblurring [31] and image fusion [32]. Fi-
nally, to optimize the performance of the discriminatively trained overlapping chromosome
segmentation, we apply Lovász-Softmax, which is based on the convex Lovász extension
of the submodular loss, as the segmentation loss to achieve superior chromosome segmen-
tation performance and higher index scores compared to the traditional cross-entropy (CE)
loss. Additionally, we utilize the least-square GAN objective [33] to replace the original
GAN loss in the overlapping chromosome segmentation task to stabilize the training and
avoid model collapse. To verify the feasibility of our method, we carry out extensive
experiments to compare the performance of our AMFL framework with others. Results
show the superiority of our AMFL framework in this work in terms of visual perception
analysis and quantitative score comparison. The major contributions of this paper are
summarized as follows:

1. We present an adversarial multiscale feature learning framework to improve the
accuracy and adaptability of overlapping chromosome segmentation.

2. We use the conditional generative adversarial network to penalize the difference
between the generated decision map and the source image, pushing the generator to
produce a higher-confidence decision map for the segmentation task.

3. Instead of using the single-scale features to represent the chromosome images, we
carefully design a nested U-shaped network with dense skip connections as the
generator to capture multiscale features to explore the better representation of the
chromosome images.

4. We replace the common cross-entropy loss with the advanced Lovász-Softmax loss to
improve the model’s optimization and accelerate the model’s convergence.

5. We carry out extensive experiments and analyze different objective functions that
provided baselines for chromosome segmentation.



Entropy 2022, 24, 522 4 of 18

Results show the superiority of the present AMFL method and the loss function
adopted in this work in terms of visual perception analysis and quantitative score
comparison.

2. Materials and Methods
2.1. Network Architecture

In this paper, we consider the overlapping chromosome image segmentation as an
image-to-image task, in which the source overlapping chromosome images are translated
to a confidence map to indicate the category information in the source images. Compared
with the existing methods, we bring the adversarial learning to penalize difference between
the generated decision map and source image, pushing the generator to produce a higher-
confidence decision map for segmentation task. Moreover, the generator in our framework
is deeper than that of CNN-based methods, possessing higher representational capacity.
Specifically, as depicted in Figure 2, similar to the original GAN [28], our AMFL framework
consists of two modules: a generator and a discriminator. The generator is responsible for
exploiting multiscale features for segmentation by producing “fake” chromosome images.
While the discriminator serves to distinguish the “fake” images from the “real” ones by
adversarial learning. Once the discriminator is “fooled” by the generator, the network is
ready to segment chromosomes with high accuracy.
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(1) Generator: As shown in Figure 2a, we adopted the advanced NestedUNet as the
generator G, which consists of an encoder and a decoder. It takes a source chromosome
image as the input and outputs a multiclass one-hot map. Specifically, each node in the
graph represents a nested convolution block; the downward arrows, upward arrows, and
dotted arrows indicate 2 × 2 max-pooling, 2 × 2 up-sampling, and skip connections,
respectively. The skip connections merge the encoding and decoding features in the
channel dimension by tensor concatenation, enabling dense feature propagation. To better
comprehend the network connectivity, we denoted as xi,j the output of the node Xi,j. It can
be formulated in Equation (1):

xi,j =


N
(
D
(
xi−1,j), j = 0

N
([[

xi,k
]j−1

k=0
,U
(
xi+1,j − 1

)])
, j > 0

(1)

where function N (·) denotes a nested convolution block operation; D(·) and U (·) de-
note a down-sampling layer and an up-sampling layer, respectively; and [·] denotes the
concatenation layer. Intuitionally, we can see that the nodes at the level of j = 0 receive
only one input from the previous layer of the encoder, whereas the nodes at the level of
j > 1 receive the up-sampled output of j + 1 nodes from the lower skip connection and all
the outputs of the previous j nodes in the same skip connection. Therefore, a dense skip
connection was constructed and multiscale features are integrated to provide better feature
representation for the segmentation of overlapping chromosome regions with different
scales. Meanwhile, in order to better describe network parameters, the number of filters
was defined as: f = {64, 128, 256, 512, 1024}, and the number of input channels, middle
channels, and output channels of a nested convolution block were defined as follows:

Iij =


f (i), j = 0

f (i) · j + f (i), j > 0

Mij = f (i), Oij = f (i)

(2)

In Equation (2), Iij, Mij, Oij are the input channels, middle channels, and output
channels of the ijth node, respectively. Note that the middle channels are the output
channel of the first convolution layer and also the input channel of the second convolution
layer in the nested convolution block. To describe the network structure in detail, we
denote the convolution layer, batch norm layer, and rectified linear unit [34] as Conv, BN,
and ReLu, respectively. The nested Conv block is two Conv-BN-ReLu layers with a filter
size of 3 × 3, padding of 1, and stride of 1, which aims to keep the size of the feature map
consistent after each convolution operation. The last layer of convolution kernel size with
1 × 1, and the feature map of the last nodeis mapped into a confidence map using the
Softmax operation for producing a one-hot map.

(2) Discriminator: As shown in Figure 2b, inspired by the PatchGAN in [28], we used a
simplified fully convolutional neural network [21,32] as the discriminator D, which is able
to push the output’s distribution closer to the ground truth, making the generator produce
high-confidence segmentation maps. This discriminator tries to distinguish whether each
K × K patch in an image is real or fake, and then averages all responses convolutionally
across the image to provide the ultimate output of D. Specifically, it consists of five con-
volution layers with a filter size of 4 × 4 kernel and {64, 128, 256, 512, 1024} channels.
The first four convolution layers with padding of 2 and stride of 2, and the last two layers
with padding of 2 and stride of 1. Each convolution layer is followed by a Leaky-ReLu
parameterized by 0.2 except the last layer. Then a sigmoid function follow with the last
layer and can produce a binary output for discriminating “real” or “fake” images. Finally,
it is worth noting that the input of the discriminator is multichannel images created by
concatenating the source images and the segmented images (generator produced) in the
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channel dimension, aiming to provide prior information for better-discriminating features.
The generator and discriminator were alternately trained using the objective function
represented as follows.

2.2. Objective Function

(1) Lovász-Softmax: It can optimize the Jaccard index in the continuous optimization
framework [29]. Specifically, this method can substantially improve the accuracies of
semantic segmentation by optimizing the correct loss during training. Therefore, we
chose Lovász-Softmax as the loss of the generator, which can be simplistically defined in
Equation (3):

LLovasz−So f tmax =
1
C ∑

c∈C
∆Jc(m(c))∆ (3)

where m(c) is a vector of pixel errors for class c ∈ C aiming to construct the loss surrogate
to ∆Jc, it is defined by:

m(c) =

{
1− fi(c) if c = yi

fi(c) otherwise
(4)

In Equation (4), y is ground truth, and fi(c) is the predicted scores of the model that
is mapped to probabilities through a Softmax unit. ∆Jc is the set function encoding a
submodular Jaccard loss for class c, indicating a set of mispredictions. Specially, ∆ is the
surrogate for the minimization of ∆ with first-order continuous optimization, and the
elementary operations involved in the calculation of ∆ (sort) are differentiable.

(2) GAN loss: First and foremost, we needed to choose an appropriate loss function
for training our AMFL framework. It is well known that the regular GAN [35] loss is
always difficult to converge and can suffer from model collapse. We, therefore, adopted the
least-squares generative adversarial network (LSGAN) [33] as the loss function in our work,
which is more stable and can achieve better segmentation results by previous experimental
experience [29]. It is defined by Equation (5):

LLSGAN(D) = Ei,y∼Pdata(i,y)

[
(D(i, y)− 1)2

]
+Ei∼Pdata(i)

[
(D(i, G(i)))2

]
(5)

The adversarial learning process is also optimized through the LSGAN, which is
formulated in Equation (6):

LLSGAN(G) = Ei∼Pdata(i)

[
(D(i, G(i))− 1)2

]
(6)

Furthermore, in order to make the segmentation map as close as possible to the ground
truth, we adopted Lovász-Softmax loss for supervised segmentation. The objective function
for AMFL, therefore, can be defined by Equation (7):

min
D

L(D) = LLSGAN(D)

min
G

L(G) = LLSGAN(G) + λLLovasz−So f tmax
(7)

where λ controls the relative importance of the two objective functions. Empirically, we set
λ to 10 in our work.

2.3. Evaluation Metrics

To quantitatively evaluate the performance of our method, we selected eight evaluation
metrics including the pixels accuracy (Acc) [36], dice coefficient (Dice) [37], intersection over
union (IoU) [36], precision, recall, false-negative rate (FNR), false-positive rate (FPR) [36],
and Hausdorff distance (Hausdorff) [36], which are briefly introduced below. For conve-
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nience, we used O to denote the output segmentation image and G to indicate the ground
truth. Moreover, the index ranges over the interval [0, 1] except Hausdorff.

(1) Acc: It indicates the pixel accuracy of the predicted results in the segmentation.
In other words, it represents the proportion of pixels in an image that is correctly predicted.
The Acc is calculated using Equation (8):

Acc =
∑c

i=0 Pii

∑c
i=0 ∑c

j=0 Pij
(8)

Here, Pij means the numbers of pixels that are classified as pixel j but actually belongs to
pixel i, and c is the categories.

(2) Dice: This metric represents the similarity of the predicted image O to the ground
truth G. The Dice is calculated using Equation (9):

Dicec = 2
|Gc ∩Oc|
|Gc|+|Oc|

(9)

where |G| and |O| represent the numbers of elements in the arrays.
(3) IoU: This metric represents the intersection area between the predicted image O

and the ground truth G, the IoU can be calculated using Equation (10):

IoUc =
|Gc ∩Oc|
|Gc ∪Oc|

(10)

(4) Precision: It indicates how reliable the prediction is. This metric can be calculated
using Equation (11):

Precsionc =
TPc

TPc + FPc
(11)

where TPc represents the true positives, which means the pixels correctly predicted to
belong to class c, while FPc represents the false positives, indicating the pixels that are
predicted as class c but do not actually belong to class c.

(5) Recall: It indicates how sensitive the prediction is. Therefore, it is also called
sensitivity, which can be calculated using Equation (12):

Recallc =
TPc

TPc + FNc
(12)

where the FNc represents the false negatives, meaning the pixels that are predicted as not
class c but actually belong to class c.

(6) FNR: It is also called the under-segmentation rate, which measures the proportion
of the positive classes that are predicted to be negative. It is defined as in Equation (13):

FPRc =
FPc

FPc + TNc
(13)

(7) FPR: It is also called the over-segmentation rate, measuring the proportion of
the negative classes that are predicted to be positive. This metric is calculated using
Equation (14):

FPRc =
FPc

FPc + TNc
(14)

where TNc represent the true negatives, which mean the pixels that are correctly predicted
not to belong to class c.
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(8) Hausdorff: It represents the shape similarity between the predicted images O and
the ground truths G. It is calculated using Equation (15):

Hausdor f fc = max

{
sup
x∈Gc

inf
y∈Oc

d(x, y), sup
y∈Sc

inf
y∈Gc

d(x, y)

}
(15)

where d(·) represents the Euclidean distance between the pixel points x and y. The smaller
the Hausdorff distance is, the greater the similarity between the predicted segmentation
maps and the ground truth is.

Note that, for each metric, a higher value indicates better performance, except for FNR,
Hausdorff, and FPR, where a lower score gives a better segmentation result

2.4. Baselines and Implementation

We validate the effectiveness of our method by comparing it with 10 recent state-of-
the-art algorithms, including efficient neural network (ENet) [38], bilateral segmentation
network version 1 (BiSeNetV1) [39], BiSeNetV2 [40], DeepLabV3+ [41], faster fully con-
volutional network (FastFCN) [42], U-shaped network [30] (UNet), recurrent residual
UNet (R2UNet) [43], attention UNet (AttUNet) [44], recurrent residual attention UNet
(R2AttUNet) [45], and nested UNet (NestedUNet) [27]. Among them, ENet, BiSeNetV1,
and BiSeNetV2 are small-scale models that usually have smaller network scales and higher
inference speed. While the others are large-scale models that usually have more complex
network structures and can learn more potential semantic features. The above meth-
ods were used as baselines to evaluate the performance of our method comprehensively.
Furthermore, in order to verify our selection of loss function, four commonly used loss
functions were tested. Since all the above methods have not been used for the chromo-
some segmentation task, we instead implemented all the methods ourselves with the same
hyperparameters to have a fair comparison.

2.5. Selection of the Objective Function and Generator
2.5.1. Selection of the Objective Function

In order to show the superiority of using Lovász-Softmax as the loss for overlapping
chromosome segmentation, as shown in Figure 3, we drew average metric graphs for
prevalent losses on all testing sets with all the methods. Intuitively, it can be seen that
our method with Lovász-Softmax outperformed all baseline methods in all the metrics.
Moreover, it is clear that all baseline methods with Lovász-Softmax also show a leading
scoring trend against other losses, indicating that Lovász-Softmax is effective and optimal
for overlapping chromosome segmentation feature extraction.
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Figure 3. The average quantitative metrics score of different objective loss functions of various
methods. The coordinate scale M1–M7 represents DeepLabV3+, FastFCN, UNet, R2UNet, AttUNet,
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2.5.2. Selection of the Generator

In Table 1, we evaluate the performance of our method with different generator
networks in terms of all the quantitative indicators. Obviously, we can clearly see that the
framework with NestedUNet as the generator network is better than other configurations,
indicating that the modeling combined with multiscale features is effective.

Table 1. The average quantitative results of proposed method by using different GAN generator.

G Acc Dice IOU Recall Precision FNR FPR Hausdorff

DeepLabV3+ 99.9149 96.4414 93.8028 96.2027 96.9309 3.7973 0.3094 1.4366
FastFCN 99.9130 96.5195 93.8791 96.5454 96.7388 3.4546 0.2450 1.4376

UNet 99.9727 98.2346 96.9548 98.2836 98.3897 1.7164 0.0314 0.9524
R2UNet 99.9694 98.2646 97.0231 98.6001 98.1223 1.3999 0.0348 0.9423
AttUNet 99.971 98.2409 96.9582 98.2301 98.4575 1.7699 0.0304 0.9515

R2AttUNet 99.9585 97.8592 96.4989 98.1673 97.7693 1.8327 0.0399 1.0054
NestedUNet 99.9776 98.6048 97.5974 98.6550 98.7267 1.3450 0.0227 0.8252

Note that the units of all indicators are percentages except Hausdorff. A larger value of Acc, Dice, IoU, Recall,
and Precision indicate better performance, while a smaller value of FNR, FPR, and Hausdorff shows a better
performance. The best two results are highlighted in red and green, respectively.
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2.6. Preliminary Preparation
2.6.1. Data Preparation and Preprocessing

Due to the difficulty in obtaining clinical data, we use Pommier’s overlapping chromo-
some datasets [46,47] to demonstrate the effectiveness of the present method. The dataset
contains 13,434 overlapping chromosomes with a resolution of 94 × 93. For each image,
there is a corresponding ground truth, in which each pixel represents an object class. In the
segmentation map, class labels of 0, 1, 2, and 3 are denoted as the background (shown as
black), non-overlapping regions of the first chromosome (shown as red), non-overlapping
regions of the second chromosome (shown as green), and overlapping regions of chromo-
some (shown as blue), respectively. To match the images with our network, we padded the
images to 128 × 128. The padding value of input images and ground truths was set as 255
and 0, respectively, to be consistent with the background of the original images. We divided
the datasets into two subsets: 80% for training (a total number of 10,747 images) and the
remaining 20% for testing (a total of 2686 images). In the training set, the number of pixels
for the four classes were 167,373,977, 284,038, 5,138,621, and 1,282,212, respectively. In the
testing set, the number of pixels for the four classes were 41,825,569, 575,220, 1,286,495,
and 320,140, respectively. Therefore, we can calculate that the proportions of pixels for the
four classes were 24.99%, 23.16%, 25.04%, and 24.97%, respectively. It shows that when
we select 20% of images as testing set, there is no guarantee that every pixel class will
be evenly divided. Moreover, the uneven distribution of pixel categories will affect the
evaluation of classification results. Specifically, since some of the images in the testing set
lack overlapping domains, this means that class 3 is missing. As a result, there is a clear
bias in the actual final classification result. Therefore, in order to solve this problem and
make our results reliable, we only kept pairs with the ground-truth containing overlapping
domains for testing sets (a total of 2432 images).

2.6.2. Implementation

In the training stage, all the training sets were shuffled, and all input images were
normalized to the range of 0–1, and the batch size was set to 64. We optimized the generator
and the discriminator alternately, both applying the Adam solver with a fixed learning rate
of 0.0002 and momentum parameters of β1 = 0.5 and β2 = 0.999. Then, we set the random
seed to 123. We trained our framework from scratch with the training sets to produce the
“optimized” model. The training was stopped when training losses did not decrease for
200 consecutive epochs. We saved the generator model weights when the training Dice
scores were at their highest. For the inference stage, we used the well-trained framework to
segment the images. All the experiments were conducted in Pytorch [48] under an Ubuntu
OS cloud server with an Intel Xeon(R) CPU E5-2680 v4 @2.40 GHz, 40 GB of RAM, and an
NVIDIA Tesla P40 GPU with 24 GB of memory.

3. Results
3.1. Performance

Figure 4 exhibits some examples of the segmentation results of our method, from
which we can see that our method achieved an excellent visual perception result.

Moreover, we can also see that the various scales of chromosome individuals and
overlapping regions were correctly segmented in all the images, indicating that our method
performed well in the multiscale segmentation task. In order to further highlight the
superior performance of our algorithm, we show confusion matrices of average accuracy
scores on all the testing sets in Figure 5. We can see that our method showed better results
than other state-of-the-art methods. Through careful comparison, these quantitative results
proved consistent with the quantitative results in Section 2.5, demonstrating the significant
superiority of our method, not only for visual perception but also for quantitative analysis.



Entropy 2022, 24, 522 11 of 18
Entropy 2022, 24, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 4. Some examples of segmentation results of the proposed method. The first to third, fourth 
to sixth, and seventh to ninth columns show the segmentation results of 24 chromosome images, 
respectively. (a1–a3) represent the source images, (b1–b3) represent the ground trut, (c1–c3) repre-
sent the segmentation result, 

Moreover, we can also see that the various scales of chromosome individuals and 
overlapping regions were correctly segmented in all the images, indicating that our 
method performed well in the multiscale segmentation task. In order to further highlight 
the superior performance of our algorithm, we show confusion matrices of average accu-
racy scores on all the testing sets in Figure 5. We can see that our method showed better 
results than other state-of-the-art methods. Through careful comparison, these quantita-
tive results proved consistent with the quantitative results in Section 2.5, demonstrating 
the significant superiority of our method, not only for visual perception but also for quan-
titative analysis. 

Figure 4. Some examples of segmentation results of the proposed method. The first to third, fourth
to sixth, and seventh to ninth columns show the segmentation results of 24 chromosome images,
respectively. (a1–a3) represent the source images, (b1–b3) represent the ground trut, (c1–c3) represent
the segmentation result.

Entropy 2022, 24, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 5. Confusion matrices of average accuracy scores on all the testing sets. Among them, (a) is 
the average each class IoU score of NestedUNet with CE loss, and (b–f) are our method with CE, 
Weight-CE, Dice, Weight-Dice, and Lovász-Softmax, respectively. For each image, the horizontal 
axis and the vertical axis represent predicted label and true label, respectively. The coordinate scale 
0,1, 2, and 3 represent the background non-overlapping regions of the first chromosome, non-over-
lapping regions of the second chromosome, and overlapping regions of chromosome, respectively. 
The entry in the i-th row and j-th column denotes the percentage of the testing samples from class i 
that were classified as class j. 

3.2. Performance Evaluation 
3.2.1. Visual Evaluation 

In this section, we visually compare the performance of our method with baseline 
methods. Figure 6 exhibits the results including difference images using pseudo-color 
map. Here, the difference images are generated through logical multiplication of the in-
versed ground truth and corresponding predicted result. Figure 6a–j show the results ac-
quired using baseline methods with CE loss, while Figure 6k–o were acquired using the 
presented method with various loss functions. We can see from Figure 6 that our method 
with Lovász-Softmax or weight-dice loss achieved excellent segmentation results, while 
the performance of other methods was obviously poor, meaning that these methods do 
not learn effective features for the overlapping chromosome segmentation. NestedUNet 
performed the segmentation better than other large-scale models, indicating that mul-
tiscale feature learning is helpful for overlapping chromosome segmentation. Further-
more, we can see that the difference images acquired with our method were obviously 
cleaner than those acquired with other methods, indicating that the cGAN applied in our 
methods is effective to distinguish the segmented images and ground truths so as to better 
learn the features of the chromosomes. Additionally, it is clear that our method with 
Lovász-Softmax loss segmented the images more accurately, where almost every chromo-
somal region was correctly segmented, compared with other methods. This indicates that 
the Lovász-Softmax loss helped improve the discrimination ability of our method. In a 
word, the images shown in Figure 6 visually show that our AMFL framework can segment 
overlapping chromosomes with better performance than the baseline methods. 

Figure 5. Confusion matrices of average accuracy scores on all the testing sets. Among them, (a) is
the average each class IoU score of NestedUNet with CE loss, and (b–f) are our method with CE,
Weight-CE, Dice, Weight-Dice, and Lovász-Softmax, respectively. For each image, the horizontal axis
and the vertical axis represent predicted label and true label, respectively. The coordinate scale 0, 1, 2,
and 3 represent the background non-overlapping regions of the first chromosome, non-overlapping
regions of the second chromosome, and overlapping regions of chromosome, respectively. The entry
in the i-th row and j-th column denotes the percentage of the testing samples from class i that were
classified as class j.
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3.2. Performance Evaluation
3.2.1. Visual Evaluation

In this section, we visually compare the performance of our method with baseline
methods. Figure 6 exhibits the results including difference images using pseudo-color
map. Here, the difference images are generated through logical multiplication of the
inversed ground truth and corresponding predicted result. Figure 6a–j show the results
acquired using baseline methods with CE loss, while Figure 6k–o were acquired using the
presented method with various loss functions. We can see from Figure 6 that our method
with Lovász-Softmax or weight-dice loss achieved excellent segmentation results, while
the performance of other methods was obviously poor, meaning that these methods do
not learn effective features for the overlapping chromosome segmentation. NestedUNet
performed the segmentation better than other large-scale models, indicating that multiscale
feature learning is helpful for overlapping chromosome segmentation. Furthermore, we
can see that the difference images acquired with our method were obviously cleaner than
those acquired with other methods, indicating that the cGAN applied in our methods is
effective to distinguish the segmented images and ground truths so as to better learn the
features of the chromosomes. Additionally, it is clear that our method with Lovász-Softmax
loss segmented the images more accurately, where almost every chromosomal region was
correctly segmented, compared with other methods. This indicates that the Lovász-Softmax
loss helped improve the discrimination ability of our method. In a word, the images
shown in Figure 6 visually show that our AMFL framework can segment overlapping
chromosomes with better performance than the baseline methods.
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3.2.2. Quantitative Evaluation

In this part, we quantitatively compare the performance of our method with others
and show the results in Table 2. Here, we use the common CE loss for baseline methods.
We can see that our AMFL achieved the best performance in all the metrics. This indicates
that using cGAN to discriminate features can push the output distribution closer to ground
truth so that our method outperforms others in overlapping chromosome segmentation
tasks. It is also clear that the small-scale models presented almost the worst scoring in terms
of Dice, IoU, and Hausdorff, while large-scale models reached better scores, suggesting that
overlapping chromosome segmentation requires a more complex network structure. Again,
NestedUNet achieved the top performance compared to other methods, quantitatively
verifying the importance of multiscale feature analysis. It is worth emphasizing that our
method had a lower Hausdorff distance score, indicating that it retained the shape and
structure of the chromosome in the output images. The quantitative results, which are
consistent with what we can see from Figure 6, prove the effectiveness of our method in
overlapping chromosome segmentation.

Table 2. Average scores of various methods on eight metrics.

Method Acc Dice IoU Recall Precision FNR FPR Hausdorff

Small models

ENet 99.8707 94.5821 90.7770 94.5365 95.0898 5.4635 0.3791 1.5861
BiSeNetV1 99.7361 90.9037 85.1075 89.3718 93.2404 10.6282 1.4966 1.9584
BiSeNetV2 99.8055 93.2973 88.8068 93.1980 93.8226 6.8020 0.6947 1.8145

Larger models

DeepLabV3+ 99.9048 95.8592 92.8454 96.0429 96.0126 3.9571 0.2623 1.4886
FastFCN 99.9170 96.4061 93.6931 96.6915 96.3868 3.3085 0.2017 1.4452

UNet 99.9684 97.8970 96.3765 97.9654 98.0156 2.0346 0.0331 1.0230
R2UNet 99.8659 95.1638 92.7348 96.0719 95.1458 3.9281 0.1046 1.2535
AttUNet 99.9625 97.6780 96.0418 97.7765 97.8637 2.2235 0.0395 1.0528

R2AttUNet 99.9122 95.7752 93.6760 96.6767 95.6791 3.3233 0.0792 1.1688
NestedUNet 99.9625 97.9670 96.6473 98.0266 98.0809 1.9734 0.0341 0.9518

AMFL 99.9776 98.6048 97.5974 98.6550 98.7267 1.345 0.0227 0.8252

Note that the units of all indicators are percentages except Hausdorff. A larger value of Acc, Dice, IoU, Recall,
and Precision indicate a better performance, while a smaller value of FNR, FPR, and Hausdorff shows a better
performance. The best two results are highlighted in red and green, respectively.

Moreover, in order to further highlight the superior performances of our present
method. In Table 3, we show the average IoU scores of each class and the accuracy
for all the testing sets, compared against methods specifically designed for overlapping
chromosome segmentation. We can see that our method has a significant advantage over
these two methods in terms of the two quantitative metrics score. Especially for classes
1 and 2, IOU scores improved by 8.89% and 4.53%, respectively, over Hu et al.’s method
and the IOU scores of all classes were better than those for CE-Net, which again proves the
superiority of the AFML framework for overlapping chromosome segmentation. However,
due to the imbalance of the categories in the training sets with a lack of overlapping areas,
resulting in a slightly lower score of average IoU score for class 3 than Hu et al.’s method,
but it was more in accordance with the diversity of clinical data. Since it is impossible that
all chromosome images will have overlapping in the clinic, it is also very important to
correctly separate nonoverlapping chromosomes.
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Table 3. Comparison of average IoU and accuracy scores for existing methods.

Method
Average IoU Scores

Accuracy
Class 1 Class 2 Class 3 All Classes

Hu et al. [22] 88.2 94.4 94.7 - 92.22
Hu et al. + TTA - - - - 99.27
Saleh et al. [23] - - - - 99.68

CE-Net [49] 96.04 97.76 90.35 - 99.92
U-Net-FIGI [50] - - - 96.32 99.78
AFML (Ours) 97.09 98.93 94.37 97.60 99.98

Note that the index scores for all existing methods are drawn from the references, “-” indicates that it is not
described in the paper. Class 1 and 2, are denoted as the two non-overlapping regions of the chromosomes
and class 3 as the overlapping regions of chromosome. The best two results are highlighted in red and green,
respectively. TTA indicates test time augmentation.

3.2.3. Computational Efficiency

To evaluate the computation efficiency, we present the total number of model pa-
rameters and the average running time of CPU and GPU when using different methods
on all the testing sets in Table 4. The methods with small-scale networks consumed the
least resources, obtaining the advancement of rate by sacrificing the accuracy. Among the
methods with large-scale networks, our method took about 27 ms to segment an image on
GPU, which ranked second only behind UNet; nevertheless, its model parameters were
also the second smallest. Our method spent 568 ms on CPU, ranking fifth above R2UNet
and R2AttUNet. The results show that, in addition to the outstanding segmentation perfor-
mance, our method also performed well in computational efficiency, suggesting its great
potential in real applications.

Table 4. The computational efficiency of various methods.

ENet BiSeNet V1 BiSeNet V2 DeepLab V3+ FastFCN UNet

Params 0.35 M 12.43 M 2.85 M 59.46 M 104.3 M 34.53 M
GPU 63 ms 19 ms 34 ms 72 ms 78 ms 19 ms
CPU 38 ms 43 ms 34 ms 190 ms 380 ms 274 ms

R2UNet AttUNet R2AttUNet NestedUNet AMFL (Ours) -

Params 39.09 M 34.88 M 39.44 M 36.63 M 36.63 M -
GPU 61 ms 27 ms 71 ms 27 ms 27 ms -
CPU 715 ms 285 ms 734 ms 568 ms 568 ms -

Params: The total number of model parameters. GPU/CPU: Average GPU/CPU runtime measured with reference
to a full-resolution input (i.e., 128 × 128) on all the testing sets.

3.3. Ablation Study

In order to analyze the role of different parts of the proposed framework, we present
the average quantitative results of the proposed method by using and without using GAN
with different objective functions in Table 5. Obviously, the superiority of our method lies
in the following: firstly, for the single model without using GAN, NestedUNet with Lovász-
Softmax achieved an improved performance compared with other losses on all the testing
sets. Secondly, the proposed AMFL adopted the GAN mechanism to discriminate features,
resulting in a better scoring performance than the individual NestedUNet model without
GAN. Thirdly, our method with Lovász-Softmax loss achieved the best performance in
most of the metrics, demonstrating the effectiveness of using Lovász-Softmax to improve
the discrimination ability. Fourthly, the framework with NestedUNet as the generator
performed better than other configurations, indicating that modeling with multiscale
features is effective for overlapping chromosome segmentation. Lastly, whether using or
without using a GAN, the model with a NestedUNet as the backbone network performed
better than other competitors. Moreover, we also split the dataset into training, validation,
and testing sets, and we achieved results that were almost in close agreement with those
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of previous experiments. The Dice, IoU, and Hausdorff scores were 98.6163%, 97.6182%,
0.8293, respectively, demonstrating the reproducibility our results.

Table 5. The average quantitative results of the proposed method by using and without using GAN
with different objective function.

Method GAN Acc Dice IOU Recall Precision FNR FPR Hausdorff

NestedUNet with Dice × 99.9457 97.3146 95.596 97.4631 97.3846 2.5369 0.0701 1.1617
NestedUNet with

Weight-Dice × 99.9434 97.1637 95.2851 97.3318 97.3021 2.6682 0.0929 1.2242

NestedUNet with CE × 99.9625 97.9670 96.6473 98.0266 98.0809 1.9734 0.0341 0.9518
NestedUNet Weight-CE × 99.9529 97.7494 96.0630 98.4318 97.3030 1.5682 0.0256 1.2219

NestedUNet with
Lovász-Softmax × 99.9714 98.2898 97.1699 98.3459 98.3993 1.6541 0.0326 0.9036

AMFL with Dice
√

99.9670 98.2422 97.0882 98.228 98.4479 1.772 0.0335 0.9166
AMFL with Weight-Dice

√
99.9699 98.3117 97.1692 98.3524 98.4454 1.6476 0.0381 0.9366

AMFL with CE
√

99.9735 98.4012 97.3453 98.3788 98.6395 1.6212 0.0266 0.8388
AMFL with Weight-CE

√
99.9699 98.4557 97.3259 98.7066 98.3769 1.2934 0.0175 0.9988

AMFL with
Lovász-Softmax

√
99.9776 98.6048 97.5974 98.6550 98.7267 1.3450 0.0227 0.8252

Note that the units of all indicators are percentages except Hausdorff. A larger value of Acc, Dice, IoU, Recall,
and Precision indicate a better performance, while a smaller value of FNR, FPR, and Hausdorff shows a better
performance. The best two results are highlighted in red and green, respectively.

4. Conclusions

In this paper, we propose and demonstrate the AMFL framework for overlapping
chromosome segmentation. In the network, instead of using single-scale features to repre-
sent chromosome images, we carefully designed a nested U-shaped network with dense
skip connections as the generator to capture multiscale features to explore a better represen-
tation of the chromosome images. Then, we utilized cGAN to provide prior information for
better discriminating features and producing highly accurate chromosome segmentation
images. In addition, we replaced the common cross-entropy loss with the advanced Lovász-
Softmax loss to improve the model’s optimization and accelerate the model’s convergence.
In addition, we utilized the least-square GAN objective to replace the original GAN loss
to stabilize the training and avoid model collapse. As for the objective function, we chose
Lovász-Softmax after experimentally comparing it with others on their performance in
overlapping chromosome segmentation. At last, to show the superiority of our AFML, we
compared it with 10 state-of-the-art semantic segmentation methods. The results show that
our AFML performed better in both visual perception and eight quantitative metrics.

Currently, our AFML performs well in public overlapping chromosome datasets.
However, due to the difficulty in obtaining clinical data, our well-trained model may fail
to meet situations where the images exist with severe morphological inconsistency in the
clinical overlapping chromosome. In future research, we intend to collect annotated clinical
data and design a generalized, fully automatic system for the segmentation, classification,
and karyotype analysis of chromosomes.
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