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Abstract: Most previous studies on multi-agent systems aim to coordinate agents to achieve a
common goal, but the lack of scalability and transferability prevents them from being applied to
large-scale multi-agent tasks. To deal with these limitations, we propose a deep reinforcement
learning (DRL) based multi-agent coordination control method for mixed cooperative–competitive
environments. To improve scalability and transferability when applying in large-scale multi-agent
systems, we construct inter-agent communication and use hierarchical graph attention networks
(HGAT) to process the local observations of agents and received messages from neighbors. We also
adopt the gated recurrent units (GRU) to address the partial observability issue by recording historical
information. The simulation results based on a cooperative task and a competitive task not only show
the superiority of our method, but also indicate the scalability and transferability of our method in
various scale tasks.

Keywords: multi-agent; deep reinforcement learning; partial observability

1. Introduction

The last few years witnessed the rapid development of the multi-agent system. Due
to its ability to solve complex computing or coordinating problems [1], it has been widely
used in different fields, such as computer networks [2,3], robotics [4,5], etc. In the multi-
agent system, agents try to learn their policies and execute tasks collaboratively, in either
cooperative or competitive environments, by making autonomous decisions. However,
in large-scale multi-agent systems, partial observability, scalability, and transferability are
three important issues to be addressed for developing efficient and effective multi-agent
coordination methods. Firstly, it is impossible for agents to learn their policies from the
global state of the environment, as it contains massive information about a large number
of agents. Therefore, they need to communicate with other agents in some ways, to reach
consensus on decision making. Secondly, the previous methods either learn a policy to
control all agents [6] or train their policies individually [7], which is difficult to be extended
for large-scale agents. Thirdly, in existing deep-learning-based methods, the policies are
trained and tested under the same number of agents, making them untransferable to
different scales.

In this paper, we propose a scalable and transferable multi-agent coordination control
method, based on deep reinforcement learning (DRL) and hierarchical graph attention
networks (HGAT) [8], for mixed cooperative-competitive environments. By regarding the
whole system as a graph, HGAT helps agents extract the relationships among different
groups of entities in their observations and learn to selectively pay attention to them, which
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brings high scalability when applying in large-scale multi-agent systems. We enforce inter-
agent communication to share agents’ local observations with their neighbors and process
the received messages through HGAT; therefore, agents can reach consensus by learning
from their local observations and information aggregated from the neighbors. Moreover,
we introduce the gated recurrent unit (GRU) [9] into our method to record the historical
information of agents and utilize it when determining actions, which optimizes the policies
under partial observability. We also apply parameter sharing to make our method transfer-
able. Compared with previous works, our method achieves a better performance in mixed
cooperative–competitive environments while acquiring high scalability and transferability.

The rest of this paper is organized as follows. In Section 2, we review the related works.
We describe some background knowledge of multi-agent reinforcement learning and
hierarchical graph attention networks in Section 3. In Section 4, we describe a cooperative
scenario, UAV recon and a competitive scenario, predator-prey. We present the mechanism
of our method in Section 5. The simulation results are shown in Section 6. We discuss
advantages of our method in Section 7 and draw the conclusion in Section 8. The list of
abbreviations is shown in Abbreviations.

2. Related Work

Multi-agent coordination has been studied extensively in recent years and imple-
mented in various frameworks, including heuristic algorithms and reinforcement learning
(RL) algorithms. In [10], the authors presented a solution to the mission planning problems
in multi-agent systems. They encoded the assignments of tasks as alleles and applied the
genetic algorithm (GA) for optimization. The authors of [11] designed a control method for
the multi-UAV cooperative search-attack mission. UAVs employ ant colony optimization
(ACO) to perceive surrounding pheromones and plan flyable paths to search and attack
fixed threats. The authors of [12] focused on the dynamic cooperative cleaners problem [13],
and presented a decentralized algorithm named “sweep” to coordinate several agents to
cover an expanding region of grids. It was also used to navigate myopic robots who cannot
communicate with each other [14]. In [15], the authors designed a randomized search
heuristic (RSH) algorithm to solve the coverage path planning problem in multi-UAV
search and rescue tasks, where the search area is transformed into a graph. The authors
of [16] proposed a centralized method to navigate UAVs for crowd surveillance. They
regarded the multi-agent system as a single agent and improved its Quality of Service (QoS)
by using an on-policy RL algorithm state-action-reward-state-action (SARSA) [17]. Ref. [18]
proposed a distributed task allocation method based on Q-learning [19] for cooperative
spectrum sharing in robot networks, where each robot maximizes the total utility of the
system by updating its local Q-table.

However, as the scale of multi-agent systems increases, the environment becomes more
complex while the action space of the whole system expands exponentially. It is difficult for
heuristic algorithms and the original RL methods to coordinate agents since they need more
time and storage space to optimize their policies. Combining deep neural networks (DNNs)
and RL algorithms, deep reinforcement learning (DRL) is widely used for multi-agent
coordination in cooperative or competitive environments. It extracts features from the
environment state with DNN and uses them to determine actions for agents, which brings
better performance. Moreover, since the environment is affected by the action of all agents
in multi-agent systems, it is hard for adversarial deep RL [20] to train another policy to
generate possible disturbances from all agents. Semi-supervised RL [21] also fails to apply
in multi-agent systems, as it cannot learn to evaluate the contribution of each agent from
the global state and their actions. DRL can either control the whole multi-agent system by
a centralized policy (such as [6]) or control agents individually in a distributed framework
called multi-agent reinforcement learning (MARL). In a large-scale environment, MARL
is more robust and reliable than the centralized methods because each agent can train its
policies to focus on its local observation instead of learning from the global state.
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The goal of MARL is to derive decentralized policies for agents and impose a consen-
sus to conduct a collaborative task. To achieve this, the multi-agent deep deterministic
policy gradient (MADDPG) [22] and counterfactual multi-agent (COMA) [23] construct
a centralized critic to train decentralized actors by augmenting it with extra information
about other agents, such as observations and actions. Compared with independent learn-
ing [24], which only uses local information, MADDPG and COMA can derive better policies
in a non-stationary environment. However, it is difficult for these approaches to be applied
in a large-scale multi-agent system, as they directly use the global state or all observations
when training. Multi-actor-attention-critic (MAAC) [25] applies the attention mechanism
to improve scalability by quantifying the importance of each agent through the attention
weights. Deep graph network (DGN) [26] regards the multi-agent system as a graph and
employs a graph convolutional network (GCN) with shared weight to process information
from neighboring nodes, which also brings high scalability. Ref. [8] proposed a scalable
and transferable model, named the hierarchical graph attention-based multi-agent actor-
critic (HAMA). It clusters all agents into different groups according to prior knowledge
and constructs HGAT to extract the inter-agent relationships in each group of agents and
inter-group relationships among groups, aggregating them into high-dimensional vectors.
By using MADDPG with shared parameters to process those vectors and determine ac-
tions, HAMA can coordinate agents better than the original MADDPG and MAAC when
executing cooperative and competitive tasks.

Various MARL-based methods have recently been proposed for multi-agent coor-
dination. Ref. [27] designed a distributed method to provide long-term communication
coverage by navigating several UAV mobile base stations (UAV-MBSs) through MADDPG.
Ref. [7] presented a MADDPG-based approach that jointly optimizes the trajectory of
UAVs to achieve secure communications, which also enhanced the critic with the attention
mechanism, such as [25]. The authors of [28] adopted GCN to solve the problem for large-
scale multi-robot control. Ref. [29] separated the search problem in indoor environments
into high-level planning and low-level action. It applied trust region policy optimization
(TRPO) [30] as the global and local planners to handle the control at different levels. In
our previous work, we proposed the deep recurrent graph network (DRGN) [31], a novel
method that is designed for navigation in a large-scale multi-agent system. It constructs
inter-agent communication based on a graph attention network (GAT) [32] and applies
GRU to recall the long-term historical information of agents. By utilizing extra information
from neighbors and memories, DRGN performs better than DQN and MAAC when navi-
gating a large-scale UAV-MBS swarm to provide communication services for targets that
are randomly distributed on the ground.

The difference between our method and the previous works are summarized as follows.
DRGN represents the observation as a pixel map of the observable area and processes
it by DNN. Our method regards the global state as a graph where the nodes represent
the entities in the environment and employs HGAT to process the observation. It is more
effective for our method to learn relationships between agents and entities through HGAT.
Moreover, our method spends less space to store the observation than DRGN, as the scale
of the observation in our method is independent of the observation range. In HAMA,
each agent observes up to K nearest neighboring entities per type, where K is a constant.
Our method considers that agents can observe all entities inside the observation range
and uses an adjacency matrix to denote the relationships of the observation, which can
describe the actual observation of agents more accurately than HAMA. In addition, our
method introduces GRU and HGAT-based inter-agent communication to provide extra
information for agents, so they can optimize policies for coordination by learning from
historical information and neighbors.
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3. Background
3.1. Multi-Agent Reinforcement Learning (MARL)

The process of MARL is regarded as a decentralized partially observable Markov
decision process (Dec-POMDP) [33]. In MARL, each agent i observes the environment state
s and obtains a local observation oi. Then, it selects an action according to its policy πi. The
environment executes the joint actions a = (a1, · · · , aN) and transforms s to the next state
s′. After execution, each agent acquires a reward ri = Ri(s, a) and a next observation o′i
from the environment. Each agent aims to optimize its policy to maximize its total expected
return Ri = ∑T

t=0 γtri(t), where T is a final timeslot, and γ ∈ [0, 1] is the discount factor.
Q-learning [19] and policy gradient [34] are two popular RL methods. The idea of Q-

learning is to estimate an state-action value function Q(s, a) = E[R] and select the optimal
action to maximize Q(·). Deep Q-network (DQN) [35], a Q-learning-based algorithm, uses
a DNN as a function approximator and trains it by minimizing the loss:

L(θ) = Es,a,r,s′ [(y−Q(s, a|θ))2] (1)

where θ is the parameter of the DNN. The target value y is defined as y = r + γ maxa′ Q′(s′, a′) [35],
where Q′ is the target network, whose parameters are periodically updated from θ. DQN
also applies a replay buffer to stabilize learning.

Policy gradient directly optimizes the policy π to maximize J (θπ) = E[R] and
updates parameters based on the gradient [34]:

∇θπJ (θπ) = Es∼pπ ,a∼π [∇θπ log π(a|s, θπ)Q(s, a)] (2)

where pπ is the state distribution. Q(s, a) can be estimated by samples [36] or a function
approximator, such as DQN, which leads to the actor–critic algorithm [37].

3.2. Hierarchical Graph Attention Network (HGAT)

HGAT is an effective method for processing hierarchically structured data represented
as a graph and introduced into MARL to extract the relationships among agents. By
stacking multiple GATs hierarchically, HGAT firstly aggregates embedding vectors el

ij from

neighboring agents in each group l into e′ li and subsequently aggregates e′ li from all groups
into e′ i. The aggregated embedding vector e′ i represents the hierarchical relationships
among different groups of neighbors.

4. System Model and Problem Statement

In this section, we describe the settings of a multi-agent cooperative scenario, UAV
recon and a competitive scenario, predator-prey.

4.1. UAV Recon

As shown in Figure 1a, we deploy N UAVs into a hot-spot area to scout n point-of-
interests (PoIs) for T timeslots, where PoIs are randomly distributed. As we consider our
UAVs to move at the same altitude, the area of our mission is two-dimensional. Each UAV
has a circled recon area whose radius is considered as a recon range. If the Euclidean
distance between a UAV and a PoI is less than the recon range, we consider the PoI to
be covered.

In the beginning, each UAV is deployed in a random position. At each timeslot t, each
UAV i determines its acceleration acci ∈ {(acc, 0), (−acc, 0), (0, acc), (0,−acc), (0, 0)} as its
action. The action space of i is discrete. The energy consumption of i is defined as:

Ei = Eh +
vi

vmax
Em (3)

where vi is the velocity of i and vmax is the maximum velocity of UAVs. Eh and Em are the
energy consumption for hovering and movement, respectively.
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Predator

Prey

(b)

UAV
PoI

(a)

Figure 1. Illustrations of (a) UAV Recon and (b) Predator-Prey.

In our scenario, our goals of UAVs are to cover more PoIs more fairly with less energy
consumption. To evaluate the quality of tasks, we consider three metrics: coverage C,
fairness F, and energy consumption E. The score of C denotes the proportion of covered
PoIs, which is defined as:

C =
nC(t)

n
(4)

where nC(t) is the number of covered PoIs at timeslot t.
The score of fairness denotes how fair all PoIs are covered. Here, we use Jain’s fairness

index [38] to define the score of F as:

F =
(∑n

j=1 cj)
2

n ∑n
j=1 c2

j
(5)

while cj is the coverage time of PoI j.
Finally, UAVs need to control energy consumption in tasks. We define the score of

E as:

E =
1
N

N

∑
i=1

Ei (6)

When executing recon missions, each UAV needs to observe local states of other UAVs
and PoIs to determine its action. The local state of UAV i is defined as si = (Pi, vi), where
Pi and vi are the position and the velocity of i, respectively. Each PoI j’s local state sj = (Pj).
If a PoI is in UAV i’s observation range, we consider the PoI is observed by i. If another
UAV j is in i’s communication range, we consider i can communicate with j. To train UAV’s
policy, we define a heuristic reward ri as:

ri =
η1 × rindv + η2 × rshared

Ei
− pi (7)

where pi is a penalty factor. When UAV i flies across the border, it is penalized by pi.
rindv = −1 if no PoIs is covered by i individually, otherwise rindv = nindv, where nindv
means the number of PoIs that are only covered by i. rshared = 0 if i does not share PoIs

with others, otherwise rshared =
nshared
Nshare

, where nshared denotes the number of PoIs which

are covered by Nshare neighboring UAVs. η1 and η2 are the importance factor of rindividual
and rshared, respectively. We empirically set η1 � η2 to encourage UAVs to cover more PoIs
and avoid overlapping with others.
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4.2. Predator-Prey

As shown in Figure 1b, we deploy Npredator predators to eliminate Nprey prey.
Both of them are controlled by a DRL-based method. If the distance between a predator

and a prey is less than predators’ attack range, we consider the prey to be eliminated. The
goal of the predators is to eliminate all prey, while the goal of the prey is to escape from
the predators. The speed of the predators is slower than the prey speed, so they need to
cooperate with each other when chasing prey.

The action space of the predators and the prey is the same as the UAVs in the UAV
recon scenario. The local state of each predator or prey is defined as si = (Pi, vi), where
Pi and vi are the position and the velocity of a predator or prey, respectively. We consider
that each predator and prey can observe the local state of adversaries inside its observation
range, while it can communicate with companions inside its communication range. The
eliminated preys can neither be observed nor communicate with others. To evaluate the
performance of predators and prey, we define the score as:

S =
T − Teliminate

T
(8)

where T is the total timeslots of an episode, while Teliminate is the timeslot when all prey are
eliminated.

When predator i eliminates prey j, i will obtain a positive reward, while j will obtain a
negative reward. When all prey are eliminated, the predators will get an additional reward.

5. HGAT-Based Multi-Agent Coordination Control Method

To achieve the goals of two scenarios described in Section IV, we present a multi-agent
coordination control method based on HGAT for mixed cooperative–competitive environ-
ments. In our method, the global state of the environment is regarded as a graph, containing
the local state of agents and the relationship among them. Each agent summarizes the
information from the environment by HGAT and subsequently computes the Q-value and
action in a value-based or actor–critic framework.

5.1. HGAT-Based Observation Aggregation and Inter-Agent Communication

In the multi-agent system, the environment involves multiple kinds of entities, includ-
ing agents, PoIs, etc. As they are heterogeneous, agents need to treat their local states and
model their relationships separately. Thus, we categorize all entities into different groups at
the first step of execution in cooperative or competitive scenarios. As shown in Figure 2, M
entities (containing N agents) are clustered into K groups and represent the environment’s
state as graphs. The agents construct an observation graph GO and a communication graph
GC respectively based on their observation ranges O1, · · · ,ON and communication ranges
C1, · · · , CN . The edges of GO represent that the entities can be observed by agents, while
the edges of GC represent that two of the agents can communicate with each other. The
adjacency matrix of GO and GC are AO and AC , respectively. i’s observation is defined as
oi =

{
sj|j ∈ Oi

}
. Its received messages from the others is mi =

{
mji|j ∈ Ci

}
, where sj is

agent j’s local state and mji is the message that j sends to i.
At each timeslot, the agents use the network shown in Figure 3 to determine their

actions according to s, AO , and AC received from the environment, where s = (s1, , · · · , sM).
The parameters of the network are shared among the agents in the same group. The network
contains three components, a set of encoders, two stacked HGAT layers, and a recurrent unit,
which consists of a gated recurrent unit (GRU) layer and a fully connected layer. GRU is a
variant of the recurrent neural network (RNN). To summarize the information in each agent
i’s observation oi, the first HGAT layer processes oi into a high-dimensional aggregated
embedding vector e′i as shown in Figure 4. Firstly, the encoder which consists of a fully
connected layer transforms the local states from each group l into embedding vectors as
ej = f l

e(sj), where f l
e means the encoder for group l. ej is the embedding vector for entity j in

group l. Then, it aggregates ej as e′ li = ∑j αijWl
vej [32], where Wl

v is a matrix that transforms
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ej into a “value”. The attention weight αij represents the importance of the embedding

vector ej from j to i, which is calculated by softmax as αij ∝ exp(ej
TWl

k
T

Wqei) [32] if aOi,j
in AO is 1, otherwise αij = 0. Wk and Wq transform a embedding vector into a “key”
and a “query”, respectively. AO is used for selection so that only the local states from Oi
are summarized. To improve the performance, we use the multiple attention heads here.
Finally, e′ li from all groups are aggregated into e′i by a fully connected layer fG, as:

e′i = fG(‖K
l=1 e′ li) (9)

where ‖ represents the concatenation operation. We do not apply another GAT for aggre-
gating, such as HAMA, as our approach has less computing overhead.

Agent in group l

Agent in group m

Observation range 

Communication range 

Edge of observation

Edge of communication

Figure 2. The clustering of agents and their topology.

sl

sm

Encoder

Encoder

HGAT HGAT

e''i

Q(oi, mi, ai, hi)

e'i

mi

el

em

Concatenate

Recurrent
unit

GRU

FC

hi

Figure 3. The overall structure of the network. sl and el represent the local states and embedding
vectors of agents in group l. Ai denotes the ith row of A.

After calculating e′i , agent i sends it as a message mij to each neighboring agent j in C(i).
Inter-agent communication helps agents to share their observations with neighbors, which
brings a better performance in coordination. To summarize each agent i’s received messages
mi, the second HGAT layer processes mi and aggregates it into another embedding vector
e′′i by the same means as shown in Figure 4. The adjacency matrix used here is AC instead
of AO . Our method is capable of inner-group and inter-group communication and can
easily extend to a multi-hop by stacking new HGAT layers.
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el

em

ei

Attention Head

FC

e'il

e'im

e'i

Softmax

Softmax

Dot Product

Dot Product

Scaled Dot
Product

Scaled Dot
Product

Concatenate
heads per

agent

Concatenate
all groups

Concatenate
heads per

agent

Figure 4. The architecture of an HGAT layer.

5.2. Implementation in a Value-Based Framework

This implement is based on DQN. Each agent i maintains hidden states hi for the
recurrent unit and calculates its Q-values by a Q-network, as shown in Figure 3. Similar to
DQN, our method also employs a target network with the same structure.

We introduce the skip-connection strategy by concatenating e′i and e′′i as an input of
the recurrent unit when computing the Q-value, so agents can use the information both
from their observation and others’. The Q-value is calculated as:

Ql(oi, mi, ai, hi) ≈ f l
R(e
′
i , e′′i , hi) (10)

where Ql represents the Q-network of group l where i belongs, f l
R means the recurrent

unit in Ql , and ai is the action determined by i according to Q-values. We apply ε-greedy
policy [35] to balance the exploitation and exploration as:

ai =

{
arg maxa∈Ai Ql(oi, mi, a, hi), with probability 1− ε
random(Ai), with probability ε

(11)

where Ai is the action space of i.
After executing the joint actions a = (a1, · · · , aN), the environment transforms the

current state to the next and sends the next local states s′, the next adjacency matrix A′O and
A′C , and the reward ri to each agent i. The experience (s, AO , AC , a, r, s′, A′O , A′C , h, h′)
is stored in a shared replay buffer B, where r = (r1, · · · , rN), h = (h1, · · · , hN), and
h′ = (h′1, · · · , h′N). h′i is the next hidden state that the Q-network outputs when agent i
calculates Q-values. hi is initialized to zero at the beginning of an episode.

To training the Q-network of each group, we sample H experiences from B as a
minibatch and minimize the loss:

L(θQ
l ) =

1
Nl

Nl

∑
i=1

E[(yi −Ql(oi, mi, ai, hi|θQ
l ))2] (12)

where Nl means the number of agents in group l and θQ
l denote the parameters of Ql . yi is

the target value that calculated by the target network Q′ l , as:

yi = ri + γ max
a′∈Ai

Q′ l(o′i , m′i, a′, h′i|θ
Q′
l ) (13)

where o′i and m′i are i’s next observation and next received messages, respectively. θQ′
l

denote the parameters of Q′ l , which are periodically updated from θQ
l .
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5.3. Implementation in an Actor–Critic Framework

Our method can also be implemented on the actor–critic framework. In this imple-
mentation, each agent i has an actor network and a critic network, maintaining hidden
states hπ

i and hQ
i . After obtaining s, AO and AC , agent i in group l computes the probability

of actions as:
πl(oi, mi, hπ

i ) ≈ f πl

R (e′πi , e′′πi , hπ
i ) (14)

where πl represents the actor network of group l and f πl

R represents the recurrent unit
in πl . We employ the ε-categorical policy here. Agent i determines an action based on
πl(oi, mi, hπ

i ) with probability 1− ε and makes a random choice with probability ε. The
critic network Ql subsequently calculates Q-values, such as the value-based framework.
The hidden states hπ

i and hQ
i and the next hidden states h′πi and h′Qi are stored in the replay

buffer, where h′πi and h′Qi are the outputs of πl and Ql , respectively.
The critic network of each group is trained by minimizing the loss L(θQ

l ), which is
computed as (13). As the actor–critic framework selects actions according to πl(oi, mi, hπ

i )
instead of the maximum Q-value, we use the expectation of the next state’s Q-value to
calculate the target value yi as:

yi = ri + γ ∑
a′∈Ai

π′
l
(a′|o′i , m′i, h′πi , θπ′

l )Q′ l(o′i , m′i, a′, h′Qi |θ
Q′
l ) (15)

where θπ′
l and θQ′

l are the parameters of target network π′ l and Q′ l , respectively.
The actor network of each group is trained according to the gradient:

∇θπ
l
(J (θπ

l )) =
1
Nl

Nl

∑
i=1

E[log πl(ai|oi, mi, hπ
i , θπ

l )(Q
l(oi, mi, ai, hQ

i |θ
Q
l )− bi)] (16)

where the baseline bi is designed to reduce variance and stabilize training [39], which is
defined as:

bi = ∑
a∈Ai

πl(a|oi, mi, hπ
i , θπ

l )Q
l(oi, mi, a, hQ

i |θ
Q
l ) (17)

After training, θπ′
l and θQ′

l are updated as θπ′
l ← τθπ

l + (1− τ)θπ′
l , and θQ′

l ← τθQ
l +

(1− τ)θQ′
l , respectively [40].

Our method can be extended to continuous action space by estimating the expectation
of bi with Monte Carlo samples or a learnable state value function V(oi, mi) [23].

6. Simulation
6.1. Set Up

To evaluate the performance of our method, we conduct a series of simulations on an
Ubuntu 18.04 server with 2 NVIDIA RTX 3080 GPUs. We implement a value-based (VB)
version and an actor–critic (AC) version of our method in PyTorch. Each fully connected
layer and GRU layer contains 256 units. The activation functions in encoders and HGAT
layers are ReLU [41]. The number of attention heads is 4. Empirically, we set the learning
rate of the optimizer to 0.001, and the discount factor γ to 0.95. The replay buffer size is
50 K and the size of a minibatch is 128. ε is set to 0.3. For the value-based version, The
target networks are updated every five training steps. For the actor–critic version, we set
τ to 0.01. The networks are trained every 100 timeslots and update their parameters four
times in a training step.

We compare our method with four MARL baselines, including DGN, DQN, HAMA,
and MADDPG. For non-HGAT-based approaches, each agent concatenates all local states
in its observation into a vector, while padding 0 for unobserved entities. The parameters of
networks are shared among agents in all baselines except MADDPG. We use the Gumbel-
Softmax reparameterization trick [42] in HAMA and MADDPG to make them trainable
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in discrete action spaces. DGN is based on our proposed algorithm [31], which applies a
GAT layer for inter-agent communication. We train our method and each baseline for 100 K
episodes and test them for 10 K episodes.

6.2. UAV Recon

As summarized in Table 1, we deploy several UAVs in a 200× 200 area where 120 PoIs
are distributed. The penalty factor p in (7) is set to 1. We evaluate the performance of our
method in the test stage under different number of UAVs and compare it with baselines.

Table 1. Experiment parameters of UAV recon.

Parameters Settings

Target Area 200 × 200
Number of PoIs 120

Recon Range 10
Observation Range 15

Communication Range 30
Maximum Speed 10/s

Energy Consumption for Hovering 0.5
Energy Consumption for Movement 0.5

Penalty Factor p 1
Importance Factor η1 1
Importance Factor η2 0.1

Timeslots of Each Episode 100

Figure 5 shows the performance of each method in terms of coverage, fairness, and
energy consumption under different numbers of UAVs. Note that both two versions of
our method are trained with 20 UAVs and transferred to a different scale of UAV swarms.
From Figure 5a,b, we observe that our method outperforms all baselines in terms of
coverage and fairness. Compared with DGN and DQN, our method employs HGAT to
extract features from observation, which is more effective than processing raw observation
vectors directly. Therefore, our method helps UAVs to search PoIs and better optimize
their flight trajectories. Although HAMA also applies HGAT, UAVs cannot cooperate
as effectively as our method, owing to the lack of communication. In our method, the
UAVs communicate with others and process received messages by another HGAT layer.
Furthermore, the recurrent unit helps UAVs to learn from the hidden states, which induces a
better performance. In MADDPG, each UAV trains an individual network and concatenates
observations and actions of all agents into a high-dimensional vector as an input of the
critic. As the networks in MADDPG expands exponentially to the scale of the agents, it
is hard to be trained effectively and efficiently in large-scale multi-agent systems. As a
consequence, the MADDPG consumes more time to train but obtains the lowest score.

Figure 5c indicates that our method consumes less energy than DGN and DQN. As
their flight trajectories are better, UAVs can cover more PoIs fairly while consuming less
energy. The energy consumption of HAMA is considerable with our method in low-scale
environments and increases when the number of UAVs is up to 40. MADDPG fails to
improve coverage and fairness, so it tends to save on energy to maximize its reward.

To test the capability of transferred learning, we compare the transferred policies with
those trained under the same settings of testing. As shown in Figure 6, the performance
does not deteriorate when the policy is transferred to execute with 10, 30, or 40 UAVs,
which indicates that our method is highly transferable under various numbers of UAVs.
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Figure 5. Simulation results of all methods on coverage, fairness, and energy consumption under
different number of UAVs.
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Figure 6. Simulation results of transfer learning on coverage, fairness, and energy consumption
under different number of UAVs.

6.3. Predator-Prey

As summarized in Table 2, we deploy five predators in a 100 × 100 area to eliminate
five prey. We set the attack reward of predators and prey to 10 and −10, respectively. The
additional reward is set as radditional = 10× S. We train the policy by the value-based version
of our method and test it by competing with other policies trained by different methods.
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Table 2. Experiment parameters of predator-prey.

Parameters Settings

Target Area 100 × 100
Number of Predators 5

Number of Preys 5
Attack Range 8

Observation Range 30
Communication Range 100

Maximum Speed of Predators 10/s
Maximum Speed of Preys 12/s
Timeslots of Each Episode 100

Table 3 indicates that our method shows its superiority over all baselines in both
roles of predator and prey. By introducing GRU and inter-agent communication, the
predators obtain more information from hidden states and neighbors to decide which
prey to capture. It is more flexible for predators to determine whether to chase prey
individually or cooperatively. Similarly, GRU and inter-agent communication also bring
more information to prey, so they can choose from various strategies to survive. For
example, prey can escape from predators by their faster speed or sacrifice one of them to
distract predators.

Table 3. The mean and standard deviation of scores in predator-prey.

Predator Prey

Our Method DGN DQN

Our method 0.331 ± 0.088 0.535 ± 0.086 0.591 ± 0.101
DGN 0.051 ± 0.060 0.271 ± 0.095 0.386 ± 0.095
DQN 0.014 ± 0.034 0.173 ± 0.086 0.120 ± 0.078

Predator Prey

Our Method HAMA MADDPG

Our method 0.331 ± 0.088 0.787 ± 0.027 0.472 ± 0.098
HAMA 0.051 ± 0.050 0.351 ± 0.050 0.403 ± 0.091

MADDPG 0.038 ± 0.048 0.239 ± 0.090 0.051 ± 0.057

7. Discussion

The experimental results indicate that the performance of our method is superior
to those of others in both cooperative and competitive scenarios. We assume that three
components, including HGAT, GRU, and inter-agent communication, are the key factors
which induce the success of our method. To validate our hypothesis, we conduct an
ablation study in Appendix A to clarify the necessity of each component (HGAT, GRU, and
inter-agent communication).

From Table A1, we observe a significant deterioration in performance when removing
HGAT or GRU, while disabling inter-agent communication also induces a decrease in terms
of coverage and fairness. To explain the necessity of each component, we assume the follow-
ing reasons. Firstly, HGAT plays an important role in summarizing observations. Not only
does it process the local states from all groups, but it also quantifies their importance with
attention weights. In addition, HGAT models the hierarchical relationships among agents
as a graph, which is effective for them to optimize their policies in dynamic environments.
Secondly, GRU makes a significant contribution to overcoming the limitation of partial
observability. When determining actions, GRU helps agents to remember the historical
information recorded in the hidden states, such as the position of the observed PoIs in
the UAV recon. It is beneficial for agents to improve their performance by getting what
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they cannot observe from the hidden states. Finally, inter-agent communication expands
agents’ horizons. By sending high-dimensional embedding vectors, they share their obser-
vations with others. With the help of HGAT, agents can cooperate better by using extensive
information from those vectors in decision making.

Compared with non-HGAT-based approaches, our method has another advantage in
the replay buffer. As they concatenate all local states into a vector and pad 0 for unobserved
entities, the space complexity of observations in their replay buffer is O(N ×M), where N
and M means the number of agents and entities, respectively. However, our method only
stores local states, whose space complexity is O(M). Although it has to store the adjacency
matrices AO to represent the relationship among agents, this is more economical than
storing observations in terms of storage, as an adjacency matrix represents the relationship
between agents by a bit.

8. Conclusions

In this paper, we propose a scalable and transferable DRL-based multi-agent coor-
dination control method for cooperative and competitive tasks. This method introduces
HGAT, GRU, and inter-agent communication into DRL to improve performance in mixed
cooperative–competitive environments. By intensive simulations, our method shows its
superiority over DGN, DQN, HAMA, and MADDPG both in UAV recon and predator-prey.

In the future, we will improve our method by introducing an adaptive policy base
on the action entropy of the agent to provide a more intelligent exploration. We will
evaluate the performance of the entropy-based policy and compare it with the ε-greedy
and ε-categorical policies. Specifically, we will test the capabilities of automating entropy
adjustment under different entropy targets in large-scale multi-agent systems. Furthermore,
we will try to extend our method into continuous policies and evaluate its performance in
cooperative and competitive scenarios with continuous action space.
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AC Actor–Critic
ACO Ant Colony Optimization
COMA COunterfactual Multi-Agent
Dec-POMDP Decentralized Partially Observable Markov Decision Process
DGN Deep Graph Network
DNN Deep Neural Network
DQN Deep Q-Network
DRGN Deep Recurrent Graph Network
DRL Deep Reinforcement Learning
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GA Genetic Algorithm
GAT Graph Attention neTwork
GCN Graph Convolutional Network
GRU Gated Recurrent Unit
HAMA Hierarchical Graph Attention-Based Multi-Agent Actor–Critic
HGAT Hierarchical Graph Attention neTwork
MAAC Multi-Actor-Attention-Critic
MADDPG Multi-Agent Deep Deterministic Policy Gradient
MARL Multi-Agent Reinforcement Learning
PoI Point-of-Interest
QoS Quality of Service
RL Reinforcement Learning
RSH Randomized Search Heuristic
SARSA State-Action-Reward-State-Action
TRPO Trust Region Policy Optimization
UAV Unmanned Aerial Vehicle
UAV-MBS Unmanned Aerial Vehicle Mobile Base Station
VB Value-Based

Appendix A. Ablation Study

In the ablation study, we test our method and three variants in UAV recon with
20 UAVs and summarized the performances in Table A1. The variants are described as
follows:

• Without H: removing the first HGAT layer;
• Without G: removing GRU in the recurrent unit;
• Without C: disabling inter-agent communication.

Table A1. The mean and standard deviation of three metrics in the ablation study (N = 20).

Model Metric

Coverage Fairness Energy Consumption

Our method 0.466 ± 0.046 0.784 ± 0.061 0.665 ± 0.015
Without H 0.103 ± 0.022 0.696 ± 0.087 0.710 ± 0.011
Without G 0.349 ± 0.065 0.726 ± 0.116 0.730 ± 0.017
Without C 0.412 ± 0.058 0.749 ± 0.081 0.668 ± 0.023
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32. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
33. Bernstein, D.S.; Givan, R.; Immerman, N.; Zilberstein, S. The complexity of decentralized control of Markov decision processes.

Math. Oper. Res. 2002, 27, 819–840. [CrossRef]
34. Sutton, R.S.; McAllester, D.A.; Singh, S.P.; Mansour, Y. Policy gradient methods for reinforcement learning with function

approximation. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2000; pp. 1057–1063.
35. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529. [CrossRef] [PubMed]
36. Williams, R.J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 1992,

8, 229–256. [CrossRef]
37. Konda, V.R.; Tsitsiklis, J.N. Actor-critic algorithms. In Advances in Neural Information Processing Systems; MIT Press: Cambridge,

MA, USA, 2000; pp. 1008–1014.
38. Jain, R.K.; Chiu, D.M.W.; Hawe, W.R. A Quantitative Measure of Fairness and Discrimination; Eastern Research Laboratory, Digital

Equipment Corporation: Hudson, MA, USA, 1984.
39. Weaver, L.; Tao, N. The optimal reward baseline for gradient-based reinforcement learning. arXiv 2013, arXiv:1301.2315.
40. Heess, N.; Hunt, J.J.; Lillicrap, T.P.; Silver, D. Memory-based control with recurrent neural networks. arXiv 2015, arXiv:1512.04455.
41. Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International

Conference on Machine Learning (ICML 2010), Haifa, Israel, 21–24 June 2010; pp. 807–814.
42. Jang, E.; Gu, S.; Poole, B. Categorical reparameterization with gumbel-softmax. arXiv 2016, arXiv:1611.01144.

http://dx.doi.org/10.1177/0278364910377245
http://dx.doi.org/10.1016/j.tcs.2011.05.001
http://dx.doi.org/10.1016/j.cie.2021.107612
http://dx.doi.org/10.1145/3349625.3355437
http://dx.doi.org/10.1109/CCNC.2019.8651796
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1109/TMC.2019.2908171
http://dx.doi.org/10.1109/TMC.2022.3146881
http://dx.doi.org/10.1287/moor.27.4.819.297
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1007/BF00992696

	Introduction
	Related Work
	Background
	Multi-Agent Reinforcement Learning (MARL)
	Hierarchical Graph Attention Network (HGAT)

	System Model and Problem Statement
	UAV Recon
	Predator-Prey

	HGAT-Based Multi-Agent Coordination Control Method
	HGAT-Based Observation Aggregation and Inter-Agent Communication
	Implementation in a Value-Based Framework
	Implementation in an Actor–Critic Framework

	Simulation
	Set Up
	UAV Recon
	Predator-Prey

	Discussion
	Conclusions
	Ablation Study
	References

