
����������
�������

Citation: Abutaha, M.; Amar, I.;

AlQahtani, S. Parallel and Practical

Approach of Efficient Image Chaotic

Encryption Based on Message

Passing Interface (MPI). Entropy 2022,

24, 566. https://doi.org/10.3390/

e24040566

Academic Editors: Xiaowei Li,

Jian-Zhong Li and Yu Zhao

Received: 11 March 2022

Accepted: 15 April 2022

Published: 18 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Parallel and Practical Approach of Efficient Image Chaotic
Encryption Based on Message Passing Interface (MPI)
Mohammed Abutaha 1,* , Islam Amar 1 and Salman AlQahtani 2

1 College of Information Technology and Computer Engineering, Palestine Polytechnic University,
Hebron P.O. Box 198, Palestine; 161100@ppu.edu.ps

2 New Emerging Technologies and 5G Networks and Beyond, Computer Engineering Department, College of
Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia; salmanq@ksu.edu.sa

* Correspondence: m_abutaha@ppu.edu

Abstract: Encrypting pictures quickly and securely is required to secure image transmission over the
internet and local networks. This may be accomplished by employing a chaotic scheme with ideal
properties such as unpredictability and non-periodicity. However, practically every modern-day
system is a real-time system, for which time is a critical aspect for achieving the availability of the
encrypted picture at the proper moment. From there, we must improve encryption’s performance
and efficiency. For these goals, we adopted the distributed parallel programming model, namely, the
message passing interface (MPI), in this study. Using the message passing interface, we created a
novel parallel crypto-system. The suggested approach outperforms other models by 1.5 times. The
suggested parallel encryption technique is applicable.

Keywords: MPI; parallel encryption; chaotic system; IoT; 5G; cybersecurity

1. Introduction

The fast advancement of communication technology and the exchange of information
across the internet, utilizing a transfer control protocol as plain text, necessitates the use of
encryption to safeguard sensitive data during the transition. The term “crypto” is derived
from the Greek word “kryptos”, which means “hidden or secret” [1,2]. Indeed, the use
of encryption initially arose as the art of communication itself in 1900 B.C. Furthermore,
encryption was designed to change a communication into an unreadable form in order
to safeguard it surreptitiously while it was sent from one location to another. After many
years of development, cryptography and cybersecurity have evolved in ways of encryption
to add aspects to sensitive data such as secrecy, integrity, and authenticity, as is recognized
by the CIA [3–5]. At present, cryptography includes three aspects, namely, symmetric,
asymmetric, and procedural aspects [6–8]. From ancient times until 1976, the majority of
encryption techniques were symmetric, meaning they utilized the same key for encryption
and decryption. Encryption is the process of converting plain text (text that can be read)
to unreadable text (written information that cannot be read; ciphertext). Decryption, on
the other hand, is a process that turns unreadable text (ciphertext) into readable plain
text [9]. Diffie, Hellman, and Merkle introduced asymmetric cryptography in 1976 [10]. In
asymmetric cryptography, there are two keys: a public key for encryption and a private key
for decryption, according to [11]. The public key may be used by anybody to encrypt data;
however, the private key can only be used by the authorized individual to decode the data.
Stream and block ciphers are included in symmetric ciphers [12,13]. The stream cipher
algorithm encrypts bits one-by-one [14]. It appears to be tiny, speedy, and widespread in
embedded devices such as GSM phones. Block ciphers, on the other hand, encrypt the
entire block (several bits) which are mostly used and common in internet applications [15].
Encryption is now used in several areas, including biology, math, and physics, to secure
private information during network transmission. Text and images are two examples of

Entropy 2022, 24, 566. https://doi.org/10.3390/e24040566 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24040566
https://doi.org/10.3390/e24040566
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-2480-0913
https://orcid.org/0000-0003-1233-1774
https://doi.org/10.3390/e24040566
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24040566?type=check_update&version=1

Entropy 2022, 24, 566 2 of 22

data types that may be sent via a network. Currently, photos are commonly used; hence,
encryption is necessary to make these images safe and confidential [16]. However, one of
the most difficult aspects of transferring data through a network is ensuring its security
and speed. To address the first issue, a plain picture must be transformed into an encrypted
image during the transition to keep the image safe from unwanted users. Picture encryption
is a practical method of ensuring image confidentiality, integrity, and availability, since it en-
crypts digital images before storing them for transmission. The receiver cannot distinguish
the original information from the encrypted picture information, and only genuine receivers
or users with private cipher keys can decrypt it accurately and successfully. The classical
and traditional encryption algorithms cannot achieve this level of security for images, and
they also have a low security level when used for image encryption. However, chaos theory,
which was used in physics, mathematics, biology, and engineering until the 1980s, and
which became the foundation of cryptographic applications, was regarded as a good and, in
fact, the best choice to permute each pixel in the image and convert it to a scrambled image
that can resist statistical attacks [17]. The development of fifth-generation (5G) wireless
networks is gaining traction, with the goal of connecting practically all parts of life via
a network with substantially faster speed, very low latency, and pervasive connections.
Because of its importance in our lives, the network must protect its users, components, and
services [18]. The sensitivity to beginning circumstances, ergodicity, pseudo-randomness,
unpredictability, topological transitivity, and parameter changes contribute to the strength
of chaos encryption. However, this sort of security takes a long time to process and send
pictures over a network [19]. In order to accomplish speed, increase efficiency, provide time
gain, and minimize transaction costs, strong hardware architectures are used by leveraging
parallelism as an alternate approach to process data. Speed, particularly in information
technology, has now become a crucial component affecting many facets of our lives, even in
this period dubbed “the age of speed”. As is well-known, the chaos encryption process is
the greatest way to ensure security, particularly for images; yet, the sophisticated structure
of chaos, as well as the enormous number of iterations and rounds inside its internal states,
makes it slower than other encryption algorithms as a result of the preceding and of the
critical requirement for an efficient system that can be utilized to encrypt pictures and video.
In this research, we suggested a new parallel encryption system based on chaotic maps
and the message passing interface to efficiently encrypt pictures and video. This system
may be designed to achieve a high level of security while still providing great encryption
performance. The remainder of this work is structured as follows. Section 2 examines some
of the linked literature. Some parallel programming approaches are shown in Section 3.
Section 4 puts the experimental results to the test. Section 5 examines the performance of a
novel algorithm. Finally, in Section 6, we will go through the findings.

2. Related Work

Encryption algorithms are mathematical procedures that are used to conduct encryp-
tion by utilizing two inputs: plain text and a secret key. Effective encryption techniques are
required to secure sensitive data and keep them private. Following are several algorithms
and publications that are typically related.

2.1. Stream Ciphers Algorithms

Many stream cipher algorithms, such as Salsa 20, Rabbit, and HC-128, have been stud-
ied in the literature. Salsa20/r is one of Daniel J. Bernstein’s stream encryption algorithms,
where r = 8, 12, or 20, which is the number of iterations of the round function. The Salsa
algorithm may employ cryptographic keys of 128, 192, and 256 bits, according to [20]. To
create 512 internal states, a 64-bit nonce (unique message number), a 64-bit counter, and
four 32-bit constants are utilized. A keystream output of 512 bits is considered. Each output
block comprises a unique combination of the key, nonce, and counter. Because there is no
chaining between blocks, Salsa20/r operates in the same way as a block cipher in counter
mode. Salsa20/r generates keystreams with a maximum length of 270 bits. Rabbit, on the

Entropy 2022, 24, 566 3 of 22

other hand, is a stream cipher that was invented in 2004. It is thought to be one of the most
effective and sophisticated algorithms. It requires a 64-bit nonce and a 128-bit key as input.
After each repetition, it produces a 128-bit result. Its encryption comprises of 513 internal
state variables, eight 32-bit counters, and one counter carry bit [21]. It is resistant to a wide
range of attacks, including algebraic, correlation, and statistical attacks. Differential fault
attacks, on the other hand, were found in 2009. The HC-128 stream cipher algorithm has
a 128-bit key and a 128-bit instantiation vector (IV). Its internal state is divided into two
tables, each of which includes 512 registers of 32-bit length, and one of which is created
by a nonlinear output function; each register is updated in 1024 steps [22]. The HC-265
variant has a 256-bit key length and varies from the HC-128 in that the table size is 1024
32-bit elements rather than 512 32-bit elements.

2.2. Related Papers

Abutaha explains and presents a stream cipher method based on chaos theory in his
paper [23]. He creates a new chaotic stream generator [24] with the goal of generating a
keystream in order to use the key as the primary component of the encryption technique.
His chaos generator structure is made up of an instantiation vector, a key setup, nonvolatile
memory, and an internal state that creates the output function as the keystream. Its internal
state consists of two recursive cells, each of which includes one of two chaotic maps based on
mathematical equations such as the skew tent map (ST) and the piecewise linear chaotic map
(PWLC), as well as a linear feedback shift register as a perturbation approach. In addition,
he implements this generator in a sequential version and a parallel model based on a shard
memory architecture using the Pthread library, but his results show that using a shared
parallel model with Pthread is only suitable for large datasets, whereas small datasets are
not suitable for Pthread. In his paper [25], Dariusz describes a parallel technique based on
OpenMP that parallelizes a block cipher based on a spatiotemporal chaotic system and a
chaotic neural network. He demonstrates that the use of a multicore and multiprocessor
may minimize the encryption and decryption times; moreover, his experimental results
suggest that time-consuming loops inside the function can be parallelizable. In their
paper [26], with a chaos-based encryption scheme based on the logistic map and Fibonacci
sequence that is used to convert the logistic map into an integer value, Lui et al. demonstrate
the chaos algorithm in both sequential and parallel versions depending on the message
passing interface (MPI) using a master/slave communication model through using the
master to initialize the parameter, logistic map, and Fibonacci sequence. This methodology
is appropriate for the encryption and decryption of sensitive data or multimedia. Ünal
Çavuşoğlu et al., in their paper [27], developed a new random number generator (RNG)
and a chaos-based parallel encryption algorithm for increasing both the security and speed;
they used a parallel data encryption model by dividing an image into the number of
used threads and encrypting each part with a separate thread. The partitioning process
is computed according to a different number of threads for an image with the size of m
columns and m rows, and the rows are divided by the number of threads to obtain n parts
of equal size for processing in each thread. The keyspace size of their generated algorithm
is 2888 in the parallel version, instead of 2216 in the sequential version, according to the
use of different initial conditions for each thread. Amany Elrefaey et al. [28] demonstrate
a parallel implementation of chaotic-based picture encryption that is dependent on two
phases required for chaotic-based image encryption processes: replacement and diffusion.
They established a parallelization notion on the Baker method by employing a vectorization
form and approach, rather than a loop in the sequential version, by generating a map table
just once that maps the new pixel position to the previous pixel position. This table remains
the same during all replacement iterations. They accomplished parallelization in the
diffusion idea by developing a modified method that divides the picture into n similar-
sized divisions and executes the encryption operation on each component individually in
parallel, utilizing multiple processor cores. Massod et al. [13] suggested a new system
that is computationally less costly and provides a greater degree of security. The system is

Entropy 2022, 24, 566 4 of 22

built on a shuffling process, using fractals as the key as well as a three-dimensional Lorenz
chaotic map. The shuffling procedure applied the confusion attribute and jumbled the
pixels of the standard picture. A three-dimensional Lorenz chaotic map is utilized for a
diffusion process that distorts all of the image’s pixels.

Massod et al. [29] suggested a lightweight cryptosystem to encrypt medical pictures
with enhanced security based on a Henon chaotic map, Brownian motion, and Chen’s
chaotic system.

In the next part, we will look at several parallel programming paradigms and multi-
processor architectures.

3. Parallel Programming Models and Techniques

In the 1980s, CPU manufacturers such as Intel and AMD enhanced the speed of their
computers by expanding the hardware design and increasing the number of transistors for
each processor, in order to achieve high performance. This transitional period lasted until
the mid-1990s and the beginning of the 2000s. When the clock rate increases, they approach
a physical limit created by inhibiting the CPU’s ability to cool itself. Manufacturers boost
performance by designing a new CPU architecture with several cores that can accept vari-
ous instructions and data streams (MIMD). The concept of existing multi-core architecture
is based on the idea of utilizing all of these cores by employing parallel programming
techniques. The parallel programming paradigms are determined by the hardware archi-
tecture, which is either shared memory or distributed memory. Both architectures share
the same concept of breaking work down into such units and assigning these units to each
core to process individually. All control units (CU) and processing units (PU) are shared
with a single memory in a shared memory architecture. In distributed memory, however,
each processing unit and control unit has its own local memory that is totally connected
via the interconnection network. The need for high speed and high performance of hard-
ware systems, in many aspects, such as artificial intelligence, IoT, real-time applications,
video conferencing, and video-on-demand, has led programmers to search for and rely
on another way of programming that paved the way to solving problems that concurrent
programming encountered consistently. Parallel programming is an alternate option that
interfaces directly with hardware to give the required application with great speed and
efficiency. Parallel programming appears to be the greatest technique to fully utilize all
available resources and processors in order to provide high-speed performance. This style
of programming may be used to address mathematical problems in many scientific fields.
Parallel programming models and techniques are divided into two categories: shared
memory and distributed memory. OpenMP and Pthread are examples of shared memory
models, whereas message passing interfaces are examples of distributed memory models.
OpenMP is a Fortran and C/C++ application program interface (API). It takes a user
program and breaks it down into threads that run on a shared memory basis. OpenMP is a
cross-platform program that may operate on any operating system, including UNIX, Linux,
and Windows [30]. OpenMP is made up of compiler directives, runtime libraries, and
environmental libraries. Pthread, on the other hand, is a library that can be linked with the
C/C++ programming languages. It is not a programming language in the same way that
Python or Java are. It was sometimes referred to as a POSIX thread [31]. A standardized
extension exists for Posix threads (IEEE Std 1003.1c-1995). Thread management-creating,
joining threads, and so on, are some of the numerous processes performed by POSIX
threads. Mutexes, condition variables, and thread synchronize through read/write locks
and barriers, unlike MPI, which stands for message passing interface [32]. MPI com-
municates with other languages such as C/C++ and FORTRAN. MPI is widely regarded
as one of the most essential programming languages for utilizing distributed memory
architecture. It is almost as though another language has its own data type and function. To
communicate between two processors, the first executes a send operation, while the second
receives an operation. MPI has several implementations, including MPICH, MPICH2, and
OpenMPI. MPI is now binding to other languages by enclosing MPI implementations in

Entropy 2022, 24, 566 5 of 22

other languages such as Java, MATLAB, and Python. In this work, we concentrate on a
parallel distributing model based on a message passing interface model, since it has a better
capacity to accelerate performance when compared to other parallel models.

4. Proposed Parallel Chaos Crypto System

The new technique is heavily reliant on two non-recursive filters (skew tent map and
PWLC map), which provide randomization and non-periodicity. Because chaos is sensitive
to beginning circumstances, increasing the unpredictability will increase the randomness.
The beginning circumstances of our algorithm are drastically modified in each iteration.
In order to improve a chaotic generator’s efficiency and computing performance, we use
MPI for each cell of the non-recursive filter, which allows each cell to function in its own
memory space, separate from the others, as seen in Figures 1 and 2. Each process will
execute each cell individually, as shown in Algorithm 1 and Figure 2. The system begins by
taking a clear image as an input and then converts it into bytes by splitting the image into
divisions of four bytes. We add padding if we are unable to split the picture into four-byte
chunks. The MPI environment was set up to apply MPI to each recursive cell in order to
achieve the required parallel suggested system by distributing the amount of processors
and cores evenly to the PWLC and skew tent chaotic maps by calling them concurrently.
The result of the two maps is then XOR together to form four bytes. These procedures are
continued until the number of created keystream sequences equals the amount of plain
image bytes. Finally, encryption is performed for every four produced sequences, with each
sequence containing four bytes of keystreams. Those 16 bytes of keystream will XOR with
the plain image’s 16 bytes. This technique is continued until the entire image is encrypted.
Because the stream cipher is a symmetric encryption technique, decryption follows the
same steps as encryption. First, we construct the four bytes’ combination of the encrypted
picture. The chaotic generator is then used to produce the same key streams using the same
secret key. Finally, the picture is decrypted by XORing the four-byte combinations with the
key streams.

The equations of the discrete skew tent and the discrete PWLCM maps are, respectively,
given by [24]:

Discrete Skew Tent Map:

Xs[n] =

⌈
2N × Xs [n−1]

P1

⌉
if 0 < Xs[n− 1] < P1

2N − 1 if Xs[n− 1] = P1

⌈
2N × 2N−Xs [n−1]

2N−P1

⌉
if P1 < Xs[n− 1] < 2N

. (1)

Discrete PWLCM map:

Xp[n] =

⌈
2N × Xp [n−1]

P2

⌉
if 0 < Xp[n− 1] ≤ P2

⌈
2N × Xp [n−1]−P2

2N−1−P2

⌉
if P2 < Xp[n− 1] ≤ 2N−1

⌈
2N × 2N−P2−Xp [n−1]

2N−1−P2

⌉
if 2N−1 < Xp[n− 1] ≤ 2N − P2

⌈
2N × 2N−Xp [n−1]

P2

⌉
if 2N − P2 < Xp[n− 1] ≤ 2N − 1

2N − 1− P2 otherwise

. (2)

Entropy 2022, 24, 566 6 of 22

The values Xs[n], Xp[n] produced by the recursive cells in the internal state are entered
to the output function. Then, the output sequence Xg(n) is obtained by XORing X1_s
and X1_p, as clarified in Equation (3):

Xg(n) = Xs(n)⊕ Xp(n). (3)

Figure 1. Proposed parallel chaos generator.

Algorithm 1 PARALLEL IMAGE CHAOS ENCRYPTION ALGORITHM

Input: clear image
Output: Scrambled Encrypted image

1: Convert image into bytes
2: Split image into 4 bytes
3: Initialize MPI environment
4: MPI_Comm _rank(MPI_COMM_WORLD, &rank)
5: MPI_Comm _size(MPI_COMM_WORLD, &size)
6: Distribute processors equally on the two Cells
7: rank← 0
8: if rank <= (size/2) then
9: K− > Xs = STmap()

10: else
11: K− > Xp = PWLCmap()
12: end if
13: Finalize MPI Environment
14: Generate a sequence of 32 bits f rom XORing K− > Xs and K− > Xp

15: Convert each 32-bit sequence into 4-byte sequences
16: XORing each 4-byte sequence in the key with the corresponding 4-byte sequence in the image

Based only on the process ID, the MPI system advises each process on which portion
of the global problem they should be working on. Large amounts of data, as well as load
balancing across processors, need the usage of both point-to-point and group communica-
tion. The goal behind employing point-to-point communication is to distribute data over
two or more processors in accordance with the computer and workstation specifications.
Rather than concentrating all processing power and labor in one location, as indicated in

Entropy 2022, 24, 566 7 of 22

Figure 3, the message contents are transferred to a system-controlled block of memory.
Process 0 continues to perform additional tasks without pause. When process 1 is finished,
it reads the message from the remote system buffer and puts it in the proper memory
address. The suggested approach divides the burden of bits over several cores utilizing
MPI, which will raise the average bit rate and lower the number of cycles per byte of data.
In general, there are two distinct techniques for using ILP. The first technique depends
on hardware to assist, detect, and utilize parallelism dynamically, whereas the second, as
in our proposed research, focuses on software technology to find parallelism statically at
the compile time. The suggested parallel chaos cryptosystem intends to eliminate reliance
on data, names, and controls. We can eliminate data reliance by changing the code and
reordering or scheduling the instruction with worries that ordering does not have an effect,
resulting in unwanted outcome. We handle this problem by utilizing distinct objects, rather
than relying on a single common item, according to the naming dependence.

1010110001011101

Splitter

Splits the image
into a sequence

of 4 bytes

Generator

STmap

PWLCmap

()

() 1 11

0
110 0

1 00

1
101 1

generated 4 bytes

Image

4
bytes

4
bytes

4
bytes

4
bytes... ...

4
bytes

Encrypted
Image

XOR
4

bytes

all the bytes of the image

CPU Cores

XOR

for all the bytes of the image

Keeps generating

keeps splitting

Figure 2. Description of the architecture of the parallel proposed cryptosystem.

Figure 3. Point-to-point communication.

5. Performance Computation of Proposed Parallel Computing

We conduct various tests on two computers to calculate and assess the performance of
the proposed parallel cryptosystem based on MPI. The first features an Intel Core i3 (TM)
processor running at 1800 GHz and 4 GB of RAM, while the second has an Intel Core i5
(TM) processor running at 2400 GHz and 4 GB of RAM. As a trustworthy Linux version, we
operate the parallel cryptosystem on Ubuntu 18.04. In these tests, three metrics are taken
into account: the number of cycles required to create one byte (cycle/byte), the generation
time in microseconds, and the rate at which bits are transported in megabits per second
(Mbit/s), as clarified in Tables 1–4.

NCpB =
CPUSpeed(Hertz)

BR(Mbit/s)
(4)

BR =
Datasize(Mbit)

Gen_time(micros)
(5)

Entropy 2022, 24, 566 8 of 22

ET =
Image_size(Mbit)

Encryption_time(s)
(6)

As seen in Table 1, the number of cycles per byte decreases quicker in MPI as compared
to sequential and parallel implementations because MPI uses all parallelisms. Cores can
handle both tiny and big amounts of data by distributing and balancing the load evenly
among all processors. As indicated in Table 1, NCBP is 44.9 when the data size is modest,
such as 2048 bytes in MPI, but 155.9 and 82,950 in sequential and Pthread. When using
MPI on huge data sets such as 3,145,278 bytes, the NCPB in MPI is 22.2, whereas the
NCPB in seq and parallel is 32.0 and 36.3, respectively. As a consequence of the results, we
believe that employing MPI in our cryptosystem is the quickest model in small and large
image sizes. In contrast to Table 1, which indicates the number of cycles, Table 2 gives the
average time of the chaos generator in both sequential and parallel modes. According to
the findings, the average time of a parallel chaos generator based on MPI implementation
is less than that of a sequential chaos generator and a parallel chaos generator based on
a shared memory architecture (Pthread implementation). That is, MPI uses all of its core
parallelism by distributing memory to each core, which works independently of the others.
When tiny data is entered into the generator, such as 128 in MPI, the average encryption
duration is 11 cycles, whereas the sequential and Pthread versions take 38 and 1389 cycles,
respectively. However, when huge amounts of data are entered into the cryptosystem,
such as 3,145,728 bytes, the average generation time in MPI is 119,640, but the average
generation time in sequential and Pthread is 162,322 and 133,493 microseconds, respectively.
As is well-known these days, time is a significant component in determining the efficiency
and availability of software programs; so, employing MPI as a parallel model is the ideal
option for reducing time and increasing availability by encrypting pictures. As shown
in Table 4, which illustrates the result of bit rate, which is the number of bits processed
in a unit of time, the bit rate in MPI is 862.32 when the data is 512, while the bit rate in
sequential and Pthread implementation is 156.04 and 14.95, respectively. When the size is
increased to 3,145,728, the bit rate is 864.79, whereas the bit rate in sequential and Pthread
implementation is 620.14 and 754.07, respectively. Why is the bit rate being increased?
When compared to other implementations, MPI has a good communication system that
allows the processors to communicate and transmit data among themselves, allowing MPI
to have the greatest encryption bit rate in both small and huge data.

Table 1. NCpB for sequential, Pthread, and MPI implementation on two cores.

Data NCpB_Seq NCpB_Pthread NCpB_MPI

64 242.1 13,463.2 48.4
128 184.0 6726.8 53.3
256 114.6 2791.9 53.3
512 127.1 1326.9 23.0

1024 292.0 9879.8 44.0
2048 155.9 8295.0 44.9
4096 82.1 3586.4 27.1

16,384 44.9 649.9 24.6
32,768 37.6 443.6 24.1
65,536 34.7 189.8 23.6

125,000 34.6 141.4 24.8
196,608 34.7 78.0 23.3

3,145,728 32.0 26.3 22.2

Entropy 2022, 24, 566 9 of 22

Table 2. Generation time for sequential, Pthread, and MPI implementation on two cores.

Data Gen_Time_Seq Gen_Time_Pthread Gen_Time_MPI

64 25 1390 5
128 38 1389 11
256 49 1153 22
512 105 1096 19

1024 471 15,938 71
2048 503 26,763 145
4096 530 23,142 175

16,384 1180 17,090 646
32,768 1982 23,400 1271
65,536 3665 20,052 2489

125,000 6973 28,523 5008
196,608 10,990 24,748 7391

3,145,728 162,322 133,493 116,401

Nonetheless, when the data is 3,145,278 bytes, the NCpB in MPI is 13.2 and in Pthread
is 19.2 and 16.7, respectively as shown in Table 5.

Table 3. Performance results comparison of the stream cipher algorithms.

Algorithm Image Size Enc_Time (Ms) ET (Mbit/s) NCpB

Rabbit 256× 256× 3 811.3 1848.8 9.5
512× 512× 3 3256 1842.6 9.5

1024× 1024× 3 12,950 1853.9 9.5
HC-128 256× 256× 3 1221 1228.1 14.4

512× 512× 3 4895 1225.6 14.4
1024× 1024× 3 19,647 1221.5 14.4

Salsa 20/12 256× 256× 3 836.4 1793.4 9.8
512× 512× 3 3389 1770 9.8

1024× 1024× 3 13,483 1779.9 9.8
AbuTaha Chaos Stream Cipher(Seq) 256× 256× 3 5838 1077.63 18.4

512× 512× 3 — — —
1024× 1024× 3 97,584 1031.55 19.2

AbuTaha Chaos Stream Cipher(Pthread) 256× 256× 3 17,148 366.88 54.1
512× 512× 3 — — —

1024× 1024× 3 80,568 1249.41 16.7
Parallel Proposed Chaos CryptoSystem(MPI) 256× 256× 3 4387 1434.06 13.8

512× 512× 3 — — 21.2
1024× 1024× 3 69,631 1445.65 13.2

Entropy 2022, 24, 566 10 of 22

Table 4. Bit rate for sequential, Pthread, and MPI implementation on two cores.

Data BR_Seq BR_Pthread BR_MPI

64 81.92 1.47 409.60
128 107.79 2.95 372.36
256 173.06 7.10 372.36
512 156.04 14.95 862.32

1024 67.94 2.01 450.70
2048 127.24 2.39 441.38
4096 241.51 5.53 731.43

16,384 442.03 30.52 807.43
32,768 527.95 44.72 823.29
65,536 571.90 104.53 842.11

125,000 573.64 140.24 798.72
196,608 572.45 254.21 851.20

3,145,728 620.14 754.07 864.79

Table 5. NCpB for sequential, Pthread, and MPI implementation on four cores.

Data NCpB_Seq NCpB_Pthread NCpB_MPI

64 164.7 9065.9 96.9
128 116.2 4663.7 33.9
256 96.9 2767.7 31.5
512 89.6 1348.7 24.2

1024 78.7 638.0 23.6
2048 116.5 2532.9 21.4
4096 58.1 1215.3 18.0

16,384 27.2 510.9 15.1
125,000 18.4 71.5 14.1
196,608 18.4 54.1 13.8

3,145,728 19.2 16.7 13.2

When applying generation time results on a computer that has four cores, the result,
as reported in Table 6, demonstrates that the generation time decreases proportionally
with an increasing number of processors. The generation time In MPI is 13, in contrast to
the sequential and Pthread implementations, for which the generation times are 40 and
1143, respectively, when the data contains 256 bytes. However, when the data contains
3,145,728 bytes, the generation time is 69,631, but the generation time in sequential and
Pthread is 97,584 and 80,568, respectively. As noted from Table 7, which reported the
result of the bitrate on a computer that has four cores, that experimental result shows
that the bitrate is increasing proportionally with an increasing number of processors on
a workstation. The bitrate in MPI is 1103.5 when the data is 4096 bytes, in contrast to the
sequential and parallel implementation, whose bit rates are 341.33 and 16.32, respectively.
For 196,608-byte data, the bit rate in MPI is 1434.06. However, in Pthread and sequential,
the bit rates are 1077.63 and 366.88, respectively. As illustrated in Table 3, this demonstrates
a performance comparison result between the stream cipher algorithms and our proposed
algorithm. We implement this data by encrypting the Lena image three times, each time
with a different size. The result shows that the performance increases in MPI, compared
to the others, with an increase in the size of data. Figures 4–9 show the curves that depict
the NCpB, generation time, and bit rate measurements either in two or four cores for the
sequential, Pthread, and MPI implementations.

Entropy 2022, 24, 566 11 of 22

Table 6. Generation time for sequential, Pthread, and MPI implementation on four cores.

Data Gen_Time_Seq Gen_Time_Pthread Gen_Time_MPI

64 17 936 10
128 24 963 7
256 40 1143 13
512 1114 1114 20

1024 130 1054 39
2048 376 8172 69
4096 375 7842 116

16,384 715 13,435 398
125,000 3714 14,416 2844
19,6608 5838 17,148 4387

3,145,728 97,584 80,568 69,631

Table 7. Bit rate for sequential, Pthread, and MPI implementation on four cores.

Data BR_Seq BR_Pthread BR_MPI

64 120.47 2.19 204.80
128 170.67 4.25 585.14
256 204.80 7.17 630.15
512 221.41 14.71 819.20

1024 252.06 31.09 840.21
2048 170.21 7.83 927.54
4096 341.33 16.32 1103.45

16,384 729.51 38.82 1310.55
125,000 1077.01 277.47 1406.47
196,608 1077.63 366.88 1434.06

3,145,728 1031.55 1249.41 1445.65

Figure 4. NCPB for sequential, Pthread, and MPI implementation on two cores.

Entropy 2022, 24, 566 12 of 22

Figure 5. Generation time for sequential, Pthread, and MPI implementation on two cores.

0 64 128 256 512 1024 2048 4096 16384 125000 196608 3145728

Data in Bytes

100

101

102

103

104

105

E
T

(M
b
it
/s

)

seq

pthread

MPI

Figure 6. Bit rate for sequential, Pthread, and MPI implementation on two cores.

Figure 7. NCpB for sequential, Pthread, and MPI implementation on four cores.

Figure 8. Generation time for sequential, Pthread, and MPI implementation on four cores.

Entropy 2022, 24, 566 13 of 22

0 64 128 256 512 1024 2048 4096 16384 125000 196608 3145728

Data in Bytes

100

101

102

103

104

E
T

(M
b
it
/s

)

seq

pthread

MPI

Figure 9. Bit rate for sequential, Pthread, and MPI implementation on four cores.

5.1. Speed-Up Calculations

The term ”speed-up” refers to the measuring of parallel code in terms of how much
quicker it executes in parallel. Assuming that the time to execute code on one processor
is time_seq and the time to run code on N processors is time_parallel, the speed-up is
provided in Equation (4) [33]:

Speed−Up =
Time_Seq

Time_Parallel
. (7)

For assessing bit rate enhancement, divide the bit rate in parallel by the bit_rate in sequen-
tial, as shown in Equation (5):

BitRate_Enhancement =
BitRate_Parallel

BitRate_Seq
. (8)

The enhancement of a number of cycles per byte can be given as shown in Equation (6):

NCpBEnhancement =
NCpB_Seq

BitRate_Parallel
. (9)

Our results are for the performance shown in Figure 10. The Figures clarified that the
performance is better when we applied our algorithm in four cores.

0 64 128 256 512 1024 2048 4096 16384 32768 65536 125000 196608 3145728

Data in Bytes

100

101

102

103

E
T

(M
b

it
/s

)

seq

pthread

MPI

0 64 128 256 512 1024 2048 4096 16384 125000 196608 3145728

Data in Bytes

100

101

102

103

104

E
T

(M
b
it
/s

)

seq

pthread

MPI

Figure 10. Bit rate enhancement on two and four cores: the upper figure represents two cores, and
the lower figure represents the four-core enhancement.

Entropy 2022, 24, 566 14 of 22

5.2. Amdahl’s Law

Amdahl’s law is used to compute an upper bound on the speed-up of an application
without actually writing any concurrent code. Each uses the percentage of (proposed)
parallel execution time (pctPar), serial execution time (1-pctPar), and the number of thread-
s/cores (p). A simple formulation of Amdahl’s law to estimate the speed-up of a parallel
application on p cores is given here [34]:

Speed−Up =
1

1− pctPar + pctPar
p

(10)

In our case, we expect 45% of a serial application’s run time could be executed in parallel
on four cores; the estimated speed-up, according to Amdahl’s Law, could be as much as
(1/(0.55 + 0.45/4) = 1.50943396226). We expect an increase in overhead with an increasing
number of cores that will appear, especially, when the number of processors is more
than eight.

6. Security

In this section, we will discuss the security analysis of the parallel proposed cryptosys-
tem against cryptanalytic and statistical attacks.

6.1. Keyspace

As we know in encryption, the larger keyspace algorithm has a strong ability to resist
a brute-force attack, in contrast to algorithms that have a small keyspace and that suffer
from a lack of sequence randomness. The proposed cryptosystem has a different keyspace
according to the selected delay. The keyspace in delay = 1 is nearly 299 bits; however, in
delay = 3, the keyspace reaches 555 bits. This numerous keyspace makes the proposed
cryptosystem immune to brute-force attacks. Table 8 lists the size of the keyspace of similar
chaotic algorithms. As clarified in Table 8, our algorithm’s keyspace in delay 3 is 555 bits; it
seems to be the largest one, compared to the listed algorithms.

Table 8. Keyspace comparison of similar algorithms.

Encryption Algorithm Keyspace

Proposed Algorithm 2555

Wange et al.’s Algorithm [35] 2149

Guesmi et al.’s Algorithm [36] 2256

Curiac et al.’s Algorithm [37] 2128

Curiacet al.’s Algorithm [38] 2357

Zhu et al.’s Algorithm [39] 2339

6.2. Key Security and Sensitivity Attack

To test the key sensitivity of our proposed cryptosystem, we use two important
measurements: the number of pixel change rate (NPCR) and the unified average changing
intensity (UACI). These show that the proposed cryptosystem is very sensitive to a one-bit
change that occurs when we encrypt the “Lena” image more than 100 times with 100 secret
keys that differ in the LSB bit.

NPCR =
1

L× C× P

P

∑
p=1

L

∑
i=1

C

∑
j=1

D(i, j, p)× 100% (11)

where:

D(i, j, p) =
{

0, i f C1(i, j, p) = C2(i, j, p)
1, i f C1(i, j, p) 6= C2(i, j, p)

(12)

Entropy 2022, 24, 566 15 of 22

and the UACI that is used to measure the average intensity difference between the two
ciphered images can be defined as follows:

UACI =
1

L× C× P× 255

P

∑
p=1

L

∑
i=1

C

∑
j=1
| C1(i, j, p)− C2(i, j, p) | ×100%. (13)

In the prior Equations (11)–(13), L, C, and P are the height, width, and plane sizes of
the image, respectively. i, j, and p are the rows, columns, and plane indexes, respectively.
As the results in Table 9 show, the NPCR and UACI values of the proposed cryptosystem
are close to the optimal NPCR and UACI values, 99.61 and 33.46, respectively [40].

Table 9. NPCR and UACI measurements.

Cryptosystem NPCR UACI

Proposed Cipher
Cryptosystem 99.665 33.459

[41] 99.4 32.7
[42] 99.1 32.8
[43] 98.8 31.7
[44] 99.1 32.8
[45] 99.6 33.1
[46] 99.6 33.3
[47] 99.6 33.3
[47] 99.6 33.3
[48] 99.64 33.4
[49] 99.66 33.43

6.3. Information Entropy

The entropy E(X) is statistical measure of uncertainty in information theory [50]. It is
defined as follows:

E = −
255

∑
i=0

P(xi) log2 P(xi) (14)

where X is a random variable and P(xi) is the probability of the gray value xi. Let us
consider that there are 256 states of the information source in red, green, and blue colors of
the image, with the same probability. We can obtain the ideal E(X) = 8, corresponding to a
truly random source. As noted from Table 10, the information entropy of some ciphered
images, such as Titanic, Photographer, Manhattan, Cameraman, Lena, and Boat, is closer
to 8. The entropy of all ciphers is closer to 8, which proves that the ciphered image is a
random dataset of pixels.

Table 10. Information entropy of some ciphered images.

Ciphered
Image Sharukhan Titanic Photographer Manhattan Cameraman Boat Lena

entropy 7.9999 7.9999 7.9999 7.9999 7.9998 7.9997 7.9999

Table 11 provides the contrast data with other advanced schemes by comparing
the information entropy in our proposed scheme with other advanced algorithms. The
result has shown that our proposed scheme has greater superiority in information entropy,
compared to the other algorithms.

Entropy 2022, 24, 566 16 of 22

Table 11. Information entropy comparison.

Encryption Method Information Entropy

Proposed Algorithm 7.9999
[41] 7.9973
[42] 7.9975
[43] 7.9977
[44] 7.9973
[45] 7.9982
[46] 7.99
[47] 7.990
[48] 7.908

7. Statistical Analysis
7.1. NIST Test

The NIST statistical test suite, which is proposed by the National Institute of Standards
and Technology, includes 15 tests that concentrate on different types of non-randomness that
could be in a sequence. These tests are cumulative sums (forward), the longest run of ones,
cumulative sums (reverse, non-overlapping templates, block-frequency, frequency (mono
bit), runs, rank, FFT, overlapping templates, random excursions variant, approximate
entropy, serial 1, serial 2, and universal. In order to investigate the randomness of binary
data, we apply NIST [51] to many ciphered texts, and the results show that the ciphertext
has a high rate of randomness, as shown in Figure 11 and Table 12 [52].

Table 12. Nist test values.

Test p_Value Proportion

Frequency test 0.494 97.000
Block-frequency test 0.760 100.000

Cumulative-sums test 0.797 97.000
Runs test 0.596 99.000

Longest-run test 0.699 98.000
Rank test 0.029 100.000
FFT test 0.834 98.0000

Nonperiodic-templates 0.479 99.000
Overlapping-templates 0.237 96.000

Universal 0.494 98.000
Approximate entropy 0.740 99.000
Random-excursions 0.223 99.375

Random-excursions-variant 0.428 98.925
Serial test 0.828 99.500

Linear-complexity 0.834 100.000

Entropy 2022, 24, 566 17 of 22

0 50 100 150 200

50

60

70

80

90

100
Prop vs Test

Figure 11. NIST test.

7.2. Chi-Square Test and Histogram

In order to resist potential and statistical attacks, we apply a histogram, which repre-
sents the distribution of pixels in specific images. It is a measure to test the uniformity of a
ciphered image. Whenever the histogram in a ciphered image is uniform, the image has
more immunity against statistical attacks. For this purpose, we apply the histogram for
many pictures and, as seen from Figures 12 and 13, the histogram of the ciphered image is
uniform, compared with its plain image.

Figure 12. Histogram of the Titanic plain image and its ciphered image.

Entropy 2022, 24, 566 18 of 22

Figure 13. Histogram of the Photographer plain image and its ciphered image.

χ2 =
k−1

∑
i=0

(Oi − Ei)
2

Ei
(15)

Equation (10) is used to perform the Chi test, where K is the number of levels (here
K = 256), Oi is the observed occurrence frequency of each color level (0–255) on the
histogram of the ciphered image, and Ei is the expected occurrence frequency of the
uniform distribution, given here by Ei = L× C × P/K. For a secure cryptosystem, the
experimental chi-square value must be less than the theoretical chi-square one, which is
293 in the case of α = 0.05 and K = 256. In Figures 12 and 13, we give the histograms for
the plain/ciphered images for Lena, Boat, Cameraman, and Peppers in size 512× 512× 3.
As we can see, the histogram of the ciphered image seems to be uniform. To assess the
uniformity, we performed the chi-square test. The experimental value obtained is less than
the theoretical one at 293. This means that the histograms are uniform (see Table 13).

Table 13. Chi-square value of histograms for different ciphered/plain images with different sizes.

Image Experimental Value Theoretical Value

Titanic 256× 256× 3 245.8750 293.247835
Titanic 512× 512× 3 279.1621 293.247835

Titanic 1024× 1024× 3 283.5923 293.247835
Photographer 256× 256× 3 252.1406 293.247835
Photographer 512× 512× 3 243.8066 293.247835

Photographer 1024× 1024× 3 251.6162 293.247835
Manhattan 256× 256× 3 264.6719 293.247835
Manhattan 512× 512× 3 254.6660 293.247835

Manhattan 1024× 1024× 3 257.3975 293.247835
Sharukhan 256× 256× 3 252.9531 293.247835
Sharukhan 512× 512× 3 228.9316 293.247835

Sharukhan 1024× 1024× 3 245.7544 293.247835

Entropy 2022, 24, 566 19 of 22

8. Correlation Analysis

The correlation test is an important test, especially in the encryption field, owing
to the importance of hiding information from an attacker, and keeping the attacker from
deciphering plain-text information from the ciphered text. Thus, in order to achieve security,
the correlation of the proposed cryptosystem should be as low as possible. We apply this
test by taking 10,000 adjacent pixels from the plain image and the ciphered image, and use
them as inputs in Equations (13)–(15).

Pxy =
Cov(x, y)√
D(x)

√
D(y)

(16)

Cov(x, y) =
1
N

N

∑
i=1

([xi − E(x)][yi − E(y)]) (17)

D(x) =
1
N

N

∑
i=1

(xi − E(x))2 (18)

E(x) =
1
N

N

∑
i=1

(xi) (19)

In the previous equations, Pxy is the correlation coefficient of two sequences x and y.
xi and yi are the values of x and y, respectively. For proving that the ciphered image is
completely different from the original image, we used a correlation analysis of adjacent
pixels for both the ciphered and original image. As the result clarified in Figure 14 shows,
adjacent pixels in the plain image are redundant and correlated; however, adjacent pixels
in the ciphered image are nearly completely different, and seem to have redundancy and
correlation as low as possible (Figure 15). This is more proof that shows that our proposed
system has immunity against statistical attacks.

Figure 14. Adjacent pixels for plain image.

Figure 15. Adjacent pixels for ciphered image.

Entropy 2022, 24, 566 20 of 22

The correlation coefficient values for all previously tested plain/ciphered images are
given in Table 14. As we expected, these results conform to those found in the literature.

Table 14. Correlation coefficient values for the previous plain/ciphered images.

Plain/Ciphered
Image Horizontal Vertical Diagonal

Lena 0.96606/0.035 0.96613/0.026 0.96619/0.027
Boat 0.99605/0.022 0.99703/0.019 0.99671/0.020

Cameraman 0.96618/0.036 0.96771/0.028 0.96767/0.022
Peppers 0.96608/0.019 0.96612/0.031 0.96647/0.011

9. Conclusions

We created a parallel chaos generator based on the message passing interface that we
consider to be the fastest chaotic stream encryption model due to its generic, random, and
non-periodic structure. The proposed system is quicker than previous parallel systems
that rely on Pthread or sequential systems. Furthermore, we use a variety of tests on
the cryptosystem to assess its efficiency, speed, and security, including the Chi-square
and histogram, NIST, correlation analysis, and information entropy tests. All of the tests
demonstrated that the proposed cryptosystem is resistant to brute-force and statistical
attacks. In addition to the previously mentioned traits and benefits, the results demonstrate
that the sequence created by the proposed parallel cryptosystem has a significant degree of
unpredictability or uncertainty. Finally, we completed the research objectives by developing
a system that combines security and performance. We can adapt our approach to be utilized
in video encryption in the future.

Author Contributions: Methodology, M.A.; Project administration, M.A.; Resources, S.A.; Software,
I.A.; Supervision, M.A. and S.A.; Validation, S.A.; Writing — review & editing, S.A. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors are grateful to the Deanship of Scientific Research at King Saud
University for funding this work through the Vice Deanship of Scientific Research Chairs: Research
Chair of New Emerging Technologies and 5G Networks and Beyond.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Venkateswaran, R.; Sundaram, V. Information Security: Text Encryption and Decryption with poly substitution method and

combining the features of Cryptography. Int. J. Comput. Appl. 2010, 3, 28–31. [CrossRef]
2. Damico, T.M. A brief history of cryptography. Inq. J. 2009, 1, 1/1.
3. AbuTaha, M.; Farajallah, M.; Tahboub, R.; Odeh, M. Survey Paper: Cryptography Is the Science of Information Security. 2011.

Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.227.7620&rep=rep1&type=pdf (accessed on 10
December 2021).

4. Apampa, K.M.; Wills, G.; Argles, D. Towards security goals in summative e-assessment security. In Proceedings of the 2009
International Conference for Internet Technology and Secured Transactions, (ICITST), London, UK, 9–12 November 2009; pp. 1–5.

5. Sumra, I.A.; Hasbullah, H.B.; AbManan, J.B. Attacks on security goals (confidentiality, integrity, availability) in VANET: A survey.
In Vehicular Ad-Hoc Networks for Smart Cities; Springer: Berlin/Heidelberg, Germany, 2015; pp. 51–61.

6. Carter, B.A.; Kassin, A.; Magoc, T. Asymetric Cryptosystems. 2007. Available online: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.131.6626&rep=rep1&type=pdf (accessed on 20 January 2022).

7. Fujisaki, E.; Okamoto, T. Secure integration of asymmetric and symmetric encryption schemes. In Annual International Cryptology
Conference; Springer: Berlin/Heidelberg, Germany, 1999; pp. 537–554.

8. Brandt, F. Efficient cryptographic protocol design based on distributed El Gamal encryption. In International Conference on
Information Security and Cryptology; Springer: Berlin/Heidelberg, Germany, 2005; pp. 32–47.

9. Agrawal, E.; Pal, P.R. A Secure and Fast Approach for Encryption and Decryption of Message Communication. Int. J. Eng. Sci.
2017, 7, 11481.

10. Forouzan, B.A. Cryptography & Network Security; McGraw-Hill, Inc.: New York, NY, USA, 2007.

http://doi.org/10.5120/741-1047
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.227.7620&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.6626&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.131.6626&rep=rep1&type=pdf

Entropy 2022, 24, 566 21 of 22

11. Khan, A.G.; Basharat, S.; Riaz, M.U. Analysis of asymmetric cryptography in information security based on computational study
to ensure confidentiality during information exchange. Int. J. Sci. Eng. Res. 2018, 9, 992–999.

12. Chandra, S.; Bhattacharyya, S.; Paira, S.; Alam, S.S. A study and analysis on symmetric cryptography. In Proceedings of the 2014
International Conference on Science Engineering and Management Research (ICSEMR), Chennai, India, 27–29 November 2014;
pp. 1–8.

13. Masood, F.; Ahmad, J.; Shah, S.A.; Jamal, S.S.; Hussain, I. A novel hybrid secure image encryption based on julia set of fractals
and 3D Lorenz chaotic map. Entropy 2020, 22, 274. [CrossRef] [PubMed]

14. Manifavas, C.; Hatzivasilis, G.; Fysarakis, K.; Papaefstathiou, Y. A survey of lightweight stream ciphers for embedded systems.
Secur. Commun. Netw. 2016, 9, 1226–1246. [CrossRef]

15. Rezaeipour, D.; Rushdan Md Said, M. The block cipher algorithm-properties, encryption efficiency analysis and security
evaluation. JOurnal Adv. Appl. Math. Sci. 2010, 4, 129–137.

16. Kumar, M.; Aggarwal, A.; Garg, A. A review on various digital image encryption techniques and security criteria. Int. J. Comput.
Appl. 2014, 96. [CrossRef]

17. Avasare, M.G.; Kelkar, V.V. Image encryption using chaos theory. In Proceedings of the 2015 International Conference on
Communication, Information & Computing Technology (ICCICT), Mumbai, India, 15–17 January 2015; pp. 1–6.

18. Ahmad, I.; Shahabuddin, S.; Kumar, T.; Okwuibe, J.; Gurtov, A.; Ylianttila, M. Security for 5G and beyond. IEEE Commun. Surv.
Tutor. 2019, 21, 3682–3722. [CrossRef]

19. Misra, A.; Gupta, A.; Rai, D. Analysing the parameters of chaos based image encryption schemes. World Appl. Program. 2011,
1, 294–299.

20. Bernstein, D.J. The Salsa20 Family of Stream Ciphers, New Stream Cipher Designs: The eSTREAM Finalists; Springer: Berlin/Heidelberg,
Germany, 2008.

21. Boesgaard, M.; Vesterager, M.; Zenner, E. The Rabbit stream cipher. In New Stream Cipher Designs; Springer: Berlin/Heidelberg,
Germany, 2008; pp. 69–83.

22. Jolfaei, A.; Vizandan, A.; Mirghadri, A. Image encryption using HC-128 and HC-256 stream ciphers. Int. J. Electron. Secur. Digit.
Forensics 2012, 4, 19–42. [CrossRef]

23. Taha, M.A.; Assad, S.E.; Queudet, A.; Deforges, O. Design and efficient implementation of a chaos-based stream cipher. Int. J.
Internet Technol. Secur. Trans. 2017, 7, 89–114. [CrossRef]

24. Abutaha, M.; El Assad, S.; Jallouli, O.; Queudet, A.; Deforges, O. Design of a pseudo-chaotic number generator as a random
number generator. In Proceedings of the 2016 International Conference on Communications (COMM), Bucharest, Romania, 9–10
June 2016; pp. 401–404.

25. Burak, D. Parallelization of an encryption algorithm based on a spatiotemporal chaotic system and a chaotic neural network.
Procedia Comput. Sci. 2015, 51, 2888–2892. [CrossRef]

26. Liu, J.; Song, D.; Xu, Y. A parallel encryption algorithm for dual-core processor based on chaotic map. In Fourth International
Conference on Machine Vision (ICMV 2011): Computer Vision and Image Analysis; Pattern Recognition and Basic Technologies;
International Society for Optics and Photonics: Bellingham, WA, USA, 2012; Volume 8350, p. 83500B.

27. Çavuşoğlu, Ü.; Kaçar, S. A novel parallel image encryption algorithm based on chaos. Clust. Comput. 2019, 22, 1211–1223.
[CrossRef]

28. Elrefaey, A.; Sarhan, A.; El-Shennawy, N.M. Improving the speed of chaotic-maps-based image encryption using parallelization.
In Proceedings of the 2017 13th International Computer Engineering Conference (ICENCO), Giza, Egypt, 27–28 December 2017;
pp. 61–66.

29. Masood, F.; Driss, M.; Boulila, W.; Ahmad, J.; Rehman, S.U.; Jan, S.U.; Qayyum, A.; Buchanan, W.J. A lightweight chaos-based
medical image encryption scheme using random shuffling and XOR operations. Wirel. Pers. Commun. 2021, 1–28. [CrossRef]

30. Chandra, R.; Dagum, L.; Kohr, D.; Menon, R.; Maydan, D.; McDonald, J. Parallel Programming in OpenMP; Morgan Kaufmann:
Burlington, MA, USA, 2001.

31. Lewis, B.; Berg, D.J. PThreads Primer; Sun Microsystems Inc.: Santa Clara, CA, USA, 1996.
32. Pacheco, P. An Introduction to Parallel Programming; Elsevier: Amsterdam, The Netherlands, 2011.
33. Grama, A.; Kumar, V.; Gupta, A.; Karypis, G. Introduction to Parallel Computing; Pearson Education: London, UK, 2003.
34. Shi, Y. Reevaluating Amdahl’s Law and Gustafson’s Law; (MS: 38-24); Computer Sciences Department, Temple University:

Philadelphia, PA, USA, 1996.
35. Wang, X.; Zhu, X.; Wu, X.; Zhang, Y. Image encryption algorithm based on multiple mixed hash functions and cyclic shift. Opt.

Lasers Eng. 2018, 107, 370–379. [CrossRef]
36. Guesmi, R.; Farah, M.A.B.; Kachouri, A.; Samet, M. A novel chaos-based image encryption using DNA sequence operation and

Secure Hash Algorithm SHA-2. Nonlinear Dyn. 2016, 83, 1123–1136. [CrossRef]
37. Curiac, D.I.; Volosencu, C. Chaotic trajectory design for monitoring an arbitrary number of specified locations using points of

interest. Math. Probl. Eng. 2012, 2012, 940276. [CrossRef]
38. Curiac, D.I.; Iercan, D.; Dranga, O.; Dragan, F.; Banias, O. Chaos-based cryptography: End of the road? In Proceedings of the The

International Conference on Emerging Security Information, Systems, and Technologies (SECUREWARE 2007), Valencia, Spain,
14–20 October 2007; pp. 71–76.

http://dx.doi.org/10.3390/e22030274
http://www.ncbi.nlm.nih.gov/pubmed/33286048
http://dx.doi.org/10.1002/sec.1399
http://dx.doi.org/10.5120/16854-6720
http://dx.doi.org/10.1109/COMST.2019.2916180
http://dx.doi.org/10.1504/IJESDF.2012.045388
http://dx.doi.org/10.1504/IJITST.2017.087131
http://dx.doi.org/10.1016/j.procs.2015.05.453
http://dx.doi.org/10.1007/s10586-018-02895-w
http://dx.doi.org/10.1007/s11277-021-08584-z
http://dx.doi.org/10.1016/j.optlaseng.2017.06.015
http://dx.doi.org/10.1007/s11071-015-2392-7
http://dx.doi.org/10.1155/2012/940276

Entropy 2022, 24, 566 22 of 22

39. Zhu, S.; Zhu, C.; Wang, W. A new image encryption algorithm based on chaos and secure hash SHA-256. Entropy 2018, 20, 716.
[CrossRef]

40. Wu, Y.; Noonan, J.P.; Agaian, S. NPCR and UACI randomness tests for image encryption. Cyber J. Multidiscip. J. Sci. Technol. J. Sel.
Areas Telecommun. (JSAT) 2011, 1, 31–38.

41. Liao, X.; Kulsoom, A.; Ullah, S. A modified (Dual) fusion technique for image encryption using SHA-256 hash and multiple
chaotic maps. Multimed. Tools Appl. 2016, 75, 11241–11266.

42. Chen, G.; Mao, Y.; Chui, C.K. A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 2004,
21, 749–761. [CrossRef]

43. Belazi, A.; Abd El-Latif, A.A.; Belghith, S. A novel image encryption scheme based on substitution-permutation network and
chaos. Signal Process. 2016, 128, 155–170. [CrossRef]

44. Song, C.Y.; Qiao, Y.L.; Zhang, X.Z. An image encryption scheme based on new spatiotemporal chaos. Opt.-Int. J. Light Electron
Opt. 2013, 124, 3329–3334. [CrossRef]

45. Hua, Z.; Zhou, Y. Image encryption using 2D Logistic-adjusted-Sine map. Inf. Sci. 2016, 339, 237–253. [CrossRef]
46. Ahmad, J.; Hwang, S.O. A secure image encryption scheme based on chaotic maps and affine transformation. Multimed. Tools

Appl. 2016, 75, 13951–13976. [CrossRef]
47. Ghazvini, M.; Mirzadi, M.; Parvar, N. A modified method for image encryption based on chaotic map and genetic algorithm.

Multimed. Tools Appl. 2020, 79, 26927–26950. [CrossRef]
48. Xiao, S.; Yu, Z.; Deng, Y. Design and analysis of a novel chaos-based image encryption algorithm via switch control mechanism.

Secur. Commun. Netw. 2020, 2020, 7913061. [CrossRef]
49. You, L.; Yang, E.; Wang, G. A novel parallel image encryption algorithm based on hybrid chaotic maps with OpenCL implemen-

tation. Soft Comput. 2020, 24, 12413–12427. [CrossRef]
50. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
51. Barker, E.B.; Kelsey, J.M. Recommendation for Random Number Generation Using Deterministic Random Bit Generators (Revised); US

Department of Commerce, Technology Administration, National Institute of Standards and Technology: Gaithersburg, MD, USA,
2007.

52. Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E. A Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications; Technical report; Booz-Allen and Hamilton Inc.: McLean, VA, USA, 2001.

http://dx.doi.org/10.3390/e20090716
http://dx.doi.org/10.1016/j.chaos.2003.12.022
http://dx.doi.org/10.1016/j.sigpro.2016.03.021
http://dx.doi.org/10.1016/j.ijleo.2012.11.002
http://dx.doi.org/10.1016/j.ins.2016.01.017
http://dx.doi.org/10.1007/s11042-015-2973-y
http://dx.doi.org/10.1007/s11042-020-09058-3
http://dx.doi.org/10.1155/2020/7913061
http://dx.doi.org/10.1007/s00500-020-04683-4
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x

	Introduction
	Related Work
	Stream Ciphers Algorithms
	Related Papers

	Parallel Programming Models and Techniques
	Proposed Parallel Chaos Crypto System
	Performance Computation of Proposed Parallel Computing
	Speed-Up Calculations
	Amdahl's Law

	Security
	Keyspace
	Key Security and Sensitivity Attack
	Information Entropy

	Statistical Analysis
	 NIST Test
	 Chi-Square Test and Histogram

	Correlation Analysis
	Conclusions
	References

