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Abstract: In recent decades, emotion recognition has received considerable attention. As more
enthusiasm has shifted to the physiological pattern, a wide range of elaborate physiological emotion
data features come up and are combined with various classifying models to detect one’s emotional
states. To circumvent the labor of artificially designing features, we propose to acquire affective and
robust representations automatically through the Stacked Denoising Autoencoder (SDA) architecture
with unsupervised pre-training, followed by supervised fine-tuning. In this paper, we compare
the performances of different features and models through three binary classification tasks based
on the Valence-Arousal-Dominance (VAD) affection model. Decision fusion and feature fusion of
electroencephalogram (EEG) and peripheral signals are performed on hand-engineered features;
data-level fusion is performed on deep-learning methods. It turns out that the fusion data perform
better than the two modalities. To take advantage of deep-learning algorithms, we augment the
original data and feed it directly into our training model. We use two deep architectures and another
generative stacked semi-supervised architecture as references for comparison to test the method’s
practical effects. The results reveal that our scheme slightly outperforms the other three deep feature
extractors and surpasses the state-of-the-art of hand-engineered features.

Keywords: DEAP dataset; electroencephalogram (EEG); emotion recognition; multi-source fusion;
stacked denoising autoencoder; unsupervised representation learning

1. Introduction

Objective affective analysis has always been in the area of psychology over the course
of the twentieth century. It is mainly in the form of psychologists determining treatment
options based on patients’ self-reported emotional states. However, since the beginning of
the 21st century, with the rise of artificial intelligence, emotional research has broken into
the field of computer science and information technology with the new name of “Affective
Computing” [1], attempting to provide “Emotional Intelligence”, the almost universally
acknowledged gap between artificial intelligence and real machine intelligence [1–4]. Mean-
while, researchers from the fields of ethology, behaviorists, anthropology, etc., have also
explored different aspects of this with various research purposes. Hence, in recent decades,
effective research has been naturally interdisciplinary, pulling together knowledge from
neurobiology, psychology, evolutionary biology, computer science, and beyond. Note that
in this piece, “emotion” and “affection” are utilized to represent the same notion, but both
are strictly distinguished from terms like “mood”, “feelings”, “attitude”, “personality”, etc.

Human emotions can be expressed through both verbal cues and nonverbal cues. The
majority of pilot studies in the community used verbal expressions, particularly those
derived from audio, images, and videos. Since affection is a highly personal property,
emotions may be inhibited and elaborately cloaked in subjective verbal reports that vary

Entropy 2022, 24, 577. https://doi.org/10.3390/e24050577 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24050577
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-8435-007X
https://doi.org/10.3390/e24050577
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24050577?type=check_update&version=1


Entropy 2022, 24, 577 2 of 29

from subtle hints to explicit declarations. Besides, language itself introduces ambiguity.
However, nonverbal cues are spontaneous physiological changes in the process of expe-
riencing waves of emotions, such as facial expressions, tone of voice, overt actions, slips
of the tongue, and physiological voltage fluctuations (e.g., electroencephalogram (EEG),
galvanic skin Response (GSR), electromyography (EMG), respiration, and temperature)
from peripheral/central nervous systems more recently. It was reported in [5] that the
Japanese would disguise negative facial responses with smiles in the presence of a sci-
entist. By contrast, spontaneous expression of physiological fluctuations is less likely to
be spurious. Consequently, the research community has started to focus its attention on
modalities of genuinely physiological or the fusion of multiple modalities, including video,
speech, and physiological recordings. To stay current with academic trends, in this article,
we choose to stay focused on the pure physiological fluctuations elicited by experiencing
various emotions captured by sensors on the body (EGG).

The central purpose of affective analysis is emotion recognition or emotion detection.
Literature in this area can be divided into two categories, i.e., traditional machine-learning
algorithms (can process raw data, with less accuracy) that depend on the most discrimi-
nating features extracted and selected by labor-intensive intervention and deep-learning
algorithms that can work well on raw data.

Traditional machine-learning models such as support vector machine (SVM), decision
trees, k-nearest neighbors (KNN), logistic regression, linear discriminant analysis, and
dynamic time warping (DTW) have been utilized on various data in many applications.
They are usually combined with manual feature engineering to extract the optimal robust
feature set. Besides, a discrete hidden Markov model (HMM) was utilized in [6] as the
classifier, and a hierarchical binary decision tree approach was proposed in [7], both of
which were efforts in speech signals-based emotion recognition. Databases for the analysis
of spontaneous emotions include MAHNOB-HCI [8] and DEAP [9]. Data in MAHNOB-
HCI and DEAP ware both recorded with the Valence-Arousal-Dominance model. Most
references used DEAP as their dataset. One study [10] used the Gaussian Process Latent
Variable Model (GP-LVM) and applied SVM as its classifier on the dataset DEAP. The results
showed that the accuracy of third-class classification was around 88/90% by considering
emotions: VA.

In representation learning, deep generative-learning models like Deep Belief Network
(DBN), Autoencoder (AE), and Variational Automatic Encoder (VAE) are employed to
extract the hidden, abstract, and complex non-linear patterns of raw data, replacing or
eliminating the hand-crafted steps. In addition, deep discriminative architectures such
as Deep Neural Network (DNN) and Convolutional Neural Network (CNN) can also be
regarded as feature extractors that learn hierarchical representations. For instance, CNN is
believed to be capable of capturing spatial features (e.g., local dependencies) and invariant
features in data. Another study [11] conducted the experiment on the dataset DEAP, and
used DNN and CNN as classifiers, splitting the 8094 datapoints into ten batches, and
gained a relatively high accuracy by considering emotions: VA. Long Short-Term Memory
Network (LSTM), the building block of recurrent neural networks, can be used to exploit
the temporal dynamics in time-series data.

Meanwhile, some papers had their own datasets. For example, N. Murali Krishna
et al. tested six mentally impaired subjects using an eight-channel EEG signal to collect
audio-visual stimuli. The features were extracted by cepstral coefficients with a novel
generalized mixture distribution model. By considering four emotions: happy, sad, neutral,
and boredom, the average resulting accuracy was about 89% [12]. H. Becker et al. also
started their own dataset, HR-EEG, which included 257-channel EEG data. They considered
various feature extractors, and used ANN as their model. Finally, they compared the
influence of nine features and the accuracy of the experiment was medium [13].

We compare the emotion estimation methods we mentioned above in Table 1. We can
see that although the accuracy of our method is not the highest, we have the highest number
of features, and thus, the most comprehensive list for feature importance (occurrence
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frequency). Besides, we innovatively used SDA as a feature extractor and compared the
proposed SDA with other networks with a best-performance assessment.

Table 1. Comparison of the emotion-recognition methods.

Reference Dataset Preprocessing Feature Extraction Model Accuracy

[10] DEAP DEAP default
preprocessing

GP-LVM: An unsupervised
dimension reduction method is

suitable for processing small
sample and high dimensional data

SVM VA
Medium

[11] DEAP DEAP default
preprocessing

Divide 8094 datapoints into
10 batches. Nine features including:

mean, median, maximum,
minimum, standard deviation,

variance, value range, skewness,
and kurtosis.

DNN; CNN VA
High

[12] Own
dataset Cepstral coefficients

A novel generalized
mixture

distribution model

Happy, sad,
neutral, and

boredom
High

[13]
Own

dataset:
HR-EEG

Nine features: θ, α, β, low γ, and
high γ bands, followed by band
powers, statistics, and spectral

moments

Artificial Neural
Network
(ANN)

High

This work DEAP

Feature selection:
fusion of removing
features with low
variance (RFLV)

and two wrappers

Seventeen features: discrete
wavelet transform (DWT), power

band Hjorth, higher-order crossing
(HOC), statistics of signals

(including 5 features),
non-stationary index (NSI), fractal

dimension (FD), higher-order
spectra (HOS), magnitude-squared

coherence estimate (MSCE),
Hilbert–Huang spectrum (HHS),

differential asymmetry, and
rational asymmetry

SVM
DT

Random Forest (RF)
LDA
LR

Naive Bayes (NB)
KNN
CNN
DNN

SDA (feature
extractor)

VDA
Medium

Outperforms
other networks

In this paper, we aim to construct a deep-learning algorithm with an SDA architecture
including unsupervised pretraining and supervised fine-tuning using backpropagation
of error derivatives that can process raw data with a relatively higher accuracy. We are
motivated by the need to develop an efficient deep architecture to extract more powerful
and robust representations automatically, to guide the learning of supervised learning
algorithms. The top issue in emotion detection is the size of databases. More powerful
representations are expected to be built with a larger scale of unsupervised learning. In the
presence of labeled data and an abundance of unlabeled data, semi-supervised learning is
more practical. In detail, the principal contributions of this paper are as follows:

1. We propose a semi-supervised deep-learning architecture to extract the underlying
representations of pure physiological emotion data without any manual intervention.
The experimental results indicate that the Stacked Denoising Autoencoder (SDA)
ranks over the other three deep networks. To the best of our knowledge, ours is the
first to utilize the stacked denoising autoencoder algorithm as the feature extractor
and, in a true sense, to directly take the raw data as input for a model.

2. By looking back at the historical roots and the development of the emotion-recognition
field, we implement most of the recommended well-designed features and perform a
comprehensive comparative analysis of diverse existing methodologies and features
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on the same benchmarking database, thus proving that features from the wavelet
transform are the most efficient.

3. The fusion of two different physiological modalities is performed on a data-level,
feature-level, and decision-level. The results demonstrate that the two modalities
operate simultaneously, instead of “EEG first, and periphery second”, as much of the
literature claims.

4. Cross-subject and single-subject accuracy show a significant gap, which echoes the
conclusions of previous studies in psychobiology (emotions are individualized). This
gap can be reduced as the amount of data grows. To our knowledge, ours is the first
to investigate the difference in performance between cross-subject and single-subject
recognition.

The remainder of this paper is organized as follows. The derivation and selection
of discriminating features are discussed in Section 2. Section 3 presents the premier well-
performed recognizers in the literature. The experiment setup and result anlysis are
presented in Section 4. Finally, Section 5 concludes this paper and discusses future work.

Notation

Throughout this paper, the following notation is used: The EEG trace or the periphery
physiological signal within a certain epoch is expressed as a function of time ξ(t) ∈ RT ,
and T is the number of the time-samples in ξ. The time derivative of ξ(t) is denoted as

.
ξ(t).

2. Material

As mentioned above, the benchmarking dataset, DEAP [9], is selected to compare
the performances of different representations and algorithms. The physiological data in
DEAP is adjusted differently to adapt to various algorithms, including a naive way of
augmenting the limited samples to take advantage of deep-learning models and reduc-
ing the dimensionality by extracting the artificially designed features and the Principal
Component Analysis.

2.1. The DEAP Dataset

Mathematically modeling emotion to represent affection’s latent structure is the first
step in emotion-related research. Among the more popular theoretical frameworks for mea-
suring emotion are the discrete model [5,14] and the dimensional theory. A comprehensive
analysis of dimensional and discrete conceptual views on emotions has been completed by
Eddie Harmon Jones et al. in their review [9], in which both models were believed to have
much to offer in attempting to understand the psychology of emotions. From more recent
literature, an obvious preference for a dimensional model exists in building physiological
emotion databases, and it is indeed quite widespread today, gaining increasing acceptance.
For example, the dataset MAHNOB-HCI [8] was recorded using the Valence-Arousal-
Dominance (VAD) model; dataset DEAP [9] was also recoded along the scale of VAD. As a
result, we also used the well-known VAD affection model to conduct the experiments.

The DEAP was a multimodal dataset for the analysis of human affective states. It
contained the recordings of the EEG traces and 13 other periphery physiological signals of
32 subjects (half male) watching 40 one-minute music clips. Specifically, for one subject,
there are 40 clips/trials. For one trial, 40 channels captured the physiological voltage
fluctuations from where 45 electrodes were placed, resulting in 8064 time samples in a
60 s video time and a 3 s baseline with a 128 Hz sampling frequency for each channel
considering that the inner affective states change slowly. We only use the data in the last
30 s because we need dimensionality reduction. The threshold of splitting a dimension of
the affectioned model is simply set as 4.5, right in the middle of the range (0, 9), and thus
obtaining the ground truth labels for the three basic recognition tasks (arousal, valence,
and dominance).

For the detailed placement of 45 electrodes, refer to [9] or their website. The 13 periphery
signals are combined into eight channels for the five channels of horizontal electrooculo-
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gram (EOG), vertical EOG, zygomaticus major electromyography (EMG), trapezius EMG,
and GSR derived from the difference between two electrodes. Normalized values of the
eight periphery channels are illustrated in Figure 1. Prior probabilities of 32 single-subject
recognition tasks and the cross-subject recognition (marked by the red dot) on all three
scales of the dimensional effect model are illustrated in Figure 2.
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2.2. Augmenting the Raw Data

Existing emotional databases share the same weakness: insufficient size. In this regard,
datasets of visual and vocal modalities are no exception. For cross-subject emotion recogni-
tion, DEAP holds at most 1280 pieces of multimodal physiological data and corresponding
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subjective ratings on five dimensions of valence, arousal, dominance, liking, and famil-
iarity, ranging from 0 to 9 continuously. The number 1280 is too few to fully exploit the
power of deep-learning algorithms. In addition, even without considering the insufficient
data volume, directly concatenating the overall 40 channels would result in a vector with
153,600 components (3840 × 40), where the three-second baseline is removed, and only
the second half of the data is employed. As a result, 1280 pieces of input vectors of a
length of 153,600 would lead to a shallow but wide network to avoid preventing overfitting.
Therefore, some deep-learning pioneers in physiological emotion detection have tried to
obtain smaller and more acceptable compressed representations from raw data.

However, deep-learning is desirable and valuable because it requires input of the
original data rather than the extracted or compressed representations in addition to pre-
processing (such as patching the missing values and normalization to eliminate magnitude
differences). Ingeniously, we propose to consider signals captured from each channel
as a separate piece of data. This is so that all channels of the same trial take the same
subject evaluation scores accordingly. This simple augmentation will arrive at 40,960 pieces
of data for EEG signals, 10,240 for periphery signals, 51,200 for data-level fusion, and
3840 components for each piece under the same conditions as above. The augmented raw
data were normalized along the channel and then fed into our SDA network for feature
extraction and classification.

2.3. Human-Designed Features

Pattern recognition algorithms are typically a combination of various features and
learning algorithms. Generally, the pre-processed raw data were hard to process directly
due to its large volume and the inabilities of classifiers to extract discriminative information
from the data. Feature engineering is an essential way of taking advantage of prior knowl-
edge and human ingenuity to compensate for the weakness of current learning models.
Therefore, we must resort to features that characterize the most crucial information in
raw signals. In emotion recognition, frequently utilized human-designed features can be
classified into three categories: statistics derived from the time domain; the frequency
domain; and the time–frequency domain. As illustrated in Figure 3 and Table 2 a total of
1896 EEG features and 248 periphery features were extracted.
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Table 2. Summary of extracted features elaborated in Section 2.3 in the light of the domain.

Domain Features

Time
Power, mean, standard deviation, normalized 1st difference, normalized 2nd
difference, mobility, complexity, non-stationary index, higher-order crossings

of each channel, fractal dimension for each EEG channel.
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Table 2. Cont.

Domain Features

Frequency

Power–law index, averaged band power of four frequency bands, BE1, BE2,
MMOB, FOSM derived from the bispectrum of each EEG channel;

magnitude squared coherence estimate, differential asymmetry, and rational
asymmetry averaged on four frequency bands of 14 electrode pairs.

Time–frequency

Entropy and the absolute logarithmic recursive energy efficiency of detail
coefficients at four decomposition levels, root mean square of the energy of

four frequency bands; averaged energy of four frequency bands of the
Hilbert–Huang spectrum of each channel.

2.3.1. Time Domain

• Statistics of signals

The most common quantization terms are calculated entirely in the time domain,
such as power reflecting the energy of the signal, the average over the whole-time interval
representing the approximation with the lowest resolution in discrete wavelet transform,
the variance that characterizes the degree of deviation, and difference (the approximate
derivative of the discrete-time series). The power, mean, standard deviation, normalized
1st difference, and normalized 2nd difference of the 40 channels of one trial are computed.

Power : Pξ =
1
T ∑T

t=1 |ξ(t)|
2 (1)

Mean : µξ =
1
T ∑T

t=1 ξ(t) (2)

Standard deviation : σξ =

√
1

T − 1 ∑T
t=1

(
ξ(t)− µξ

)2 (3)

1st difference : δξ =
1

T − 1 ∑T
t=1|ξ(t + 1)− ξ(t)| (4)

Normalized 1st difference : δξ =
δξ

σξ
(5)

2nd difference : γξ =
1

T − 2 ∑T−2
t=1 |ξ(t + 2)− ξ(t)| (6)

Normalized 2nd difference : γξ =
γξ

σξ
(7)

• Hjorth parameter

The Hjorth parameter can be expressed as the activity, mobility, and complexity of a
feature. The activity is the variance that can be fully expressed as the square of the standard
deviation, so it will not be implemented afterward [15].

Activity : Aξ =
1
T ∑T

t=1

(
ξ(t)− µξ

)2 (8)

Mobility : Mξ =

√
var(

.
ξ(t))

var(ξ(t))
(9)

Complexity : Cξ =
M(

.
ξ(t)

M(ξ(t)
(10)

• Non-stationary index (NSI)

The NSI proposed in [16] measures the complexity of the time series and can capture
the non-stationary degree of the signals. The temporal variations of the amplitude of EEG
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signals are involved, irregular, turbulent, and non-periodic, yet they exhibit long-range
correlations over most time scales, indicating the presence of self-invariant and self-similar
structures. NSI is easy to implement. It is sufficient to divide the time sequence to be
analyzed into several segments, then calculate the local averages of sections, and finally
compute the variance of the local averages.

• Fractal dimension (FD)

Another indicator for describing the complexity or chaos of EEG signals is the FD,
whose stable and precise values are generally derived through the Higuchi algorithm [17].
Fractal dimension-based features build on evidence that EEG signals can be regarded as a
fractal curve, each part of which can be seen as a reduced-scale image of the whole. The
calculation procedure is as follows.

First, consider a finite set of time-series observations sampled at a regular interval ξ(t):

{ξ(1), ξ(2), ξ(3), · · · , ξ(T)} (11)

Second, construct a new time sequence, ξm
k , from the above-given signal:{

ξ(m), ξ(m + k), ξ(m + 2k), · · · , ξ
(

m +
[

N−m
k

]
.k
)}

m = 1, 2, · · · , k
(12)

where [·] denotes the Gauss notation for the floor function; k denotes the time interval; m =
1, 2, · · · , k is the initial time point of each subsequence; both k and m are integers.

Next, the length of each sub-curve ξm
k is defined as:

Lm(k) =
T − 1

k2 ·
[

T−m
k

] [ T−m
k ]

∑
i=1
|ξ(m + ik)− ξ(m + (i− 1) · k)| (13)

The term T−1
k2·[ T−m

k ]
is a normalization factor. The sum term represents the sum of the absolute

values of the forward difference to the mth set.
Then, the length of the time series or the curve for the time interval k, 〈L(k)〉, is defined

as the mean over k sets of Lm(k). Last, if there is 〈L(k)〉 ∝ k−Dξ , then the EEG curve is fractal
with the dimension Dξ . Note that the FD has not been utilized on periphery physiological
channels.

• Higher-order crossing (HOC)

Higher-order statistics are found to be more effective. The zero-crossings count of a
finitely long real-valued zero-mean series can account for the oscillating attitude around
the zero levels, the values of which will consequently vary if a filter is applied to the
time series. Naturally, a specific sequence of filters applied to a time series will result in
specific zero-crossings counts, which are the so-called HOC-based features that can be
viewed as a measure of oscillation pattern in the manner that the stronger the oscillation,
the higher the zero-crossing rate, and vice versa. Herein, enlightened by [18], we apply a
sequence of high-pass filters based on the backward difference operator to the zero-mean
time series ξ(t).

ζk{ξ(t)} = ∇k−1ξ(t) (14)

where∇k is then iteratively applied backward to the difference operator, and k = 1, 2, · · · , 10
is the order. The resulting k features, i.e., Dk, consist of the zero-crossings count of the
filtered time series ζk{ξ(t)}. As shown in Figure 4, the values of ten HOC features of the 32
EEG channels are presented in a heat map, and the lighter the color, the larger the value.
As the order increases, the zero-crossing count decreases. Higher-order crossings can also
apply to the periphery signals.
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2.3.2. Frequency Domain

• Power–law index

Signal processing has always relied on power spectral density (PSD) analysis as a
conventional instrument for analyzing time series. In particular, when the power spectrum
follows the power-law P( f ) ∝ ( f )−η , where P( f ) denotes the power spectrum density
and f in hertz, then the exponent η can also be considered as the index for characterizing
the irregularity of signals. It is formally defined as the Fourier Transform (FT) of the
autocorrelation sequence (the Wiener–Khintchine theorem, which assumes the stationarity
of stochastic signals):

Pξξ( f ) =
+∞

∑
m=−∞

Rξξ(m) exp(−j2π f m) (15)

where Rξξ := E[ξ∗(n)ξ(n + m)] is the autocorrelation sequence. Since ξ in this article is
definitely real-valued, and its autocorrelation is summable (a sufficient but necessary con-
dition for the power spectrum), the power spectrum exists and is real-valued, nonnegative,
and symmetrical.

To estimate the PSDs of power signals that do not satisfy the generalized stationary
assumption, we may use Welch’s averaged, modified periodogram [19]. First, chop a
length N signal into length L overlapping segments of equal length M, i.e., N = L ∗ M; then
window each slice and apply Fourier transform to determine the frequency components at
that slice; finally, let the power spectrum of the entire signal by the average overall pieces of
data. Herein, an 853-point FFT with a 426-point (half of the window) overlapped Hamming
window function w was adopted to generate the PSDs. An example of the power spectral
density of EEG signals is illustrated in Figure 5a. The power spectral density curves show a
mild trend of the long tail.
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• Band Power

Power in four major frequency bands: θ(3–7Hz), α(8–13Hz), β(14–29Hz), and γ(30–47Hz)
are the most popular features in EEG-based emotion recognition. Short-Time Fourier Trans-
form is more commonly used to calculate the approximate average power of each band
because it is more robust to noise than Fourier Transform, and Figure 5b shows the spec-
trum of an EEG channel in 30 s at 347 Hz. As one can see, the energy is mainly concentrated
in θ and α bands in this case. Here, we adopt the Hamming window with length of 1000 ms
with no overlap. The final computed features comprise the logarithm of the average, the
logarithm, of the maximum and minimum power of each band, the power variance across
all frequency bands, and the average power ratio of β over α.

Spectrogram, the most basic method, relies on conventional Fourier spectral analysis,
which assumes piecewise stationarity of the data. The typical implementation of the
spectrogram is the Short-Time Fourier Transform (STFT), with which a time–frequency
distribution can be obtained by successively sliding the window along the time axis and
performing the Fast Fourier Transform on each time window. The uncertainty principle
in the field of time and frequency analysis demonstrates that increased time resolution
reduces frequency resolution and vice versa. STFT suffers from inaccurate time–frequency
positioning due to this conflicting phenomenon. Therefore, it will only serve to compute
the band power as described above and will not be further discussed.

• Higher-order spectra (HOS)

The higher-order spectral analysis is a non-linear signal processing framework, build-
ing on the fact that much more information can be obtained from an autocorrelation or
power spectrum in a stochastic non-Gaussian signal. Higher-order spectra defined in terms
of a signal’s higher-order moments or cumulants contain this additional information. The
higher-order spectral analysis assumes that the processes or signals of interest are zero
means, just as higher-order crossings in the time domain because higher-order cumulants
are invariant to mean shifts. Higher-order spectra include polyspectra, such as the bis-
pectrum, bicoherence, trispectrum, etc. Here, we have only analyzed the bispectrum for
simplicity. For an in-depth discussion of the definitions of “polyspectrum” and “cumulant”
and their properties as well as implementation issues, the reader is encouraged to consult
the Higher-Order Spectral-Analysis Toolbox [20].

Bispectrum serves to extract the phase information and characterize the properties
of non-linear mechanisms such as quadratic and cubic patterns [21]. The features of the
bispectrum were derived for the quantification of emotions in [2]. The bispectrum is defined
as the Fourier Transform of the third-order cumulant sequence:

S3ξ( f1, f2) =
+∞

∑
k,l=−∞

C3ξ(k, l)e−j2π( f1k+ f2l) (16)

Note that the bispectrum is a function of two frequencies. Herein, the 128 × 128 bispectra
are estimated by firstly segmenting the signal into 30 nonoverlapping 128-sample slices
(only the second half’s recordings are used), next applying lag-domain windows to the
computed cumulants in the nonredundant region, and finally computing a two-dimensional
128-point FFT of the windowed cumulants with shifting and rotating for proper orientation.

Due to the vast volume (128 × 128 = 16,384) of the computed bispectrum, we turn to
derive the four features proposed in [2] from the bispectrum data:

1. Normalized bispectral entropy

BE1 = −∑
n

pn log pn, pn =
|B( f1, f2)|

∑Ω|B( f1, f2)|
(17)

where Ω is the non-redundant or principal region, as illustrated in Figure 6. For a
specific definition of the non-redundant region, the reader is referred to [20–22].
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2. Normalized bispectral squared entropy

BE2 = −∑
n

qn log qn, qn =
|B( f1, f2)|2

∑Ω|B( f1, f2)|2
(18)

3. Mean-magnitude of bispectrum

MMOB =
1
L ∑

Ω
|B( f1, f2)| (19)

where L is the number of points within Ω.
4. First order spectral moment

FOSM =
N

∑
k=1

log|B( f1, f2)| (20)

where N denotes the total number of elements in the bispectrum matrix.
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• Magnitude-Squared Coherence Estimate (MSCE)

The quantities mentioned above are all computed based on the recordings of one single
electrode (except for the average power ratio of β over α). Yet, researchers have found that
some electrodes in different scalp regions have a joint reaction while experiencing different
affective states [1]. MSCE features describe the correspondence of two signals coming from
different channels ξi and ξ j at corresponding frequency, taking values between 0 and 1 [15].
The MSCE is given in Equation (21):

Cij( f ) =

∣∣Pij( f )
∣∣2

Pi( f )Pj( f )
(21)
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where Cij( f ) is the MSCE of ξi; ξ j indicates how well ξi corresponds to ξ j at each frequency;
Pij is the cross-power spectral density; Pi and Pj denote the power spectral density of ξi and
ξ j, respectively.

• Differential asymmetry and rational asymmetry

According to neuroscientific findings concerning hemispheric asymmetry and its
relationship to emotion [23], features based on the combination of symmetrical pairs of
electrodes have garnered attention. They are typically classified as differential asymmetry
and rational asymmetry between the electrode pairs symmetrically distributed on the
cerebral cortex in the international 10–20 system. The former one usually refers to the
average power difference of electrode pairs on the left/right hemisphere of the scalp:
∆x = xl − xr, and the latter refers to the ratio of the pairs: rx = xl/xr.

2.3.3. Time–Frequency Domain

It is not new to decompose a signal into its harmonic components. As early as 1677,
Newton had carried out the spectral decomposition of light. The Fourier Transform led
to modern signal analysis based on transform domain decomposition. The below three
methods are designed to modify the global representation of Fourier analysis, but they
have all failed in one way or another. In time–frequency analysis, signals are typically
decomposed into a small number of components based on the local characteristic time scale.
Accurate localization of frequencies is possible. The primary concern is the instantaneous
frequency and energy rather than the global frequency and energy defined by Fourier spec-
tral analysis. Time–frequency methods can provide additional information by considering
the dynamic changes provided by the non-stationarity of signals, and presenting them as
an energy–frequency–time distribution.

• Hilbert–Huang spectrum (HHS)

Using the Hilbert–Huang spectrum, one can localize any event in the time domain
and on the frequency axis. The Hilbert–Huang spectrum can be derived by applying the
Empirical Mode Decomposition (EMD) function and the Hilbert Transform (HT) function.
With the EMD function, any complicated non-linear and non-stationary signal can be
decomposed into a series of “intrinsic mode functions” that admit well-behaved Hilbert
Transforms. Through the subsequent Hilbert Transform of Intrinsic Mode Functions (IMFs),
which are derived from local properties of signals, the instantaneous frequencies and energy
are obtained as time functions, resulting in a full energy–frequency–time distribution of the
original data. The paper [24] summarized the necessary conditions to represent a nonlinear
and non-stationary time series as completeness, orthogonality, locality, and adaptivity, in
which completeness guarantees the precision in the expansion and orthogonality avoids
leakage, locality serves nonstationary signals that have no time scale, and adaptivity is
crucial for avoiding harmonic distortion of non-linear phenomena.

An IMF component involves only one oscillatory mode so that the Hilbert Transform
can provide the full description of the frequency content. Contrary to the other expansion
methods, the basis of HHS has derived from the raw data of the trait of riding waves
expressed as one undulation riding on top of another, and they, in turn, are riding on still
other fluctuations so on [24]. The sifting process of systematically extracting the IMFs is
expanded in detail, as shown in Algorithm 1. The local maxima and local minima separately
define the upper and lower envelopes.
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Algorithm 1. Hilbert–Huang spectral analysis [24]

Input: The original signal vector x.
Output: The Hilbert–Huang spectrum, i.e., an energy− time–frequency distribution of x.

1. function EMD (x , SegLen , ResidueThreshold, SDT)

2. IMF← 0

3. i← 0

4. N ← length(x)/SegLen

5. residue← ∞

6. while residue > ResidueThreshold do

7. i← i + 1

8. xi ← x−∑i IMF

9. SD ← ∞

10. while SD > SDT do

11. for j = 1→ j = N do

12. segij ← xi[(1 + (j− 1) ∗ SegLen) : (j ∗ SegLen)]

13.
[

LocalMaxij, IndMaxij

]
← max

(
segij

)
14. IndMaxij ← IndMaxij + (j− 1) ∗ SegLen

15.
[

LocalMinij, IndMinij

]
← min

(
segij

)
16. IndMinij ← IndMinij + (j− 1) ∗ SegLen

17. end for

18. UpperEnvi ← spline(IndMaxi, LocalMaxi, 1 : length(xi))

19. LowerEnvi ← spline(IndMini, LocalMini, 1 : length(xi))

20. LocalMeanApproxi ← (UpperEnvi + LowerEnvi)/2

21. xi ← xi − LocalMeanApproxi

22. SD ← ∑
[
(xTemp−xi)

2

xTemp2

]
23. end while

24. IMFi ← xi

25. residue← mean (x−∑i IMF)

26. end while

27. return IMF

28. end function

29.

30. function HT(IMF, f s)

31. zt← hilbert(IMF)

32. Energy← (imag(zt))2 + (real(zt))2

33. Phase← arctan imag(zt)
real(zt)+eps

34. frequency← Phase/(2 ∗ π ∗ f s)

35. return energy, frequency

36. end function
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As depicted in Figure 7, the first IMF component contains information on the whole
frequency range of Hz (3–47), yet the other IMFs include knowledge of much fewer fre-
quencies. For example, the third IMF shows a soft spike at about 21 Hz and an extremely
sharp peak at around 44 Hz, and the nineth IMF shows high energy at 23 and 34 Hz.
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Figure 7. Illustration of the effects of repeatedly applying the sifting operation and the Hilbert–Huang
spectrum. (a) The original normalized data. The upper and lower bounds are depicted in pink and
cyan, respectively. The original data suffers severe asymmetry, the mean of which is not zero. (b) After
sifting once through the original data. (c) After sifting once more, the result is still asymmetric and
not an IMF. (d) After sifting twice, the result is much better than the original data, but more siftings
are needed to mitigate the asymmetry and the ridding waves. (e) The Hilbert–Huang spectrum.

• Discrete wavelet transform (DWT)

The multi-resolution wavelet approach, gloriously called “the mathematical micro-
scope”, has attracted widespread popularity. It is essentially a linear Fourier spectral
analysis with adjustable windows. Unlike the STFT, the wavelet analysis is adaptive to the
fluctuations of signals by adjusting the width of the time window and frequency scale. The
general continuous definition of WT is:

Wx(a, b) =
1√
a

∫ +∞

−∞
x(t)ψ∗

(
t− b

a

)
dt (22)

where a is the dilation factor; 1√
a gives the frequency scale; b is the translation of the origin

and gives the temporal location of an event; ψ(t) is the mother wavelet function. The
physical sense of Equation (22) can be interpreted as the energy of x(t) of scale a at time b.
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Here, we use the orthogonal and compactly supported the fourth order Daubechies
wavelet to decompose the signals into detail coefficients of four levels and approximation
coefficients of the fourth level, designated as D1, D2, D3, D4, and A4, respectively. Further,
given the sampling rate of preprocessed signals in DEAP is 128 Hz, the corresponding
frequency range of each set of coefficients is deduced by the criteria shown in Table 3.
The entropy, root mean square (RMS), and the absolute logarithmic recursive energy effi-
ciency (abs(log(REE))) of frequency bands θ, α, β, γ are derived by extending the approach
introduced in [22].

Table 3. Frequencies corresponding to different decomposition levels for the “db4” wavelet with a
sampling frequency of 128 Hz.

Decomposition Levels Criterion Frequency Range (Hz)

A4 0 ∼ fs
2j+1

0–4

D4
fr

2j+1 ∼
fs
2j

4–8(θ)
D3 8–16(α)
D2 16–32(β)
D1 32–64(γ)

2.3.4. Feature Selection for Reducing the Dimensionality

An abundance of features will lead to over-specification, excessive computation load,
and even overfitting when some features have little influence on the classification task.
Achieving the smallest, most representative, distinguished, and robust feature subset that
would yield the minimum generalization error is crucial.

Generally speaking, the feature selection procedure can be considered as an optimiza-
tion problem for data pre-processing and typically involves two processes. First, a subset
search is performed to select a subset via a particular search engine such as the greedy
forward, greedy backward, and bidirectional search, among which: the forward search
recursively appends relevant features to an initial set; on the contrary, the backward method
continually discards irrelevant attributes from a complete feature set; the bidirectional way
combines the other two. Besides, some randomized heuristic policies have been used for
selection and showed efficiency, too. Second, a subset evaluation is performed to assess the
suitability of the candidate subset via the above-mentioned miscellaneous criteria.

There are three general approaches to feature selection: filters, wrappers, and embed-
ded methods. Here, only the first two are considered. Wrapper-type methods judge the
availability of a feature by the actual accuracy of the specific classifier, thus guaranteeing a
specialized non-redundant feature subset that matches best with the learning method, yet
requires extensive computation, so a beforehand filtering is necessary. Filtering methods
are model-independent and less computationally intensive, thereby fitting the feet of large
datasets. The simplest baseline approach falling in filtering categories is removing features
with low variance (RFLV), which is based on the idea that variables with milder undulations
can have less impact on the results. The idea is similar to Principal Component Analysis
(PCA) motivation, as well as the somewhat controversial Entropy Weight Method.

The relief method inspects the problem from a correlation perspective and chooses the
variables with high association with the target. As with Linear Discriminant Analysis, the
Fisher score assigns the highest score to features whose values of a different class are far
from each other. In contrast, values of the same class are close to one another. One common
practice of filtering methods based on mutual information is the Minimal-Redundancy-
Maximal-Relevance (mRMR) framework, proposed in [5] to minimize the redundancy in
feature sets obtained from the typical methods that rank genes according to some rule and
pick the top-ranked ones. Mutual information itself can be used to measure the relevance
or similarity of attributes.
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2.4. Principal Component Analysis Compressed Representations

To examine the performance of manually extracted features, we used a simple and
widely used dimension reduction method, principal component analysis, to extract the
principal components of the data as reference features in a linear and unsupervised fashion.
PCA learns a linear transformation f (x) = WTx + b of input data x ∈ Rdx , in which the
columns of the matrix W(dx × dh) form an orthogonal basis for the dh orthogonal directions.
The transformed result is the dh uncorrelated components. High-dimensional data can be
compressed into a much smaller space while retaining most of the variation in the data
set [25]. In many cases, global representation is needed to lessen the calculative burden or
visualize samples for better analysis. PCA identifies the principal components or directions
in the feature space along which the variance is maximal by the unsupervised combining
of all the attributes. The so-called principal components are linear combinations of the
original variables. Specifically, the first principal component is the direction in the data
points that shows the greatest variation. The second principal component is the direction
uncorrelated to the first component and maximizes the variance of samples when projected
onto the component. If the data were standardized, then the principal components were
the normalized leading eigenvectors of the covariance matrix. In this piece, signals in
each channel are represented by the top 25 components whose cumulative contribution
rate has reached nearly 100%, instead of 3840 variables to reduce data volume and, in the
meantime, minimize information loss. As a result, there are 800 dimensions for EEG and
200 dimensions for the periphery for a trial.

However, the expressive power of linear features learned by PCA is rather limited.
One cannot stack these linear features to form deeper representations since the composition
of linear operations yields another linear operation.

3. Methods

The success of machine-learning algorithms in pattern recognition heavily relies on
data representation as different representations stand for different explanatory factors of
variation behind the data [26]. Features have a decisive impact on experimental perfor-
mance. Designing features based on specific domain knowledge is labor-intensive and
contrary to the pursuit of artificial intelligence. Traditional machine-learning algorithms
may inherit some critical limitations from features. In contrast, representation-learning algo-
rithms such as probabilistic models, autoencoders, manifold learning, and deep networks
can be applied to learn more powerful representations and disentangle the underlying
explanatory factors through deep learning whose performance is expected to be comparable
to that of humans. They are less dependent on feature engineering. The more abstract
and more useful representations are yielded from the composition of multiple non-linear
transformations. This paper focuses on the autoencoder model among the various ways of
learning representations. This section will present the principles of our semi-supervised
method for higher-level feature extraction at length. The workflow diagram of our proposed
method is presented in Figure 8.

3.1. Stacked Denoising Autoencoder (SDA)

In this section, we will explain the theories and terminologies of autoencoders and
denoising autoencoders. We will also explain why we chose to stack an array of denoising
autoencoders to reduce the dimensionality of the physiological emotion data.

3.1.1. Traditional Autoencoder (AE)

A low-dimensional code can reconstruct high-dimensional input vectors in a small cen-
tral layer of a neural network. Such networks are called “autoencoder” or “autoassociator”
and can work much better than PCA if the initial weights are close to a good solution [27].
Autoencoders can be seen as a non-linear generalization of PCA. An example of the two-
layer autoencoder is illustrated in Figure 9, in which the “encoder” network transforms
the high-dimensional data into a low-dimensional code and a similar “decoder” network
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recovers the data from the code. They are trained together by minimizing the discrepancy
between the original data and its reconstruction version using Gradient Descent.
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One concern and theoretical shortcoming regarding traditional autoencoders is whether
it will fail to learn a useful representation when the number of units is not strictly decreas-
ing from one layer to the next. Under such a circumstance, it is theoretically feasible for
autoencoders to just learn an identity mapping (simply copying the input, which generally
yields zero reconstruction error) under such circumstances with a high capacity. Although
Bengio’s [28] experiments had shown that it generalizes well with non-decreasing lay-
ers, stacking traditional autoencoders achieved only comparable performance compared
with DBN.

3.1.2. Denoising Autoencoder

The denoising autoencoder is a straightforward variant of regular autoencoders and is
trained to denoise the corrupted version of the input data. As depicted in Figure 10, com-
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pared to the original autoencoder, the denoising variant adds a polluting step as expressed
in Equation (23), thus making the input of “encoder” the contaminated input data. Such a
minor modification has been proven to significantly enhance the autoencoders’ performance.
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Figure 10. The input x is partially destroyed by some noise qD such as missing values, Gaussian
noise, or salt and pepper noise for images, yielding the corrupted input x̃. x̃ is mapped to the hidden
code by the encoder function fθ . From the transformed representations, we reconstruct a z by the
decoder function gθ′ . The training criterion is to minimize the reconstruction error LH(x, z). The
classical autoencoder transforms the input directly to the code, as depicted in the red dashed line.

Here, we calculate the corrupted input x̃ and the reconstructed z as follows:

x̃← qD(x̃ | x) (23)

h = fθ(x̃) = s f (Wx + b) (24)

z = gθ′(h) = sg
(
W ′h + b′

)
(25)

where fθ and gθ′ denote the closed-form parameterized encoder and decoder function,
respectively. θ = {W, b} and θ′ = {W ′, b′} are the parameter vectors minimizing the
reconstruction error; b(d′ × 1) and b′(d× 1) are the biases; W(d′ × d) and W ′(d× d′) are
the weight matrices; h is the computed feature vector; s f and sg denote the encoder and
decoder activation function. Typically, the elementwise sigmoid or hyperbolic tangent
nonlinearity is chosen for s f ; if sg is linear, the identity function is set for sg.

An intuitive geometric hypothetical interpretation [29] for denoising autoencoders
is given by manifold learning, which supposes high-dimensional data concentrate on a
low-dimensional manifold. Corrupted examples that are far from the manifold will be
projected back to be near the manifold via the training procedure.

3.1.3. Stacked Denoising Autoencoder

Deep architectures can be much more efficient than shallow ones, as highly non-
linear and highly varying functions are compactly represented by deep multi-layer neural
networks, suggested by the complexity theory of circuits. Stacked denoising autoencoder
borrows the greedy principle of DBNs. It is an original way of building deep networks
using stacking layers of denoising autoencoders.

Deeper autoencoders can generate lower reconstruction errors than shallower ones [27].
Adding more layers or stacking more one-hidden-layer autoencoders will increase the
model’s capacity, enabling the composition of more useful features. In many cases, the
denoising criterion that guides the purely unsupervised learning bridges the performance
gap of the stacked autoencoder with DBN and even surpasses it in many cases [29]. Higher-
level learned representations can boost the performance of subsequent classifiers.

The training procedure of stacked denoising autoencoders can be divided into two
subprocesses: the unsupervised pre-training for searching for a proper initialization con-
figuration for parameters in the network and the supervised fine-tuning for moderately
adjusting the settings of the parameters. The process can be shown in Figure 8.
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3.2. Unsupervised Pre-Training

A greedy layer-by-layer unsupervised “pre-training” is an algorithm to find the most
appropriate initial configuration of weights and biases. This technique was first proposed
by Hinton [30] and extended to cases where input is continuous by Bengio [28]. During the
pre-training, layers are trained to represent the dominant factors of the data. Pre-training
uses only the underlying knowledge behind the data, not the information contained in the
labels, which will be applied in the fine-tuning stage to slightly adjust the weights found
by pre-training.

It is believed to be capable of overcoming the challenges of deep learning (as stated in
Section 3.1.1) by introducing prior knowledge to the fine-tuning procedure, where a similar
argument is found in humans that their capacity to quickly become proficient in new tasks
builds on much of what they have learned before facing that task. One reasonable and
competing explanatory hypothesis is that the pre-training acts as an unusual regularizer [8]:
pre-training would result in a regularization effect by establishing a particular initialization
point of the parameter space of fine-tuning and restricting the parameters to be chosen
in a relatively small, bounded, and local basin of attraction of the supervised cost func-
tion. This type of regularization has precedence in the neural networks in the form of
“early stopping”.

The training of ordinary deep architectures is a non-convex optimization problem.
However, by initializing weights in a region near a local minimum, pre-training mitigates
the complicated non-convex optimization, giving better generalization. Also, pre-training
can facilitate the training process of deep networks by significantly reducing the total
training time.

3.3. Global Fine-Tuning on a Supervised Criterion

For the greedy layer, the driving idea behind semi-supervised learning is to exploit in-
formation about the prior probabilities of input data to boost the generation of the classifier.
Training cases that belong to the same cluster will be mapped into nearby embeddings.

Pre-training provides a good initialization for supervised fine-tuning of the whole
network. The fine-tuning is the second and last stage of training. The parameters of the
entire network can be further optimized simultaneously by gradient descent concerning a
deterministically computable supervised criterion that depends on the representations [28].
It is worth mentioning that fine-tuning does not change the weights significantly, even with
a high number of times of updating.

3.4. Deep-Belief Networks

A deep-belief network is another implementation of autoencoders. Pre-training and
fine-tuning are still the main form of learning. The layer building block “Restricted Boltz-
mann Machine” is a bipartite graph modeled by an ensemble of binary vectors, where
Gaussian or binary “visible” units are connected to stochastic, binary, and “hidden” feature
detectors through symmetrically weighted connections. Restricted Boltzmann Machines
(RBM) are a special case of Boltzmann Machine and Markov Random Fields. The joint
probability of various values of units in the visible and hidden layer of the RBM is defined
by energy:

P(v, h) =
1
Z

exp(−E(v, h)) (26)

where Z is the partition function; v and h represent the states of units in the visible layer
and the hidden layer, respectively. If the visible units are binomial, then the energy is
calculated as:

E(v, h) = −∑
i,j

viWijhj −∑
j

bjhj −∑
i

civi (27)

where vi and hj are the states of visible neuron i and feature j; bi and bj are their biases and
Wij is the weight between them. Note that when the input layer units take real values, the



Entropy 2022, 24, 577 20 of 29

neurons of the visible layer follow the polynomial distribution, which is a generalization of
the binomial distribution where each unit has multiple possible values.

Block Gibbs sampling determines whether or not the hidden units are activated:
P
(
hj = 1 | v

)
= σ

(
∑
i

Wijvj + bj

)
P(vi = 1 | h) = σ

(
∑
i

Wijhi + ci

) (28)

where the first layer of feature detectors then become visible neurons for training the
next RBM.

Class autoencoders and RBMs are similar in their function form despite the enormous
difference in the interpretation and training algorithms. After unsupervised training, an out-
put logistic regression layer is added to estimate the class probabilities using multinomial
logistic regression (soft-max).

4. Performance and Evaluation

To investigate and compare the performance of our proposed method with existing
mainstream methods that can be summarized as combining one or more human-designed
features with one classical learning algorithm, which can be traditional machine-learning
methods or deep-learning approaches, we performed substantial experiments in this sec-
tion, the experimental setup, and the results are elaborated below. All data preparations
are detailed in Figure 11.

4.1. Hand-Engineered Features

As is exhibited in Figure 11, the number of derived features was huge, which may
result in the fact that some features are irrelevant to others. Hence, before proceeding any
further, we performed a hybrid filtering selection as a preliminary operation to reduce
the dimensionality. The Scikit-learn Python package [31] was used for implementing the
machine-learning models.

First, as a pre-step, we utilized the most fundamental RFLV to eliminate a small
amount of less volatile features. The threshold was set as 0.01. As a result, a total of
148 EEG features with variances lower than 0.01 were picked out, among which were
18 from the higher-order spectra, 39 from the band power, 21 from the Hilbert–Huang
spectrum, 24 from the differential asymmetry, 44 from the rational asymmetry, and 1 from
the discrete wavelet transform. As for periphery modality, 31 features were removed,
including 20 from the Hilbert–Huang spectrum, 3 from the discrete wavelet transform,
3 from the Hjorth, and 2 from the statistics in the time domain. The results can vary because
the threshold was a hyperparameter of the unsupervised RFLV. As a result, the higher-order
spectra and Hilbert–Huang spectrum fail to meet the expectation claimed in the literature.

Then, after eliminating features with small variation, we applied two supervised
filtering methods and took the union of their choices as the input of learning algorithms
with the mode-dependent wrapper selection. The motivation for us to do this was: as a
rule, incorporating several state-of-the-art methods of feature selection surpasses a single
method in performance, providing a broader coverage of the original space covered by the
entire dataset, while emphasizing the discriminative efficiency. To decide which filtering
methods to combine, we compared the performance of ten univariate and supervised
filtering feature selection methods to recognize the valence dimension.

The result is presented in Table 4. It is clearly exhibited that the chi-square method
gets marked (bold or underlined) by four models and wins first place in two of them.
The method based on mutual information follows closely behind, being marked for three
times and winning a championship twice. Accordingly, filtering based on chi-square and
mutual information is incorporated to conduct further filtering after RFLV: the union of the
top-ranked 200 features of both methods forms the final feature set for wrapper selection
and classification. Specifically, in doing so, we arrive at 373 EEG components and 216
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periphery dimensions for Valence, 377 and 215 for Arousal, and 365 and 215 for dominance,
as shown in Figure 11.
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Table 4. Comparison results of ten notable filtering-type feature selection schemes on several models
for the valence scale are given. Accuracies of the top-two methods of each learning algorithm are in
bold, and the best ones for each model are underlined besides.

Valence SVM DT RF LDA LR NB KNN Mean Variance

Chi-square 0.686 0.612 0.653 0.529 0.611 0.597 0.641 0.618 0.0021
Fisher 0.675 0.589 0.645 0.507 0.631 0.625 0.641 0.616 0.0026
Gini 0.684 0.601 0.607 0.496 0.584 0.576 0.640 0.598 0.0029

Laplace 0.690 0.620 0.627 0.509 0.631 0.596 0.640 0.616 0.0026
mRMR 0.671 0.580 0.612 0.510 0.570 0.582 0.607 0.590 0.0020
Pearson 0.680 0.577 0.634 0.523 0.595 0.622 0.643 0.611 0.0022
Relief 0.670 0.580 0.631 0.506 0.616 0.656 0.624 0.612 0.0026
Spec 0.671 0.593 0.631 0.527 0.606 0.642 0.613 0.612 0.0018
Trace 0.682 0.602 0.635 0.520 0.619 0.626 0.642 0.618 0.0021

Mutual 0.673 0.612 0.641 0.515 0.634 0.624 0.648 0.621 0.0022

4.1.1. Using Traditional Machine-Learning Algorithms with Hybrid Feature Selection

To investigate the performance of hand-engineered features and evaluate the con-
tribution of both modalities, we conducted three binary classification tasks using seven
widely-used machine-learning models in the literature. As mentioned above, a hybrid
strategy of filter and wrapper type methods was employed for feature selection. The final
feature subsets for three recognition tasks have been acquired.

Both cross-subject and single-subject classifications are performed. For cross-subject
recognition, trials of all 32 participants are mixed, resulting in 1280 pieces of data. The
results in Table 5 were obtained through five-fold cross-validation with the greedy forward
wrapper search. For single-subject recognition, the 40 trials of one subject formed a tiny
individual database. To refrain from overfitting that was prone to small data sets, we
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performed the leave-one-out-cross-validation for each subject, which can be viewed as 40-
fold ordinary cross-validation with only one piece of test data. The accuracy was calculated
by dividing the total number of correct testing by 40. In addition, there can be features that
can accurately distinguish dimensional size, resulting in 1.0 accuracy by itself. This was
due to the small datasets that severely lack training cases. We have skipped such features
in the experiment.

Table 5. Accuracies of seven widely used conventional machine-learning models for cross-subject
and single-subject recognition on three scales of valence, arousal, and dominance. The best result is
shown in bold for each trial, and the more prominent one between the modality of EEG and periphery
is underlined. Here, w stands for weight.

Accuracy SVM DT RF LDA LR NB KNN

Cross Single Cross Single Cross Single Cross Single Cross Single Cross Single Cross Single

Va.

EEG 0.623 0.895 0.596 0.854 0.616 0.832 0.641 0.812 0.584 0.795 0.646 0.825 0.606 0.844
Periphery 0.629 0.891 0.597 0.849 0.605 0.822 0.654 0.802 0.619 0.802 0.650 0.827 0.627 0.834
Equal w. 0.597 0.589 0.557 0.855 0.591 0.797 0.635 0.781 0.58 0.781 0.641 0.812 0.629 0.841

Optimal w. 0.635 0.630 0.597 0.884 0.627 0.827 0.654 0.840 0.619 0.831 0.655 0.857 0.641 0.886

Ar.

EEG 0.649 0.865 0.602 0.864 0.615 0.846 0.646 0.805 0.593 0.805 0.657 0.834 0.618 0.840
Periphery 0.653 0.865 0.591 0.839 0.605 0.838 0.654 0.802 0.602 0.795 0.653 0.823 0.613 0.828
Equal w. 0.721 0.703 0.584 0.855 0.580 0.791 0.639 0.780 0.598 0.772 0.650 0.816 0.632 0.823

Optimal w. 0.722 0.728 0.602 0.878 0.596 0.838 0.657 0.835 0.605 0.830 0.657 0.863 0.633 0.873

Do.

EEG 0.659 0.884 0.622 0.857 0.637 0.846 0.683 0.813 0.592 0.815 0.680 0.835 0.634 0.845
Periphery 0.653 0.871 0.611 0.840 0.623 0.834 0.676 0.797 0.597 0.793 0.677 0.811 0.637 0.826
Equal w. 0.701 0.702 0.559 0.856 0.633 0.795 0.672 0.770 0.591 0.791 0.680 0.802 0.645 0.825

Optimal w. 0.715 0.728 0.620 0.878 0.645 0.830 0.683 0.841 0.603 0.842 0.685 0.857 0.652 0.873

To obtain a better result, decision fusion with equal weights and the optimal weights
was also investigated. The exhaustive search found the optimal weights, where the step
length was set as 0.01. The fused output was the weighted average of the two sets of output
probabilities from EEG and periphery modality. As Table 5 and Figure 12 show, decision
fusion with optimal weights outperformed the others, whereas fusion with equal weights
showed the poorest performance. In this case, decision fusion using weighted average
changes only changed the recognition result that the two modalities disagree on, while
optimal weights tended to follow the opinion of the right modality.
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In contrast, fusion with equal weights showed no preference, thus making more mis-
takes. Besides, distinct from the usual declarations in the literature that the periphery is 
inferior to EEG and plays a supporting role, we observed that the periphery modality 
drew equally with EEG for the valence scale in both cross-subject and single-subject recog-
nition. For arousal and dominance, although, for the most part, the EEG outperformed the 
periphery modality, there were times that the periphery matched or beat EEG. 

In addition, the times of various hand-engineered features selected by the machine-
learning algorithms for both cross-subject and single-subject recognition on the valence, 
arousal, and dominance dimensions were added up, as shown in Figure 13. Features de-
rived from the discrete wavelet transform in the time–frequency domain were the most 
favored. The power of four frequency bands in the frequency domain and the mobility 
and complexity were defined by Hjorth features in the time domain. Most features in the 
time domain were running neck-and-neck; however, surprisingly, the Hilbert–Huang 
spectrum and electrode pairs were not as popular as expected. 

Figure 12. The accuracy of seven traditional learning algorithms for cross-subject and single-subject
recognition on three scales is correct. The cross-subject classification tasks are in solid lines; instead,
the single-subject ones are in dashed lines. Results using only the EEG modality are in red, green
for using the periphery modality alone, blue for decision fusion with equal weights, and brown for
decision fusion with the optimal weights found by exhaustive search.

In contrast, fusion with equal weights showed no preference, thus making more mis-
takes. Besides, distinct from the usual declarations in the literature that the periphery is
inferior to EEG and plays a supporting role, we observed that the periphery modality drew
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equally with EEG for the valence scale in both cross-subject and single-subject recogni-
tion. For arousal and dominance, although, for the most part, the EEG outperformed the
periphery modality, there were times that the periphery matched or beat EEG.

In addition, the times of various hand-engineered features selected by the machine-
learning algorithms for both cross-subject and single-subject recognition on the valence,
arousal, and dominance dimensions were added up, as shown in Figure 13. Features
derived from the discrete wavelet transform in the time–frequency domain were the most
favored. The power of four frequency bands in the frequency domain and the mobility and
complexity were defined by Hjorth features in the time domain. Most features in the time
domain were running neck-and-neck; however, surprisingly, the Hilbert–Huang spectrum
and electrode pairs were not as popular as expected.
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4.1.2. Using Deep Neural Networks to Compare with PCA-Compressed Features

To further verify the effectiveness of the well-designed features elaborated in Sec-
tion 2.3, we will probably use PCA’s oldest feature extraction method as a reference.

We compared the performance of two feature sources: hand-crafted features intro-
duced in Section 2.3 and PCA-compressed features mentioned in Section 2.4. The need for
a special note was that only cross-subject recognition were to be performed using deep
architectures, and single-cross recognition was merely conducted in Section 4.1.1. In this
experiment, all the 1748 features for EEG and 216 for the periphery modality were used
without further filtering, except with RFLV. For PCA, the top 25 principal components
were retained, so there were 800 components for EEG and 200 for the periphery. Feature
fusion by concatenating the two feature vectors is also implemented. A three-hidden-layer
deep neural network is used, and the dropout probabilities were set to 0.45, 0.5, and 0.25,
respectively. Specifically, we employed a 1748-800-200-20-2 network for hand-engineered
EEG, a 217-100-50-10-2 network for the hand-engineered periphery, and a 1965-500-100-20-2
network for the fusion of hand-crafted features. The number of neurons in three hidden
layers of PCA were 500-100-20, 100-100-20, and 500-100-20 for the three feature sources.
The dataset was divided into a training set with a size of 768, a validation set for adjusting
hyperparameters such as learning rate and the number of training epochs, and a testing set
with a size of 256. The five-fold cross-validation was also used here.

Our loss function consisted of four terms to avoid overfitting and to reduce the impact
of category imbalances:

L(x) = λ0 ∗ crossenropyerror + λ1 ∗ L1 + λ2 ∗ L2 + λ3 ∗ C (29)

where λ0, λ1, λ2, λ3 are the coefficients of the four terms; L1 and L2 denote the L1 regu-
larization loss and the L2 regularization loss, respectively; C = C01 + C10, C represents
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the cost of misclassification caused by class imbalance. The four coefficients and other
hyperparameters are adjusted according to the crossentropy error.

The results are shown in Table 6. Hand-engineered features outmatch the unsuper-
vised PCA-compressed ones in all the comparisons, demonstrating these human-designed
representations’ serviceability and superiority.

Table 6. Performances of hand-engineered features and PCA-compressed features. The higher value
of the two features in each modality for each scale is in bold.

Accuracy
Hand-Crafted PCA-Compressed

EEG Periphery Feature Fusion EEG Periphery Feature Fusion

Va. 0.641 0.644 0.651 0.639 0.630 0.640
Ar. 0.694 0.644 0.653 0.639 0.639 0.641
Do. 0.679 0.679 0.682 0.669 0.667 0.668

4.2. Automatically Generated High-Level Representations

This section compares the expressive power of several deep-learning models on an
RTX 2060 GPU, including two discriminative models (DNN, CNN) and two generative
models (DBN, SDA). The augmented data were utilized as input after normalization.

4.2.1. Supervised Discriminative Architectures

We focused on deep neural networks (DNN) and convolutional neural networks
(CNN) for discriminative models. With the popularity of deep learning, DNN and CNN
have attracted the most attention. These networks use the original data taken as input
directly. Therefore, each layer in these networks can become a special feature extractor with-
out human intervention, similar to the idea of representation learning in generative models.
However, generative models can learn more parameters without overfitting, requiring no
feedback from the labels. For generative models, the parameters are constrained by the
number of bits required to describe the input for each training case. Yet, for discriminant
models, the parameters are constrained by only the number of bits needed to describe the
label [29]. We ignored the internal differences between the two networks and just used
them as examples of discriminative models to compare feature extraction performance
with generative models.

A 3840-800-200-20-2 network was designed for DNN with dropout probabilities set as
0.45, 0.5, and 0.25 for the three hidden layers. Each affine layer was followed by a batch
normalization layer and a ReLU activation layer. As illustrated in Figure 14a, the CNN
model deployed in the experiment consists of four modules: the first two submodules
contain a convolutional layer followed by batch normalization and ReLU; we also added an
additional max-pooling layer for the last two modules. The kernel size was set as three, the
striding length was set as two, and no padding was applied. A 0.85 dropout probability was
set for the fully connected layer. Each piece of data was converted to a 60 × 64 size image.

4.2.2. Semi-Supervised Generative Architectures

Basic concepts of the stacked denoising autoencoder (SDA) and Deep Belief Net-
work (DBN) are similar. The data were first transformed into a new representation by
unsupervised pre-training, and the supervised classifier was layered on top to map the
representations into class predictions. Indeed, both minimizing the reconstruction error
for autoencoders and contrastive divergence training for RBMs can be seen as an approxi-
mation of a log-likelihood gradient. However, stacking ordinary autoencoders regularly
underperforms stacking-restricted Boltzmann machines. Our method of stacking denoising
autoencoders exhibited superior performance in this section.
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Considering that our data were real-valued, we used a linear decoder with a squared
reconstruction error for SDA, whose structure is shown in Figure 14b. For applying noise
to the data, we utilized the standard “dropout” method, i.e., resetting values of a fixed
random proportion of original data elements to zero. In particular, the proportion was set
at 0.2. The fine-tuning output layer takes input only from the top hidden layer. Once the
stack of autoencoders has been trained and the stack of encoders has thus been built, the
highest-level output representations would be used as input for a stand-alone supervised
learning algorithm. A K-nearest neighbor model and a support vector machine with the
radial basis function kernel were implemented as classifiers.

To further investigate the mechanism of action of SDA, we conducted several other
experiments. These were to verify the effect of whether to pretrain the depth of stacking
and the noise level added in. A 3840-1000-200-40-2 autoencoder was employed. The results
are shown in the following Figure 15.

With or without the unsupervised pre-training, it should be pointed out that the
supervised optimization objective and the gradient-based scheme are the same. The only
thing that differs is the starting point in the parameter space: either randomly selected or
obtained by pre-training. The average squared reconstruction error per test data during
fine-tuning is shown in Figure 15a. Pre-trained autoencoder has a much lower initial error
than those without pre-training. Although both decrease the error to near zero in our
task, with or without pre-training, pre-training makes progress faster, thus needing less
fine-tuning.

The average squared reconstruction error on the test set is shown in Figure 15b during
the fine-tuning. Initially, the error of a deep 3840-1000-200-40-2 autoencoder was greater
than that of a the shallower 3840-1000-200-2 autoencoder at first, but the ultimate error
of the deeper one went down more rapidly. However, we observed that the hypothesis
that the deeper the network, the better the performance does not hold. An appropriate
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increase in the depth of the network can bring benefits, while an overly large depth seemed
to increase the probability of finding poor local minima, resulting in bad performance. A
deep 3840-2000-1000-400-100-20-2 autoencoder always got stuck in poor solutions, whereas
a shallower 3840-1000-200-40-2 was hardly trapped.
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The average squared reconstruction error of different levels of corruption during the
fine-tuning on the valence scale using EEG modality only is shown in Figure 15c. A 3840-1000-
200-40-2 autoencoder was employed with 200 epochs of pre-training. The larger the noise
level, the more prominent the effect of pre-training, and the fewer fine-tunings required.

The results of the four deep architectures are shown in Table 7 and Figure 16. The two
widely-used discriminative networks and DBN showed similar performances and were
slightly defeated by the two SDA models. When it comes to SDA, the SVM shows a slight
advantage (shown in bold).

Table 7. Accuracies of several deep-learning methods using the augmented raw data.

Accuracy DNN CNN DBN SDA-KNN SDA-SVM

Va.
EEG 0.630 0.637 0.631 0.635 0.652

Periphery 0.643 0.634 0.631 0.633 0.649
Data fusion 0.632 0.643 0.629 0.636 0.652

Ar.
EEG 0.639 0.635 0.639 0.645 0.657

Periphery 0.642 0.640 0.639 0.642 0.654
Data fusion 0.642 0.640 0.639 0.644 0.659

Do.
EEG 0.669 0.666 0.669 0.673 0.679

Periphery 0.669 0.667 0.669 0.671 0.674
Data fusion 0.676 0.670 0.671 0.675 0.681
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5. Conclusions and Future Work

In this paper, we explored learning mapping from input to a novel representation.
To circumvent the labor of artificially designed features and leverage the power of deep-
learning instruments, we proposed to acquire affective and robust representations automat-
ically through the SDA architecture with unsupervised pretraining, followed by supervised
fine-tuning using backpropagation of error derivatives. Performances of the different
features and models were compared through three binary classification tasks based on
the renowned Valence-Arousal-Dominance affection model. We conducted the following
three experiments:

1. Used EEG and periphery signals to generate hand-engineered features.

(a) We performed decision fusion using traditional machine-learning algorithms
with hybrid feature selection;

(b) We performed feature fusion and used deep neural networks to compare
hand-engineered features with PCA-compressed features.

2. Used augmented data as input after normalization.

(a) We fed the augmented data directly into the SDA (feature extractor) after
properly pre-processing and then combined the generated features with the
classifier for network fine-tuning. To compare the practical effects of our
method, we took two discriminative deep architectures (DNN and CNN) and
another generative stacked semi-supervised architecture (DBN) as references.

The results of the mentioned experiments are listed: (1) It turns out that the fusion data
achieve performances better than, or in-between the two modalities. Accuracies of single-
subject recognition are about 20 percent higher than that of cross-subject classification using
well-designed hand-engineered features, demonstrating the “highly-personal” nature of
emotion. Besides, statistics from the hybrid feature selection showed that features derived
from the wavelet transform and the band power were the most preferred in emotion-
recognition tasks. Moreover, the results of the feature fusion of hand-crafted features
were 0.651 in valence; (2) Results reveal that our scheme (using the model SVM) with an
accuracy of 0.652 in valence (data fusion) slightly outperformed the other three deep feature
extractors, and also surpassed the state-of-the-art of hand-engineered features.

Due to the diversity and complexity of human emotions, there were still many prob-
lems in correctly recognizing them by machines. The main limitations of our work were
as follows:

1. The resulting accuracy was not that high as the model was relatively easy. We need to
construct and optimize deep-learning modes by conducting further model fusion to
further improve the results.

2. The system needs to select more effective EGG signal features.
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3. Due to the limited size of the dataset DEAP, training cases were lacking. A larger
dataset should be applied as we need to optimize raw data augmentation to decrease
the error.

Although this paper has achieved relatively good results in the presented research, fur-
ther research is still needed. The top issue in emotion detection is the size of databases. More
powerful representations are expected to be built with a larger scale of unsupervised learn-
ing. In the scarcity of labeled data and an abundance of unlabeled data, semi-supervised
learning is more practical. The pre-training and fine-tuning scale linearly in time and space
with the number of training examples. The unsupervised pre-training regularizer can have
a more profound positive effect on generalization when the number of training cases is
larger. Hence, in the future, deep denoising autoencoders would be very affectionate for
non-linear dimensionality reduction, provided that the datasets are big enough.

Future work should include investigating and understanding semi-supervised ap-
proaches where one does not separate between the unsupervised pre-training phase and
the supervised fine-tuning phase. Such techniques fall more squarely into the field of
“semi-supervised” learning. Other avenues for future work include using other types of
noise or corruption, and the role of noise level also deserves further inquiry.

It is believed that in the near future, research on emotion-recognition technology
in the field of artificial intelligence will make greater progress and be better applied in
practical products.
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