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Abstract: The methods based on the convolutional neural network have demonstrated its powerful
information integration ability in image fusion. However, most of the existing methods based on
neural networks are only applied to a part of the fusion process. In this paper, an end-to-end
multi-focus image fusion method based on a multi-scale generative adversarial network (MsGAN)
is proposed that makes full use of image features by a combination of multi-scale decomposition
with a convolutional neural network. Extensive qualitative and quantitative experiments on the
synthetic and Lytro datasets demonstrated the effectiveness and superiority of the proposed MsGAN
compared to the state-of-the-art multi-focus image fusion methods.
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1. Introduction

In image collection, many sensors have been developed to acquire different types
of images; however, due to the limitations of the application scenarios and working en-
vironment, they usually have different specific functions, leading to some limitations in
the collected information. For example, due to the limitation of the sensors with different
focal lengths and the scenes with different depths of field, the degree of focus of the scene
reflected by the image is also different, as shown in Figure 1a,b. In order to make full use of
the complementarity and overcome the limitations of acquired images, image fusion can
fully integrate a large amount of image information, obtain intuitive and concise image
descriptions, and provide more a diversified information reference for target detection and
recognition [1,2].
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flected by the image is also different, as shown in Figure 1a,b. In order to make full use of 
the complementarity and overcome the limitations of acquired images, image fusion can 
fully integrate a large amount of image information, obtain intuitive and concise image 
descriptions, and provide more a diversified information reference for target detection 
and recognition [1,2]. 
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Figure 1. Multi-focus source image: (a) right-focused image; (b) left-focused image. 
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Figure 1. Multi-focus source image: (a) right-focused image; (b) left-focused image.
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The initial image fusion was mainly applied in the fields of military security and
Earth remote sensing. For example, the fusion of infrared and visible images can improve
the recognition rate of targets. In addition, the employed intuitive algebraic methods
are relatively simple, and have the characteristics of simple structure, fast calculation
speed, and high execution efficiency. However, due to the inability to extract information
in the frequency domain, it is easy to cause image degradation such as distortion and
blocking effects [3]. As a result of the proposal and continuous improvement of the wavelet
transform, image fusion methods based on multi-scale transform (MST) have been favored
by many scholars [4,5], which achieve image fusion by converting source images from
the spatial domain to the frequency domain for processing. However, because a fixed
orthogonal basis function is used to transform the image, it is difficult to completely
and effectively represent the rich features contained in the image. As a special kind of
image transformation, sparse representation abandons the fixed orthogonal bases, and
uses a redundant dictionary to realize the transformation of image information through
approximately linear representations; however, the accompanying redundant dictionary
training and sparse coding require a large number of calculations and consume more time,
and it is difficult to ensure the timeliness of the method [6].

In the traditional image fusion methods, it is necessary to manually design and
adjust the activity level measurement method and the fusion rule, of which the realization
process is relatively complicated and the size of the calculation is large. As a result of
the rapid development of machine learning, especially deep learning, the convolutional
neural network (CNN) has also achieved good results in recent years. The image fusion
methods based on deep learning can automatically extract the features of the source image
by constructing CNN models of different depths; then, under the constraint of the loss
function, the ideal fused image is finally output after multiple training and optimization.
Once the network structure model is built, the entire fusion process does not require human
involvement, and the network can automatically extract image features and directly output
the fusion results. Thus, it is widely used in various image fusion approaches [7,8].

Liu first proposed the use of convolutional neural networks in image fusion tasks,
using image blocks with different degrees of blur as the input images of the training
network, and a CNN to extract the feature activity level and design fusion rules, which
can be regarded as classification tasks; this avoided the need to manually design complex
fusion strategies [7]. Prabhakar proposed the use of a deep unsupervised fusion model for
multi-exposure image fusion, and achieved good performance in the fusion result by the
unreferenced image metric, that is, structural similarity as the loss function, and the twin
network structure as the feature extraction network [9]. Tang proposed a pixel convolutional
neural network where the training data was generated by adding a defocus mask to the
images, and the proposed method reduced the time complexity of the fusion task and
further improved the fusion performance by dividing the pixels in source images into
three categories: focus, defocus, and unknown [10]. Although the aforementioned methods
have achieved good fusion effects, they still have some shortcomings. For example, some
convolutional neural network methods do not make full use of the features of the middle
layer of the network, and the effectiveness of the training results cannot be guaranteed
when the amount of training data is small. In order to make full use of the features of
the middle layer, Li proposed the use of the pre-trained VGG19 model as a tool for high-
level feature extraction and achieved a better fusion effect [11]; however, there were many
parameters and a large amount of calculation in the pre-trained model.

Following the proposal of the generative adversarial network (GAN) [12], it has been
widely used in computer vision fields such as image generation and super-resolution
reconstruction. Ma first proposed infrared and visible image fusion based on the generative
adversarial network, where the images superimposed by the channels were input into the
generator and the fused image obtained by the generator and the visible image were input
into the discriminator. This method can ensure the fused image obtains more details, and
achieved good results in the fusion of infrared and visible images by alternately cooperating
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and updating the parameters of the generator and the discriminator [13]. However, the
network structure is relatively simple, and the fusion effect is greatly reduced when the type
of source image changes, especially when the source images are multi-focus images with the
same modality. Guo proposed a more complex conditional generative adversarial network
for multi-focus image fusion; this model obtained the final fused image by post-processing
the source images and the focus point confidence map generated by the generator [14].

The image fusion method based on GAN can further solve the problems of insufficient
clarity of the fused image and weak correlation with the source images. Then, the depth of
the network is usually increased to achieve a better extraction of high-level details. How-
ever, the deepening of the network depth does not always result in the improvement in
network performance; on the contrary, a network that is too deep will have problems, such
as gradient disappearance and explosion, which result in slower convergence and lower
accuracy. Therefore, before processing the images by GAN, multi-scale decomposition is
employed to obtain sub-images with more detailed information in different frequencies,
and network training is then performed on these sub-images to alleviate the contradiction
between network depth and feature extraction. The results of subjective evaluation and
objective metrics of fused images in the compared experiments strongly verify the effec-
tiveness of the proposed method. By comparing the images fused by ECNN and MsCNN,
the increased values of image feature-based metrics (QG and QP) demonstrate that the
introduction of multi-scale decomposition improves the ability of the network to extract
image features. The contributions of this paper can be summarized as follows:

(1) As the depth of the network increases, the extracted image features are more
advanced, and the obtained image processing results are better. However, the increase
in network depth does not always produce ideal processing results: when the network
level reaches a certain level, the network performance not only does not improve, but
may degenerate, and the computational complexity and the number of parameters will
also greatly increase. The proposed method in this paper improves the ability of image
feature extraction by multi-scale decomposition without increasing the network depth at
the expense of network performance.

(2) Most image fusion methods based on neural networks are only applied to a part
of the image fusion process, such as feature extraction, and the extracted features still
need to manually measure the activity level and design fusion rules. Using a GAN with
a different depth of network structure, the proposed method not only avoids manual
operation, reduces complexity, and improves the universality of the method, but also
makes full use of the information in different sub-images with rich features.

(3) For image fusion, “standard, well-fused” images are needed to be solved and do
not exist in the real sense. Furthermore, due to the limitations of image acquisition and
registration technology, it is very challenging to collect ideal training samples. A synthetic
multi-focus image dataset is constructed in this paper by adding random blur kernels to
different objects in the images of the image segmentation dataset, which overcomes the
difficulties of the small number of training samples, poor registration accuracy of source
images, and the lack of “standard, well-fused” reference images.

The remainder of this paper is arranged as follows: the related work is introduced in
Section 2, including some related image fusion methods in Section 2.1 and the description
of image fusion based on the GAN. The flowchart and more details about the proposed
method are presented in Section 3, and Section 4 compares the experimental results and
presents the analysis. Finally, the conclusion is presented in Section 5.

2. Related Work

A description of related work is presented in this section, including the introduction
of the existing image fusion methods, the basic theory of the GAN, and its application in
image fusion.
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2.1. Image Fusion Methods

In general, image fusion can be divided into pixel-level, feature-level, and decision-
level fusion [15], where pixel-level fusion is the basis for the other two approaches. In
addition, there are three kinds of image fusion at the pixel level: image fusion based on the
spatial domain, image fusion based on the transform domain, and image fusion based on
deep learning.

Early image fusion was mostly based on the spatial domain, in which pixels were
directly fused using fusion rules [16]. Due to the spatial domain processing of source
images, less information is lost in image fusion. Low computational complexity, low
computer performance requirements, and good real-time performance have also led to this
kind of method being favored. Typical representatives of this approach are methods based
on the weighted average and methods based on the maximization of the absolute value.
The former method is very sensitive to the large difference in image pixels, whereas the
images fused using the latter method have a strong sense of splicing and an incomplete
structure. Furthermore, they are highly sensitive to noise and misregistration.

As a result of the development and wide application of image transformation, the
methods based on the transform domain have good time-frequency characteristics, and can
avoid problems in image fusion, such as the block effect and spectral distortion. There are
three steps in the classical fusion framework of methods based on the transform domain: the
choice of proper image transformation, the design of perfect fusion rules, and performing
corresponding inverse transformation. For example, Wang proposed the multi-modal
medical image fusion by Laplacian pyramid and adaptive sparse representation, where
the LP decomposition was used to split medical images into four images of different sizes
and adaptive sparse representation was performed to fuse the decomposed four layers;
finally, the fused image was obtained by the inverse Laplace pyramid transform [17].
Chen proposed a target-enhanced multiscale transform (MST) decomposition model for
infrared and visible image fusion to simultaneously enhance the thermal target in infrared
images and preserve the texture details in visible images, where the decomposed infrared
low-frequency information was used to determine the fusion weight of low-frequency
bands and highlight the target, and a regularization parameter was introduced to dominate
the proportion of the infrared features in a gentle manner [18]. As a result, designing an
appropriate fusion rule for coefficients is a challenging prerequisite for good fusion results.

Compared with the aforementioned traditional image fusion methods, the methods
based on convolutional neural networks have more convolution kernels that can be used
to extract useful feature information (also a salient feature) of image depth, and can
adaptively learn convolution parameters and complete parameter optimization by end-
to-end training. For multi-focus image fusion, the existing deep fusion methods divide
source images into small patches and apply a classifier to judge whether the patch is in
focus. In contrast, Li proposed a novel deep network named deep regression pair learning
(DRPL), which directly converts the whole image into a binary mask without any patch
operation, subsequently tackling the difficulty of the blur level estimation around the
focused/defocused boundary [19]. Based on this, the subsequent image fusion is mostly
based on an end-to-end network, thus avoiding the cumbersome intermediate processing
of the output.

2.2. Image Fusion Method Based on GAN

The generative adversarial network has been a popular research topic in recent years,
and has achieved the best performance in tasks of image generation [20–23], such as image
super-resolution reconstruction, image restoration, and style transfer. Drawing lessons from
the “mini-max two-player game” in game theory, the GAN is composed of two competing
neural networks: the discriminant network and the generative network. Among these, the
generating network tries to generate data close to the real data, while the discriminating
network tries to distinguish between the real data and the data generated by the generating
network. During the confrontation between the two networks, the generating network uses
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the discriminant network as a loss function and updates its parameters to generate more
real-looking data; in contrast, the discriminant network updates its parameters to better
identify fake data from real data. This model can be modeled as (1).

min
G

max
D

V(D, G) = Ex∼Pdata(x)[log D(x)] + Ez∼Pz(z)[log(1 − D(G(z)))]. (1)

where Pdata denotes the true data distribution, Pz(z) denotes the prior probability of training
samples or random noise, G denotes the generative network, and D denotes the discriminant
network. The output of the discriminant network is the probability value of the input close
to the real data, and the value range is [0, 1]. Furthermore, the optimization functions of the
generating network and the discriminant network are shown in (2) and (3), respectively.

min
G

V(D, G) = Ez∼Pz(z)[log(1 − D(G(z)))]. (2)

max
D

V(D, G) = Ex∼Pdata(x)[log D(x)] + Ez∼Pz(z)[log(1 − D(G(z)))]. (3)

However, due to the complexity of generating adversarial ideas and the difficulty in
image training, its application in image fusion has just begun. Among these applications,
the idea of generating adversarial training is to improve the quality of the fused image
based on the generative and adversarial game strategies. If the quality of the generated
image is poor, the loss of the generator is large, and the generator will be improved to
generate higher quality images after calculating and feeding the loss back to it; otherwise,
the loss of the discriminator is large, and its discrimination ability will be improved after
the loss is fed back.

The framework of image fusion based on a GAN is shown in Figure 2, including the
training and testing parts. The training part requires an adversarial game between the
generator and the discriminator, whereas the testing part only needs the participation of
the generator. In Figure 2, the number of images to be fused is M.
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3. The Proposed Method

An effective and universal image fusion method based on a multi-scale generative
adversarial network is proposed in this paper, which abandons the manual measurement
of the activity level and the design of fusion rules in traditional image fusion methods,
as shown in Figure 3. For the multi-scale image decomposition, the adoption of different
filters and decomposition levels for an image can extract different features of the image
and obtain sub-images of different numbers and sizes. In Figure 3, based on wavelet
decomposition, the two source images are first decomposed into two low-frequency sub-
images and multiple high-frequency sub-images. The low-frequency sub-images retain
most of the content information of the image, while different high-frequency sub-images
retain different levels of noise and detailed information. Taking into account the different
richness of image details under different frequencies, different depth networks are designed
to integrate these sub-images. Finally, based on the fusion results at various scales, the final
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fused image can be reconstructed by conducting the inverse wavelet transform. The steps
of the proposed multi-focus image fusion method can be summarized as follows:
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Step 1: Perform multi-scale decomposition on the source images, and transform them
from the spatial domain to different frequency domains to obtain multi-scale sub-images;

Step 2: Considering that the richness of the detailed information in the sub-images at
different frequencies is different, GANs with different depth network structures are used to
fuse them; the network structure of the GAN is shown in Figure 4.

Step 3: Obtain the fused image by multi-scale reconstruction.
Here, for the convenience of display, the default number of source images is 2, and the

decomposition scale is N.

3.1. Multi-Scale Generative Adversarial Network

For the proposed multi-scale GAN, a generator and a discriminator are designed for
the fusion of the source images at each scale, as shown in Figure 4. The generator consists
of two encoder modules: one feature fusion module, where Concat(f1, f2) means the fusion
of Feature 1 with the blue color in Figure 4 and Feature 2 with the green color in Figure 4;
and a decoder module, where ConvT is the abbreviation of ConvTranspose2d and “*2”
means that there are two parallel decoder branches with the same construction, as shown
in Table 1. Firstly, the sub-images of different source images are input to the encoder and
different features are obtained; then, the feature maps are superimposed and input into
the fusion network to obtain the fused feature map. After further processing of the fused
feature map through the decoder, the fused sub-image can finally be obtained. In addition,
it is also necessary to have a discriminator to assist in training for the generator, and the
discriminator is separately designed for each generator. The input of the discriminator is
an all-in-focus sub-image or a fused sub-image that is output by the decoder, and the main
purpose is to determine if the input sub-image is generated or true.
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In Figure 4, the encoder and feature fusion modules in the generator are constructed
in a multi-layer convolution, and the decoder is built in a manner that corresponds to the
multi-layer de-convolution corresponding to the generator. At the same time, in the encoder
and decoder, drawing on the idea of the U-Net structure, each layer of the two encoders
is connected with the corresponding layer of the decoder in a U-shaped jump connection,
which achieves the full integration of information and decodes higher-quality images. The
discriminator is directly established by the commonly used classification network, that is,
it is realized via multiple convolutional layers and a fully connected layer classifier.

In the proposed sub-image fusion method, different depth encoders and discriminators
for the sub-images at each decomposed scale are designed to achieve a more efficient fusion
effect. Specifically, the sub-images obtained by different decompositions of an image contain
diverse information. Therefore, the network of the same structure is difficult to be universally
used for sub-images in end-to-end training. If a network with the same structure is used to
encode and decode different sub-images, it will not only reduce efficiency, but also affect
the network performance. When the decomposition scale is small, the sub-image contains
more low-level information, such as texture, and deeper generators and discriminators need
to be designed to better extract the deep information of sub-images; whereas, when the
decomposition scale is large, generators and discriminators with shallow depth are needed
to reduce unnecessary repetitive feature extraction operations. Finally, all sub-networks are
combined into a multi-scale generative adversarial network to realize end-to-end training,
so that the fused image is directly output when the source images are input.

3.2. Loss Function

Balancing loss and parameter optimization between the generation and adversarial
networks is always difficult in GANs, and most GANs involve constant experimentation
parameter modification to achieve this balance. However, since the network of the proposed
MsGAN contains multiple generators and multiple confronters, in addition to the parameter
optimization between each pair of generators and discriminators, it also involves more
complex coordination among multiple generators to obtain better fused images. As a result,
this paper proposes to pre-train each generative adversarial network separately, and to then
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initialize the network with the pre-trained parameters. Finally, joint end-to-end training is
carried out to optimize the parameters of each sub-image in a targeted manner.

Table 1. The details of the generator and discriminator.

Layer Convolution Normalization Activation

G

Encoder

En_1
Conv(3,64,3,1,1) BatchNorm2d Leaky ReLU

Conv(64,64,3,1,1) BatchNorm2d Leaky ReLU

En_2
Conv(64,128,4,2,1 BatchNorm2d Leaky ReLU

Conv(128,128,3,1,1) BatchNorm2d Leaky ReLU

En_3
Conv(128,256,4,2,1) BatchNorm2d Leaky ReLU

Conv(256,256,3,1,1) BatchNorm2d Leaky ReLU

En_4
Conv(256,512,4,2,1) BatchNorm2d Leaky ReLU

Conv(512,512,3,1,1) BatchNorm2d Leaky ReLU

En_5
Conv(512,512,4,2,1) BatchNorm2d Leaky ReLU

Conv(512,512,3,1,1) BatchNorm2d Leaky ReLU

Feature Fusion FF Concat(f1, f2) - -

Decoder

De_1
ConvT (512,512,4,2,1) - Leaky ReLU

Conv(512, 512,3,1,1)*2 BatchNorm2d Leaky ReLU

De_2
ConvT (512,256,4,2,1) - Leaky ReLU

Conv(256,256,3,1,1)*2 BatchNorm2d Leaky ReLU

De_3
ConvT (256,128,4,2,1) - Leaky ReLU

Conv(128,128,3,1,1)*2 BatchNorm2d Leaky ReLU

De_4
ConvT(128,64,4,2,1) - Leaky ReLU

Conv(64,64,3,1,1)*2 BatchNorm2d Leaky ReLU

De_5 Conv(64,3,3,1,1) - Tanh

D

D_1
Conv(3,64,3,1,1) BatchNorm2d Leaky ReLU

Conv(64,64,3,1,1) BatchNorm2d Leaky ReLU

D_2
Conv(64,128,4,2,1) BatchNorm2d Leaky ReLU

Conv(128,128,3,1,1) BatchNorm2d Leaky ReLU

D_3
Conv(128,256,4,2,1) BatchNorm2d Leaky ReLU

Conv(256,256,3,1,1) BatchNorm2d Leaky ReLU

D_4
Conv(256,512,4,2,1) BatchNorm2d Leaky ReLU

Conv(512,512,3,1,1) BatchNorm2d Leaky ReLU

D_5
Conv(512,512,4,2,1) BatchNorm2d Leaky ReLU

Conv(512,512,3,1,1) BatchNorm2d Leaky ReLU

4. Experimental Results and Analysis

In order to verify the superiority of the proposed method, some efficient methods on
synthetic and real multi-focus images were employed to conduct extensive comparison
experiments, including a multi focus image fusion using high level DWT components
and guided filter (DWT) [24], an image fusion algorithm based on spatial frequency-
motivated pulse coupled neural networks in the non-subsampled contourlet transform
domain (NSCT) [25], a general framework for image fusion based on multi-scale transform
and sparse representation (MST-SR) [26], an ensemble of CNN for multi-focus image
fusion (ECNN) [27], and a general image fusion framework based on a convolutional
neural network (IFCNN) [28]. The parameters in the compared fusion methods were set as
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recommend by the corresponding authors. For the proposed method, image fusion can also
be realized without the discriminative network; in this case, the proposed method without
the discriminative network (MsCNN) is equal to an image fusion method based on a multi-
scale convolutional neural network. By comparing MsCNN and the proposed method, the
necessity of the discriminative network can be proven. In addition, by comparing ECNN
and MsCNN, the superiority of the multi-scale decomposition to extract the image features
in the proposed method can be proven.

There are two ways to evaluate the fused images by the aforementioned methods:
subjective evaluation and objective evaluation. The subjective evaluation is realized by
measuring the observer’s visual experience of the fused image, which is greatly influenced
by the subjective factors of the observer. In contrast, objective evaluation is obtained by
calculating some metrics of fused images, and is more convincing. Therefore, six normalized
fusion metrics in [29] were employed to evaluate the fused images more objectively, namely,
normalized mutual information (QMI), a fusion metric based on Tsallis entropy (QTE),
nonlinear correlation information entropy (QNCIE), gradient-based fusion performance
(QG), an image fusion metric based on phase congruency (QP), and the Chen–Blum metric
(QCB). Mutual information (MI) in image fusion can measure the mutual dependence
of source images and the fused image, and Hossny et al. gave the definition of QMI to
evaluate the information in fused images. Similarly, Tsallis entropy is another divergence
measure of the degree between images, and is used to calculate QTE. QNCIE is a measure
of the nonlinear correlation information entropy. Thus, QMI , QTE, and QNCIE belong to
information theory-based metrics. Because the commonly used MI-based metric is sensitive
to impulsive noise and its value changes obviously when there is additive Gaussian noise
in an image, QTE and QNCIE are also employed to compensate for the shortcomings of QMI
and to assess the information entropy of fused images more comprehensively. As another
type of assessment metric, QG and QP are image feature-based metrics and measure the
features transferred from source images to the fused image. In contrast, QG measures the
amount of transferred edge information by the Sobel edge operator, and QP provides an
absolute measure of the transferred image features by the phase congruency. Finally, QCB
is a type of human perception-inspired fusion metric, and there are five steps [30]: extract
edge information, partition images into local regions, calculate local regions’ saliency,
measure similarity in the local region, and measure global quality.

4.1. Implementation Details

The proposed network was trained in a computer whose CPU is an Intel Core i7-6850K
with frequency 3.6 GHz. The GPU processor is a NVIDIA RTX 2080Ti with 11 G memory
and the operating system is the Ubuntu16.04.

In the training process, all image pairs are resized to 256× 256 pixels, randomly flipped
horizontally or vertically, and rotated 90, 180, or 270 degrees randomly during training.
The network is trained with a learning rate of 1e−4 and a batch size of 128 for 1000 epochs.
To stabilize the training, the learning rate was decayed by 1e−1 for every 500 epochs.

4.2. Synthetic Multi-Focus Image Dataset

Limited by the camera depth of field and registration technology, for multi-focus
image fusion, the “standard, well-fused” all-in-focus image needs to be solved and does
not exist in the true sense. As a result, there are few publicly available multi-focus image
datasets, and it is very challenging to obtain ideal training samples. Considering that
the out-of-focus area of a multi-focus image is equivalent to the corresponding focus
region multiplied by the blur kernel, we add Gaussian blur kernels with different standard
deviation to images in the segmentation dataset, and obtain diverse synthetic multi-focus
images, shown in Figure 5. Specially, when there are multiple objects in one image, different
blur kernels are added to different areas to simulate the imaging effect of the camera on
objects with different depths of field. Although there are tens of thousands of images in
the image segmentation dataset, some images with an insignificant difference in the depth
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of field and a large difference in the object and background scale are removed to better
construct a dataset that more closely resembles the real multi-focus images, resulting in
about 1200 pairs of source images. Among these, 40% of the pairs are used as the training
set, 40% of the pairs are used as the test set, and 20% are used as the validation set. Although
the number of images in the synthetic dataset is not large and clipping images into the
blocks were not applied to extend the dataset, good fusion results by the proposed method
are realized due to the excellent performance of MsGAN.
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4.3. Compared Experiments

In order to verify the generality and practicability of the proposed method in this
paper, the compared experiments conducted on the Lytro dataset are presented in this
sub-section. As shown in Figure 6, there are twenty-four sets of real multi-focus images,
including four sets of three source images. These images with rich features are left and right
focused, and foreground and background focused, making the dataset persuasive enough
for multi-focus image fusion. To better visualize the fused images of the Lytro dataset,
some typical fused images using different fusion methods are shown in Figures 7–9, and
some areas are enlarged in green and blue boxes to show the visual contrast effect.
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Figure 6. The multi-focus images in the Lytro dataset.

It can be seen that the hand holding the camera in Figure 7a is in focus, whereas
the globe and other backgrounds in the mall are out of focus. The scenarios in Figure 7b
are completely opposite to those in Figure 7a. When we want to detect the people in the
obtained photo showing the hand, some detections will be missed, such as the persons
in the enlarged green box of Figure 7b; and the same person can be clearly detected in
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Figure 7a. Furthermore, the persons in the blue box of Figure 7a, especially the person in
the back, are very blurred. By general observation, all the mentioned methods achieved
image fusion results and can improve the accuracy of object detection. However, careful
comparison of the fused images demonstrates that the fused image by the proposed method
has better visual effects and retains more image features.
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All the fused images in Figure 8 successfully restored the sunlight refracted shadows
on the roof in the blue box, which are lost in Figure 8a. However, by careful comparison,
the fused images in Figure 8c,d fail to recover the details in the enlarged green box where a
wire rope runs through a small hole. There are also obvious artifacts in the surroundings of
“Heart” in Figure 8g. As a summary, the proposed MsGAN performs better at reserving
the detailed features and can reconstruct a more natural and realistic fused image.

Figure 9 shows the source and fused images of “Zoo”. In the green box of Figure 9b,
the letters on the photo are blurry and out of focus, whereas they are clear in Figure 9a. In
addition, the white animal on the left cannot be identified when its texture is blurred, and
it could be mistaken for a dog or a lion. By image fusion, the recessed belly of the upper
leg is clearly shown in the enlarged blue boxes of the fused images. However, the fused
images in Figure 9c,e suffer from the loss of a little structure information. By comparing the
fused images in Figure 9, the similar conclusion can be drawn that the fused image using
the proposed method is improved and has a satisfactory visual effect, indicating that the
proposed method is better at image fusion.

After visually proving the efficiency and effectiveness of the proposed method, the
objective evaluation metrics mentioned above were employed to evaluate the proposed
method objectively; the average metric values of the fused images of the Lytro dataset are
shown in Table 2. For example, the value “0.8860” in the second column and third row is
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calculated by averaging the values of QMI of the images fused by DWT. In Table 2, it can
be seen that all the values of MsCNN are better than those of ECNN, indicating that the
adoption of the multi-scale decomposition is helpful for improving image fusion results. It
is difficult to judge the fusion ability of MST-SR and MsCNN by Table 2 alone; however,
the values of the proposed method are better than those of MsCNN, strongly indicating the
importance of the discriminator network in the proposed method. From Table 2, we can see
that the values of image feature-based metrics of the image fused by the proposed method
are second and worse than those of MST-SR. However, other values of the image fused by
the proposed method are better; the image fused by the proposed method achieves a better
value of QCB, which is consistent with the better visual effect of the fused image. By these
metric values shown in Table 2, it can be convincingly and objectively demonstrated that
the proposed method has better performance in multi-focus image fusion.
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Table 2. The average metric values of the fused images of Lytro dataset.

Information Theory Based Metrics Image Feature Based Metrics Human Perception
Inspired Fusion

QMI QTE QNCIE QG QP QCB

DWT [24] 0.8860 0.3747 0.8274 0.6483 0.7836 0.7073
NSCT [25] 0.9521 0.3782 0.8317 0.6310 0.7689 0.7238

MST-SR [26] 0.9594 0.3852 0.8309 0.6905 0.8247 0.7515
ECNN [27] 0.8877 0.3796 0.8272 0.6396 0.7842 0.7129
IFCNN [28] 0.8580 0.3759 0.8258 0.6195 0.7665 0.6868

MsCNN 0.9602 0.3829 0.8309 0.6503 0.7877 0.7504
Proposed 0.9945 0.3861 0.8329 0.6727 0.8028 0.7654

5. Conclusions

By combing multi-scale decomposition and a generative adversarial network, a new
method is proposed in this paper to realize multi-focus image fusion. The source images
are decomposed into different sub-images with different feature scales, and then the
convolutional neural networks with the same structure and different depths are used to
extract the image features complementary to the scale features. Finally, a fused all-in-
focus image can be obtained by the competition between the generative network and the
discriminant network. The extensive experiments demonstrated that the proposed method
achieves better results for multi-focus image fusion.
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