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Abstract: The efficient coding hypothesis states that neural response should maximize its information
about the external input. Theoretical studies focus on optimal response in single neuron and popu-
lation code in networks with weak pairwise interactions. However, more biological settings with
asymmetric connectivity and the encoding for dynamical stimuli have not been well-characterized.
Here, we study the collective response in a kinetic Ising model that encodes the dynamic input. We
apply gradient-based method and mean-field approximation to reconstruct networks given the neural
code that encodes dynamic input patterns. We measure network asymmetry, decoding performance,
and entropy production from networks that generate optimal population code. We analyze how
stimulus correlation, time scale, and reliability of the network affect optimal encoding networks.
Specifically, we find network dynamics altered by statistics of the dynamic input, identify stimulus
encoding strategies, and show optimal effective temperature in the asymmetric networks. We further
discuss how this approach connects to the Bayesian framework and continuous recurrent neural
networks. Together, these results bridge concepts of nonequilibrium physics with the analyses of
dynamics and coding in networks.

Keywords: efficient coding; population coding; nonequilibrium; kinetic ising model

1. Introduction

A fundamental issue in neuroscience is neural coding, which characterizes how neural
activity represents external input. Efficient coding is the classical hypothesis stating that
neural activity should maximize its information about the stimuli it receives [1,2]. Maximiza-
tion of mutual information between sensory stimuli and spiking patterns has been tested
experimentally and studied in neural models with respect to certain constraints [1,3–5].
However, prior literature mostly focuses on single neuron coding, non-interacting popu-
lation, or with static stimuli. It is less clear how population coding in a network should
be optimized for dynamic input [6–8]. Here, we study the optimal population code for
dynamic input with a simplified neural network model, the kinetic Ising model, and ana-
lyze how dynamics and structure of these optimal networks are affected by the encoded
signal. With this simple model and least assumption for the biophysical mechanisms,
we aim to explore the relation between network encoding of dynamical signals and its
nonequilibrium properties.

There are two main frameworks developed in the past two decades for describing
neural population activities: the generalized linear model (GLM) [2,9] and maximum-
entropy method (MaxEnt) [10–12]. GLM provides a statistical framework to capture how
neural responses are affected by external stimuli, its own spiking history, and contribution
from other coupled neurons. This method successfully captures temporal dependency to
dynamic stimuli as well as the correlation structure across neural population. Moreover,
GLM can be extended for stimulus decoding in a Bayesian framework. One can estimate the
external input given the neural response and further approximate the posterior distribution
given neural response to quantify information transfer. A potential downside of this model
is the instability of certain dynamics or in regimes with strong interactions. Recent studies
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focus on methods to mitigate these problems and also extend the framework to dimension
reduction and inferring latent dynamic [13].

MaxEnt method was motivated by statistical physics and aims to capture the collective
response in the neural population with least model assumptions [10]. The model uses
average activity of each neuron and the pairwise correlation as constraints and learns the
parameter that maximizes entropy at thermal equilibrium. MaxEnt successfully predicts
higher-order interactions, reveals the energy landscape of neural code words, and further
suggests error-robust population code organization with real neural recordings [14]. This
method relies on the assumption of an equilibrium distribution of activity pattern and
ignores the temporal structure. Follow-up studies extend the method to capture MaxEnt of
spatiotemporal activity “blocks” through time or conditioned on stimulus [11,15].

There remain complementary gaps between these methods of studying population
coding. The link between GLM and more general forms of recurrent neural network models
is not obvious [16–19]. For MaxEnt, the imposed assumption for symmetric function
connectivity and equilibrium neural dynamics are often not suitable for more realistic
biological networks [20–22]. We aim to integrate these frameworks by using Bernoulli
GLM as the stimulus encoder, constructing a network with an asymmetric Ising model that
produces such spiking patterns, then further decoding the external input from the network
activity. This framework incorporates network interaction similar to the MaxEnt method
and stimulus encoding in the GLM framework [2,13,23].

There is an increased interest in studying nonequilibrium network dynamics [21,22,24,25].
The study of network dynamics and inference methods under nonequilibrium settings
is crucial for biological networks [26,27]. More specifically, kinetic Ising model is the
generalization of Ising models out of equilibrium. Rather than modeling the equilibrium
distribution in Ising models, the kinetic Ising model can describe state transition probability
with asynchronous updates and asymmetric connectivity. In terms of statistical models,
kinetic Ising model is similar to GLM as it captures the conditional probability given
history spikes, but the exact mapping is not obvious. Inference for this model ranges from
Boltzmann learning, belief-propagation, to mean field approximation [27–29]. Numerical
methods show that one can successfully reconstruct parameters given non-stationary spin
dynamics from the kinetic process. We utilize these methods to study kinetic Ising models
with target spike trains.

To study the neural encoding of dynamical signals in an interacting network, we focus
on a kinetic Ising model driven by dynamic input. We compute the optimal population
code for such dynamic input and train the network model to generate the target spikes for
decoding [30,31]. The key finding is that the optimal network structure depends on statistics
of the dynamic input and the reliability of neural response. This suggests that a network
optimally encoding dynamical signals should adapt to or learn from the signal statistics.
The results provide testable predictions relating structural measurements to the encoded
stimulus, as well as the design principle for dynamical population code in a network.
Finally, we draw links between the nonequilibrium thermodynamics of neural networks,
different neural coding strategies, and generalized forms of recurrent network dynamics.

2. Model and Analysis

We review the neural encoding and stimulus decoding framework. We then present
the nonequilibrium network model, which is known as the kinetic Ising model, and
formulate the corresponding inference method. The idea is to train a kinetic Ising model
to produce output that optimally reconstructs the external input. We analyze decoding
performance and network structures from these optimal models under different dynamic
input or parameter settings.
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2.1. Neural Encoding and Decoding Framework

We assume that the external input can be linearly reconstructed from neural activity,
namely a linear decoding framework [16,17]. The schematic and example traces are shown
in Figure 1. The estimated input follows:

x̂(t) = ΦTr(t) (1)

where Φ projects the response vector r(t) ∈ RN at time t to construct the stimulus vector
noted as x̂(t) ∈ Rd. The matrix Φ acts as a decoder that projects signal from the network
dimension to the stimulus dimension. Here we construct Φ ∈ RN×d with random Gaussian
elements fromN (0, 1). The probability distribution of this reconstruction x̂ is approximated
with Gaussian:

P(x(t)|r(t)) ∼ N (ΦTr(t), Σ) (2)

where Σ is the variance around the mean reconstruction. For convenience in deriving the
framework of generating neural activity given target patterns, we drop the time notation t
temporarily and focus on variables at a given time point. The stimulus decoding probability
in Equation (2) can be thought of as a Gaussian approximation of the posterior distribution
in a Bayesian framework: P(x|r) ∝ P(r|x)P(x), where P(r|x) is the neural encoding model
that produces activity pattern r given external input x and P(x) is the prior for input [9].
More specifically, here the posterior mean is ΦTr and the Hessian of log posterior is Σ−1.
We construct the generative process for neural response from an optimal encoding model:
P(r|x) ∝ P(x|r)P(r). This is a form inspired by the “neural engine” framework [23] that
has an Ising model prior with binary activity. One tractable prior on rate activity would
be a multivariate Gaussian distribution P(r) = 1

Z exp(rTΩr), where Z is the normalization
constant and Ω ∈ RN×N is the pairwise interaction matrix [23,32]. The posterior for
generating neural response is now:

P(r|x) ∝ exp(
1
2

rTΩr + xTΦΣ−1r− 1
2

xTΦTΣ−1Φx) (3)

where first term corresponds to the prior on activity, the second term reflects an effective
correlation between input and activity, and the third term is the covariance of input signal
projected to the network. Here, our aim is to connect the linear decoding model with a
rate variable with the binary spiking activity we would use in the encoding network. The
general framework allows the exploration of different assumptions of the network activity
prior, with diagonal terms as bias and off-diagonal terms as pair-wise interactions of neural
activity in Ω matrix. For simplicity, here we use an empirical prior for activity r. This
can later be shown in the network encoding model Equation (7) with the an uncorrelated
initial network structure before learning. Given a random network connectivity, the neural
activity is close to uncorrelated, corresponding to an identity matrix for Ω. By taking
the derivative of Equation (3) with respect to r, we find the optimal posterior response
mode r = −Σ−1ΦTx. We use this mode of spiking rate response, now denoted as λ, to
generate spike trains by passing it through Bernoulli process with logistic nonlinearity
known in canonical neural encoding models [9]. Applying this spike generation process
through time:

si(t) ∼ Bernoulli(
1

1 + exp(λidt)
) (4)

where si(t) is the binary spikes of neuron i in time bin dt, λi(t) is the encoding spiking rate
derived from Equation (3) to generate discrete spikes. When time step dt is sufficiently
small, the result is close to spike trains from Poisson process.
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Figure 1. Setting for encoding dynamic stimuli with a network based on kinetic Ising model. The
external stimuli X(t) start from the left hand side and the example time series shown above. The
stimulus with dimension d = 3 is projected to the network N = 10 with connection Jij through
Φ. Activity of the neural population is shown above the network schematic and note that arrows
between the network nodes indicate directed connections. The output X̂(t) is reconstructed through
projection ΦT on the right side and the example time series is shown above. The goal of this setting is
to find optimal network parameters Jij to reconstruct stimuli X(t).

Putting it all together according to Markov models, the population activity decodes
time-dependent stimuli P(xt|st) and the transition probability of spiking patterns P(st|st−1)
would be further formulated below (this is a hidden Markov model [33] if the network
activity s is unobserved). The goal is to find the optimal parameters through maximum
likelihood estimation of this Markov chain. Given the goal to optimally encoding and
decode stimulus x, we write down the data likelihood as L(θ) = ∏T

t P(xt, st|θ). The
inference procedure is updating parameter θ with maximizing the log-likelihood:

θ∗ = argmaxθΣT
t=1 log P(xt|st)P(st|st−1, θ) (5)

where the optimal stimulus decoding term P(xt|st) is fixed in our framework and is
independent to the network parameters θ of interest, governed by stimulus decoding in
Equation (2) and spike generation in Equation (4). The probability P(st|st−1, θ) would be
modeled with a nonequilibrium network discussed in the next section.

Another view of this decoding framework connects to the variational method for
information optimization [26]:

I(x, s) = H(x)− 〈H(x|s)〉 ≥ H(x)− 〈− log P(x|s)〉P(x,s) (6)

where H(x) is the entropy of the random variable x. The entropy of stimulus x is not
subject to optimization, so we focus on the entropy of the decoding probability. The lower
bound is on the right side of the inequality and the second term is substituted with the
expected approximated log posterior. This expectation is computed for the joint probability.
In other words, our attempt to search for the optimal decoding structure is equivalent to
information optimization through maximizing the lower bound.

2.2. Nonequilibrium Network and Inference Methods

We use the kinetic Ising model to simulate nonequilibrium neural network
dynamics [25,27,28]. The neural activities are vectors s ∈ RN with binary spins
si = {+1,−1} and the discrete time update rule follows:

P(s(t + 1)|s(t)) = ΠN
i

exp(βsi(t + 1)Hi(t))
2 cosh(βHi(t))

(7)
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where β is the inverse temperature and the term Hi(t) follows:

Hi(t) = ΣkΦikxk(t) + Σj Jijsj(t) (8)

where Φ is the same projection matrix or kernel for stimulus x and J ∈ RN×N is the
connectivity within the neural network. Note that this potential term Hi(t) depends on
stimulus x and here Φ acts as an encoder that projects the input signal to the network space.
Using another random matrix with the same dimension does not change our results. We use
the transpose of the decoder matrix in Equation (1) to formulate the setup that is similar to
an autoencoder shown in Figure 1. If Φ is an orthonormal matrix, the result would be trivial
when there is no noise, and the optimal network J would be an identity matrix. However,
this is not the case in our setting with finite temperature in the nonequilibrium network. In
contrast to the typical Ising model, note that there are no symmetry constraints on matrix J.
One can view the term H as an effective current subthreshold to the binary nonlinearity.

We generate spike trains for optimal linear decoding given the projection matrix Φ
and covariance matrix Σ. With the target activity pattern, we learn the network parameters
that generate such patterns under external stimuli. This is known as the network inference
problem [12]. We introduce the gradient descending method to minimize the negative log
probability of encoding model [34], which gives the learning rule:

δJij ∝ γβ(〈si(t + 1)sj(t)〉t − 〈tanh(βHi(t))sj(t)〉t) (9)

δHi ∝ γβ(〈si(t + 1)〉t − 〈tanh(βHi(t))〉t) (10)

where Equation (9) is the update process for connectivity J and Equation (10) is the update
for effective field H that contains the input stimuli x (Equation (8)) and γ is the learning
rate. We denote the reconstructed network structure as Ĵ. One can decode the stimuli
x given these parameters by solving Equation (8). Specifically, this learning algorithm
for asynchronous kinetic Ising model is derived from maximum likelihood of the spin
update probability, known as the “spin- and update-history-based” algorithm with an
objective function L = ΣiΣt[si(t + 1)Hi(t)− log(2 cosh Hi(t))] [34]. The form is similar to
spike-time dependent plasticity known in neural learning rules, as it takes the delayed
spike correlation into account. This is further explored in the discussion section.

Another method is the mean field approximation that is shown to be more efficient
than gradient methods [27,28,35]. The estimated connectivity ĴMF is computed through:

ĴMF = B(AC)−1 (11)

where Cij = 〈si(t)sj(t)〉t is the correlation matrix and Bij = 〈si(t + 1)sj(t)〉t is the time de-
layed correlation matrix. Matrix A is a diagonal matrix with Aij = aiδij with
ai = β(1−m2

i ) and mi = 〈si〉 is the mean activity. This is the naive mean field approxima-
tion that only keeps the first order term. Methods such as Thouless-Anderson-Palmer (TAP)
mean field approximation with second-order terms and Plefka expansion with higher-order
has been discussed in past literature [35–37].

2.3. Protocol of Network Simulation and Training

We generate dynamical stimuli with a linear stochastic equation:

dx
dt

= Mx + ξ (12)

where matrix M ∈ Rd×d governs the linear dynamics of vector x and ξ is the noise term
ξ ∼ N (0, Σx). The time series is used for encoding and decoding in the network. Another
paradigm is used to study computation for state-dependent dynamics:

dx
dt

= Mx + c + ξ (13)
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where c is another time series of input control signal to the dynamical system. The target is
to reconstruct variable x with nonlinear dynamics under switching control c.

The analysis procedure follows: (1) We generate stimulus with parameters {M, Σx}
controlling the stimulus statistics and {Φ, Σ} for the aimed decoding signal
(Equations (12) and (13)). (2) Given these variables, we generate time series of the stimuli
for decoding and target optimal spiking patterns (Equations (1) and (4)). (3) These spike
trains are then used for network inference to learn the optimal network parameterized
with {J, H} (Equations (9) and (10)). (4) Finally, we analyze the optimal network parameter
and population code (simulated with learned parameters using Equations (7) and (8)) with
measurements described in the next section (Equations (14)–(17)).

Unless otherwise mentioned, we fix the following parameters for network dynamics
and stimulus generation: N = 10 neurons, T = 10, 000 time steps, β = 0.5 inverse
temperature, d = 3 input dimension, Φ projection matrix generated from zero mean
Gaussian distribution, Σ is an identity matrix, and network J is initialized with the inverse
covariance of target activity s. For dynamical stimuli, Mii = 0.5 for the diagonal elements,
Σx = 0.1 noise intensity along the diagonal, and input dynamics normalized to be bounded
{−5, 5}. For inference procedure, we use 1000 iteration for the gradient descending method
with γ = 0.1 and 500 maximum iterations for convergence with the mean field methods.
We investigate effects of stimulus statistics and the network reliability β. Other parameters
such as simulation time and network size do not significantly change the results.

2.4. Analysis of the Optimal Population Coding

Given the network is trained to produce optimal neural code, we analyze the popu-
lation code s(t) and optimal network structure J∗ for stimulus decoding with three main
measurements: decoding performance D, network asymmetry η, and entropy produc-
tion EP. The decoding performance is measured by the correlation coefficient between
reconstructed stimuli and the true stimuli, and this is done across all stimulus dimensions
in x:

D =
Cov(x, x̂)√

Var(x)Var(x̂)
(14)

The degree of asymmetry of matrix J is computed by the ratio of matrix norm between
the symmetric (SY) and asymmetric (AS) components:

η =
‖AS‖
‖SY‖ =

‖0.5(J − JT)‖
‖0.5(J + JT)‖ (15)

Lastly, entropy production EP along the generated neural trajectories is computed
with a common form for irreversibility:

EP = log(
Pss(εi)T(εj|εi)

Pss(εj)T(εi|εj)
) (16)

where Pss is the steady-state measurement of probability observing neural state ε and
matrix T(x|y) is the transition probability from state y to x. This measurement reflects the
violation of detailed-balance when it is nonzero, quantifying how far away the system is
away from equilibrium [35,38]. In the setting of kinetic Ising model at steady-state, it is
shown that the steady-state entropy production can be calculated with [35]:

EP = Σ(Jij − Jji)Bij (17)

where Bij is the time delayed correlation matrix in Equation (11) defined for the mean
field method. This formula indicates that the entropy production reflects the asymmetry
of the kinetic Ising model. We explore how this value changes for different stimulus and
network constraints.
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3. Results
3.1. Model Setup and Network Inference

The target population spikes were generated through the optimal decoding framework
described in the previous section. The temporal and population correlation structure of the
target spikes are governed by stimulus statistics and we characterize the corresponding
network structure. Note that Bayesian decoding sets an upper bound for the performance
and an untrained random neural network is introduced as a null model for comparison.
We start by verifying the inference procedure, then applying the method to spiking patterns
that encode the dynamical stimuli in the next sections.

The inference method recovers network connectivity given spiking activity (Figure 2).
Specifically, the gradient-based method produces reasonable correspondence to ground
truth connectivity. We show that the log-likelihood converges after training for over
hundreds of repetitions (Figure 2a,b). The naive mean field approximation works within
a parameter range, but fails for input driven networks near inverse temperature β = 1
(Figure 2c). Inference procedure enables reconstruction of the input stimuli (Figure 2d). The
higher variability and bias in reconstruction under dynamic input can potentially be due to
the unidentifiable activity pattern produced when the network is driven by signal with an
effectively lower dimension. This makes the network parameter less constrained by activity,
so the network output can reconstruct the stimulus pattern X even when estimation of
network parameter Ĵ seems noisier. The correlation coefficient of input decoding is higher
for larger networks, but we still show a reasonable stimulus decoding performance with
N = 10 that outperforms model with random connectivity. As explored in the next sections,
the decoding performance and network structure depend on input dynamics.

Figure 2. Network inference for kinetic Ising model and stimulus decoding. (a) Maximizing log-
likelihood (LL) through gradient method. (b) The result for maximum likelihood method shows
agreement between inferred Ĵij and true Jij parameters. Estimation for network driven by input
(black) is more biased and scattered compared to network without input (grey). Diagonal blue
line shows an exact match. (c) The result of mean field ĴijMF approximation method. (d) Stimulus
decoding under the inferred optimal neural network parameter through maximum likelihood. Here
the network size is larger for visualization N = 50.

3.2. Effects of Dynamic Input

We alter the correlation of stimulus time series applied to neurons in the network
by tuning off-diagonal values of matrix M in the stochastic Equation (12). Here we focus
on a two dimensional (d = 2) stimulus x, so the correlation is σ = 〈x1x2〉t. The results
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show that the asymmetry of the network η increases when the stimulus correlation across
neurons increases (Figure 3a). In other words, when the external input has lower effective
dimension, the optimal network has larger asymmetry. Entropy production increases
with highly correlated stimulus (Figure 3b). On the other hand, decoding performance D
increases with higher stimulus correlation (Figure 3c). This trend of increased decoding
performance is similar to the increase in asymmetry of the network. Lastly, the relative
decoding performance compared to independent neural population D∗/Dind increases in
general as the stimulus correlation increases (Figure 3d).

Figure 3. Effects of stimulus correlation. (a) Asymmetry η as a function of stimulus correlation
σ = 〈xxT〉. (b) Entropy production (EP) as a function of σ. (c) Stimulus decoding D as a function of σ.
(d) Relative decoding performance D∗/Dind as a function of σ.

We alter the temporal correlation of dynamic input by tuning the diagonal value
of matrix M in the stochastic Equation (12). This is effectively the inverse time scale of
autocorrelation 〈xi(t′)xi(t)〉 ∝ exp(−|t

′−t|
α ). The result shows that the asymmetry η of

optimal network increases along with the temporal correlation scale α (Figure 4a). The
entropy production is maximized at an intermediate time scale (Figure 4b). The decoding
performance D increases with a similar trend as η (Figure 4c). The relative performance
versus an independent population D∗/Dind also increases when the stimulus temporal
correlation is longer (Figure 4d). Together, we show that optimal network connectivity
relates to the statistical structure of dynamical input, increasing asymmetry and entropy
production when stimulus is correlated, and the decoding performance always outperforms
independent neural populations.
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Figure 4. Effects of temporal correlation of dynamical stimuli. (a) Asymmetry η as a function of
temporal correlation scale α. (b) Entropy production (EP) as a function of α. (c) Stimulus decoding D
as a function of α. (d) Relative decoding performance D∗/Dind as a function of α.

3.3. Optimal Population Coding and Network Properties

We alter reliability of the network by tuning the inverse temperature β in the kinetic
Ising model (Figure 5). In other words, β controls the reliability of neural response in the
network. The result shows that asymmetry η of optimal network is not monotonically
related to the response reliability (Figure 5a). Asymmetry peaks near the critical tempera-
ture of kinetic Ising models. Entropy production increases and saturates as the reliability
increases (Figure 5b). The decoding performance D follows a similar trend (Figure 5c).
Lastly, decoding compared to independent population D∗/Dind does not show a specific
trend against network reliability, but note that the values are all larger than one (Figure 5d).

We further analyze how the reliability of optimal network relates to the structure of
population code (Figure 6). The result recovers previous findings, showing that the network
effectively decorrelates stimulus at high reliability and forms redundant population code at
lower reliability [30]. This is shown by plotting the covariance of input projection Φx against
the network connectivity Figure 6. The relation qualitatively holds under the framework
with nonequilibrium networks. Together, this shows that the reliability of neurons, or
effective temperature of the kinetic Ising model, affects the decoding performance and
coding strategy of optimal networks.

Furthermore, we investigate how network properties scale with input dimension
d or network size N. We measure entropy production with input signal with different
dimensions. The result shows that entropy production remains small for low dimensions
but may increase above a certain dimension (Figure 7a). We also measure decoding
performance with an increasing number of sub-population of neurons and show that it
gradually increases and slightly saturates (Figure 7b). This agrees with the redundant
population coding structure empirically discovered [14,30].
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Figure 5. Effects of network response reliability. (a) Asymmetry η as a function of network reliability
β. (b) Entropy production (EP) as a function of β. (c) Stimulus decorrelation D as a function of β.
(d) Relative decoding performance D∗/Dind as a function of β.

Figure 6. Encoding strategies of networks with different response reliability. (a) Input stimulus corre-
lation versus the optimal connectivity under low reliability (β = 1). (b) Input stimulus correlation
versus the optimal connectivity under high reliability (β = 10). Here we use a larger network N = 50.

Figure 7. Scaling properties of the nonequilibrium network. (a) Entropy production (EP) as a function
of the input dimension d. (b) Optimal decoding performance D∗ as a function of the number of
neurons considered N.
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3.4. Generalization to Recurrent Networks and Nonlinear Stimuli

We generalize the discrete settings in the kinetic Ising model to a continuous recur-
rent neural network (RNN) framework, then analyze neural trajectories and decoding
performance. A recent method trains chaotic RNNs through error feedback from the target
signal as well as another driven network [17]. The iterative least square learning algorithm
modifies network weights to generate target dynamics. Our approach is similar, effectively
using a step-wise procedure. We generate spiking patterns for optimal linear decoding as a
target, then reconstruct an effective connectivity that is trained to generate such spiking
patterns (Figures 1 and 2). The qualitative agreement of the two approaches would support
the idea that spiking and rate neural networks may have similar properties in their network
structures (Figure 8).

Figure 8. Properties of continuous recurrent neural networks. (a) The schematic of a framework with
continuous recurrent networks and training for optimal network encoding. Note that this is similar
to the setup in Figure 1, but with rate variables r(t) and training through error signal e(t). (b) The
performance of stimulus decoding with the trained optimal network. One-dimensional (d = 1) time
series show input signal (green), target (red), and output (blue) of the network. Input and target are
the same for our stimulus encoding study. Result is for N = 100 network with 10 trials following
full-FORCE method according to [17]. (c) Asymmetry of the network as a function of stimulus
correlation α. (d) Dominating time scale (1/|λ|) as a function of stimulus correlation.

Specifically, the RNN has a linear readout similar to Equation (1) from rate activity
r. The network receives feedback error signal and the iterative least square learning
algorithm follows:

J(t) = J(t− ∆)− e(t)T P(t)r(t) (18)

P(t) = P(t− ∆)− P(t− ∆)r(t)r(t)T P(t− ∆)
1 + r(t)T P(t− ∆)r(t)

(19)

where e is the error term between the ongoing signals and targets, P is the inverse correlation
matrix 〈r(t)r(t)T〉−1 approximated online, r is the firing rate, and ∆ is the discrete time step.
We show that asymmetry of the network increases with time scale of the stimuli (Figure 8c).
This agrees with the known calculation in kinetic Ising models, where asymmetry of the
pairwise interaction contributes to entropy production. Spectral analysis of the network also
reflects that the optimal coding spectrum tends to match the frequency mode of dynamic
input (Figure 8d). The network mode is computed through eigen-decomposition of the
connectivity matrix: λu = λJ and the inverse of the larges eigenvalue 1/|λ| characterizes
the dominating time scale.
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Dynamic input applied to the network in the past sections is described by linear
stochastic equations in the form of Equation (12). We explore nonlinear dynamics as
stimuli with underlying low dimensional structures such as bistability. Specifically, the
dynamical stimuli have a mixture of two Gaussians, one with positive and one with
negative mean values, and variance controls the apparent transition between two states
(Figure 9a,b). This can be constructed with a state-switching control signal in Equation (13).
At the limit of infinite time, the correlation and autocorrelation can be similar for two time
series with different bistability. The optimal network indeed reflects the stimulus statistics
and decreases both asymmetry entropy production as the overlap of two states increases
(Figure 9c,d). This is measured by the probability of observing values in between two states,
corresponding to the exponential of a barrier in the effective energy landscape.

Figure 9. Effects of bistable dynamic input. (a) Time series of highly separated states (left) and
overlapping states (right) as the bistable input pattern x. (b) The probability distribution of input
values P(x) corresponding to two patterns, with the upper panel from left and lower panel from
right patterns in (a), with P(x = 0) = 0.001 and P(x = 0) = 0.023, respectively. (c) Asymmetry η as a
function of the probability of observing x = 0, which is the unstable transition point between two
states. (d) Entropy production as a function of P(x = 0).

With two mixtures fused into one state, the optimal network is close to symmetric
with little entropy production, congruent with the result of Hebbian learning for single
memory pattern. In contrast, under stimuli with periodic transitions between two distinct
states, the connectivity learns both attractor states and the transition between them. The
dwell time between these basins reflects the transition rate of stimuli. Together, these
physical characteristics relate network dynamics with nonequilibrium physics and show
how optimal networks should match properties of the input dynamics.

4. Discussion

We study nonequilibrium network parameters that generate optimal population code
for dynamic stimuli. We formulate the problem with the kinetic Ising model and leverage
its inference methods. The inference procedure is used to learn network parameters that
generate neural activity for stimulus decoding. The result shows how network asymmetry,
decoding performance, and entropy production depend on stimulus statistics. The reli-
ability of neural response can change the decoding performance as well as the encoding
strategy. The results further generalize to continuous time networks and encoding of
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nonlinear input. This provides insight into the design principle of that receive and encode
dynamical signals and its relation to nonequilibrium physics.

Previous literature tends to study stimulus encoding for ensembles of static input
“frames” [30,39]. For simplified networks like the Ising model, the focus has mostly been
on equilibrium properties [30,32]. An extension of the MaxEnt framework is to study the
response pattern conditioned on stimulus, which shows more robust prediction in spiking
patterns and quantifies information encoded in neural populations [11]. However, these
methods are still applied in an equilibrium setting without considering input dynamics.
Recent literature extends theories of efficient coding in single channel or a population by
adding adaption, which adjusts parameters of the encoder depending on the non-stationary
input, environmental context, and loss function parameterized by a given task [8,40–42].
The difference compared to this work is that the neural population is mostly non-interacting
or forming a feed-forward network, whereas we focus on the recurrent structure. In
addition to the classical efficient coding, other paradigms such as predictive coding that
incorporates an objective to predict spatiotemporal features and sparse coding that aims for
a sparse representation have been integrated in an information theoretical framework [43].
Adding these coding principles as constraints to the readout or network activity in our
setup can be explored in the future.

Our findings agree with encoding in equilibrium models when input has few temporal
feature, but the investigation further generalizes to dynamical stimuli. We show that the
asymmetric network always outperforms uncorrelated populations, and the difference in-
creases along with larger stimulus correlation (Figures 3 and 4). This reflects the functional
benefit for asymmetric structure if the network learns to encode signal with spatiotem-
poral correlations. The intuition can come from the learning rule in Equation (9). When
the gradient vanishes, the steady-state solution is matching the time delayed correlation
〈si(t + 1)sj(t)〉t with an approximated correlation between the effective field and current
spiking pattern 〈tanh(βHi(t))sj(t)〉t. The connectivity is therefore trained to capture the
temporal structure through comparing the current input and consecutive spike pattern.
For stimulus correlation, this is reflected in the dimensionality of network projection that
affects the effective field H. The network can pickup the temporal correlation more easily
as the stimulus has lower effective dimensions.

Another part of our result is related to how the reliability of neural responses affect
stimulus encoding in the network (Figure 5). A similar study has been done on the
MaxEnt model, where the encoding strategy is more redundant at low reliability and
uses decorrelation at high reliability [30] (Figure 6). This result qualitatively holds for
asymmetric network and indicates that connectivity should account for robustness of
neural response to produce optimal population code. Importantly, asymmetry seems
to peak at a certain reliability, namely the inverse of a critical temperature, and may be
related to physical properties of the kinetic Ising models [25]. The functional benefit
for signal processing in the nervous system is a popular hypothesis that continues to be
tested empirically and theoretically [14,44]. Fluctuation and correlation across units in the
network increases near the critical point (βc ∼ 1.11 for kinetic Ising model [35]). For a given
kinetic Ising model, entropy production maximizes near the critical point. Note that our
comparison of the nonequilibrium measurements is with respect to an optimal network
trained to encode dynamical signals. This can potentially explain the results in Figure 5.

Recently, nonequilibrium physics has been applied to analysis of network dynamics.
The results show how nonequilibrium measurements such as entropy production, nonequi-
librium work relation [21], nonequilibrium free-energy [45], and heat dissipation can be
characterized in neural networks [46]. Specifically, dissipated heat is minimized during
network training in the restricted Boltzmann machine [46]. In another study, optimal
learning rule for neural connectivity can be characterized by efficiency formulated with
thermodynamics measurements [47]. Theoretical work in kinetic Ising model explores
entropy production and nonequilibrium phase transitions [25]. The non-monotonic re-
sults of network encoding for different effective temperature may draw links with critical
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behavior of kinetic Ising model [35]. Future studies can focus on the relation between
these nonequilibrium phenomena and decoding performance. Specifically, investigation of
functional benefits near the nonequilibrium critical point is still needed.

Recurrent networks have been trained to encode or generate dynamical signal in the
past few decades [16,17,48,49]. The original works started from echo-state and liquid-state
machines with interacting nonlinear units that receive continuous dynamical input, and
the linear readout weight is adjusted to match the target signal [50]. This differs from the
setting in this work, where the internal network is learned and the network has binary
activity. However, features shown near criticality seem to agree with findings from echo-
state machines, where the optimal decoding performance exists near the critical point
of the dynamical system. The edge of critical point in echo-state machine is where the
system enters a chaotic regime, whereas the critical temperature in kinetic Ising model is an
nonequilibrium analogue of ferromagnetic phase transition [35]. An extension to training
continuous networks with chaotic dynamics is known as the FORCE algorithm. In these
training procedures, the network starts with a larger population of randomly connected
neurons and the learning process updates the connectivity according to a feedback error
signal through an iterative least square algorithm [16,17]. This approach relies on a random
network that is sufficiently large and produces chaotic dynamics. It is unclear if the initial
condition of random connections play a significant role in the trained network. Recent
studies focus on low-rank networks with well defined input and target signals [18]. In
these settings, stimulus encoding of the network is built-in according to the desired signal.
Optimal performance of these low-rank networks depends on temporal structure of the
dynamic stimuli [31]. These findings agree with our results showing that the optimal
network structure reflects the statistics of dynamical input. Specifically, we showed that
both the network asymmetry and its dominating time scale positively correlate with the
temporal correlation of target signals. This result qualitatively agrees with the kinetic
Ising model, despite using different learning algorithm and evolving with continuous
dynamics (Figure 8). Lastly, we extend the measurements beyond linear stimulus statistics
and show that bistability can also be reflected in the nonequilibrium measurements of
optimal networks (Figure 9). The results can be compared to studies using landscape theory
to characterize nonequilibrium networks, showing how transition kinetics between basins
of the energy landscape are affected by network asymmetry [22]. Here we are not tuning
network asymmetry as a parameter but altering the statistics of target dynamics. The result
is consistent in showing that asymmetry is related to nonequilibrium flux between activity
patterns, and here the activity patterns reflect the target dynamics it is trained to encode.

Another thread of study is the neural engineering framework (NEF), which constructs
a structured network that encodes and decodes dynamical systems. The way we generate
target spike trains for optimal linear decoding is similar to NEF. However, NEF differs from
our approach as it optimizes the optimal decoding matrix with knowledge of equations
of the dynamical stimuli, rather than training the network in our setting [48]. Finally,
another related framework called “neural engine” has been used to draw a link between the
Bayesian brain hypothesis and energy-based models [23]. The network response to external
stimuli can be viewed as a thermodynamic process, similar to a heat engine, and the
efficiency is defined in terms of entropy emitted from stimulus response. The formulation
of the posterior response in Equation (3) was inspired by the Bayesian brain framework
for stimulus coding [3,23]. By computing the mode of the distribution in Equation (3),
the spike generating process is similar to the classic linear-nonlinear model that passes
the filtered input through a sigmoid nonlinearity in Equation (4). Note that the presented
algorithm is not fully Bayesian, since the spike generation is from a fixed independent prior
for neural activity. This is not updated according to the learned network structure and
potentially correlated neural activity. In addition, the spike generation process Equation (4)
uses the mode rather than the full spike rate distribution for simplicity. Future studies can
introduce iterative learning process to optimize the objective in Equation (5) with updates
in the spiking process.
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In addition to continuous neural dynamics, modern machine learning studies intro-
duce algorithms for training spiking RNNs [48,49]. The analysis of population code and
nonequilibrium measurements introduced in this work can be applied to these frameworks
as well, potentially enabling one to understand the trained network mechanisms. The
kinetic Ising model is obviously a much simpler framework as a spiking RNN, and the
learning algorithms have already been explored in the past [12,34]. However, the benefit of
analyzing population coding in this setup is that the optimality is relatively well defined
given the linear decoding setup and network inference formula. The training process is
also simpler, without more hyperparameters or network architecture to be selected. Lastly,
the thermodynamical interpretation can be understood and compared to Ising models
under the MaxEnt method [44,51]. As shown in the extension of chaotic rate neural net-
works, we expect future works to investigate nonequilibrium properties of more complex
spiking networks.

Modern neuroscience technologies developed methods to record massive amount
of neural activities in parallel, offering challenges and opportunity for analysis of high
dimensional data [52]. A challenge is to characterize the functional connectivity of neural
networks from time series of neural activity [52–54]. Classic methods such as GLM and
MaxEnt characterize the neural population interaction in terms of coupling kernels and
pair-wise interaction, respectively. Recent studies derive GLM-like formula for a network
of leaky-integrate and fire neurons, while constructing an effective potential that has similar
interpretation of MaxEnt methods [44]. The general relation between statistical models
and the thermodynamic formalism of spike trains is still less clear. Here, the kinetic Ising
model framework has inference similar to maximum likelihood in GLM framework and
physical interpretation related to physical models using MaxEnt. The target spike train for
decoding dynamic signal is generated through Bernoulli GLM, while the encoder is trained
with a kinetic Ising model. This series of computational work can potentially mitigate the
gap between statistical and physical models for neural coding. In addition, analytic study
proved exact mapping between kinetic Ising model and autoregressive models with certain
constraints on the network parameters, suggesting shared inference method in state-space
models [55]. For the training procedure, the learning rule based on likelihood of the spin
update is similar to a form of spike-time dependent plasticity (STDP), where correlation
of the pre- and post-synaptic neuron is compared with the evoked potential [44,56]. A
full form of STDP rule was derived through the free-energy of Boltzmann networks or
networks with hidden units [56,57]. The comparison with the simplified form in our work
should be explored in the future. On the other hand, mean field methods have been used
to optimize the inverse problem of Ising models, and recent theoretical works extend
it to nonequilibrium systems [27,35,37]. Different approximations can be unified in an
information geometrical framework [35]. We applied a subset of mean field methods in our
studies and the results were consistent, but a systematic comparison would be beyond the
scope of this work.

While we simplify neural dynamics as kinetic Ising models, similar analysis can be
applied to real experiments in systems neuroscience. For instance, in sensory systems,
one can study the encoding performance of different dynamical stimuli and analyze the
effective nonequilibrium connectivity during stimuli. Parameters such as asymmetry of the
network, decoding performance, and entropy production can be compared to our numerical
work. Similar analysis can be performed in motor systems given different dynamics of the
target motor output [18]. One can measure an asymmetric effective connectivity given the
temporal dynamics of the target output [58,59]. In addition, in certain model systems, given
the ground truth neural connectivity, one can predict the optimal encoding and decoding
dynamical signal [54]. Empirically, we might have to consider the dynamics of synaptic
connection as well as the effects of learning on longer time scales. With a simplified neural
model, we note that there are a number of assumptions in this framework, including binary
spiking patterns, the instantaneous pair-wise interaction, and linear decoding for target
dynamics. More elaborate models with biophysical details can be studied in the future.
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