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Abstract: As well-known machine learning methods, decision trees are widely applied in classification
and recognition areas. In this paper, with the uncertainty of labels handled by belief functions, a new
decision tree method based on belief entropy is proposed and then extended to random forest. With
the Gaussian mixture model, this tree method is able to deal with continuous attribute values directly,
without pretreatment of discretization. Specifically, the tree method adopts belief entropy, a kind of
uncertainty measurement based on the basic belief assignment, as a new attribute selection tool. To
improve the classification performance, we constructed a random forest based on the basic trees and
discuss different prediction combination strategies. Some numerical experiments on UCI machine
learning data set were conducted, which indicate the good classification accuracy of the proposed
method in different situations, especially on data with huge uncertainty.

Keywords: decision trees; uncertain data; belief entropy; belief function; random forest; evidential
likelihood

1. Introduction

Decision trees have been widely used for their good learning capabilities and ease of
understanding. In some real world issues, instances may be ill-known for some factors
such as randomness, data incompleteness and even expert’s indefinite subjective opinions;
however, traditional decision trees can only handle certain samples with precise data. The
incompletely observed instances are usually ignored or replaced by a precise one, despite
the fact that they may contain useful information [1], which may cause a loss of accuracy.

There have been many attempts to build trees from incomplete data in the past several
decades. The probability trees [2,3] were suggested based on probability theory, which is
usually intuitively the first tool to modeling uncertainty in practice; however, it has been
proven that probability cannot always be adequate for representing data uncertainty [4,5]
(often termed epistemic uncertainty). To overcome this drawback, various approaches
have been proposed, including: fuzzy decision trees [6,7], the possibilistic decision trees [8]
and the uncertain decision trees [9,10]. Besides the aforementioned methods, a more
general framework, called the belief function theory [11,12] (also evidential theory or
Dempster–Shafer theory), has been proven to have the ability to model all kinds of knowl-
edge. The process of embedding belief functions within decision tree techniques has already
been extensively investigated [13–25] in recent years. Particularly, among these methods,
several trees [17–19] estimate parameters by maximizing evidential likelihood function
using the E2M algorithm [26,27], which is also the basis of part of the trees to be proposed
in this paper.

However, the existing methods on incomplete data do not take continuous attributes
into full consideration. These proposals deal with uncertain data modeled by the belief
function and build trees by extending the traditional decision tree method. The imitation
and transformation decides to use existing methods to handle continuous attribute values
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by discretization, which brings about an issue of losing the detail of the training data.
For example, the information gain ratio, the attribute selecting measurement in C4.5, was
transformed to adapt the evidential labels of the training set in the Belief C4.5 trees [19], in
which the continuous-valued attribute is divided into four intervals of equal width before
learning. This issue leads to the purpose of this paper: to learn from uncertain data with
continuous attribute values without pretreatment.

To realize this purpose, we firstly, for each attribute, fit the training data to a Gaussian
mixture model (GMM), which consists of normal distribution models one-by-one corre-
sponding to class labels, by adopting the E2M algorithm. This step, which significantly
differs from other decision trees, confirms the ability to deal with ill-known labels and
original attribute values (either discrete or continuous). On the basis of these GMM mod-
els, we generate the basic belief assignment (BBA) and calculate belief entropy [28]. The
attribute with minimal average entropy, which distinguishes classes from each others most,
will be selected as the splitting attribute. The following decision tree induction steps are
designed accordingly and logically. To our knowledge, this paper is the first to introduce
GMM models and belief entropy to decision trees with evidential data.

Another part of our proposal is adopting the ensemble method for our belief entropy
trees. Inspired by the idea of building bagging trees based on random sampling [29], we
further choose a more efficient and popular technique—random forest [30]. Under the
belief function framework, the basic trees will output either precise or mass (modeled by
BBA) label predictions, while traditional random forest can only combine precise labels.
Thus, a new method to summarize the basic tree predictions is proposed to combine mass
labels directly, instead of voting on precise labels. This combined mass keeps the uncertain
information of data as much as possible, which helps to generate a more reasonable
prediction. The new combination method is discussed and compared to the traditional
majority voting method later.

We note that we have proposed our early work in a shorter conference paper [31].
Compared with our initial conference paper, we have fixed the attribute selection and
splitting strategy of a single tree and introduced ensemble learning to our tree method in
this paper.

Section 2 recalls some basic knowledge about decision trees, belief function theory,
the E2M algorithm and belief entropy. Section 3 details the induction procedure of belief
entropy methods and proposes three different instance prediction techniques. In Section 4,
we introduce how to expend the single belief entropy tree to random forests and discuss the
different predicting combination strategies. In Section 5, we detail experiments that were
carried out on some classical UCI machine learning data sets to compare the classification
accuracies of proposed trees and random forests. Finally, conclusions are summarized in
Section 6.

2. Settings and Basic Definitions

The purpose of a classification method is to build a model that maps an attribute
vector X =

(
x1, . . . , xD) ∈ A1 × A2 × · · · × AD, which contains D attributes, to an output

class y ∈ C = {C1, . . . , CK} taking its value among K classes. Each attribute discretely has
finite values or continuously takes value within an interval. The learning of classification is
based on a complete training set of precise data which contains N instances, denoted as

T =

 X1, y1
...

XN , yN

 =

 x1
1, . . . , xD

1 , y1
...

x1
N , . . . , xD

N , yN

.

However, the imperfect knowledge about the inputs (feature vector) and the outputs
(classification labels) exists widely in practical applications. Traditionally and regularly,
the imperfect knowledge is modeled by probability theory, which is considered to be
questionable in a variety of scenarios. Hence, we model uncertainty by belief function
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in this paper. Typically, we consider that attribute values are precise and can be either
continuous or discrete, while only the output labels are uncertain.

2.1. Decision Trees

Decision trees [32] are regarded as one of the most effective and efficient machine
learning methods and widely adopted for solving classification and regression problems
in practice. The success, to a great extent, relays on the easily understandable structure,
for both humans and computers. Generally, a decision tree is induced top-down from a
training set T, which recursively repeats the steps below:

• Select an attribute, through a designed selection method, to generate a partition of a
training set;

• Split the current training set to several subsets and put them into child node;
• Generate a leaf node and determine the prediction label for a child node when a stop

criterion is satisfied.

Differing in the attribute selection methods, several decision tree algorithms have been
proposed, such as ID3 [32], C4.5 [33] and CART [34]. Among these trees, the ID3 and C4.5
choose entropy as an information measure to compute and evaluate the quality of a node
split by a given attribute.

The core of ID3 is information gain. Given training data T and an attribute A with KA
modalities, the information gain will be:

Gain(T, A) = In f o(T)− In f oA(T) (1)

where

In f o(T) = −
K

∑
i=1

θi log2(θi) (2)

and

In f oA(T) = −
KA

∑
i=1

|Ti|
|T| In f o(Ti) (3)

where θi is the proportion of instances in T that are of class Ci, |T| and |Ti| are the cardinali-
ties of the instance sets belonging to a parent node and to the child node i.

The limitation of information gain is that attributes with largest values will be most
promoted [33], which leads to the GainRatio in the C4.5 algorithm. It is given as:

GainRatio(T, A) =
Gain(T, A)

SplitIn f o(T, A)
(4)

where

SplitIn f o(T, A) = −
KA

∑
i=1

|Ti|
|T| log2

|Ti|
|T| . (5)

The attribute with the largest gain ratio will be selected for splitting.
We can easily find the the Equation (2) is actually the Shannon Entropy. Yet in this

paper, concerning the feature of evidential data described by the framework of belief
function, the attribute selection method is newly designed based on belief entropy [28]
instead of Shannon entropy.

2.2. Random Forest

To improve the classification accuracy and generalization ability of machine learning,
the ensemble model method is introduced to the learning procedure. One important branch
of ensemble method is called bagging, which concurrently builds multiple basic models
learning from different training sets, which are generated from original data by bootstrap
sampling. On the basis of bagging decision trees, random forest (RF) [30] not only chooses
the training instance randomly but also introduces randomness into attributes selection. To
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be specific, traditional decision trees select the best splitting attribute among all D attributes;
random forest generates a random attribute subset then chooses the best one within this
subset to split the tree node. The size D′ of this subset is adjustable and generally set as
D′ = log2D.

A detailed description of the mathematical formulation of RF model is found in [30]. The
RF model consists of a union of multiple basic trees, where each tree learns from bootstrap
samples and selects attribute from a small subset of all attributes. There some advantages
of RF: (a) better prediction performance, (b) resistance to overfitting, (c) low correlation of
individual trees, (d) low bias and low variance and (e) small computational overhead.

Some existing works have explored the ensemble method on belief decision trees, such
as bagging [29]. In this paper, we apply the random forest technique to the proposed belief
entropy trees and discuss the different prediction determining strategies.

2.3. Belief Function Theory

Let the finite set Ω denote the frame of discernment containing k possible exclusive
values that a variable can take. When considering the output y, the imperfect knowledge
about value of y can be modeled by mass function my : 2Ω → [0, 1], such that my(∅) = 0,
and

∑
A⊆Ω

my(A) = 1, (6)

which is also called a basic belief assignment (BBA). The subset A is called a focal set
where my(A) > 0, and the my(A) can be interpreted as the support degree of the evidence
towards the case that true value is in set A.

There are some typical mass functions need to be attended:

• Vacuous mass: mass function such that my(Ω) = 1, which means total ignorance;
• Bayesian mass: for all focal set A, the cardinality |A| = 1. In this case, the mass

degenerates to a probability distribution;
• Logical(categorical) mass: my(A) = 1 for some A. In this case, the mass is equivalent

to the set A.

One-to-one related to the mass function my, the belie f f unction and plausibility f unction
are defined as:

Bely(B) = ∑
A⊆B

my(A), (7)

Ply(B) = ∑
A∩B 6=�

my(A), (8)

which, respectively, indicate the minimum and maximum belief degree of evidence towards
set B. Typically, the function pl : Ω→ [0, 1] such that ply(ω) = Ply({ω}) for all ω ∈ Ω is
called contour f unction associated to my.

For two mass function m1 and m2 induced by evidences independently, they can be
combined by the Dempster′s rule [12] ⊕ defined as:

(m1 ⊕m2)(A) =
1

1− κ ∑
B∩C=A

m1(B)m2(C), (9)

for all A ⊆ Ω, A 6= ∅, and (m1 ⊕m2)(∅) = 0, where

κ = ∑
B∩C=∅

m1(B)m2(C), (10)

is called the degree o f con f lict between m1 and m2. Obviously, Dempster’s rule is commu-
tative and associative according to the definition.

In the decision making situation, we need to determine the most reasonable hy-
pothesis from a mass. Different decision-making strategies with belief functions [35,36]
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have been researched. Among these methods, in the transferable belief model (TBM),
pignistic probability [37] was proposed to make decision from a BBA:

BetP(ω) = ∑
A⊆Ω,ω∈A

m(A)

|A| , (11)

where |A| is the cardinality of A.
When we model uncertain labels of evidential data with mass functions, the training

set becomes

T =

 X1, m1
...

XN , mN

 =

 x1
1, . . . , xD

1 , m1
...

x1
N , . . . , xD

N , mN

.

2.4. Evidential Likelihood

Consider a discrete random vector Y taking values in Ω with a probability mass
function pY(y; θ) assumed to be associated with a parameter θ ∈ Θ. After a realization
y of Y has been perfectly observed, the likelihood function of complete data is defined as
L : Θ→ [0, 1] such that

L(θ; y) = pY(y; θ), ∀θ ∈ Θ. (12)

When the observations are uncertain, it is impossible to evaluate parameter θ from a
likelihood function. In this situation, a new statistical tool [38] called evidential likelihood
was proposed to perform parameter estimation. Assume that y is not precisely observed,
but is known surely that y ∈ A for some A ∈ Ω. Given such imprecise data, the likelihood
function will be extended to

L(θ; A) = pY(A; θ) = ∑
y∈A

pY(y; θ), ∀θ ∈ Θ. (13)

Furthermore, the observation of instance y could be not only imprecise, but also
uncertain, which is modeled by mass function my. Thus the evidential likelihood func-
tion [27] can be defined as

L
(
θ; my

)
= ∑

A⊆Ω
L(θ; A)my(A)

= ∑
y∈Ω

pY(y; θ) ∑
A3x

my(A)

= ∑
y∈Ω

pY(y; θ)pl(y), ∀θ ∈ Θ

, (14)

where the pl is the contour function related to my and the L
(
θ; my

)
can be remarked as

L(θ; pl). According to the statement of Denoeux [27], the value 1− L(θ; pl) equals to the
conflict between parametric model pY(y; θ) and the uncertain observation pl, which means
minimizing L(θ; pl) is actually a procedure of estimating the best parameter θ to fit the
parametric model to observation as closely as much.

Equation (14) also indicates that L(θ; pl) can be remarked as the expectation of pl such
that

L(θ; pl) = Eθ[pl(Y)]. (15)

Assume that Y = (y1, . . . , yN) is a sample set containing n cognitively independent [12]
and i.i.d. uncertain observations, in which the yi is model by myi . In the situation the
Equation (15) is written as a product of n terms:

L(θ; pl) =
N

∏
n=1

Eθ[pln(yn)]. (16)
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2.5. E2M Algorithm

Though an extension of likelihood function, the maximum likelihood estimation of ev-
idential likelihood can not directly be computed by the broadly applied EM algorithm [39].
The E2M algorithms [27] introduced by Denoeux allow us to maximize the evidential
likelihood iteratively, which is composed of two steps (similar to EM algorithm):

1. The E-step require firstly a probability mass function pY

(
· | pl; θ(q)

)
= pY

(
·; θ(q)

)
⊕

pl, in which the former part means the probability mass function of Y under the
parameter θ(q) estimated from last iteration and the latter part indicates contour
function pl. The expression is:

pY

(
y | pl; θ(q)

)
=

pY

(
y; θ(q)

)
pl(y)

L
(

θ(q); pl
) . (17)

Then calculate the expectation of log likelihood log Lc(θ; y) = log pY(y; θ) of complete
data with respect to pY

(
· | pl; θ(q)

)
,

Q
(

θ, θ(q)
)
=

∑y∈Ω log(Lc(θ; y))pY

(
y; θ(q)

)
pl(y)

L
(

θ(q); pl
) . (18)

2. The M-step is to maximize Q
(

θ, θ(q)
)

with respect to θ, obtaining a new estimation

that ensures Q
(

θ(q+1), θ(q)
)
> Q

(
θ, θ(q)

)
.

The two steps repeat until L
(

θ(q+1)
)
− L

(
θ(q)

)
6 ε, where ε is a set threshold.

2.6. Belief Entropy

Inspired by Shannon entropy [40], which can measure uncertainty contained by a prob-
ability distribution, a type of belief entropy called Deng entropy is proposed by Deng [28]
to handle situation where the traditional probability theory is limited. When the uncertain
information is described by the basic belief assignment instead of the probability distribu-
tion, Shannon entropy cannot work. Deng entropy is defined on the belief function frame,
which makes it able to measure uncertain information described by the BBA efficiently.

Let A be the focal set of belief function, and |A| be the cardinality of A. Deng entropy
E is defined as:

E(m) = − ∑
A⊆Ω

m(A) log
m(A)

2|A| − 1
. (19)

We can easily learn from the definition that if the mass function is Bayesian, which means
|A| = 1 for all A, Deng entropy degenerates to Shannon entropy such that

E(m) = − ∑
A⊆Ω

m(A) log m(A). (20)

The greater the cardinality of the focal set is, the bigger the corresponding Deng
entropy is, so that the evidence imprecisely refers to more single elements. Thus, significant
Deng entropy indicates huge uncertainty. Powered by this feature, we calculate the average
Deng entropy of BBAs to select the best attribute leading to the least uncertainty. The
details are shown in the next section.

3. Design of Belief Entropy Trees

Up to now, various decision tree methods have been proposed to deal with evidential
data, but many of them consider categorical attributes and transform the continuous
attribute values into discrete categories. Some recent works fit the continuous attributes
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with same class labels into normal distributions [41] and generate BBA from the normal
distributions to select the best splitting attribute by calculating belief entropy [42]; however,
this method divides samples into each set of certain classes, which can only handle the
precise class labels. Our goal is to develop a belief decision tree method learns from
data set with continuous and precise attribute values but incomplete class labels directly
and efficiently.

This section explains our method in detail, specifically focusing on the procedure
of attribute selection. Corresponding splitting strategy, stopping criterion and the leaf
structure are also well-designed to accomplish the whole belief entropy decision tree.

3.1. The Novel Method to Select Attribute

The learning procedure of decision trees is generally to decide the split attribute and
to decide how to split on this attribute on each node; our method also proceeds in this
manner. As a novel decision tree, the most characteristic and core part of our method is
the attribution selection, which includes three steps: firstly, for each attribute, fit the values
to normal distributions corresponding to each class label, in another words, fit attribute
values into K×D normal distribution models, where K is the class number and D is the
attributes number of instances; secondly, for every instance, generate D BBAs from each
attribute according to the normal distribution-based models; finally, calculate belief entropy
from BBAs for each attribute. The attribute with minimum belief entropy will be selected
to split.

3.1.1. Parameter Estimation on Data with Continuous Attributes

Powered by the idea of extracting BBAs from normal distribution-modeled attribute
values [41], we try to operate similarly on data with ill-known class labels. In the situation
that each instance exactly belongs to one class, the d-th attribute values set

{
xd

1 , . . . , xd
N

}
is

divided into K subsets
{

xd
n | yn = Ck

}
, k = 1, . . . , K corresponding to each class. It is easy

to fit each subset to the normal distribution by calculating means and standard deviations.

Example 1. Consider the Iris data set [43], a classical machine learning data set, which contains
150 training instances of three classes: ‘Setosa’, ‘Versicolor’, ‘Virginica’, with four attributes: sepal
length(SL), sepal width(SW), petal length(PL) and petal width(PW). For the values of attribute SL
in the class of Setosa, we can directly calculate the mean value as µ = 5.0133 and standard deviation
as σ = 0.3267. Similarly, we can obtain normal distribution parameters of class of Versicolor and
Virginica. Figure 1 shows the normal distribution model of Iris data set for the SL attribute in
three classes.

3 4 5 6 7 8 9

SL/cm

0

0.2

0.4

0.6

0.8

1

1.2

f n
o
rm

a
l(S

L
)

Setosa

Versicolor

Virginica

Figure 1. The normal distribution df three classes for the SL attribute of Iris data set.
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However, when the labels of training set are ill-known, some instances can not be
allocated to a certain class assertively. The evidential likelihood and E2M algorithm
introduced in Section 2 make it possible to generate an estimation of model parameters.
Because the E2M algorithm uses only contour functions, the label of n-th instance will be
represented by plausibility pln = {plnk}, k = 1, . . . , K instead of mass function mn.

For the purpose of comparing attributes, we split the whole training data into D
attribute–label pairs and handle D parameter estimation problems. Consider the d-th

attribute value vector Xd =
(

xd
1 , · · · , xd

N

)T
, d ∈ {1, . . . , D}, we assume the conditional

distribution of Xd when given y = Ck is normal with mean µk and standard deviation σk:

Xd|(y = Ck) ∼ N
(

µk, σ2
k

)
, k = 1, . . . , K.

Actually the assumption is to build a one-dimensional Gaussian mixture model(GMM) [44].
Similar to the application of E2M algorithm in linear discriminant analysis [45], the follow-
ing discuss is practically to adopt E2M algorithm to estimate parameters in GMM.

Let πk be the marginal probability when y = Ck, and θ = (µ1, . . . , µK, σ1, . . . , σK, π1, . . . ,
πK) the parameter vector to be estimated. The complete-data likelihood is

Lc(θ) =
N

∏
n=1

p
(

xd
n|Yn = yn

)
p(yn)

=
N

∏
n=1

K

∏
k=1

φ
(

xd
n; µk, σk

)ynk
π

ynk
k ,

(21)

where the φ is normal distribution probability density,

φ(x; µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 , (22)

and ynk is a binary indicator variable, such that ynk = 1 if yn = Ck and yik = 0 if yN 6= Ck.
when expended to evidential data, where we use contour function to describe the

labels, the evidential likelihood is drew from Equation (16) that,

L(θ) =
N

∏
n=1

Eθ[pln(yn)]

=
N

∏
n=1

K

∑
k=1

plnkφ
(

xd
n; µk, σk

)
πk.

(23)

According to the E2M algorithm, we compute the expectation of complete-data log likeli-
hood

`c(θ) = log Lc(θ) =
N

∑
n=1

K

∑
k=1

ynk

[
log φ

(
xd

i ; µk, σk

)
+ log πk

]
(24)

with respect to the combined mass probability function

p
(

xd
∣∣∣pl; θ(q)

)
=

N

∏
n=1

p
(

xd
n

∣∣∣pln; θ(q)
)

. (25)

To simplify the equation, we denote

ζ
(q)
nk = p

(
xd

n

∣∣∣pln; θ(q)
)
=

plnkπ
(q)
k φ

(
xd

n; µ
(q)
k , σ

(q)
k

)
∑K

k=1 plnkπ
(q)
k φ

(
xd

n; µ
(q)
k , σ

(q)
k

) . (26)
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Finally, we obtain the to-be-maximized function

Q
(

θ, θ(q)
)
=

N

∑
n=1

K

∑
k=1

ζ
(q)
nk

[
log φ

(
xd

n; µk, σk

)
+ log πk

]
(27)

in the E-step.
The formal of Q

(
θ, θ(q)

)
is similar to the function computed in the EM algorithm on

the GMM [44]. Because of the similarity, we imitate it and learn that the optimal parameter
maximizing Q

(
θ, θ(q)

)
can be iteratively computed by

π
(q+1)
k =

1
n

N

∑
n=1

ζ
(q)
nk , µ

(q+1)
k =

∑N
n=1 ζ

(q)
nk xd

i

∑N
n=1 ζ

(q)
nk

, (28)

σ
(q+1)
k =

√√√√√∑N
n=1 ζ

(q)
nk

(
xd

n − µ
(q+1)
k

)2

∑N
n=1 ζ

(q)
nk

(29)

Finally when L
(

θ(q+1)
)
− L

(
θ(q)

)
6 ε is satisfied for some ε, stop the iteration

and remark θ(q+1) as θd =
(

µd
1, . . . , µd

K, σd
1 , . . . , σd

K, πd
1 , . . . , πd

K

)
, which is the estimation of

parameters in the GMM extracted from d-th attribute. Repeat this procedure for every
attributes of the training set, D× K normal distribution

N d
k

(
µd

k , σd
k

2)
, d = 1, . . . , D, k = 1, . . . , K

will be generated.
The Algorithm 1 shows the procedure of parameter estimation and there is Example 2

to help understand it.

Algorithm 1 Parameter estimation of GMMs.
Input: evidential training set Tpl = (x, ply), iteration stop threshold ε

Output: estimated normal distribution parameter matrix
(

µd
k , σd

k

)
, d = 1, . . . , D,

k = 1, . . . , K

1: for each attribute Ad do
2: initialize parameters as θd(0) =

(
µd

1
(0)

, . . . , µd
K
(0)

, σd
1
(0)

, . . . , σd
K
(0)

, πd
1
(0)

, . . . , πd
K
(0)
)

;
3: q = 0; {Initialize loop variable.}
4: for q do

5: update the estimation of parameters θd(q+1)
=(

µd
1
(q+1)

, . . . , µd
K
(q+1)

, σd
1
(q+1)

, . . . , σd
K
(q+1)

, πd
1
(q+1)

, . . . , πd
K
(q+1)

)
by Equations (28)

and (29).
6: if L

(
θd(q+1)

)
− L

(
θd(q)

)
6 ε then

7: break; {End the loop if evidential likelihood increment is less than threshold.}
8: end if
9: q = q + 1;

10: end for
11: adopt

(
µd

k
(q+1)

, σd
k
(q+1)

)
, k = 1, . . . , K as estimated normal distribution parameters

under attribute Ad;
12: end for
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Example 2. Consider the Iris data set mentioned in Example 1. To simulate the situation that
labels of training set are not completely observed, we manually introduce uncertainty to the Iris data.
In this example, we set that each instance has an equivalent chance (25%) to be vacuous, imprecise,
uncertain or completely observed (the detail of transformation is discussed in Section 5). Table 1
shows the attribute values and labels described by plausibility pl of some instances in evidential Iris
data. Table 2 shows the mean and standard deviation pairs (µ, σ) calculated by E2M algorithm.
Figure 2 shows curves of these models.
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Figure 2. The normal distribution models for each attribute in evidential Iris data set.

Table 1. Uncertain instances in evidential Iris data set.

Number
Attributes Contour Functions

True Label
SL SW PL PW pl (Setosa) pl (Versicolor) pl (Virginica)

1 5.1 3.5 1.4 0.2 1 0 1 Setosa
2 4.9 3.0 1.4 0.2 1 0 1 Setosa
3 4.7 3.2 1.3 0.2 1 0 0 Setosa
4 4.6 3.1 1.5 0.2 1 0.7498 0.4073 Setosa

. . .
51 7.0 3.2 4.7 1.4 0 1 0 Versicolor
52 6.4 3.2 4.5 1.5 0.9519 1 0.7087 Versicolor
53 6.9 3.1 4.9 1.5 1 1 1 Versicolor
54 5.5 2.3 4.0 1.3 1 1 1 Versicolor
. . .
101 6.3 3.3 6.0 2.5 0 0 1 Virginica
102 5.8 2.7 5.1 1.9 0.4458 0.5088 1 Virginica
103 7.1 3.0 5.9 2.1 0 0 1 Virginica
104 6.3 2.9 5.6 1.8 1 1 1 Virginica
. . .
150 5.9 3.0 5.1 1.8 0 0 1 Virginica
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Table 2. Estimated normal distribution parameters for evidential Iris data set.

Attributes
Setosa Versicolor Virginica

µ σ µ σ µ σ

SL 5.0031 0.3591 5.9183 0.5419 6.6307 0.6300
SW 3.3822 0.4264 2.7812 0.3201 3.0119 0.2765
PL 1.4640 0.1718 4.3066 0.4961 5.5684 0.5591
PW 0.2408 0.1011 1.3273 0.2074 2.0495 0.2522

3.1.2. BBA Determination

This step is to generate D BBAs corresponding to each attribute for every instance in
the training set.

Choose an instance In with attribute vector xn =
(

x1
n, . . . , xD

n
)

from the data set,
calculate the intersection of xd

n(d = 1, . . . , D) and the K normal distribution functions
φd

k = φ
(

xd; µk, σk

)
, k = 1, . . . , K, i.e., we obtain K normally distributed probability density

function (PDF) values for the attribute Ad and instance In, denoted as φd
nk, k = 1, . . . , K.

Due to the property that the probability of a value x sampling from a normal distri-
bution is proportional to the PDF φ(x), we can infer, for the attribute d, the probability
that instance xn belongs to each class is proportional to φd

nk = φ
(

xd
n; µk, σk

)
, k = 1, . . . , K.

From this opinion of statistical analysis, the rule to assign normal PDFs to some sets was
proposed to build BBAs.

Firstly, normalize the φd
nk with different class k such that

fk = φd
nk/

K

∑
k=1

φd
nk. (30)

Then rank fk in decreasing order f ′r(r = 1, . . . , K), whose corresponding class is denoted as
C′r(r = 1, . . . , K). Assign f ′r to the class set by the following rule:

m
({

C′1
})

= f ′1
m
({

C′1, C′2
})

= f ′2
· · ·
m
({

C′1, . . . , C′K
})

= m(θ) = f ′K.

(31)

If f ′i = f ′i+1 = . . . = f ′j , then m
({

C′1, . . . , C′j
})

= ∑
j
p=i f ′p. By this rule, we obtain a

nested BBA of xn under the select attribute Ad, which we denote as md
n.

Example 3. Consider the first instance of the evidential Iris data set showed in Table 1, whose
attributes are:

xSL = 5.1, xSW = 3.5, xPL = 1.4, XPW = 0.2.

For attribute SL, the intersections of xSL = 5.1 and three normal distributions are shown in Figure 3
such that

φSL
Setosa(xSL) = 1.0712,

φSL
Versicolor(xSL) = 0.2354,

φSL
Virginica(xSL) = 0.0331.
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The reader can see in the figure that this instance is closest to class ‘Setosa’, then to the
‘Versicolor’ and ‘Virginica’. Thus, we generate BBA from intersection values, which is intuitive.
The BBA is assigned as:

m({Setosa}) = 1.0712
1.0712 + 0.2354 + 0.0331

= 0.7996

m({Setosa, Versicolor}) = 0.2354
1.0712 + 0.2354 + 0.0331

= 0.1757

m({Setosa, Versicolor, Virginica}) = 0.0331
1.0712 + 0.2354 + 0.0331

= 0.0247

Similarly, we build BBAs for the rest of the attributes—shown in Table 3.
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Figure 3. The normal distribution for the SL attribute in three classes.

Table 3. Generated BBAs of selected instance.

Attributes BBAs

SL
m({Setosa}) = 0.7996

m({Setosa, Versicolor}) = 0.1757
m({Setosa, Versicolor, Virginica}) = 0.0247

SW
m({Setosa}) = 0.6904

m({Setosa, Virginica}) = 0.2329
m({Setosa, Versicolor, Virginica}) = 0.0767

PL
m({Setosa}) = 1

m({Setosa, Versicolor}) = 0
m({Setosa, Versicolor, Virginica}) = 0

PW
m({Setosa}) = 1

m({Setosa, Versicolor}) = 0
m({Setosa, Versicolor, Virginica}) = 0

3.1.3. Calculation of Belief Entropy

The last step to determine splitting attribute is to calculate the average Deng entropy

Ed = E
(

Ad
)
=

1
N

N

∑
n=1

E
(

md
n

)
, d = 1, . . . D (32)
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of all instances for each attribute. As mentioned in Section 2.6, Deng entropy measures
the uncertain degree contained by BBA, which means the less Ed, the more certainty the
BBAs contain, and the more separate the division of classes is. Consequently, we choose
the attribute A∗ that minimizes the average Deng entropy such that

A∗ = arg min
Ad

(
E
(

Ad
))

, d = 1, . . . , D (33)

to be the best splitting attribute to proceed the tree building.

Example 4. Continue the Examples 2 and 3. Calculate Deng entropy of BBAs of selected instance
shown in Table 3:

ESL(m) = −0.7996× log
0.7996
21 − 1

− 0.1757× log
0.1775
22 − 1

− 0.0247× 0.0247
23 − 1

= 0.2933

ESW(m) = −0.6904× log
0.6904
21 − 1

− 0.2329× log
0.2329
22 − 1

− 0.0767× 0.0767
23 − 1

= 0.3687

EPL(m) = −1× log
1

21 − 1
= 0

EPW(m) = −1× log
1

21 − 1
= 0

Similarly proceed same calculation to all instances so that average Deng entropy for attributes are
calculated that

E
(

ASL
)
= 1.3853, E

(
ASW

)
= 2.0837, E

(
APL

)
= 0.4275, E

(
APW

)
= 0.2116.

According to this result, attribute PW will be chosen to generate child nodes.
Comparing the Deng entropy with the curves in Figure 2, we can intuitively learn that PW has

the most distinctive curves for each class, yet curves in SW overlap each other a lot, which conforms
to the size of the average Deng entropy above, where PW is the lowest and SW is the highest.

As a matter of fact, Examples 1–4 in this chapter can be orderly combined as a whole cal-
culating example, which shows the procedure of the proposed attribute selecting method.

3.2. Splitting Strategy

The splitting strategy is redesigned according to the selected attribute A∗ to fit the
proposed attribute selection method. Branches will be associated to each class, that is to
say, each node to be edged will have K branches. For an instance In, consider the generated
BBAs, the class corresponding to the maximum mass value will be the branch that this
instance shall be put into. To put it simply, when splitting the tree under attribute A∗, the
instance In will be assigned into the kn-th child node, where the kn satisfies

kn = arg max
k

φ∗nk

(
xd

n

)
. (34)

The Algorithm 2 summarizes the procedure of selecting attribute and splitting. It should
be mentioned that, though the child nodes are associated to each class, this splitting strategy
does not mean to determine the affiliation of instances directly and arbitrarily in this step.
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Algorithm 2 Attribute selection and splitting.

Input: evidential training set Tpl = (x, ply), possible splitting attribute A =
{

A1, . . . , AD}
Output: selected attribute A∗, instance sets in child nodes Ti,(i = 1, . . . , K)

1: compute the normal distribution parameters
(

µd
k , σd

k

)
for each Ad and Ck by E2M

algorithm;
2: for each attribute Ad do
3: for each instance In do
4: generate BBA md

n from normal distributions N d
k

(
µd

k , σd
k

2
)

, k = 1, . . . , K;

5: Ed
n = E

(
md

n

)
; {Calculate Deng entropy for all generated BBAs}

6: end for
7: E

(
Ad
)
= Average

(
Ed

n

)
; {Calculate average Deng entropy for each attribute}

8: end for
9: split on attribute A∗ = arg min

Ad

(
E
(

Ad
))

;{The attribute with minimum average entropy

is selected}

3.3. Stopping Criterion and Prediction Decision

After designing the attribute selection and partitioning strategy, we split each decision node
to several child nodes. This procedure repeats iteratively until one of the stop criterion is met:

• No more attributes for selection;
• The number of instances in the nodes falls below a set threshold;
• The labels of instances are all precise and fall into the same class;

When the tree building stops at a leaf node L, a class label should be determined to
predict the instances that fall into this node. We design two different prediction methods
such that:

• The first one is to generate the prediction label from the original training labels of
instances contained by this node, which is a similar treatment to traditional decision
trees such as C4.5 tree method. Denoting the instances in the leaf node by

{
I′1, . . . I′P

}
and the corresponding evidential training labels by

{
pl′p
}

, p = 1, . . . P, the leaf node

will be labeled by Ĉ, where

Ĉ = arg max
Ck

P

∑
p=1

pl′p(Ck), k = 1, . . . , K, (35)

which means the class label with maximal plausibility summation will represent
this node. This tree predicts from the original labels of training set, which is called
Oringin-prediction belie f entropy tree(OBE tree) for short in this paper.

• The first method described above in fact abandons the generated BBAs during the
tree build procedure, which will be adopted to generating predicted instance label
in the second method. Firstly, the splitting attributes list, which lead instance I′

to the leaf node from top to down, are denoted by
{

A∗1 , . . . , A∗Q
}

, and the BBAs
generated accordingly are denoted by m∗1 . . . , m∗Q. Then combine these BBAs by
Dempster rule, such that m̂ = m∗1 ⊕ · · · ⊕ m∗Q, to predict the training instance. On
this basis, we continue to combine generated BBAs of all instances in a leaf node
such that m̂lea f = m̂1 ⊕ · · · ⊕ m̂P, where the once again combined BBA m̂lea f will
be the mass prediction label for the whole leaf node. To obtain a precise label for
another choice, the last step is making decision on BBA by choosing the class label
with maximal pignistic probability computed by Equation (11). We call this tree a
Lea f -prediction belie f entropy tree(LBE tree) in this paper.
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The Algorithm 3 summarizes the induction of belief entropy trees introduced in
this section.

Algorithm 3 Induction of belief entropy trees (BE-tree).
Input: evidential training set Tpl , classifier type TYPE
Output: belief entropy tree Tree
1: construct a root node containing all instances Tpl;
2: if stopping criterion is met then
3: if TYPE = OBE then
4: output precise prediction generated from original plausibility label for the whole

node;
5: else if TYPE = LBE then
6: combine BBAs generates during each splitting m̂ = m∗1 ⊕ · · · ⊕ m∗Q for each in-

stance;
7: combine BBAs of all instances in previous node generated in step 6 that m̂lea f =

m̂1 ⊕ · · · ⊕ m̂P;
8: output m̂lea f as a mass prediction for the whole leaf node;

9: output Ĉ = Pignistic
(

m̂lea f

)
as a precise prediction for the whole leaf node;

10: end if
11: return Tree=root node;
12: else
13: apply Algorithm 2 to select splitting attribute A∗;
14: induce each subset Tpl child based on A∗;
15: for all Tpl child do

16: Treechild = BE-tree
(

Tpl child

)
;{Recursively build the tree on the new child node}

17: attach Treechild to the corresponding Tree;
18: end for
19: end if

3.4. An Alternative Method for Predicting New Instance

Two types of belief entropy trees, the OBE tree and the LBE tree, have been described
in detail in the last section. Similar to traditional decision trees, a new instance will
be classified in a top-down way: starting at the root node and following branches by
considering its generated BBA under splitting attribute until reaching a leaf node. The
prediction of leaf node will be given to this new instance.

However, differing from the idea of collecting the numerous ‘opinions’ of instances,
another method to predict a new instance is considered after a tree has been built. In
Section 3.1.2, we introduced how to generate each training instance’s BBA corresponding to
attributes. In the same way, we can generate m∗1 . . . , m∗Q corresponding to an attributes list{

A∗1 , . . . , A∗Q
}

, which orderly splits and leads the new instance to a leaf node. Then, we com-
bine these BBAs such that m̂ = m∗1 ⊕ · · · ⊕m∗Q to predict the new testing instance. It is easy
to find that this method performs the same way as the front part of label prediction in LBE
trees, yet stops when obtaining a mass prediction from the testing instance’s own attribution
values instead of the leaf node it belongs to, which also means testing instances in a same
leaf node normally have different mass prediction under this design. For the sake of narra-
tive, a tree predicting in this way is called Instance-prediction belie f entropy tree(IBE tree)
in this paper.

Figures 4 and 5 show the procedure of making prediction on leaf node, where Figure 4
is the generation of mass prediction m̂ for each instance, in whether training set or testing
set; Figure 5 details the different prediction making in the proposed three belief entropy
trees.
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Figure 4. Generation of mass prediction for each instance.

 

Figure 5. Three different ways to make prediction in belief entropy trees.

4. Belief Entropy Random Forest

We have introduced the induction of belief entropy trees in the previous section, which
is regarded as the basic classifier of random forest ensemble method in the following dis-
cussion.

The generalization ability of random forest draws from not only the perturbation of
sampling, but also the perturbation of attributes selecting. Specific to the proposed belief
entropy random forest, for each basic tree, we firstly performs bootstrap sampling on the
original training set, which means randomly sampling with replacement for N times on the
set T where |T| = N. Secondly, when training on this resampling set, for each to-be-split
node, the best splitting attribute will be chosen from a subset

{
A′i
}

, i = 1, . . . , D′ of the set
of all available attributes

{
Aj
}

, j = 1, . . . , D, where 1 < D′ < D. If D′ = D, the basic tree
splits totally, the same as the belief entropy tree; while D′ = 1 means randomly selecting
an attribute to split all the time.

Repeat the first and second steps above S times then a ‘forest’ containing variable
basic trees will be constructed, where the repeat time S is called forest size. When making a
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prediction of a new instance on this forest, S primary predictions will be independently
generated by S basic trees and finally summarized to one result. It should be mentioned
that the OBE tree output precise label directly for testing instances while the LBE trees
and IBE trees can provide mass labels described by BBAs or precise labels. This feature
inspires two different strategies for making predictions in the last step: the majority voting
for precise labels and belief combination of mass labels.

Algorithm 4 shows the procedure of building the complete evidential random forests
based on belief entropy trees. Selecting different ensemble prediction strategies and base
tree types, we build five random forest lists below:

• label-voting OBE Random Forest(L-OBE RF), which performs majority voting on
precise outputs of OBE trees;

• label-voting LBE Random Forest(L-LBE RF), which performs majority voting on
precise outputs of LBE trees;

• mass-combination LBE Random Forest(M-LBE RF), which combines BBAs generated
by LBE trees and makes decision;

• label-voting IBE Random Forest(L-IBE RF), which performs majority voting on
precise outputs of IBE trees;

• mass-combination IBE Random Forest(M-IBE RF), which combines BBAs generated
by IBE trees and makes decision;

Algorithm 4 Building procedure of evidential random forests.
Input: evidential training set Tpl , new instance x, base classifier number h, base classifier

type TYPE, base classifier output mode O
Output: predicted label ŷ
1: for i = 1 : h do
2: Ti = RandomAttributeSampling

(
RandomInstanceSampling

(
Tpl

))
; {The resam-

pling procedure of each base tree.}
3: if TYPE = OBE then
4: Treei = OBE(Ti);
5: else if TYPE = IBE then
6: Treei = IBE(Ti);
7: else if TYPE = LBE then
8: Treei = LBE(Ti);
9: end if

10: end for
11: for i = 1 : h do
12: Li = Label Prediction(Treei, x); {Generate predict labels of each base tree.}
13: end for
14: if O = precise label then
15: ŷ = Majority(L1, . . . , Lh); {Generate prediction from precise labels.}
16: else if O = mass label then
17: ŷ = Pignistic(MassCombination(L1, . . . , Lh)){Generate prediction from mass labels.}
18: end if

Figure 6 shows the procedure of constructing the forests, in which the Figure 6a shows
generation of basic trees in a random forest, and Figure 6b shows different procedure of
combining the final prediction in five forests, which will lead to a different classification
performance. We will evaluate them in the next section.
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Figure 6. Belief entropy in random forests. (a) Generation of basic trees and their outputs in random
forest. (b) Combination strategies of different random forests.

5. Experiments

In this section, we detail experiments to evaluate the performance of the proposed
decision tree method. The experiment settings and results are detailed below.

5.1. Experiment Settings

As there are no widely accepted evidential data sets to measure the proposed method,
it is necessary to generate a data set with ill-known labels from machine learning databases
taken from the UCI repository [46]. We selected several data sets, including: Iris, Wine,
Balance scale, Breast cancer, Sonar and Ionosphere.

Denote the true label of a instance by Ci, and give its uncertain observation myi . Due
to the characters of belief function, we can simulate several situations from precise data:
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• a precise observation is such that plyi (Ci) = 1, and plyi

(
Cj
)
= 0, ∀Cj 6= C∗i ;

• a vacuous observation is such that plyi

(
Cj
)
= 1, ∀Cj ∈ C;

• an imprecise observation is such that plyi

(
Cj
)
= 1 if Cj = C∗i or Cj ∈ Crm, and

plyi

(
Cj
)
= 0 otherwise, where Crm is a set of randomly selected labels;

• an uncertain observation is such that plyi

(
C∗i
)
= 1, and plyi

(
Cj
)
= rj, ∀Cj 6= C∗i , where

rj are sampled independently from uniform distribution U ([0, 1]).

To observe the performance on evidential training data sets with different ill-known
types and incomplete degrees, we set three variables, vacuousness level V ∈ [0, 1], impre-
cision level I ∈ [0, 1] and uncertainty level U ∈ [0, 1], to adjust the generation procedure,
where V + I + U 6 1.

Example 2 shows the transformed Iris data set and listed part of instances in Table 1.
In this example, labels of no.53 and no.54 instance are vacuous; labels of no.1 and no.2
instance are imprecise; labels of no.4 and no.52 instance are uncertain.

To improve the reliability and reduce the stochasticity, we performed 5-fold cross-
validation on each data set and repeat ten times to compute an average classification
accuracy for all experiments. Different tree induction techniques will be compared:

• traditional C4.5 tree, which only uses precise data in the training set during tree
induction;

• belie f entropy trees described in Section 3.3: OBE tree, LBE tree, IBE tree;
• belie f entropy random f orest described in Section 4:

– label-voting OBE random f orest(L-OBE RF);
– label-voting LBE random f orest(L-LBE RF);
– mass-combination LBE random f orest(M-LBE RF);
– label-voting IBE random f orest(L-IBE RF);
– mass-combination IBE random f orest(M-IBE RF);

We set the maximal size of the leaf node as |T|/20 to avoid overfitting in the belief
entropy trees. In the random forests, the forest size was set as 50, and the size of the
attributes subset was set as D′ = log2D.

5.2. Experiments on Vacuous Data

Assuming part of the instances in the training set are totally unobserved while others
are completely observed, we performed experiments with different vacuousness levels
V ∈ [0, 1] while I = U = 0. Generating the training sets and learning on them, the results
are shown in Figure 7.

Firstly, we observe the figure as a whole. Obviously, whatever the tree induction
method is, it is impossible to learn from data sets whose instances are all vacuous. Thus,
the accuracy of all trees decreases gradually as V increases, yet drops sharply when the V
approaches nearly to 1. On the contrary, almost all curves keep steady or decrease slightly
before the vacuousness level reaches 80%, except for the OBE trees. Table 4 shows the
accuracy results when V equals 90%.

Table 4. Classification accuracy on UCI data sets with 90% vacuousness level.

Iris Wine Ionosphere Balance Scale Breast Cancer Sonar

C4.5 0.800 0.6814 0.7221 0.6134 0.8031 0.5247
OBE tree 0.5846 0.4038 0.5775 0.6305 0.7751 0.5553
LBE tree 0.8326 0.6026 0.7763 0.5954 0.8732 0.5793
IBE tree 0.8288 0.6386 0.7797 0.6282 0.8793 0.5841

label voting OBE Random Forest 0.7864 0.4897 0.7404 0.7453 0.8745 0.5611
label voting LBE Random Forest 0.9020 0.8594 0.8555 0.7127 0.9319 0.6149

mass combination LBE Random Forest 0.8989 0.8295 0.8182 0.7138 0.9223 0.6115
label voting IBE Random Forest 0.9053 0.8940 0.8608 0.7454 0.9338 0.6120

mass combination IBE Random Forest 0.9174 0.9082 0.8647 0.6891 0.9330 0.6236
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Figure 7. Classification accuracy on UCI data sets with different vacuousness levels.

Considering the basic belief entropy trees firstly, the LBE trees and IBE trees perform,
most of the time, at least as well as the traditional C4.5 decision trees, and better than the
traditional decision trees for some time, especially when encountering high vacuousness
level V; however, the OBE preforms elusively on different data sets: it has the lowest
classification accuracy in Iris, Wine and Ionosphere data set; however, it achieves better
results in the Balance scale. It is possible that if all samples in a leaf node are vacuous, the
direct combination of all the training labels stays vacuous, which led to the shortage of
OBE tree.
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It can be observed that the belief entropy random forests perform well overall for their
improvement in classification accuracy compared to the corresponding basic tree and the
slower accuracy decent rate as V increases. Among these forests, the ones based on IBE
and making prediction by mass combination performs better than others in nearly all data
sets except the Balance scale.

5.3. Experiments on Imprecise Data

The second situation is that some data are imprecisely observed, i.e., the observation
is a set value, while the true value lies in this set (called superset labels [47] in some works).
As mentioned before, imprecision level I controls the percentage of imprecise observations.

For the instance to be imprecise, we randomly generate a number zk ∈ [0, 1] for each
class Ck except the true one. Plausibility of labels with zk < I will be set to 1. When the
I = 1, a training set becomes totally imprecise, which is, in practice, the same situation as
total vacuousness; while I < 1, instances are in a middle state of transition from precise to
vacuous, which indicates a piece of similarity between the vacuous training set and the
imprecise training set, i.e., we can tell that the imprecise sample contains more information
than the totally vacuous ones. As a result, we can see in Figure 8, that curves of accuracy
with changing I are similar to those in experiments with vacuousness in Figure 7, yet more
smooth and full.

According to the Table 5, the proposed methods keep pretty good classification results
under high-level imprecise observations. OBE still keeps the shortage in almost all data
sets while LBE and IBE achieve similar performance. M-IBE RF keeps its advantage in
most situations, especially in the Iris and Breast Cancer data; the classification accuracy is
almost equal to the results on the total precise training set. The balance scale is a particular
case to be discussed later.

Table 5. Classification accuracy on UCI data sets with 90% imprecision level.

Iris Wine Ionosphere Balance Scale Breast Cancer Sonar

C4.5 0.8000 0.6814 0.7221 0.6134 0.8031 0.5247
OBE tree 0.6233 0.5382 0.6786 0.6746 0.8605 0.5841
LBE tree 0.9093 0.7719 0.7858 0.6146 0.8979 0.6303
IBE tree 0.9040 0.7899 0.7892 0.6381 0.9051 0.6413

label voting OBE random forest 0.8647 0.6208 0.8552 0.7536 0.9257 0.6351
label voting LBE random forest 0.9473 0.9124 0.8621 0.7483 0.9359 0.6630

mass combination LBE random forest 0.9327 0.9118 0.8259 0.7437 0.9262 0.6635
label voting IBE random forest 0.9467 0.9219 0.8684 0.7709 0.9364 0.6572

mass combination IBE random forest 0.9447 0.9326 0.8755 0.7237 0.9399 0.6702

5.4. Experiments on Uncertain Data

Another type of ill-known label is the uncertain one, which is measured by a plau-
sibility distribution, with the true label having the highest chance among all class labels.
To evaluate the performance of the proposed trees and forests in a more general situation
with uncertainty, we set U ∈ [0, 1] and V = I = 0. For instance, to be transformed into an
uncertain one, we assign a value 1 to the plausibility of the true label and random values
averagely sampled from [0, U] to other labels.

Despite the inability to handle total vacuousness and imprecision, the belief entropy
trees have the ability to learn from totally uncertain training data sets. The horizontal
curves in Figure 9 indicate all methods proposed in this paper keep stable performance
with changing uncertainty level U. On the whole, we can learn from the figure that LBE
and IBE perform equally well and better than OBE as a single tree in most data sets, except
in the Balance scale.
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Figure 8. Classification accuracy on UCI data sets with different imprecision levels.



Entropy 2022, 24, 605 23 of 26

0 0.2 0.4 0.6 0.8 1

Uncertainty level V

0.5

0.6

0.7

0.8

0.9

1

a
c
c
u
ra

c
y

C4.5

OBE tree

LBE tree

IBE tree

label voting OBE random forest

label voting LBE random forest

mass combination LBE random forest

label voting IBE random forest

mass combination IBE random forest

(a) Iris

0 0.2 0.4 0.6 0.8 1

Uncertainty level V

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a
c
c
u
ra

c
y

C4.5

OBE tree

LBE tree

IBE tree

label voting OBE random forest

label voting LBE random forest

mass combination LBE random forest

label voting IBE random forest

mass combination IBE random forest

(b) Wine

0 0.2 0.4 0.6 0.8 1

Uncertainty level V

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a
c
c
u
ra

c
y

C4.5

OBE tree

LBE tree

IBE tree

label voting OBE random forest

label voting LBE random forest

mass combination LBE random forest

label voting IBE random forest

mass combination IBE random forest

(c) Ionosphere

0 0.2 0.4 0.6 0.8 1

Uncertainty level V

0.3

0.4

0.5

0.6

0.7

0.8

0.9

a
c
c
u
ra

c
y

C4.5

OBE tree

LBE tree

IBE tree

label voting OBE random forest

label voting LBE random forest

mass combination LBE random forest

label voting IBE random forest

mass combination IBE random forest

(d) Balance scale

0 0.2 0.4 0.6 0.8 1

Uncertainty level V

0.5

0.6

0.7

0.8

0.9

1

a
c
c
u
ra

c
y

C4.5

OBE tree

LBE tree

IBE tree

label voting OBE random forest

label voting LBE random forest

mass combination LBE random forest

label voting IBE random forest

mass combination IBE random forest

(e) Breast cancer

0 0.2 0.4 0.6 0.8 1

Uncertainty level V

0.3

0.4

0.5

0.6

0.7

0.8

a
c
c
u
ra

c
y

C4.5

OBE tree

LBE tree

IBE tree

label voting OBE random forest

label voting LBE random forest

mass combination LBE random forest

label voting IBE random forest

mass combination IBE random forest

(f) Sonar

Figure 9. Classification accuracy on UCI data sets with different uncertainty levels.

Considering the forests, for the good attribute normality of Iris, Wine and Breast cancer
data, classification accuracies of the five forests on these data sets have similar performance
according to Table 6, leading to a heavy overlap of curves in figure. Among these trees,
the OBE trees achieve the most significant improvement by building random forest; this
improvement helps OBE-RF to surpass other forests in the Ionosphere, Sonar and Balance
scale data sets. Particularly, in the Balance scale, the accuracy of OBE-RF even increases
slightly as the U decreases, which can be partially explained by the fact that uncertain
instances are more informative then absolutely precise instances.
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Table 6. Classification accuracy on UCI data sets with 90% uncertainty level.

Iris Wine Ionosphere Balance Scale Breast Cancer Sonar

C4.5 0.8000 0.6814 0.7221 0.6134 0.8031 0.5247
OBE tree 0.8847 0.7792 0.8219 0.7387 0.9121 0.6851
LBE tree 0.9400 0.8180 0.7937 0.6235 0.9120 0.6803
IBE tree 0.9513 0.8399 0.7955 0.6342 0.9278 0.6784

label voting OBE random forest 0.9513 0.9590 0.9293 0.8233 0.9381 0.7577
label voting LBE random forest 0.9547 0.9489 0.8803 0.7651 0.9344 0.7370

mass combination LBE random forest 0.9560 0.9478 0.8390 0.7800 0.9225 0.7404
label voting IBE random forest 0.9567 0.9528 0.8826 0.7829 0.9376 0.7346

mass combination IBE random forest 0.9567 0.9596 0.8875 0.7496 0.9394 0..7433

5.5. Summary

By carrying out experiments on training sets with different types and degrees of
incomplete observation, we can conclude that the LBE trees and IBE trees, along with four
types of random forests based on them, generally possess excellent learning ability on data
with ill-known labels. Among the RFs, the ensemble of the IBE tree, L-IBE-RF and M-IBE
RF achieve the highest classification accuracy in most situations except on samples with
high uncertainty levels, especially on the Balance scale data set. We think there are two
reasons: (a) compared to vacuous and imprecise samples, the learning labels of uncertain
samples are more information rich, while the OBE use the learning labels to predict directly;
(b) the attribute values of Ionosphere, Balance, and Sonar data sets contain less normality
than others—the balance scale are totally not normal. We can conclude that the ensemble
OBE RF requests less normality of the data set.

The results of experiments indicate that the application of the belief function tool to
the prediction of trees and combination of forests is efficient and reasonable; yet there are
also some drawbacks. Firstly, the introduction of the belief function and mass combination
obviously increases the time cost of learning. The sensitivity to the normality of data makes
the proposed trees and RFs unable to handle, to the greatest extent, all situations with one
particular structure.

6. Conclusions

In this paper, a new classification tree method based on belief entropy is proposed
to cope with uncertain data. This method directly models continuous attribute values of
training data by E2M algorithm, and selects a splitting attribute via a new tool–belief en-
tropy. Differing from the traditional decision trees, we redesign the splitting and prediction,
making them fit the feature of uncertain labels described by the belief function. Finally,
random forests with different combination strategies were constructed on the basis of the
proposed tree method to seek higher accuracy and stronger generalization ability.

As the experimental results show, the proposed belief entropy trees are robust to
different sorts of uncertainty. They perform closely to traditional decision trees on precise
data and keep good results on data with ill-known labels. Meanwhile, the belief entropy
random forests, which improve significantly when compared to the basic belief function
trees, achieve excellent and stable performance even in the situation with high-level uncer-
tainty. It is proved that the proposed trees and random forests have a potentially broad field
of application. In future research, some further improvements will be investigated, such as
more reasonable BBA combination methods for the incapacity of Dempster’s rule to handle
huge mass conflict, and a boosting ensemble method based on the belief entropy trees.
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